
Solgrep - A grammar aware Solidity query
tool
Ferran Celades Pons
Master’s degree in Information and Communication Technologies Security
Protocols and security applications

Tutor: Alberto Ballesteros Rodríguez

31 de Maig de 2022

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-SinObraDerivada
3.0 España de Creative Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

FINAL WORK SHEET

Title: Solgrep - A grammar aware Solidity
query tool

Author’s name: Ferran Celades Pons
Tutor name: Alberto Ballesteros Rodríguez
Delivery date (mm/aaaa): 05/2022
Degree: Master’s degree in Information and

Communication Technologies Secu-
rity

Work Area: Protocols and security applications
Language: English
Keywords: Grammar, Search, Queries, AST,

Tree, Ellipsis, Nodes, Metavars,
Semgrep, YAML, Rules

1

Resum del Treball:
En els últims anys, l’ús de la cadena de blocs, o blockchain, ha anat creix-
ent ràpidament. Moltes indústries han estat utilitzant i desenvolupant
plataformes de cadena de blocs per realitzar càlculs descentralitzats. Una
de les tecnologies subjacents més populars en blockchain es Ethereum.
S’han escrit moltes eines per analitzar i trobar vulnerabilitats als
contractes intel·ligents de Solidity des d’un punt de vista estàtic [3] i
dinàmic [4]. Tanmateix, cap de les eines ja desenvolupades permet una
aportació fàcil per part de la comunitat sense haver de modificar el propi
codi font de l’eina o escriure consultes específiques de sintaxi complexes.

En aquest projecte he creat Solgrep. Solgrep és una eina que permet
la cerca semàntica estàtica al codi Solidity. La idea inicial de Solgrep
s’havia d’utilitzar com a part de Smart Contracts Solidity Audits com
una eina remarcable en l’arsenal d’un auditor. Tanmateix, es va observar
que aquesta eina es podria integrar fàcilment amb les piles de desenvolu-
pament de Solidity actuals per trobar patrons dolents comuns i errors de
codificació que solen fer els desenvolupadors de Solidity.
Aquest projecte constarà de tres parts diferents, més una obra ampliada
que s’acabarà parcialment i es deixarà a la comunitat:

La primera fase serà la creació d’una utilitat que sigui capaç d’analitzar
qualsevol codi de Solidity en un d’arbre abstracte (AST) que després es
pugui interpretar i treballar. Per a aquesta fase, s’utilitzarà la biblioteca
analitzadora tree-sitter[5] amb una gramàtica de Solidity personalitzada.

La segona fase consistirà a escriure un programa que sigui capaç de
comparar i extreure dos AST proporcionats, l’arbre del codi font i l’arbre
proporcionat per l’usuari com a consulta.

En la tercera fase, l’eina s’ampliarà amb un sistema de nidificació que
permetria fusionar i restar múltiples consultes entre si. Per exemple,
trobar un patró dins d’un patró, trobar un patró que no estigui dins d’un
altre patró o trobar un patró que contingui diversos patrons. El sistema
de consultes es gestionarà i es configurarà mitjançant fitxers YAML.
S’utilitzarà la referència sobre la sintaxi de la regla[6].

Com a extensió, l’eina s’utilitzarà per escriure els problemes més impor-
tants del registre SWC[7] per mostrar el poder i la simplicitat de l’eina.

2

Abstract:
In the last few years, the blockchain usage has been growing rapidly. A
lot of industries have been using and developing blockchain platforms
to perform decentralized computations. One of the most popular
underlying technologies is the Ethereum blockchain. Executing, verifying
and enforcing credible computable transactions on blockchains is done
using smart contracts which the code is written using a Turing complete
language [1]. Those contracts are typically written in a high-level
programming language called Solidity [2], then compiled to Ethereum
Virtual Machine (EVM) assembly instructions and deployed to the
Ethereum blockchain.

So many tools have been written to analyze and find vulnerabilities in
Solidity smart contracts from a static [3] and dynamic standpoint [4].
However, none of the already developed tools allow easy contribution by
the community without actually having to modify the tool source code
itself or write complex syntax specific queries.

In this project we have created Solgrep. Solgrep is a tool that allows static
semantic aware search on Solidity code. The initial idea of Solgrep was
to be used as part of Smart Contracts Solidity Audits as a remarkable
tool in the arsenal of an auditor. However, it was noticed that this tool
could be easily integrated with current Solidity development stacks to
find common bad patterns and coding mistakes that Solidity developers
tend to do.

3

Contents
1 Introduction 6

1.1 State of Art . 6
1.2 Solution . 6
1.3 Objectives . 7
1.4 Methodology . 7
1.5 Tasks . 8

2 Grammar 10
2.1 Describing grammars . 10

2.1.1 Tree-sitter . 11

3 Tree-sitter changes and updates 12
3.1 Testing coverage . 13

4 Understanding the AST 17

5 Implementing a tree comparer 19
5.1 Ellipsis node . 20
5.2 Comparing Trees . 21
5.3 Extending tree-sitter-grammar with ellipsis support 22

5.3.1 Comparing Nodes and metavar support 23

6 Solgrep rules 27
6.1 Solgrep message placeholders 28
6.2 Solgrep patterns . 30

6.2.1 Solgrep patterns rules 31

7 SWC 34

8 Solgrep usage 35
8.1 Loading the source code . 35
8.2 Loading the query rule . 36
8.3 Displaying the AST . 36

8.3.1 Exporting the AST to an image 38
8.4 Getting the query results (report) 39

9 Conclusions 42

References 43

4

List of Figures
1 Gantt chart for all the tasks and the programmed time for

them . 9
2 Flow for a grammar . 10
3 All written testcases for the tree-sitter solidity repository . . 14
4 AST representation of the sample code 18
5 AST representation of the sample code 19
6 AST representation of the sample code with the ellipsis defi-

nition . 20
7 Tree obtained when exporting the source tree from Listing 36

(root.png) . 38
8 Tree obtained when exporting the query tree from Listing 36

(tree.png) . 39

5

1 Introduction
1.1 State of Art
In the last few years, the blockchain usage has been growing rapidly. A lot of
industries have been using and developing blockchain platforms to perform
decentralized computations. One of the most popular underlying technolo-
gies is the Ethereum blockchain. Executing, verifying and enforcing credible
computable transactions on blockchains is done using smart contracts which
the code is written using a Turing complete language [1]. Those contracts are
typically written in a high-level programming language called Solidity [2],
then compiled to Ethereum Virtual Machine (EVM) assembly instructions
and deployed to the Ethereum blockchain.

So many tools have been written to analyze and find vulnerabilities in
Solidity smart contracts from a static [3] and dynamic standpoint [4]. Static
analysis is one of the most effective ways to detect potential issues in con-
tracts. Usually, static analysis tools work by analyzing the source code
or a disassembled version of it and then transforming it into an internal
representation where the actual analysis and detection is performed.

None of the already developed tools allow easy contribution by the com-
munity without actually having to modify the tool source code itself or write
complex syntax specific queries. Some tools that allow static code querying
do exist such as semgrep. Semgrep [8] was written to find bugs in source
code with extensibility and usability in mind and without having to actually
rewrite the source code of the utility.

However, customization and extensibility to detect flow aware bugs such
as Solidity Re-entrance bugs are hard to be detected without execution trace
or further analysis.

1.2 Solution
In this project we have created Solgrep. Solgrep is a tool that allows static
semantic aware search on Solidity code. The initial idea of Solgrep was to
be used as part of Smart Contracts Solidity Audits as a remarkable tool in
the arsenal of an auditor. However, it was noticed that this tool could be
easily integrated with current Solidity development stacks to find common
bad patterns and coding mistakes that Solidity developers tend to do.

The search queries are written using plan Solidity and then parsed into
an intermediate AST for interpretation. The grammar used to parse the
Solidity files and user provided queries was extended with syntax support
for ellipsis (aka skipping sibling/child nodes on the AST). The query tree and
the source code tree are then compared using a BFS algorithm to determine
if both trees are equal or not. Node comparison do include regex support
and metavars definitions for matching the most complex rules that you could
possibly imagine. The system allows writing the rules in a YAML file which

6

will be used to query the source code. It allows the community to write
rules in an easy YAML syntax which can be re-used an extended as wanted.

1.3 Objectives
This project will consist in three different parts, plus an extended work that
will be partially completed and left to the community:

The first phase will be creating an utility that is able to parse any Solidity
code in an Abstract Tree object (AST) that can later be interpreted and
worked on. For this phase, the tree-sitter[5] parser library with a custom
made Solidity grammar will be used. The grammar will be modified and
updated with the latest Solidity features until a 100% code coverage (or
close) is achieved on public Solidity projects.

The second phase will consist in writing a program that is able to com-
pare and extract two provided AST’s, the source code tree and the user
provided tree. The AST comparing code will check for the tree node con-
tents and compare them based on predefined rules. The provided user AST
will allow skipping nodes by using an ellipsis syntax, similar to a glob or
regex asterisk, which will allow skipping depth nodes and sibling nodes.
During this phase, the Solidity grammar will be extended to support ellipsis
on all component. Reference on pattern syntax[9] will be used.

In the third phase the tool will be extended with a nesting system that
would allow multiple queries to be merged and subtracted from each other.
As an example, finding a pattern inside a pattern, finding a pattern that
is not inside of another pattern or finding a pattern that contains multiple
patterns. For this, conditional queries will be implemented based on previous
explored AST results. For all the found queries, the system will generate
a report, using a custom provided user message, the line and content of all
the found queries. The query system will be managed and configured using
YAML files. Reference on rule syntax[6] will be used.

As an extension, the tool will be used to write the most important SWC
Registry[7] issues to showcase the power and simplicity of the tool.

1.4 Methodology
During phase one, the code will be base on an already made tree-sitter
parser for Solidity [10]. However, code modifications will be needed since
some features are not supported on the parser. The top 30 projects on
Github with Solidity code will be used for code coverage tests.

For phase two, the utility will be written using Python since the tree-
sitter binding for this programming language exists. The code will be exten-
sively tested and simplified versions of the AST will be used before testing
with the real Solidity AST. The AST ellipsis system will be tested using
simplified and handwritten ASTs.

7

For phase three, the querying system will be storing each of the found
results. Those results will be used in combination with a custom provided
user message to have a final report. The template system will use jinja2 [11]
for the generation.

On the extension phase, each issue demo code present on the SWC Reg-
istry will be taken and a general rule for it will be written and tested.

1.5 Tasks
• State of the art: This task will consist on searching for existing tools to

solve the problem and see how we can re-use part of it for our project
idea.

• Design: During this task we will design our tool and the expected
behavior for it. We will be extending the grammar syntax for Solidity
to support our query syntax and write the underlying functionality of
the tool.

– Extend Solidity and write an AST query program (Initial AST
ellipsis support). (PEC 2 & PEC 3)

– Support ellipsis on Solidity grammar and different types node
comparison for Solidity. (second half of PEC 3 & first half of
PEC 4)

– Write the template system and complex nested queries (Test rules
with SWC Registry). (PEC 4)

• Evaluation: This task consist on using our tool ans seeing how good it
is and what could be improved by using it against real world scenarios.

– Provide the SWC Registry queries using the created tool. (PEC
4)

The tasks are represented on the Figure 1 Gantt chart. These dates
are approximate, and a margin has been given for each activity in case of
setbacks. This chart does not include the times for the video delivery task,
which it is estimated to by less than 1 week.

8

Figure 1: Gantt chart for all the tasks and the programmed time for them

9

2 Grammar
A programming language grammar is a set of instructions, given in the form
of rules, about how to write statements that are valid for that programming
language. Those rules specify how characters and words can be put one after
the other to form a valid statement on that language. The rules defining
how words and characters are put together are called lexing rules, and are
defined under a lexer. Once the lexer stops processing certain rule it will
generate a “token”. A “token” is a valid lexical group. Later, those tokens
are interpreted by other rules called parsing rules. The parsing rules, defined
under a Parser, define the relationship between tokens valid for that specific
programming language.

Lets use an example snippet, Listing 1, that could be used for almost
any programming language .

Listing 1: Programming language code example
1 1234 + 456

The program performing lexical token extraction and parsing is usually
called a “grammars” or “grammar parsers”, taking the name from the last
step of the flow being actually the Parser itself. Figure 2 is displaying the
flow that a grammar parser will perform. A grammar lets us transform
a program, which is normally represented as a linear sequence of ASCII
characters, into a syntax tree.

123 + 456 123 + 456

NUM NUMPLUS
LEXER PARSER

TokensCode Abstract syntax
tree

123 456+

expression

sum

Figure 2: Flow for a grammar

The output of a parser is usually a custom formatted Abstract Syntax
Tree (AST). Usually parsers provide a way to have the AST represented in
many different ways and provide programming language bindings to walk
and traverse the trees.

2.1 Describing grammars
There exist multiple languages themselves that are written and used to de-
scribe the grammar for other languages, such an example is ANTLR [12].

10

ANTRL, is used to write aggregated rules in a key-value form using specific
syntax that can describe an entire programming language. As an example,
Solidity does provide an official description for the Lexer [13] and Parser
[14].

2.1.1 Tree-sitter

Tree-sitter is a parser generator tool that compiles a grammar description
into a POSIX library. The library does expose some methods that parsing
any file input and walking though the parsed AST. It does present with
many language bindings [15] that allow direct interaction with the library
methods by exposing APIs. There is currently one implementation of the
Solidity grammar using tree-sitter syntax [10]. This project will extend
and update the aforementioned grammar with the latest updates [16] under
Github [17].

11

3 Tree-sitter changes and updates
This section will explain all changes that have been made on the original
tree-sitter developed by Joran Honig [10].

The grammar file does cover almost the entire syntax for the latest ver-
sion of Solidity, currently siting under 0.8.9. However, old compatibility
features were missing including but not limited to:

• Experimental Pragma support, such as SMTChecker and ABIEncoderV2 and
abicoder v2 on solidity 0.7.6

• Missing support for tuple variable declaration, such as (address x,
address y)

• Declaring function and event parameters as function types was not
allowed.

• Usage of var keyword to declare variables and tuple variables such as
(c,d)= (1,2).

• Missing some reversed keywords such as after.
• Missing test cases for structure inline initialization such as MapEntry({

_key: value, _value: 2 })
• Missing partial support for underscore numbers and hex digits, such

as 1_123
• Yul expressions were missing yul_evm_builtin support for solidity <

0.6.0.
• Slicing access members were not declared as optional, slices like the

following [4:] were not supported.
• Function type did not support neither, parameters, visibility or muta-

bility.

Some changes on newer versions were introduced and were not reflected
on the grammar, some of them are:

• The fallback functions do not return values on >=0.6.0, this was added
on the fallback_receive_definition description.

• A new block type was added on >0.8.0 named unchecked. The support
was added as well.

Both compatibility and additions were merged into a single commit hash
1b2ade71d54b0edaa1e932d9700de811568b932e[17]. This commit includes the pre-
vious compatibility fixed issues and the newly added code to support the
latest solidity compilers. Furthermore, the test cases and corpus samples
were updated to reflect the changes and test compatibility with existing
code. The repository containing the changes can be found publicly under
Github[17].

12

3.1 Testing coverage
Once the test cases were extended an verified, as shown in Figure 3, it was
time to test our newly added features and fixed issues with real world code.
For that, the most-starred-for-languages script[17] was used to obtain the
TOP 30 projects written in solidity present on Github.

13

Figure 3: All written testcases for the tree-sitter solidity repository
14

Listing 2: TOP 30 projects on Github containing solidity code
1 https://github.com/ethereum/EIPs
2 https://github.com/Aircoin-official/AirCash
3 https://github.com/Dapp-Learning -DAO/Dapp-Learning
4 https://github.com/fravoll/solidity -patterns
5 https://github.com/willitscale/learning -solidity
6 https://github.com/sushiswap/sushiswap
7 https://github.com/Rari-Capital/solmate
8 https://github.com/crytic/not-so-smart-contracts
9 https://github.com/compound -finance/compound -protocol

10 https://github.com/crytic/echidna
11 https://github.com/nibbstack/erc721
12 https://github.com/ExtropyIO/defi-bot
13 https://github.com/xtblock/xtt
14 https://github.com/solidlyexchange/solidly
15 https://github.com/Arachnid/solidity -stringutils
16 https://github.com/studydefi/money-legos
17 https://github.com/PatrickAlphaC/nft-mix
18 https://github.com/crytic/building -secure-contracts
19 https://github.com/provable -things/ethereum -api
20 https://github.com/Uniswap/v2-periphery
21 https://github.com/OlympusDAO/olympus-contracts
22 https://github.com/safemoonprotocol/Safemoon.sol
23 https://github.com/yam-finance/yam-protocol
24 https://github.com/zeriontech/defi-sdk
25 https://github.com/unlock-protocol/unlock
26 https://github.com/andrecronje/rarity
27 https://github.com/aragon/aragonOS
28 https://github.com/HashLips/hashlips_nft_contract
29 https://github.com/makerdao/multicall

After the list was complete, the command shown under Listing 3 was
executed to clone the repositories under the sample folder.

Listing 3: Cloning top 30 solidity projects under the test/sample folder
1 cat projects.txt | xargs -L 1 -I {} git -C ./test/sample clone

--depth=1 {}

After the repositories were cloned the tree-sitter utility with the stats
command was as shown in Listing 4 was executed.

Listing 4: Command executed to stat the parsing ratio on the sample repos
1 $ tree-sitter generate
2 $ tree-sitter parse 'test/sample/**/*.sol' --stat --quiet
3 ...
4 Total parses: 1479; successful parses: 1453; failed parses: 26;

success percentage: 98.24%

Out of 1479 files, 1453 were successfully parsed and only 26 had some
parsing issues. However, those issues do not mean that the entire file was

15

not parsable but the stat tool reported it as invalid. Thats a full parsing
success ratio of 98.24% and a coverage of over 99.7%. The none-parsable
issues were related to bad code implementations and old solidity versions
structure manipulations, futhermore some yul loop old behaviors were also
not parsed.

This coverage was enough to continue and assure that almost all
tokens will be parsed and interpreted into a valid AST. If any
none valid node is found, direct regex comparison will be made.

16

4 Understanding the AST
For this section the Listing 5 code will be used. It contains a simple external
function written in Solidity that performs no action at all.

Listing 5: Sample Solidity code
1 pragma solidity ^0.8.4;
2

3

4 // Comment
5 contract TestContract {
6

7 function test() external {
8 }
9 }

The Listing 5 code is interpreted by tree-sitter and parsed as shown in
Listing 7. This is an AST representation where each level is added under
a parenthesis (()). The AST does show the starting and ending line and
character inside that line.

Listing 6: Output generated by tree-sitter when parsing the sample code
1 (source_file [0, 0] - [8, 1]
2 (pragma_directive [0, 0] - [0, 23]
3 (solidity_directive [0, 7] - [0, 22]
4 (pragma_versions [0, 16] - [0, 22])))
5 (comment [3, 0] - [3, 11])
6 (contract_declaration [4, 0] - [8, 1]
7 name: (identifier [4, 9] - [4, 21])
8 body: (contract_body [4, 22] - [8, 1]
9 (function_definition [6, 2] - [7, 3]

10 function_name: (identifier [6, 11] - [6, 15])
11 (parameter_list [6, 15] - [6, 17])
12 (visibility [6, 18] - [6, 26])
13 body: (function_body [6, 27] - [7, 3])))))

By using a traverser (Listing 7), the Python binding library[18] and the
AnyTree library [19] we can obtain a representation of this tree as show in
Figure 4

Listing 7: Output generated by tree-sitter when parsing the sample code
1 class TreeNode(NodeMixin):
2 def __init__(self, type, node, parent=None, children=None):
3 super(TreeNode , self).__init__()
4 self.name = "{}".format(type)
5 self.type = type
6 self.node = node
7 self.parent = parent
8

17

9 \pagebreak
10 # root = Treesitter root
11

12 def _parse_node(_node, _last_parent):
13 node = TreeNode(_node.type, _node, parent=_last_parent)
14

15 def _traverse(self):
16 last_parent = None
17 def _traverse(node, last_parent):
18 last_parent = self._parse_node(node, last_parent)
19 for child in node.children:
20 _traverse(child, last_parent)
21 _traverse(root, last_parent)

0:source_file

1:pragma_directive 6:comment 7:contract_declaration

2:pragma 3:solidity_directive

4:solidity 5:^

8:contract 9:identifier 10:contract_body

11:{ 12:function_definition 23:}

13:function 14:identifier 15:parameter_list 18:visibility 20:function_body

16:(17:) 19:external 21:{ 22:}

Figure 4: AST representation of the sample code

As we can see in Figure 4, the AST level is determined by the scope
depth. If the code does not contain any sub-statement the tree heigh will
remain on the same level.

18

5 Implementing a tree comparer
As seen in Section 4, the tree depth grows in relation with the sub-statements
of the source code.

For simplicity, lets take the source code from Listing 8 which can be
represented with the AST shown in Figure 5. As seen on the source code
the code does contain a test() function inside the contract scope. This
corresponds to the level of nodes 6 to 14 on the AST representation.

Listing 8: Sample Solidity code
1 contract TestContract {
2 function test() {
3

4 }
5 }

0:source_file

1:contract_declaration

2:contract 3:identifier 4:contract_body

5:{ 6:function_definition 15:}

7:function 8:identifier 9:parameter_list 12:function_body

10:(11:) 13:{ 14:}

Figure 5: AST representation of the sample code

Imagine that we want now to match a Contract declaration with any
function on it. Having a tree that matches this statement would require

19

knowing all possible definitions of the contract. However, it is possible to
create a new node type which represents any sub-level nodes or any sibling
nodes. This new type is called “ellipsis”.

5.1 Ellipsis node
The ellipsis node, is represented with ..., this statement matches any subn-
ode and sibling nodes until a matching none-ellipsis node is found or until
the tree level is exhausted.

Keeping the Listing 8 example, we could match any contract declaration
with the statement shown in Listing 9

Listing 9: Sample Solidity code with ellipsis
1 contract TestContract {
2 ...
3 }

The AST representation in conjunction with the old AST, can be seen in
Figure 6. The ellipsis node, will match any sub-statement including sibling
nodes. For example, if the original source code had multiple function def-
initions, the node level 5: will contain two function_definition nodes. The
ellipsis, will still match both of those definitions until a none-ellipsis node is
found or the level is exhausted.

0:source_file

1:contract_declaration

2:contract 3:identifier 4:contract_body

5:{ 6:function_definition 15:}

7:function 8:identifier 9:parameter_list 12:function_body

10:(11:) 13:{ 14:}

_0:source_file

_1:contract_declaration

_2:contract _3:identifier _4:contract_body

_5:{ _6:ellipsis _7:}

Figure 6: AST representation of the sample code with the ellipsis definition

20

5.2 Comparing Trees
The search will be performed using a BFS algorithm [20] to search for the
first node that do match the query root node. Once the root query node is
found on the source code, the query tree will be traversed using BFS until
the query tree is exhausted. Once the traversal does complete on the query
tree, and all depths were equal, we can assure that a result for the query
on the original source was found. Each depth will be compared using the
depth level comparer algorithm that implement ellipsis and node skipping
comparison.

Taking as a reference the Figure 6 on the 5th node level, the sequence
could be represented as ilustrated on Listing 10. A depth level comparer (for
the BFS [20] algorithm) was written to ilustrate this concept, the code can
be found under the Solgrep repo examples/comparer.py[21]. The logic of
the code is to represent the tree level as an array and match it against other
arrays containing ellipsis node (represented with a single dot . for simplicity).
Some test scenarios of matching levels can be seen on Listing 11.

Listing 10: 5th level of the ellipsis demo represented using an array
1 original = ['{', 'function_definition ', '}']
2 comparer = ['{', '.', '}']

Listing 11: Sample Solidity code with ellipsis
1 a = [1, 2, 3, 4, 5]
2 b = ['.', 2, '.', 5]
3 assert compare(a, b) == True
4

5 a = [1, 2, 3, 4, 5]
6 b = ['.', 5]
7 assert compare(a, b) == True
8

9 a = [1, 2, 3, 4, 5]
10 b = [1, '.', 5]
11 assert compare(a, b) == True
12

13 a = [1, 2, 3, 4, 5]
14 b = [1, 2, '.']
15 assert compare(a, b) == True
16

17 a = [1, 2, 3, 4, 5]
18 b = ['.']
19 assert compare(a, b) == True
20

21 a = [1, 2, 3, 4, 5]
22 b = [1, '.', '.', '.', 4, '.', '.', 5]
23 assert compare(a, b) == True
24

25 a = [1, 2, 3, 4, 5]

21

https://github.com/fr0zn/solgrep/blob/master/examples/comparer.py

26 b = [1, '.', '.', 4]
27 assert compare(a, b) == False
28

29 a = [1, 2, 3, 4, 5]
30 b = ['.', '.', 4]
31 assert compare(a, b) == False

5.3 Extending tree-sitter-grammar with ellipsis support
The updated tree-sitter solidity grammar [17], should be extended to support
ellipsis syntax on the desidered nodes. For it, the tree-sitter nodejs library,
allows extending from an original grammar with syntax shown in Listing 13.
The grammar definition can now extend the original grammar, and replace
or add new parsable tokens on any declaration under the rules.

Listing 12: Original grammar extension template
1 const standard_grammar = require('./tree-sitter-solidity/

grammar.js');
2 module.exports = grammar(standard_grammar , {
3 name: 'solgrep',
4

5 rules: {
6

7 }
8 });

As an example, adding support for the ellipsis token on any standard
statement and inside a contract body can be done by defining the rules
shown in Listing 13 under the rules of the extended grammar.

Listing 13: Rules added to the extended grammar to support basic ellipsis
1 _contract_body: ($, previous) => {
2 return choice(
3 ...previous.members,
4 $.ellipsis
5);
6 },
7

8 _expression: ($, previous) => {
9 return choice(

10 ...previous.members,
11 $.ellipsis ,
12);
13 },
14

15 ellipsis: $ => '...',

22

Compiling the rules from Listing 13 and executing the tree-sitter parse
utility against the Listing 9 code does produce the tree-sitter representation
shown on Listing 14

Listing 14: Result of extending the original grammar with ellipsis support
under contracts

1 (source_file [0, 0] - [2, 1]
2 (contract_declaration [0, 0] - [2, 1]
3 name: (identifier [0, 9] - [0, 21])
4 body: (contract_body [0, 22] - [2, 1]
5 (ellipsis [1, 2] - [1, 5]))))

5.3.1 Comparing Nodes and metavar support

By definition, two nodes will be the same if the underlying tokens do match
on every single element. As an example, the contract name ContractName will
only match with compared node if every single character is the same, in this
case the comparer node should be ContractName.

For example, writing a query for the code shown on Listing 15 that
would match both, func1 and func2, the latter calling the former, could be
possible accomplished by using ellipsis as shown on the Listing 16. How-
ever, that would also match func3 being called by func4 and moreover, func4
calling func1, which is not something that the code states. Since ellipsis can
match anything it is possible to match invalid statements that do not truly
represent the real source code.

Listing 15: Example code showing call dependencies
1 contract ContractName {
2 function func1() external {}
3 function func2() external {
4 func1();
5 }
6

7 function func3() external {
8 }
9 function func4() external {

10 func3();
11 }
12 }

Listing 16: Query to match the example code with call dependencies using
ellipsis

1 contract ContractName {
2 ... // match any previous code
3 function ...() external {}

23

4 ...
5 function ...() external {
6 ...();
7 }
8 ... // match any following code
9 }

With the implications seen on relying only on ellipsis a new way of
representing tokens was introduced. Any identifier under solgrep can be
prefixed with the $ symbol (dollar sign). When comparing literal tokens, aka
nodes, this value will be checked. If the identifier starts with this symbol,
solgrep will keep a reference to its literal value which can be later referenced
during the query. As an example, Listing 16 could be rewritten as shown in
Listing 17.

Listing 17: Query to match the example code with call dependencies using
metavars

1 contract ContractName {
2 ... // match any previous code
3 function $FNC() external {
4 ...;
5 }
6 ...
7 function $CALLER() external {
8 $FNC();
9 }

10 ... // match any following code
11 }

The code will now keep valid metavars references and find all possibil-
ities that do match those metavars. Solgrep, will keep a reference of valid
metavars while scanning the query tree. With the Listing 17 query, the $FNC
metavar will initially be filled by func1, func2, func3 and func4, since they all
match the $FNC definition (there is an internal ellipsis indicating that this
function can contain “any” or “none” body). Once solgrep does start to
interpret the $CALLER definition, the func2 and func4 literals on $FNC will be
discarded. The $CALLER metavar will be store with func2 and func4 as valid.

The metavar system will never detect false positives since the lit-
eral representation of the placeholder metavar variables is com-
pared against the queried source code.

Some internal metavars are also defined, for example, $TYPE a = 0; query
could be used to match bool a = 0;.:

• $TYPE: It will match any type, such as uint256, bool, bytes.
• $VISIBILITY: It will match any function visibility, such as public, external

, internal.

24

• $STATE: It will match any function mutability, such as view, pure.
• $STORAGE: It will match any type memory storage, such as memory,

storage, calldata.
• $VERSION: It will match any pragma solidity version, such as 0.8.4,

>=7.0.0.
• $EXPERIMENTAL: It will match any pragma experimental string, such as

ABIEncoderV2, SMTChecker.

Once a metavar is used, the literal value that reference to is keep on the
placeholder. This means, that further references to the same metavar do
hold the last value. Sometimes, we do want to use those internal vars to
match complex conditions, as seen in Listing 18. The previous stated listing,
does match any function with any name, that takes one parameter of any
type and returns a value of the same type. This function should call any
function that takes the passed argument and the returned call value should
be stored on a variable and returned from the main function.

If we now want to have the same query but with the possibility of the
returned value being the same or different type as the parameter type that
would not work. The parameter type and return type should be the same
as defined on the query.

Thats why, internal metavars do support enumeration by appending a
number to the definition. And as previous metavars identifiers they will
hold the first value and all possible values that it matches. As an example,
Listing 18 could be rewritten to support different argument and return values
as shown in Listing 19, which defines two different any type, $TYPE0 and
$TYPE1.

Listing 18: Complex internal metavar dependencies
1 contract $CONTRACT {
2

3 function $FNC1($TYPE $VAR1) $VISIBILITY returns($TYPE){
4 ...
5 $TYPE $VAR2 = $FNC2($VAR1);
6 ...
7 return $VAR2;
8 }
9 }

Listing 19: Complex internal metavar dependencies with metavar enumera-
tion

1 contract $CONTRACT {
2

3 function $FNC1($TYPE0 $VAR1) $VISIBILITY returns($TYPE1){
4 ...
5 $TYPE1 $VAR2 = $FNC2($VAR1);

25

6 ...
7 return $VAR2;
8 }
9 }

26

6 Solgrep rules
Rules under solgrep are written using YAML syntax [22]. The Listing 20 does
display an example rule file containing all the components that are required
to satisfy a valid solgrep rule file.

Listing 20: Example YAML rule file for the solgrep tool
1 id: issue-id
2 message: |
3 This is the message {{CONTRACTS | comma}}
4 risk: 1
5 impact: 1
6 patterns:
7 - pattern: contract $CONTRACT {...}
8 and:
9 - pattern: function $FUN(...) ... {...}

10 and:
11 - pattern: ... -= ...
12 - pattern: ... *= ...
13 - pattern: ... += ...
14 metavars-regex:
15 $CONTRACT: .*
16 $FUN: admin.*

Each component of the Listing 20 is explained here:

• id The id is used to identify the rule and used on the reported in case
of multiple rules defined.

• message The message is used on the reporter to describe the issue.
Placeholders can be used to represent the found metavars, as an
example the {{ CONTRACTS | comma }} will print in a comma sepa-
rated list, all the CONTRACT metavars that do match the patterns
section. More on the placeholder under Section 6.1.

• risk and impact This is used to represent the severity of the de-
scribed found issue or rule. Any number or value can be inserted
here and will be shown on the reporter.

• patterns This is the most complex and were all the solgrep power
comes in. This section does allow multiple rules to be concate-
nated and matched against each other in an hierarchy way. A rule
can be searched inside a rule by indenting it and using a combiner
node, such as not, and, and-either, not-either and more. If mul-
tiple patterns are allowed, they can be listed inside - patterns:.
More on the patterns under Section 6.2.

• metavars-regex This node does allow describing how metavars will
be matched on the system. Since metavars do match a full token

27

regex patterns are supported. Each token matching the node type
for the metavar will be compared with this description, if it does
match it will be considered a valid token node. If the type of the
node is the same but the regex does not satisfy the token will be
considered as different. As an example, Listing 20 does describe
2 metavars, the CONTRACT and FUN, used on the patterns section
to match any contract witch contain any function with a list of
patterns inside it. The CONTRACT metavars does match any token
name .*. However, the FUN metavar will only match functions
starting with admin followed by anything, on the function name
only. The * (asterisk) and + (plus) sign on regex will only match
the current token, the */+ does not match until the end of the
line as regex would do.

6.1 Solgrep message placeholders
The message field under the rule file of solgrep does support complex parametriza-
tion and placeholders. The system is using jinja2 [11] for the template sys-
tem. That means that any placeholder as long as it has been defined can be
used.

For this section, the Listing 21 contract will be used to showcase all
possible scenarios.

Listing 21: Demo code used for placeholder showcasing
1 pragma solidity 0.8.12;
2

3 contract Test() {
4

5 uint256 public value;
6

7 function func_add(uint256 a, uint256 b) external {
8 value = a + b;
9 }

10

11 function func_sub(uint256 a, uint256 b) external {
12 value = a - b;
13 }
14

15 function do_multiply(uint256 a, uint256 b) external {
16 value = a * b;
17 }
18 }

For every single defined metavar a pluralized placeholder will be used
containing a list of all valid tokens for that metavars in case of multiple
matches. If a none or single match is found, the pluralized token is still
used. As an example, the simplified rule file shown in Listing 22. This rule

28

file will report the message shown under Listing 23.

Listing 22: Simple rule set showcasing the metavar and message placeholder
usage

1 message: The found functions starting with func_ are: {{FUNCS}}
2 patterns:
3 - pattern: function $FUNC(...) ... {...}
4 metavars-regex:
5 $FUNC: func_.*

Listing 23: Result for the simple rule set showcasing the metavar and mes-
sage placeholder usage

1 The found function starting with func_ are: ['func_add', '
func_sub ']

The placeholders can be extended by using filters. Filters are a way of
manipulating the placeholder information to be represented in a different
way. As an example, Listing 24 does display a message rule field and the
output for it using the same rule set as Listing 22.

Listing 24: Example of placeholder filtering
1 message: The found function starting with func_ are: {{FUNCS |

comma}}
2

3 Result:
4

5 The found functions starting with func_ are: func_add, func_sub

The output is filters and comma separated when using the comma filter on
the placeholder. The system does support multiple placeholders and they
can be designed to achieve any output needs:

• pluralize(list, singular=““, plural=”s”) The pluralize can be used
in combination with a word to pluralize it in case the filter value
contains more than 1 item. As an example, The function{{ FUNCS
| pluralize }} will either return The function or The functions de-
pending if FUNCS has more than one item. The command can
be customized on the fly with the arguments. As an exam-
ple, using is with There {{ FUNCS | pluralize("is a function", "are
multiple functions")}} would either produce, There is a function

or There are multiple functions depending on the length of the
FUNCS metavar list.

• comma(list, wrap=““) It allows to comma separate the values on
a metavar result list and represent them as a string. {{ FUNCS |
comma }} would produce a string list with all the values separated

29

by a , character. The comma does accept the wrap parameter,
which allows adding a token or string before and after each el-
ement of the list. As an example {{ FUNCS | comma('*')}}, would
add ' to the start and end of each element of the metavar list.
Listing 22 would produce The found functions starting with func_
are *func_add*, *func_sub*.

• list(list, pattern=“{}”, endline=“\n”) This one allows full cus-
tomization on the output of the metavar list, by default it does
print each element in a new line. For example, this method could
be used to create a Markdown[23] list of all elements by using the
{{ FUNCS | list("- {}")}} filter. You can create the same effect as
the comma filter by using {{ FUNCS | list(endline=",")}}.

Finally, there is one internal placeholder named CONTENTS. This place-
holder contains a list of the found query results content. As an example,
Listing 25 shows the content of this placeholder for the Listing 21 source
code and Listing 22 rule file.

Listing 25: Content of the ’CONTENTS’ placeholder for the showcase ex-
ample’

1 ['''
2 function func_add(uint256 a, uint256 b) external {
3 value = a + b;
4 }
5 ''',
6 '''
7 function func_sub(uint256 a, uint256 b) external {
8 value = a - b;
9 }

10 ''']

6.2 Solgrep patterns
The pattern system allows complex declarations to be formed. It allow
multiple rules to be concatenated and matched against each other in an
hierarchy way. There exist multiple rules and definitions that can be used
with others, and all of them do support metavar expressions inside the rules.
There are two categories of rules:

• Simple rules They are used to define the query content and used in
conjunction with merging rules to create complex queries. They
are, pattern and pattern-root.

• Merging rules They are rules which do not contain a query defi-
nition by themselves but do use simple rules to create complex

30

query definitions. They can be combined and merged to satisfy
the needs for the query. They are patterns, and, not, and-either
and not-either.

Each rule description and an example showcasing the usage can be found
can be found on the following section.

6.2.1 Solgrep patterns rules

• pattern This is the simplest definition. It is used to declare a valid
solgrep rule containing pattern syntax code. It can be used as the
base for the YAML rule file instead of the patterns to only match
a single pattern. It can be used in combination with the root
patterns to match multiple patterns in a single query rule. An
example can be seen under Listing 26

Listing 26: Example for the pattern rule
1 ...
2 message: ...
3 pattern: function $FUNC(...) ... {...}
4 metavars-regex:
5 $FUNC: .*
6 ...

• patterns This is used only on the root YAML file to indicate that the
query does contain complex patterns or combination of different
patterns not just a single pattern, although a single pattern can
be used as well. An example can be seen under Listing 27 were a
query would match any function that starts with either admin_ or
user_. This query could be simplified by using a single - pattern
declaration with an | (or) regex expression such as admin_.*|user_
.*.

Listing 27: Example for the patterns rule
1 ...
2 message: ...
3 patterns:
4 - pattern: function $FUNC1(...) ... {...}
5 - pattern: function $FUNC2(...) ... {...}
6 metavars-regex:
7 $FUNC1: admin_.*
8 $FUNC2: user_.*
9 ...

31

• and This declaration can only be used in conjunction with a previous
pattern to match sub-patterns or filter the main pattern for sub-
conditions. The Listing 28 example does show a query that would
match any function (see the metavar regex expression) and that
contains at least one + operation with any two operands.

Listing 28: Example for the and rule
1 ...
2 message: ...
3 patterns:
4 - pattern: function $VAR(...) ... {...}
5 - and: ... + ...
6 metavars-regex:
7 $VAR: .*
8 ...

• pattern-root This allows to look for pattern starting from the top
of the source file. It can be used in conjunction with the and
rule to filter other rules based on outer scope patterns. As an
example Listing 29 does show the usage of the root pattern in
combination with the and pattern. The example, does find all -=
and += operations with a top level rule of the pragma version being
less than 0.8.0. This query could also be achieved by filtering the
-= and += rules with an and expression of the pragma. However,
that would require writing the same filtering pattern twice.

Listing 29: Example for the pattern-root rule
1 ...
2 message: ...
3 patterns:
4 - pattern: ... -= ...
5 - pattern: ... += ...
6 - and:
7 - pattern-root: pragma solidity $VERSION
8 metavars-regex:
9 $VERSION: (\d\.[0-7]\.\d*|<0\.8\.0)

10 ...

• not This definition is used to filter simple patterns or the results of
previous complex patterns for none matching queries. It can be
used to filter exceptions for and complex rules that would be oth-
erwise complex to achieve with a single or regex expression. An
example can be seen in Listing 30. This example, does show a

32

rule that would match any function but will filter the results with
the ones that do not have a visibility set (VISIBILITY is an especial
metavar type, see Section 5.3.1).

Listing 30: Example for the not rule
1 message: ...
2 patterns:
3 - pattern: |
4 function $NAME(...) ... {
5 ...
6 }
7 - not: |
8 function $NAME(...) $VISIBILITY {
9 ...

10 }

• and-either and not-either At the time of writing this paper, those
rules are currently being refactored. They allow as the name
states, list multiple simple patterns underneath to obtain multiple
and results or filter based on multiple not rules.

33

7 SWC
To showcase the power of Solgrep an how it could help on finding already
known bugs on Solidity a rule for some of the SWC registry [7] entries were
written. Each entry do contain a description of the issue, an example source
code and a fixed source code. All the rules can be found under the /SWC
directory of the main Solgrep repository [21].

As an example, on Listing 31 we can see a Solgrep rule that would match
the SWC-100 issue with a message description for it.

Listing 31: Solgrep to find issues for the SWC-100 registry entry
1 id: swc-100
2 message: |
3 Functions that do not have a function visibility type

specified are public by default. This can lead to a
vulnerability if a developer forgot to set the visibility
and a malicious user is able to make unauthorized or

unintended state changes. The {{FUNCS | comma('`')}} {{
FUNCS | pluralize('function ', 'functions ')}} do not have
a visibility set.

4 risk: 1
5 impact: 5
6 patterns:
7 - pattern: |
8 function $NAME(...) ... {
9 ...

10 }
11 - not: |
12 function $NAME(...) $VISIBILITY {
13 ...
14 }

I left the community to implement more rules that would allow statically
finding all possible common mistakes Solidity developers tend to do.

34

https://swcregistry.io/docs/SWC-100

8 Solgrep usage
The the usage of the tool is very simple. One must import the SolGrep class
from the solgrep file and create a new object:

Listing 32: Importing the SolGrep utility and creating an object
1 from solgrep import SolGrep
2

3 sg = Solgrep()

This object can then be used to load the query files, in YAML syntax or
a single solidity file.

8.1 Loading the source code
The source code can be loaded in different ways, from a file or directly from
a string:

Listing 33: Source code used on this section to represent a Solidity file
1 // source.sol
2

3 pragma solidity 0.8.12;
4

5 contract Test {
6 uint256 public a;
7

8 function name() external {
9 a = 1337;

10 }
11 }

Loading the source code from the source.sol file:

Listing 34: Loading the source code from a file
1 sg.load_source_file("source.sol")

Loading the source code directly from a string:

Listing 35: Loading the source code from a string
1 src = '''
2 pragma solidity 0.8.12;
3

4 contract Test {
5 uint256 public a;
6

7 function name() external {
8 a = 1337;

35

9 }
10 }
11 '''
12

13 sg.load_source_string(src)

8.2 Loading the query rule
Solgrep does support multiple query formats, including a single pattern
search and complex YAML pattern syntax as seen in “Solgrep rule file”.

There are 4 different functions:

• sg.load_query_file: It will load a single file that contains a valid query
solidity code.

• sg.load_query_string: Same as load_query_file but the content is taken
directly from a string.

• sg.load_query_yaml_file: This function will load a complex yaml rule
file, following the “Solgrep rule file” format.

• sg.load_query_yaml_string: Same as load_query_yaml_file but the con-
tent is taken directly from a string.

8.3 Displaying the AST
When loading a query file or source file, the parsed tree can be stored into
a variable and later worked on:

Listing 36: Loading a source code and query pattern and storing the parsed
trees

1 src = '''
2 pragma solidity 0.8.12;
3

4 contract Test {
5 uint256 public a;
6

7 function name() external {
8 a = 1337;
9 }

10 }
11 '''
12

13 query_src = '''
14 contract $CONTRACT {
15 ...
16 }
17 '''
18

19 source = sg.load_source_string(src)
20 query = sg.load_query_string(query_src)

36

The source and query variables do contain a tree that can be printed and
exported into a dot graph or png image:

Listing 37: Tree representation when printing the loaded source and query
strings

1 print(source)
2

3 'source_file '
4 |-- 'pragma_directive '
5 | |-- 'pragma'
6 | |-- 'solidity_directive '
7 | | |-- 'solidity '
8 | | |-- 'pragma_versions '
9 | |-- ';'

10 |-- 'contract_declaration '
11 |-- 'contract '
12 |-- 'identifier '
13 |-- 'contract_body '
14 |-- '{'
15 |-- 'state_variable_declaration '
16 | |-- 'type_name '
17 | | |-- 'primitive_type '
18 | | |-- 'uint256'
19 | |-- 'visibility '
20 | | |-- 'public'
21 | |-- 'identifier '
22 | |-- ';'
23 |-- 'function_definition '
24 | |-- 'function '
25 | |-- 'identifier '
26 | |-- 'parameter_list '
27 | | |-- '('
28 | | |-- ')'
29 | |-- 'visibility '
30 | | |-- 'external '
31 | |-- 'function_body '
32 | |-- '{'
33 | |-- 'assignment_expression '
34 | | |-- 'identifier '
35 | | |-- '='
36 | | |-- 'number_literal '
37 | |-- ';'
38 | |-- '}'
39 |-- '}'
40

41

42 print(query)
43

44 'source_file '
45 |-- 'contract_declaration '
46 |-- 'contract '
47 |-- 'identifier '
48 |-- 'contract_body '

37

49 |-- '{'
50 |-- 'ellipsis '
51 |-- '}'

8.3.1 Exporting the AST to an image

This can be done with the following syntax witch will produce the images
below the snippet:

Listing 38: Snippet showing how to export the source and query trees to an
image

1 source.dot('root.png')
2 query.dot('query.png')

Figure 7: Tree obtained when exporting the source tree from Listing 36
(root.png)

38

Figure 8: Tree obtained when exporting the query tree from Listing 36
(tree.png)

8.4 Getting the query results (report)
The use the query content against the source content, the query() function
should be called. This function will compare using a BFS algorithm the
nodes of both trees and skip the ones with ellipsis syntax as described on
the technical section.

Listing 39: Snippet used to trigger the solgrep query
1 sg.query()

Once the query is executed, the results can be obtained by using the
report() function, which will display a dictionary containing information
about the query results.

Listing 40: Snippet used to obtain the report from the last query
1 report = sg.report()

As an example, the query and source code displayed in Listing 41 would
produce the results shown in Listing 42.

Listing 41: Example file showing the usage of solgrep and how to obtain the
report

39

1 from solgrep import SolGrep
2

3 sg = SolGrep()
4

5 src = '''
6 pragma solidity 0.8.12;
7

8 contract Test {
9 uint256 public a;

10

11 function name() external {
12 a = 1337;
13 }
14 }
15 '''
16

17 query_src = '''
18 id: solidity-test
19 message: |
20 Found {{FUNCS | pluralize('a function ', 'some functions ')}}:

{{FUNCS | comma}}
21 risk: 1
22 impact: 1
23 patterns:
24 - pattern: function $FUNC(...) ... {...}
25 '''
26

27 sg.load_source_string(src)
28 sg.load_query_yaml_string(query_src)
29

30 sg.query()
31

32 report = sg.report()
33

34 print(report)

Listing 42: Report for the example file showcasing the solgrep usage
1 {
2 "id": "solidity -test",
3 "message": "Found a function: name",
4 "risk": 1,
5 "impact": 1,
6 "results": 1,
7 "metavars": [
8 {
9 "FUNC": [

10 "name"
11]
12 }
13],
14 "bytesrange": [
15 [68, 118]

40

16],
17 "linesrange": [
18 [[5, 4], [7, 5]]
19]
20 }

As seen in Listing 42, the returned dictionary does contain all the details
for the result of the query. Including the formatted message, risk, impact,
metavars lists and the byterange and linesrange of all the found results.

The byterange does contain the starting character and end character
in the original source code that do match the query. Furthermore, the
linesrange do contain the start line and character on that line and the end
line and character of that line.

41

9 Conclusions
The creation of Solgrep was to expose to the security community of Solidity
smart contracts a new tool which was capable of searching common mistakes
made by the developers when writing smart contracts. During the project
development, so many changes had to be done in order to achive the desired
outcome. Although others tools do have similarities there was no real tool
that would allow the flexibility that Solgrep has for Solidity. Although
there is a lot to improve to the code itself and the design, I am very satisfied
with the result from the point of view of the evolution that the project has
undergone from the beginning to the final design.

The tasks were successfully completed in order and the dependencies
between them were meet. This allowed the coding phase to move on without
any obstacles allowing to achieve the final result on the coding part.

Initially, one of the objectives was to write all the SWC rules using
Solgrep. However, due to time constraints, it was not possible to meet this
requirement fully. Still, due to the utility that this tool would have on my
daily activities, all the rules will be written and more rules out of the SWC
registry will be created for me and for the community.

The initial idea of Solgrep was to be used as part of Smart Contracts
Solidity Audits as a remarkable tool in the arsenal of an auditor. However,
it was noticed that this tool could be easily integrated with current Solidity
development stacks to find common bad patterns and coding mistakes that
Solidity developers tend to do.

The tool, will always be publicly available on the https://github.com/
fr0zn/solgrep repository for the Solidity Smart Contract Security to use it.
Hopefully, the community would like the tool and would start contributing
to the source code and create generic rules to find all possible issues related
to Solidity. The tool, will be extended with newly added syntax to the
Solidity programming language and will write test cases to verify the correct
operation.

42

https://github.com/fr0zn/solgrep
https://github.com/fr0zn/solgrep

References
[1] “Ethereum Whitepaper.” [Online]. Available: https://ethereum.

org. [Accessed: 28-Sep-2021].
[2] “Solidity — Solidity 0.8.14 documentation.” [Online]. Available:

https://docs.soliditylang.org/en/v0.8.14/. [Accessed: 28-
May-2022].

[3] J. Feist, G. Grieco, and A. Groce, “Slither: A Static Analysis
Framework For Smart Contracts,” 2019 IEEE/ACM 2nd Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), pp. 8–15, May 2019.

[4] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J.
Feist, T. Brunson, and A. Dinaburg, “Manticore: A User-Friendly
Symbolic Execution Framework for Binaries and Smart Contracts,”
18-Nov-2019.

[5] “Tree-sitter�Introduction.” [Online]. Available: https://
tree-sitter.github.io/tree-sitter/. [Accessed: 28-Sep-2021].

[6] “Rule syntax | Semgrep.” [Online]. Available: https://semgrep.
dev/docs/writing-rules/rule-syntax/. [Accessed: 28-Sep-2021].

[7] “Overview · Smart Contract Weakness Classification and Test
Cases.” [Online]. Available: http://swcregistry.io/. [Accessed:
28-Sep-2021].

[8] “Docs home | Semgrep.” [Online]. Available: https://semgrep.
dev/docs/. [Accessed: 25-Feb-2022].

[9] “Pattern syntax | Semgrep.” [Online]. Available: https://semgrep.
dev/docs/writing-rules/pattern-syntax/. [Accessed: 28-Sep-
2021].

[10] JoranHonig, JoranHonig/tree-sitter-solidity. 2021.

[11] “Jinja — Jinja Documentation (3.1.x).” [Online]. Available: https:
//jinja.palletsprojects.com/en/3.1.x/. [Accessed: 28-Mar-
2022].

[12] “ANTLR.” [Online]. Available: https://www.antlr.org/. [Ac-
cessed: 28-Mar-2022].

[13] Solidity ANTLR - Lexer. ethereum, 2022.

[14] Solidity ANTLR - Parser. ethereum, 2022.

[15] “Tree-sitter�Introduction | Language Bindings.” [Online].
Available: https://tree-sitter.github.io/tree-sitter/
#language-bindings. [Accessed: 28-Mar-2022].

43

https://ethereum.org
https://ethereum.org
https://docs.soliditylang.org/en/v0.8.14/
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
http://arxiv.org/abs/1907.03890
http://arxiv.org/abs/1907.03890
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://semgrep.dev/docs/writing-rules/rule-syntax/
https://semgrep.dev/docs/writing-rules/rule-syntax/
http://swcregistry.io/
https://semgrep.dev/docs/
https://semgrep.dev/docs/
https://semgrep.dev/docs/writing-rules/pattern-syntax/
https://semgrep.dev/docs/writing-rules/pattern-syntax/
https://github.com/JoranHonig/tree-sitter-solidity
https://jinja.palletsprojects.com/en/3.1.x/
https://jinja.palletsprojects.com/en/3.1.x/
https://www.antlr.org/
https://github.com/ethereum/solidity/blob/c4909e99c1015233d6937d229058cde52615f246/docs/grammar/SolidityLexer.g4
https://github.com/ethereum/solidity/blob/c4909e99c1015233d6937d229058cde52615f246/docs/grammar/SolidityParser.g4
https://tree-sitter.github.io/tree-sitter/#language-bindings
https://tree-sitter.github.io/tree-sitter/#language-bindings

[16] “Language Grammar — Solidity latest documentation.” [Online].
Available: https://docs.soliditylang.org/en/latest/grammar.
html. [Accessed: 28-Mar-2022].

[17] F. Celades, Fr0zn/tree-sitter-solidity. 2022.

[18] M. Brunsfeld, Tree-sitter: Python bindings to the Tree-sitter parsing
library.

[19] “Any Python Tree Data — anytree 2.8.0 documentation.” [On-
line]. Available: https://anytree.readthedocs.io/en/latest/.
[Accessed: 28-Mar-2022].

[20] “Breadth-first search,” Wikipedia. 24-Apr-2022.

[21] F. Celades, Solgrep. 2022.

[22] “The Official YAML Web Site.” [Online]. Available: https://yaml.
org/. [Accessed: 26-May-2022].

[23] “Basic Syntax | Markdown Guide.” [Online]. Available: https:
//www.markdownguide.org/basic-syntax/. [Accessed: 27-May-
2022].

44

https://docs.soliditylang.org/en/latest/grammar.html
https://docs.soliditylang.org/en/latest/grammar.html
https://github.com/fr0zn/tree-sitter-solidity
https://github.com/tree-sitter/py-tree-sitter
https://github.com/tree-sitter/py-tree-sitter
https://anytree.readthedocs.io/en/latest/
https://en.wikipedia.org/w/index.php?title=Breadth-first_search&oldid=1084419557
https://github.com/fr0zn/solgrep
https://yaml.org/
https://yaml.org/
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/basic-syntax/

	Introduction
	State of Art
	Solution
	Objectives
	Methodology
	Tasks

	Grammar
	Describing grammars
	Tree-sitter

	Tree-sitter changes and updates
	Testing coverage

	Understanding the AST
	Implementing a tree comparer
	Ellipsis node
	Comparing Trees
	Extending tree-sitter-grammar with ellipsis support
	Comparing Nodes and metavar support

	Solgrep rules
	Solgrep message placeholders
	Solgrep patterns
	Solgrep patterns rules

	SWC
	Solgrep usage
	Loading the source code
	Loading the query rule
	Displaying the AST
	Exporting the AST to an image

	Getting the query results (report)

	Conclusions
	References

