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Anna Foix Romero

Abstract
The classification of blood cell types in microscope imagery is a key problem in
healthcare. Traditional cell microscope morphology is expensive and error-prone,
and so automating this is a popular area of research. This thesis performs a com-
parative analysis of six different deep learning techniques for classifying different
blood cell types, to identify the best performing architecture; it also examines the
impact of training data size on the quality of each architecture, to study how these
architectures can be used while keeping the training dataset small. We find that
without pre-training, ResNet is the most successful architecture in terms of accuracy
and robustness with small datasets, achieving an accuracy of 95.9% on the largest
dataset and an accuracy of 79.1% on a very small dataset; MobileNetV3 achieves
even higher performance of 97.1% on the largest dataset but breaks down on the
very small dataset. With pre-training, ConvNeXt has the best performance on the
very small dataset, achieving an accuracy of 87.8%.
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Chapter 1

Summary

A key problem in the field of healthcare is working with microscopic images of blood cells. From
these images, a pathologist can understand the degree to which different types of cell are present
in a patient’s blood, as well as whether the cells are exhibiting signs of abnormality. However,
identifying which types of cells are in an image is an expensive and error-prone process requiring
specialist training, and so automating this process is a popular area of research, particularly
with the advent of deep learning techniques.

This thesis performs a comparative analysis of different state-of-the-art machine learning
techniques for classifying different blood cell types. An appropriate dataset of blood cell images
is selected, processed, and then used to train multiple configurations of six different neural
network architectures, on varying subset sizes of the dataset. The quality of each resultant
model is assessed and contrasted against other models, comparing different architectures trained
on several sizes of training dataset.

The results presented show that ResNet and MobileNet V3 are the two most successful
architectures overall, with MobileNet V3 achieving classification accuracy of over 97% when
trained on a dataset of over 8500 images, and ResNet delivering an accuracy of 79.1% on a tiny
dataset of only 200 images. It is also found that ResNet shows the most robust response to
decreasing data set size, with a linear but slight decrease in accuracy from 8500 to 2100 training
images, and then a slightly accelerated decrease below that. By contrast, ConvNeXt shows the
worst response to decreases in training data size, with the smaller configurations significantly
dropping in accuracy even with 4200 images in the training data.

In conclusion, when considering models that are trained from scratch, ResNet is the best
architecture in terms of both accuracy and ability to provide good results with small datasets.
MobileNet V3 is also good, but lacks ResNet’s robustness when the dataset is very small. Once
pre-training is applied, the best performing architecture on the tiny dataset out of ResNet,
MobileNet and ConvNeXt is ConvNeXt.

This thesis contributes to the evaluation and the comparison of each of several architectures
when applied to the classification of peripheral blood smear microscopy and to the constraint of
small data sets, providing a simple baseline comparison for further research and development.
It also provides an implementation of the training process that can be used to recreate or extend
the results.
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Chapter 2

Introduction

2.1 Context and motivation

In the field of healthcare, the study of blood-based conditions often involves capturing images of
blood cells for study and analysis. Visual inspection of the blood cells by the use of peripheral
blood smears and optical microscopes can provide insight into conditions such as sickle cell
disorders [21], acute myeloid leukemia [15], and many others.

However, blood samples contain multiple different types of cells: red blood cells, white blood
cells such as Neutrophils, Basophils, Monocytes, Eosinophils and Lymphocytes, and platelets.
Identifying the type of cells is critically important, since most pathological analyses are only
interested in particular cells. Besides, understanding the proportion of different types of cell
that are present in a sample is also often informative; knowing that a patient has an abnormal
proportion of a particular cell type may be crucial to diagnosing a pathology.

While it is possible for a trained pathologist to identify the cell types from images, this is
a very slow, tedious, and costly process, and suffers from high subjectivity [13]. Automatic
identification of the cell types is therefore an attractive alternative, and has been the focus of
much research in recent years, including the use of modern techniques such as deep learning. For
example, Convolutional Neural Networks (CNNs) have been used to automatically classify red
blood cells [35], and CNNs with Long Short-Term Memory (CNN-LSTMs) have been explored
for classification of white blood cells [37]. This work will extend the previous studies by seeking
to classify images across a broader range of cell types simultaneously, and by exploring a more
diverse set of deep learning approaches.

In addition, the disadvantages of manual identification of cell types also means that ob-
taining labelled training data sets is a problem, as it requires significant manual labour. While
there are some large globally available datasets that can be reused, these result in models which
may be less suitable for diagnosis of specific communities or patients. If we can find a way to
reduce the amount of data that is needed to train a model and still have high performance, it
will make it more possible to train models that are specialised to smaller populations - or even
to a single individual - without requiring a large amount of manual inspection and labelling of
images to create the training data.

10



Anna Foix Romero 2.3 Methodology

2.2 Objectives of the thesis

The main objective of this masters’ thesis is to develop a comparative analysis of different neu-
ral network architectures, as applied to the problem of classifying cell images from peripheral
blood smears. In addition, this thesis aims to find a model which can produce an accurate
classification even with a smaller training data set.

From the above, the following secondary objectives can be planned:

• To review the literature, including elements of the kinds of features that are used to dis-
tinguish cells in manual classification, as well as an exploration of prior work on classifying
blood cells using deep learning techniques.

• To select an appropriate data set, and implement appropriate preprocessing methods.

• To create a framework for training and evaluating the performance of each neural network
architecture, including the selection of appropriate performance metrics.

• To use the framework to evaluate at least 3 different neural network architectures, across
at least two different datasets of substantially different size.

2.3 Methodology

For obtaining the datasets, options include searching for existing published datasets, or collabo-
rating with research laboratories to obtain their image sets. In the interests of time, the former
option will be used; there are multiple such datasets available publicly, though the dataset from
Acevedo et al [2] is the most promising option for this thesis. This labelled dataset consists of
17,092 images across 8 cell types (neutrophils, eosinophils, basophils, lymphocytes, monocytes,
immature granulocytes, erythroblasts and platelets). This is a relatively large dataset; to pro-
duce a smaller dataset, stratified sampling will be used to select a subset of the images from
the dataset, while still maintaining the distribution between cell types.

For developing the framework, a wide body of work that demonstrates possible ways of
training and evaluating a neural network architecture exists and can be used for inspiration.
Performance metrics will include accuracy metrics suitable for multi-class classification, as well
as time needed to train.

There are many deep learning architectures that could be evaluated; the architectures of
particular interest include Convolutional Neural Networks (CNN) [51], Vision Transformer
(ViT) [38, 46], and MLP-Mixer [43]. If time permits, the thesis will also be extended to include
other architectures such as ResNet [49] and ConvNeXt [30]. The PyTorch library [36] has been
chosen as the technological foundation to use for implementations of all of these architectures,
as it provides a greater level of control and visibility into the training process compared to
popular alternatives such as Keras. PyTorch also includes the ’torchvision’ library, which offers
ready-made implementations of a number of the neural network architectures of interest.

11



Anna Foix Romero 2.4 Work planning

Once each configuration of each architecture has been trained, performance metrics can
be gathered for each configuration, and these performance metrics will then be tabulated,
compared, and discussed.

2.4 Work planning

Work has been planned based on a capacity of 5 working days per week. This is to better
reflect the fact that working 7 days a week is not realistic, nor is it a healthy thing to do for a
duration as long as this thesis project.

2.4.1 Tasks

The following table shows the main tasks that have been identified and the estimated duration
of work associated with each one.

Thesis proposal 6 days
Work plan 9 days
Literature review and analysis 10 days
Creation of smaller test dataset 3 days
Development of training and evaluation framework 11 days
Implementation and evaluation of CNN 5 days
Implementation and evaluation of Transformer 5 days
Implementation and evaluation of MLP-Mixer 5 days
Documentation 20 days

Table 2.1: Breakdown of tasks and time estimates

2.4.2 Calendar

The start of work is February 16th. A Gantt chart illustrating the expected progression of work
over the thesis period is shown below. Each week is from Monday to Friday, so the first week
is shortened (as February 16th is a Wednesday).

12



Anna Foix Romero 2.4 Work planning

February March

wk 1 wk 2 wk 3 wk 4 wk 5 wk 6

PAC0: Thesis proposal

PAC1: Work Plan

PAC2

Literature review

Create dataset

March April

wk 7 wk 8 wk 9 wk 10 wk 11

PAC2

Framework development

PAC3

Implement CNN

Implement ViT

Implement MLP-Mixer

May June

wk 12 wk 13 wk 14 wk 15 wk 16

PAC3

PAC4

Implement MLP-Mixer

Documentation

Figure 2.1: Gantt chart of planned project work

2.4.3 Milestones

The key dates at which milestones are expected to be hit are shown in table 2.2.
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Anna Foix Romero 2.5 Brief summary of contributions

Thesis proposal submitted 23rd February
Work plan created 8th March
Literature review completed 22nd March
Test datasets prepared 25th March
Framework completed 11th April
CNN evaluated 18th April
ViT evaluated 25nd April
MLP-Mixer evaluated 2nd May
Report completed 30th May

Table 2.2: Milestone dates

2.4.4 Risk Analysis

The risks to this project are limited, as the data is available and the network architectures to
implement are well known. At this stage the clearest potential source of problems is the time
taken to train each network, particularly when dealing with the larger dataset. To mitigate
this, the CUDA acceleration features in PyTorch will be used, which can greatly accelerate the
training process; still, it may end up being necessary to exclude some of the largest models if
they cannot be fully trained in time.

2.4.5 Resources and equipment

The primary resources this project needs are computational. An estimate of the resources
needed is shown in table 2.3. All costs are in British pounds.

Resource Estimated cost
GeForce 3080 RTX GPU £1000
Generic x64 computer £650
Power consumption £35
Total £1685

Table 2.3: Required resources and estimated costs

Power consumption is based on an estimate of around 7 full days of 750W consumption, at
a unit price of £0.28 per kilowatt-hour. A solid week of processing time should be enough for
training and testing all of the different configurations.

2.5 Brief summary of contributions

Chapter 3 discusses the state of the art, including both the use of deep learning for blood
cell identification and also an exploration of deep learning techniques more generally.

14



Anna Foix Romero 2.5 Brief summary of contributions

Chapter 4 describes the methodology used, including the decisions that make up the
evaluation framework and the implementation in PyTorch.

Chapter 5 presents the results of the evaluation process across each of the dataset and
network configurations tested.

Chapter 6 discusses the results and the insight they provide into the original research
questions.

Chapter 7 summarises the conclusions found by the thesis.

Chapter 8 presents a glossary of terms used.
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Chapter 3

State of the Art

In this chapter, we will review significant results in the field of deep learning, as well as more
specific recent work in the application of deep learning to blood cell classification.

3.1 Deep learning and Convolutional Neural Networks

While the use of neural network-based machine learning techniques dates back to at least the
1960s, for a long time the field was limited by the need to explicitly design and extract features
from the data to feed to the network. For example, an image classification problem might be
approached by measuring the mean hue and brightness in each quadrant of the image, and
then passing those extracted feature values to the network for classification. As a result the
performance of a network was heavily dependent on the choices made about the features to
extract. Representation learning [6] and deep learning [26] eliminate the need for this manual
feature extraction step; they instead provide the raw data to the network, and have the network
identify features of interest within the data itself. The ”deep” in deep learning refers to the way
that the networks typically have many layers, which is what makes the representation learning
possible.

One famous early result in this was the use of Convolutional Neural Networks (CNNs)
[27, 28]. These networks involve one or more layers of ’convolution’ neurons, which apply a

Figure 3.1: Structure of the LeNet-5 architecture. Diagram copied from [28].

16



Anna Foix Romero 3.1 Deep learning and Convolutional Neural Networks

shared set of weights to spatially or temporally clustered neighbourhoods of inputs. Because the
weights are shared, they can learn a feature and respond to it regardless of where it is located
in the input, preventing the network from overfitting on the specific locations of features in the
training data. By connecting multiple layers of convolutions together, larger-scale features can
be learned. The seminal LeNet-5 architecture presented in [28] used this technique to achieve
a 0.95% error rate on classification of images of hand-written characters. Figure 3.1 shows a
diagram of this architecture.

Figure 3.2: Structure of a
ResNet block. By copying the in-
put x to the output via the short-
cut connection, the weight lay-
ers are only required to learn the
residual function F(x). Diagram
copied from [18].

Many other network architectures have been developed on
top of the convolution concept. The ResNet architecture [18]
is a CNN that takes the input to each group of layers and adds
it directly to the output from those layers via a ’shortcut con-
nection,’ effectively changing their role from learning the full
mapping of the input into learning the ’residuals’ of that map-
ping relative to the input. Each block in the structure has a
layout like that shown in figure 3.2. The architecture is par-
ticularly interesting because the change is purely structural;
the shortcut connections do not introduce any new parameters
and so the network has the same number of parameters (and
therefore the same memory consumption) as a pure CNN. This
approach has shown much greater accuracy compared to pure
CNNs of equal depth, particularly as the depth of the network
increases; when tested on the ImageNet database, the 34-layer
configuration achieved an error rate of 7.4% (while a 34-layer
plain CNN only achieved 10.02%), and the 152-layer configuration achieved an error rate of
4.49%. ResNet was investigated further in [49], where different hyperparameters were explored
such as number of epochs and learning rate; the work showed that the performance of ResNet
could be improved further by changing the hyperparameters alone.

One downside to both plain CNNs and ResNet is that it involves many layers being applied
sequentially, which means that the critical path for evaluating a network is long; and because
each layer acts on the complete output of the layer before, it can be difficult to parallelise
or distribute the computation. The Inception architecture [41] uses CNNs but applies groups
of layers in parallel, rather than in series; a single Inception block includes CNN layers with
kernel sizes (neighbourhood sizes) of 1, 3, and 5, executed in parallel and then combined. These
blocks are then stacked into sequential layers, but a 22-layer implementation of the architecture
was able to obtain an error rate of 6.67%, comparable to ResNets while using fewer layers and
so being easier to train and evaluate in parallel. The Inception architecture was developed
further in [42], achieving an error rate of 3.5%. Subsequently, the Xception architecture [11]
was presented, replacing each Inception module with a depthwise separable convolution, which
the authors argue is an Inception module taken to an ”extreme” extent: while InceptionV3
partially decouples cross-channel and spatial correlations, the Xception architecture decouples
them completely. They were able to observe a slight improvement over the performance of
InceptionV3 when classifying the ImageNet database, and a more significant improvement
when training on a larger dataset (350 million images over 17,000 classes).
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In addition to advancing the structure and accuracy of CNN architectures themselves, work
has also been done to try and understand the intermediate values being transferred within the
network. These values are typically very difficult to interpret intuitively, but [51] demonstrated
the use of a ’deconvolutional’ network - effectively a convolutional network applied in reverse
- to convert the feature representation available at intermediary layers of the CNN back into
an image representation. These visualisations demonstrate how the features learned by the
network are not unintelligible patterns, but recognisable shapes; they also demonstrate how the
visualisations can be used to debug and validate the network, e.g. by checking how occluding
background parts of the image does or does not affect the significant features.

There are also still opportunities to improve on the basic CNN concept itself. For example,
[12] extends the standard convolution kernels by applying learnable offsets to the positions
where the kernel is applied, so that instead of filtering a fixed grid of NxN positions, the grid
can be perturbed. This allows the network to select more complicated features, and the authors
reported a moderate improvement (∼ 5%) in mean average precision when the technique is
applied to various CNN architectures.

3.2 Attention-based architectures

In parallel to CNNs, a recent fruitful area of discovery has been the use of attention-based
methods. These originate in the field of machine translation, where a recurrent Encoder-
Decoder approach [10] was the previous state of the art: each word in the input sentence was
successively presented as an input to a recurrent neural network, producing a state vector that
represented the sentence as a whole; this state vector was then presented a second recurrent
neural network which could then produce the sequence of words in the output sentence. While
this approach was somewhat successful, it performed poorly with long sentences, particularly
because the state vector acted as a bottleneck on the amount of information that could be
passed from the encoder to the decoder.

A new mechanism of ’attention’ [5] was presented to solve this. In this model, the inter-
mediate states for each of the encoded words are retained and made available to the decoder,
weighted by an ’attention’ score which allows the network to use the most relevant information
from across the entire sentence without forcing it all to have been encoded into the state vector.
Subsequently, the Transformer architecture [46] took this approach even further and actually
removed the recurrent aspect of the architecture, instead simply computing the importance of
each word relative to the others. By making the architecture not be recurrent, a Transformer
network is parallelizable, allowing the model to be trained and evaluated much more quickly
than a recurrent model of the same size. The authors trained the network on batches of ap-
proximately 25000 words, and achieved BLEU scores that exceeded all previous models, while
requiring an order of magnitude less computing power to train.

While the Transformer architecture was originally created for text translation, the Vision
Transformer (ViT) [16] architecture adapted it for use in image recognition and classification
problems. The structure is shown in figure 3.3. In the ViT architecture, the input image
is split into rectangular ’patches’ of pixels, and each patch is mapped to an embedding; the
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Figure 3.3: Structure of the Vision Transformer architecture. Diagram copied from [16].

image is then presented to the Transformer as a ’sentence’ made up of these embeddings, to
be ’translated’ into an image class. The authors evaluated their implementation, training each
model on different datasets ranging from 1.3 million images up to 303 million images. They
were able to outperform the previous state of the art networks, but only when training on the
largest dataset; however they were also able to complete this training in around 25% of the
time. When smaller datasets were used for training, the training process was naturally much
faster, but the classification accuracy was not quite as good. It was also shown that the ViT
approach is quite robust, handling problems such as image corruption, perturbations, multiple
objects in the image, partially masked or occluded objects, and so on [38].

Following the presentation of the Transformer architecture, the MLP-Mixer architecture [43]
was presented, shown in figure 3.4. The authors theorised that it may be possible to achieve
good results with a much simpler approach, not using convolution or attention, but only very
simple multi-layer perceptrons. The same approach in ViT of breaking the image down into
’patches’ is used, but then these are put through a series of alternating ’channel-mixing’ layers,
where the channels in each patch are connected but each patch is processed independently, and
’token-mixing’ layers, where the data from each patch is connected together but the channels
are kept separate. Each of these layers is a simple fully connected linear layer, combined with
a gaussian error linear unit activation function, so the overall structure of the architecture is
very simple and quite easy to parallelise. The authors pretrained the model on two datasets,
one containing 14 million images over 21,000 classes and one containing 300 million images over
18,000 classes, and then ’fine-tuned’ it to a number of smaller datasets to evaluate performance
for each of those datasets. Compared to ViT, MLP-Mixer performance was generally slightly
worse, but very close, while being typically much faster to train. Subsequently, the gMLP
architecture [29] introduced a limited attention mechanism to MLPs in the form of a ’spatial
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Figure 3.4: Structure of the MLP-Mixer architecture. Diagram copied from [43].

gating’ mechanism, achieving a 3% improvement in accuracy while reducing the number of
parameters by 66%.

While ViT has been very successful as an architecture for image classification problems,
there are still many questions about why it performs as well as it does. One theory is that the
high performance of the architecture is not because of the Transformer architecture underlying
it, but simply because of the decision to split the input image up into rectangular patches,
and that applying that concept back to traditional CNNs would also be successful. The Con-
vMixer architecture [44] implements this idea, with a design that is similar to the MLP-Mixer
architecture but uses convolutions instead of fully-connected layers. When testing this archi-
tecture on the ImageNet-1K dataset, and using the hyperparameters from [49] they were able
to demonstrate accuracy significantly higher than ResNet, ViT and MLP-Mixer. Separately,
the ConvNeXt architecture [30] takes some of the innovations developed in the advances of the
Transformer architecture and use them to ’modernise’ a ResNet, achieving error rates equal to
or even better than Transformer, while also achieving a higher training and evaluation speed.

3.3 Identification of blood cells

Manual identification of blood cells from peripheral blood smear imagery is based on a number
of factors, including the presence or absence of a nuclear and cytoplasmic granules, cell size,
nuclear size and shape, chromatin appearance, and cytoplasmic staining [39]. For example,
erythrocytes (red blood cells) typically have a uniform size and shape, and do not contain
organelles or granules, while neutrophils can be identified by a nucleus which is segmented into
three to five lobes and the presence of multiple sizes of granules. If the cells are unhealthy then
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the typical characteristics may be altered, for example in images from a patient with sickle-cell
disease.

Even if the cells are healthy, it can be often be difficult to identify cells due to problems with
the images: overlapping cells, blurry images, poor contrast, etc. CNNs have been applied to
identification of abnormal red blood cells in this environment [35]; following image preprocessing
techniques such as edge detection, a 13-layer CNN with 3×3 kernels was able to obtain accuracy
of 98.5% after only 5 epochs of training.

Classification of white blood cells is a more difficult problem, as the cells are more diverse
and have more distinguishing features that must be taken into account. Previous work has
primarily focused on variations of CNN architectures. In 2019, Acevedo et al [1] studied the
use of the Vgg-16 and InceptionV3 CNN architectures in classifying images across 8 cell types,
and achieved global classification accuracy values of 96% and 95% on the two architectures
respectively.

Many attempts focus on enriching or preprocessing the data that is fed to the CNN. In
one study, canonical correlation analysis was used [50] to combine pairs of images of the same
cell, synthesising a more ’three-dimensional’ understanding of the cell; this combined view
of the cell is then fed to a CNN, and subsequently to a Long Short-Term Memory (LSTM).
The authors used 9957 images to train the network, evaluating different architectures for the
CNN component; they found their best results with the Xception architecture [11], achieving
precision and recall scores of 96.2% and 97%.

In another study presenting the Faster R-CNN technique [22], the Mask RCNN [17] approach
was leveraged and extended, and applied to notably smaller dataset of only 145 cells across
87 images, further reduced by a 70%/30% train/test split. They evaluated multiple different
backbone architectures, observing that ResNet50 gave them the best results, though they only
achieved a maximum precision of 95.7%. This work was then extended further [9], employing
a multi-level approach: an initial Faster R-CNN network was used to separate mononuclear
from polymorphonuclear cells, and then a different MobileNet CNN [20] was used to classify
the specific cell type within each group. This approach was able to obtain a mean accuracy of
98.36% across 4 cell classes.

Deformable CNNs [12] have also been applied to the classification of white blood cells [50],
combined with a transfer learning approach [7]. Initially a 16-layer CNN was trained on a
dataset of 11865 high-quality images; transfer learning was then used to train a second network
containing 5 deformable CNN layers and 13 regular CNN layers. This approach yielded mean
precision and recall values of 94.5% and 95.7% respectively.
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Chapter 4

Methodology

4.1 Dataset selection

There are multiple blood cell image datasets publicly available for use in machine learning
studies, but not all are suitable for the specific problem this thesis is addressing. Some datasets
are more targeted at problems of image segmentation than classification, and contain many
cells, often overlapping, with limited specificity in the classes used for the labels - sometimes no
more detailed than ’red blood cell’, ’white blood cell’ and ’platelet’ [4, 8]. The Raabin-WBC
dataset [24] is more suitable: it consists of images that focus on individual cells, and cells are
labelled up to 5 different types of cell, with the dataset also including labels for other interesting
things in the images such as burst cells or artifacts. However, the dataset only contains images
of white blood cells, and many of the images have not been labelled at all. Similarly, Zheng [52]
offers two datasets of cell images across 5 classes, but again the datasets are limited to white
blood cells only, and because the datasets were created more for the purposes of segmentation,
the authors warn that the cell type labelling has not been reviewed by experts and may be
inaccurate.

The paper by Acevedo et al [2] introduces the dataset that has ultimately been selected
for this work (the same dataset that was previously used in [1]). The dataset contains 17,092
images acquired using a CellaVision DM96 analyser, distributed unequally across 8 classes,
with each class representing a different type of cell. Figure 4.1 shows the distribution of images
across those classes. While it might seem like a good idea to limit the dataset such that
each class is represented equally, in practice the unbalanced proportions are more realistic; any
dataset collected from peripheral blood smears in the field will not contain all cell types in equal
proportion, because the blood itself does not contain all cell types in the same proportion. As
such, a network architecture which is able to perform well after being trained on an unbalanced
dataset like this is likely to be more useful when trained on future datasets.

The images range in size from 360×360 to 366×369 pixels. Figure 4.2 shows an instance of
an image from each class. There are batch effects present in the data; most noticeably in this
figure, immature granulocytes (the ”ig” class) have a different exposure to the others, though
it can be seen in the full dataset that similar differences in exposure are present in other classes
as well.
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Figure 4.1: Distribution of classes in full dataset.

In order to evaluate the network architectures on smaller datasets, it is necessary to create
one or more subsets of the full dataset. A stratified sampling technique is used to ensure that
each smaller dataset contains the same proportion of images from each class as the full dataset,
to make comparisons between the large and small evaluation results more meaningful.

4.2 Data preprocessing

While many previous studies have performed quite extensive preprocessing on the data, a
decision was made to perform minimal preprocessing for a few reasons. The intention of deep
learning techniques is to learn the features from the raw data, rather than relying on explicit
preprocessing to generate features; as such, extensive preprocessing should not be necessary. As
such the approach to preprocessing is less about extracting features and more about suppressing
features that we do not wish the networks to learn.

As can be seen in figure 4.2, the images are fundamentally monochromatic. The intensity
of the stain on each cell is significant, but the purple colour of the stain itself is not; it also
seems a likely source of batch effects (unintended biases affecting groups of images), where
different batches of stain fluid are presented with different colours. As such, the first step in
the preprocessing pipeline is to convert the images to their luminance values (i.e. to greyscale).
This is done using a weighted average of the three channels (R = 0.2989, G = 0.587, B = 0.114),
as per the ITU-R recommendation [45].

The luminance values are then copied back to all three channels, as the majority of the
architectures being evaluated expect a three-channel input. This may create a different result
compared to altering each model to only expect 1 input channel, as in principle, different
random weights are assigned to each channel and so the training process may result in each
channel being processed slightly differently, forming a kind of partially 3-ensemble classifier; it
also means that part of the model has 3 times the number of parameters, impacting memory
usage and training time. Studying this effect is outside of the scope of the work but could be
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Figure 4.2: Unprocessed images from the Acevedo dataset.

an interesting future question to answer.
To provide the networks with a consistent input size, the images are then centre-cropped

to 352x352 pixels. This value has been chosen so that the architectures which break the image
down into patches can use patch sizes that are powers of two, the same as in the papers that
presented them (22 patches along each axis for 16x16 patches, and 11 patches along each axis
for 32x32 patches). The cell of interest in each image is close to the centre, so centre-cropping
is appropriate.

Lastly, the values are normalised with means of 0.5 and standard deviations of 0.225 in
each channel, to reduce the effect of differing exposure and contrast levels. These values were
chosen as simplified, channel-uniform estimates of the ImageNet mean and standard deviation
and seem to work well, though a more rigorous approach would be to measure the mean and
standard deviation from the dataset and use that.

Examples of the resulting images can be seen in figure 4.3. Unfortunately, even after pre-
processing, there is clearly still a difference in exposure between the images.

To counter this effect, data augmentation techniques could be used, generating additional
instances of the images in each class, adjusted to varying levels of luminance. This would help
to ensure that the model does not learn the average or modal luminance of the image as a
predictive factor. Data augmentation was not explored in this thesis but could be explored as
future work.

There is also the possibility that there may be batch effects in the form of the number of
other cells being present in each image, causing the networks to learn the presence of other
cells as a predictor for the class. Mitigating this problem - or even conclusively determining
whether the problem exists - could be done by using image segmentation techniques to isolate
the cell of interest in each image, and then discarding the background pixels. This kind of
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Figure 4.3: Images after preprocessing.

image segmentation problem is a field of study in itself, and outside of the scope of this work.
In addition to the image processing, the label for each image is transformed from a class

index into a vector of length 8, representing the label in a one-hot encoding (a vector where the
component corresponding to the correct class is set to one and the others are all set to zero).

4.3 Training and evaluation process

The dataset is split into training, validation, and test parts, in a 5:2:3 ratio; this ratio is used
because a 70%/30% split between data used in the training process and test process is common
in the literature, and the 70% is further broken down into 50% and 20% because this again
is close to a 70%/30% split. The validation dataset is used to measure the performance of
the model at the end of each training epoch, and the test dataset is used to measure the
performance of the model at the end of the training process. Distinct validation and test
datasets are used, rather than reusing the same dataset for both, because the the validation
dataset will affect the training process by controlling the learning rate and early stopping; for
an objective measurement of the quality of the model, the test dataset must not have been
used to influence the training of the model in any way.

Each network is expected to output a vector of length 8, expressing for each class the
probability that the image is a member of that class. Then, all the architectures share the
same combined softmax and cross-entropy loss function, LCE:

S(y)i =
eyi

8∑
c=1

eyc
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LCE(ypred, ytrue) = −
8∑

c=1

ytrue,c × log(S(ypred)c)

Intuitively, this means that the predictions made by the network are first normalised by
the softmax function, and then the cross-entropy function is applied. As the one-hot encoding
of the true class is zero for all components apart from the correct class, this means that the
softmax value for the correct class is selected, and then the negative log is applied. The effect of
this is that the loss function is minimized when output of the softmax function for the correct
class is as close to 1 as possible, meaning that the network must not only produce a high value
for the correct class, but also produce minimal values for other classes.

All of the different network architectures are trained using the same standard backpropa-
gation training algorithm, implemented using the PyTorch framework [36]. Stochastic gradient
descent is used to update the parameters. The core of the algorithm is shown in figure 4.4 and
will be explained briefly now.

Each training epoch is broken into two phases, a training phase and a validation phase. In
the training phase, the model is first placed into ’training mode’ by calling model.train().
Then, we loop through the training data in batches. For each batch, we pass the batch of
input images X to the model, computing predictions for each image. Then, these predictions
are passed to the loss function, along with the batch of correct classifications, to compute the
overall loss for this batch. Then, the gradient values for each parameter are reset to 0, and then
the loss is back-propagated through the model, calculating new gradients for each parameter.
Finally, the optimizer - a stochastic gradient descent optimizer, using the PyTorch SGD class
with no momentum or dampening - is instructed to update all parameters by one step, the size
of which is determined by the learning rate.

Once training has completed for all batches in an epoch, the validation phase begins. The
model is placed into ’evaluation’ mode, which disables the calculation of gradients to reduce
memory usage and speed up evaluation, and also disables dropout and batch normalization. For
each batch of data in the validation set, we pass the batch of images to the model to evaluate
them and produce predictions, and then pass these predictions to the loss function along with
the correct classifications, just as in the training phase. The resulting loss value for each batch is
accumulated. The class with highest probability is calculated for each prediction and compared
to the correct class values, to calculate the number of images that were predicted in the correct
classes. The total number of images in the batch is also accumulated. After validation is
completed, the mean accuracy and loss values are calculated by dividing the total number of
correct classifications and total loss by the number of instances validated.

Finally, once the training process is completed, the model is evaluated on the data in the
test dataset. The implementation of this is almost identical to the implementation of model
validation at the end of each epoch. The predictions made by the model are then stored in the
evaluation report, for later calculation of performance metrics.

To accelerate all training and evaluation processes, CUDA technology [34] is used, allowing
the computation to be performed by the GPU far more quickly than it would be on the CPU.
The primary drawback of this approach is that the model and training process are then limited
by GPU memory, which is typically less than CPU memory; for this thesis a Geforce RTX 3080
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f o r epoch in range ( epochs ) :

model . t r a i n ( )

f o r (X, y ) in t r a i n l o a d e r :
pred = model (X)
l o s s = l o s s f n ( pred , y )

opt imize r . z e ro g rad ( )
l o s s . backward ( )
opt imize r . s tep ( )

model . eva l ( )

t e s t l o s s , va l idated , c o r r e c t = 0 , 0 , 0
with torch . no grad ( ) :

f o r X, y in v a l i d a t i o n l o a d e r :
pred = model (X)
t e s t l o s s += l o s s f n ( pred , y ) . item ( )

va l i da t ed += y . shape [ 0 ]
c o r r e c t += ( ( pred . argmax (1) == y . argmax ( 1 ) )

. type ( torch . f l o a t ) . sum ( ) . item ( ) )

accuracy = c o r r e c t / va l i da t ed
a v e r a g e l o s s = t e s t l o s s / l en ( v a l i d a t i o n l o a d e r )

Figure 4.4: Core training loop

GPU with 10GB of memory was used. Most significantly, this affected the usable batch size for
the larger models: the batch size for each network was initially set to 64, but as this resulted
in the training process running out of memory for some of the larger networks, this value was
reduced for those networks by a factor of 2 until training was able to complete successfully.

4.4 Regularization techniques

In order to regularize the models and reduce the training time, the mean validation loss is used
to affect the training process by two mechanisms: learning rate adjustment and early stopping.

To configure the learning rate, it was decided to adopt an adaptive approach, decreasing
the learning rate in response to the mean validation loss. The initial learning rate is set to
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0.1 for all networks. Then, if the loss of the model evaluated on the validation set has not
decreased by more than 1× 10−4 over the previous 10 epochs, then the learning rate is reduced
by a factor of 10. This helps to reduce the problem of weights oscillating when the network
is converging around a minima. The Pytorch ReduceLROnPlateau class is used to implement
this mechanism.

In combination with the decrease in learning rate, an early stopping mechanism is also
implemented. Three implementations were evaluated:

• Firstly, a function based on the range of mean validation loss over the preceding 20 epochs
was used. If the total range of mean validation loss values was below 5×10−3 then training
was halted. However, this proved to be ineffective at stopping training for some of the
networks with noisier loss values, particularly when training with the smaller datasets.

• Secondly, an approach based on linear regression was tested, taking the mean validation
loss over the preceding 20 epochs, eliminating the values in the upper and lower quartiles,
and then fitting a linear model to the remaining data and measuring the slope. While
this approach fit the intuition that we want to stop training once the loss has ’levelled
off’ and is no longer improving, in practice it proved too unreliable, failing to stop the
training process in situations where it should have done.

• Lastly, a more standard approach was tried, where the mean validation loss at the end of
each epoch is compared to the previous best mean validation loss. If the mean validation
loss of the current epoch is at least 0.1 lower than the previous best, then a checkpoint
is created from the current values of the model parameters and the mean validation loss
of the current epoch is adopted as the new best mean validation loss. Once 20 epochs
have passed with no further improvements to the best mean validation loss, training is
halted. The mechanism is also disabled for the first 10 epochs, to ensure that at least
10 epochs of training are always performed. The implementation of this mechanism is
shown in figure 4.5.

The third implementation was judged to be the most reliable, and so that is the method
which is ultimately used in this thesis. Each network is trained for a maximum of 100 epochs,
with the early stopping mechanism typically ending training before that point. Once training
is completed, the model parameters are reloaded from the most recent checkpoint before the
model is evaluated on the test dataset.

4.5 Implementation of models

In this work, several architectures are implemented, with multiple configurations for each ar-
chitecture, generally matching the configurations described in the paper that presented each
architecture:

• First, the famous LeNet-5 [28] architecture was implemented. The original implemen-
tation expects 32 × 32 greyscale images, so the implementation was modified to accept
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i f epoch >= 10 :

i f ( b e s t a v e r a g e l o s s i s None
or a v e r a g e l o s s < b e s t a v e r a g e l o s s − 0 . 1 ) :

torch . save ({
’ mode l s t a t e d i c t ’ : model . s t a t e d i c t ( ) ,
’ o p t i m i z e r s t a t e d i c t ’ : opt imize r . s t a t e d i c t ( )

} , checkpo int path )

b e s t a v e r a g e l o s s = a v e r a g e l o s s
epochs no improvement = 0

e l s e :
epochs no improvement = epochs no improvement + 1

i f epochs no improvement >= 20 :
break # Exit the t r a i n i n g loop

Figure 4.5: Implementation of early stopping

images of size 352 × 352. It is also the only network to be given a single-channel input,
instead of a 3-channel input. While this architecture is relatively old and has been sur-
passed, it can serve as something of a baseline, as well as being a fast network to train
when iterating on the evaluation framework.

• ResNet [18] was implemented with five configurations, with 18, 34, 50, 101, and 152 layers
respectively.

• MobileNet V3 [19] was implemented across two configurations, corresponding to the
’MobileNetV3-Small’ and ’MobileNetV3-Large’ configurations defined in the paper.

• ConvNeXt [30] was implemented across 4 configurations, corresponding to the 4 con-
figurations in the paper excluding ConvNeXt-XL. The primary difference between each
configuration is the number of channels, though the ’convnext-tiny’ configuration also
uses fewer blocks, making it a more shallow network.

• Vision Transform (ViT) [16] was implemented across 4 configurations, based on the ’ViT-
Base’ and ’ViT-Large’ configurations from the paper: each is implemented in two config-
urations, one with a patch size of 16× 16 and one with a patch size of 32× 32.

• MLP-Mixer [43] was implemented across 6 configurations, corresponding to the ’S/32’,
’S/16’, ’B/32’, ’B/16’, ’L/32’, and ’L/16’ configurations from the paper. Like the ViT con-
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figurations, these configurations represent two different patch sizes across three different
network sizes.

Each of these architectures are implemented using the Torchvision library [33], with the
exception of MLP-Mixer, which is implemented using an open-source package for PyTorch [47],
and LeNet-5, which is implemented within the code accompanying this thesis. The code for
the LeNet-5 implementation is shown in figure 4.6.

4.6 Pre-training

For some of the architectures, the methodology in their presenting papers includes some form
of pre-training. For the bulk of this thesis, no pre-training is performed, in order to evaluate
a ’baseline’ form of each architecture. This allows us to more directly compare the network
architectures.

However, an additional analysis on the tiny dataset is performed for ResNet, MobileNet
and ConvNet, using pre-trained models available in the torchvision library. The published
weights for each model are based on training using the ImageNet dataset, for the ImageNet-1K
classification problem.

For each model, the published weights are downloaded and installed. Because these pa-
rameter values are only suitable for a network configuration with 1000 output classes, the final
layer of the network is then removed and replaced with a new layer that has 8 output classes.
When training the model, only the parameters in that final layer are adjusted; the remaining
parameters in the model are kept constant. The batch sizes, learning rates, and early stopping
parameters are otherwise the same as the non-pre-trained models.

In principle, it would also be possible to evaluate the performance of ViT and MLP-Mixer
after pre-training, but it is not so straightforward to adapt existing pre-trained models to the
necessary configuration. The ViT models require an input image size of 224× 224 pixels, and
adjusting this to our larger image size is technically difficult without invalidating a large part
of the network, as it alters the sequence length. The MLP-Mixer implementation used in this
thesis does not offer any pre-trained models for use. Possible solutions to these problems are
discussed in the section on future work at the end of this thesis.

4.7 Running of experiments

For each configuration of each implemented architecture, a model was trained on datasets at
four scales, as shown in table 4.1.

Jupyter notebooks are used for running the training process for each model. The notebook
makes it possible to launch the training process for each individual model, and to monitor the
training progress in a dynamic graph of the model’s validation loss, accuracy, and learning
rate. These notebooks are then run to train each of the models and record the performance
and results of testing each model.
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Training size Validation size Testing size Total size Proportion

large 8544 3415 5125 17084 100.0%
medium 4250 1700 2550 8500 49.7%

small 2100 840 1260 4200 24.6%
tiny 200 80 120 400 2.3%

Table 4.1: Sizes of datasets used for training models

At the end of each training and testing process, a report file is saved to disk using the Python
’pickle’ library, containing information about the training parameters, information about each
epoch of the training process such as the validation loss and accuracy at that epoch, and
information about the final test of the trained model. The parameters of the trained model
itself are also saved to disk for future use if needed. Creating these files on disk makes it easy
to then load and calculate quality metrics in other Python scripts and notebooks. The report
object itself offers a few methods to help with examining the quality of the model, such as
methods to calculate accuracy or to generate confusion matrices.
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c l a s s LeNet5 (nn . Module ) :
de f i n i t ( s e l f , num classes ) :

super ( LeNet5 , s e l f ) . i n i t ( )

s e l f . l ay e r1 = nn . Sequent i a l (
nn . Conv2d (1 , 6 , k e r n e l s i z e =5, s t r i d e =1, padding =0) ,
nn . BatchNorm2d ( 6 ) ,
nn .ReLU( ) ,
nn . MaxPool2d ( k e r n e l s i z e = 2 , s t r i d e = 2)

)
s e l f . l ay e r2 = nn . Sequent i a l (

nn . Conv2d (6 , 16 , k e r n e l s i z e =5, s t r i d e =1, padding =0) ,
nn . BatchNorm2d (16 ) ,
nn .ReLU( ) ,
nn . MaxPool2d ( k e r n e l s i z e = 2 , s t r i d e = 2)

)
s e l f . f c 1 = nn . Linear (115600 , 120)
s e l f . r e l u1 = nn .ReLU( )
s e l f . f c 2 = nn . Linear (120 , 84)
s e l f . r e l u2 = nn .ReLU( )
s e l f . f c 3 = nn . Linear (84 , num classes )

de f forward ( s e l f , x ) :
x = s e l f . l ay e r1 ( x )
x = s e l f . l ay e r2 ( x )

x = torch . f l a t t e n (x , s ta r t d im =1)

x = s e l f . f c 1 ( x )
x = s e l f . r e l u1 ( x )
x = s e l f . f c 2 ( x )
x = s e l f . r e l u2 ( x )
x = s e l f . f c 3 ( x )
re turn x

Figure 4.6: LeNet5 implementation
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Chapter 5

Results

5.1 Performance by dataset size

5.1.1 Large dataset

The training details and accuracy for each network trained on the ‘large’ dataset configuration
(8544 training images) are shown in Table 5.1. All of the configurations were trained from
scratch.

The configuration with the best accuracy is mobilenet large, with an accuracy of 97.1%.
Overall, MobileNet and ResNet have the best accuracy scores. LeNet5 has the lowest accuracy
of only 70%. With regards to training time, the ConvNeXt configurations were clearly the
slowest to train; this was not only due to their configurations training for a higher number of
epochs than other architectures, before early stopping was applied, but also due to the higher
seconds-per-epoch values compared to the other architectures. This is despite the number
of parameters being comparable to other configurations; for example, convnext tiny has 27
million parameters while resnet 101 has 42 million, and yet each epoch of convnext tiny

training took more than three times as long to perform on average.
The previous behaviour could be explained by means of two possible reasons. One, the

smaller batch sizes used - necessary to be able to fit the model and data into available GPU
memory - may have slowed down the training, because the parameters are updated after each
batch is completed and so a smaller batch size means that parameters are updated more often
within each epoch. However, as pointed out in the previous paragraph, convnext tiny took
more than three times as long as resnet 101 per epoch, despite having a larger batch size,
which means that in practice it will have performed half as many parameter updates and yet
still took more than 3 times as long. The other possibility is that the structural properties of
ConvNeXt make it slower to train than the other architectures. The higher numbers of epochs
performed prior to early stopping - and in fact for convnext tiny early stopping did not apply
before the limit of 100 epochs was reached - also suggests that the network is slower to converge
to a stable position compared to the other architectures.

The training loss for the best configuration in each architecture is shown in figure 5.1.
One immediately notable aspect is that the two best-performing architectures - resnet 34
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Parameters Batch
size

Epochs Total
training
time (secs)

Training time
per epoch
(secs)

Accuracy

convnext tiny 27826280 32 100* 39372.405 393.724 0.803
convnext small 49460840 16 79 22896.489 289.829 0.842
convnext base 87574664 8 68 20278.432 298.212 0.850
convnext large 196242632 8 63 46613.753 739.901 0.840

lenet5 13885580 64 32 432.554 13.517 0.700
mlpmixer s32 4640048 64 31 473.770 15.283 0.789
mlpmixer b32 10909124 64 31 784.265 25.299 0.776
mlpmixer s16 17530280 64 31 1329.452 42.886 0.818
mlpmixer b16 30244472 32 31 2811.958 90.708 0.832
mlpmixer l32 31283584 32 32 1527.609 47.738 0.829
mlpmixer l16 71133928 8 31 7564.939 244.030 0.825

mobilenet small 1526056 64 39 640.624 16.426 0.945
mobilenet large 4212280 64 51 1508.823 29.585 0.971

resnet 18 11180616 64 40 1119.375 27.984 0.953
resnet 34 21288776 64 46 1921.404 41.770 0.959
resnet 50 23524424 32 40 3069.293 76.732 0.940
resnet 101 42516552 16 32 3923.816 122.619 0.937
resnet 152 58160200 16 31 5319.037 171.582 0.917
vit b 16 86025992 16 39 6663.277 170.853 0.867
vit b 32 87516680 4 31 2772.768 89.444 0.787
vit l 16 303604744 4 36 19202.255 533.396 0.833
vit l 32 305592328 4 43 8485.654 197.341 0.767

Table 5.1: Large dataset evaluation results. Epoch values marked with * indicate configurations
where the early stopping mechanism did not end the training early.

and mobilenet large - are also the least stable in early training, as they show the greatest
variability in loss before converging very quickly on stable (and low) values. The ConvNeXt
configuration shows a stable downward trend for most of the training process, and perhaps
would have continued to improve further if the early stopping mechanism had not halted it.
MLP-Mixer appears to reach a stable value quite early, where successive training only made it
slightly worse; ViT also appears to have been oscillating a bit, with loss values in a consistent
range for around 20 epochs.

Confusion matrices for the best configuration of each architecture are shown in 5.2. It can
be seen that the most common kind of misclassification involves the ig class: MLP-Mixer, ViT
and ConvNeXt all misclassify many monocyte images as ig images, and many ig images as
monocyte or neutrophil. It is worth remembering that ig was the class where a difference in
overall exposure was observed during preparation of the dataset.

Mean average precision (mAP) scores [40] were also calculated for each of these best con-
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Figure 5.1: Validation loss during training on large dataset, for the best-performing configura-
tion of each architecture.

figurations. Average precision, and mean average precision, are measurements from the field
of document retrieval, and are useful when considering situations where only part of the pre-
dicted data is needed, such as a clinician executing a query such as “give me N images of class
platelet”. In this situation, the precision of the classifier in those first N images is more
important than the precision of the classifier across the whole class. This is depicted in Figure
5.3.

In this case, the results that the classifier predicted for each class were sorted in descending
order using the raw output value for that class, and the first N were taken and used to compute
a precision score, by counting the number of those N predictions that were true positives and
dividing the result by N . These precision scores were then averaged across all 8 classes to obtain
the mean average precision value for the given value of N . The results of this calculation for
N = 5 and N = 100 are shown in Table 5.2.

mAP @ 5 mAP @ 100

mobilenet large 1.000 0.99875
resnet 34 1.000 0.99625
vit b 16 1.000 0.96875

mlpmixer b16 1.000 0.96250
convnext base 0.925 0.93875

lenet5 0.925 0.86750

Table 5.2: Mean average precision (mAP) scores for best classifier configurations on the large
dataset configuration.
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Figure 5.2: Confusion matrices when testing the large dataset configuration, for the best-
performing configuration of each architecture.
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Figure 5.3: Diagram showing mean average precision compared to overall precision. Each row
of coloured boxes shows the instances that a classifier predicted for two classes. Green boxes are
correct predictions (true positives, TP) and red boxes are incorrect predictions (false positives,
FP), and the boxes are ordered in decreasing confidence from left to right. Both classes have an
equal number of true and false positives, so in each class the overall precision is 0.5. However,
the average precision at rank 5 (AP @ 5) score calculates precision only within the first 5 boxes,
giving 0.6 for class 1 and 0.8 for class 2. The mean average precision at rank 5 (mAP @ 5) is
the mean of the AP @ 5 scores, so 0.7.
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5.1.2 Medium dataset

The training details and accuracy for each network trained on the ’medium’ dataset configura-
tion (4250 training images) are shown in Table 5.3. All of the configurations were trained from
scratch.

Parameters Batch
size

Epochs Total
training
time (secs)

Training time
per epoch
(secs)

Accuracy

convnext tiny 27826280 32 51 12885.321 252.653 0.430
convnext small 49460840 16 82 15342.594 187.105 0.743
convnext base 87574664 8 100* 14861.772 148.618 0.853
convnext large 196242632 8 100* 33614.001 336.140 0.839

lenet5 13885580 64 32 221.014 6.907 0.604
mlpmixer s32 4640048 64 32 241.749 7.555 0.723
mlpmixer b32 10909124 64 31 386.460 12.466 0.692
mlpmixer s16 17530280 64 33 696.778 21.114 0.793
mlpmixer b16 30244472 32 31 1402.966 45.257 0.769
mlpmixer l32 31283584 32 36 823.259 22.868 0.784
mlpmixer l16 71133928 8 31 3730.173 120.328 0.739

mobilenet small 1526056 64 56 491.767 8.782 0.914
mobilenet large 4212280 64 54 846.217 15.671 0.924

resnet 18 11180616 64 53 754.564 14.237 0.929
resnet 34 21288776 64 49 1002.958 20.469 0.928
resnet 50 23524424 32 34 1219.694 35.873 0.896
resnet 101 42516552 16 48 2913.578 60.700 0.914
resnet 152 58160200 16 33 2808.913 85.119 0.905
vit b 16 86025992 16 52 4418.889 84.979 0.862
vit b 32 87516680 4 31 1390.486 44.854 0.755
vit l 16 303604744 4 59 15906.408 269.600 0.867
vit l 32 305592328 4 43 4033.520 93.803 0.789

Table 5.3: Medium dataset evaluation results. Epoch values marked with * indicate configura-
tions where the early stopping mechanism did not end the training early.

The configuration with best accuracy was resnet 18 with an accuracy of 92.9%. As with
the large dataset configuration, ResNet and MobileNet are the two highest-performing architec-
tures. Now the best configuration is a ResNet rather than a MobileNet, though the accuracy
values are very similar. The lowest performing configuration is convnext tiny, with 43.0%
accuracy. With regards to training time, convnext large was again the slowest configuration
to train, with an average seconds per epoch of 336.14. This is 45% of the seconds per epoch in
the large configuration, while this dataset is 49.7% of the size of the large one, so the reduction
in time per epoch is close to proportional if not slightly better. However, the total training
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time for the configuration is 72% of the time taken to train with the large, because while the
seconds per epoch was reduced the configuration was not halted by the early stopping mecha-
nism and so executed for the full 100 epochs, while with the large dataset it was halted after
63 epochs. ConvNeXt also continues to exhibit higher training times than ViT, despite ViT’s
larger configurations having a greater number of parameters.

It is very interesting that of all the ResNet configurations, the best performer is actually
the smallest. The decrease in performance as the network grows is not as pronounced as with
the large dataset, but it is still present. While all the ResNet configurations were halted by the
early stopping mechanism, the most likely explanation is that the larger models were overfitted,
and that ideally the training should have been stopped earlier. This will be explored in more
detail in section 5.2.2.

The validation loss over the training period for the best configuration of each architecture
is shown in figure 5.4. As before, we see substantial variance in the MobileNet and ResNet
configurations, though for ResNet it is easier to see the troughs gradually improving until they
reach what is eventually selected as the minimum loss. ConvNeXt also demonstrates the same
gradual improvement as in the large dataset, albeit with a less steep slope; it also appears
to have stabilised at the end of the training process, suggesting that had it not hit the 100-
epoch limit then the early stopping mechanism would have halted training soon after this point
anyway.

Figure 5.4: Validation loss during training on medium dataset, for the best-performing config-
uration of each architecture.

Confusion matrices for the best performing configuration in each architecture are shown in
5.5. As with the large dataset, we can see that the class most frequently involved in misclassifi-
cations is ig, typically being confused with neutrophil and monocyte. As noted with the large
dataset, this is likely related to the different exposure level in class ig that the preprocessing
attempted to account for, but did not completely eliminate.
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Figure 5.5: Confusion matrices when testing the medium dataset configuration, for the best-
performing configuration of each architecture.

Lastly, the mean average precision scores for the best performing configurations are shown
in table 5.4. These were calculated in the same way as for the large dataset configuration, as
described in the previous section. A particularly interesting result here is that mobilenet large

has a slightly better mAP@100 score than resnet 18, despite having slightly lower average
accuracy overall. This means that the difference must be in the lower-confidence predictions:
the test data set included 2550 images, and the mAP@100 score is only derived from the 800
of them with the highest confidence values, so for resnet 18 to have higher overall accuracy
but lower mAP@100, it must have classified the remaining 1750 images slightly better than
MobileNet.
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mAP @ 5 mAP @ 100

mobilenet large 1.000 0.99375
resnet 18 1.000 0.98875
vit l 16 0.975 0.95000

convnext base 0.975 0.93125
mlpmixer s16 0.950 0.90750

lenet5 0.800 0.71375

Table 5.4: Mean average precision (mAP) scores for best classifier configurations on the medium
dataset configuration.

5.1.3 Small dataset

The training details and accuracy for each network trained on the ’small’ dataset configuration
(2100 training images) are shown in Table 5.5. All of the configurations were trained from
scratch.

The configuration with the best performance for this size of dataset was resnet 34, with
91.4%. ResNet and MobileNet are again the two best performing architectures. The worst
performance is from lenet5 with 42.5%, though ConvNeXt comes close. With regards to
training time, convnext large was again the slowest configuration to train, though unlike the
medium configuration the time is comparable to the slowest ViT configuration, vit l 16.

Figure 5.6: Validation loss during training on small dataset, for the best-performing configura-
tion of each architecture.

Validation loss during training is shown in figure 5.6. ResNet continues to show very high
variance in loss over the course of training, though this time it seems to be the only configuration
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Parameters Batch
size

Epochs Total
training
time (secs)

Training time
per epoch
(secs)

Accuracy

convnext tiny 27826280 32 63 7868.949 124.904 0.466
convnext small 49460840 16 54 4616.715 85.495 0.482
convnext base 87574664 8 34 2562.891 75.379 0.441
convnext large 196242632 8 63 10597.445 168.213 0.619

lenet5 13885580 64 33 163.799 4.964 0.425
mlpmixer s32 4640048 64 33 133.229 4.037 0.705
mlpmixer b32 10909124 64 31 195.001 6.290 0.701
mlpmixer s16 17530280 64 31 329.826 10.640 0.755
mlpmixer b16 30244472 32 32 701.543 21.923 0.736
mlpmixer l32 31283584 32 31 356.401 11.497 0.737
mlpmixer l16 71133928 8 31 1917.389 61.851 0.744

mobilenet small 1526056 64 61 283.035 4.640 0.896
mobilenet large 4212280 64 45 367.448 8.166 0.900

resnet 18 11180616 64 40 286.596 7.165 0.905
resnet 34 21288776 64 51 531.132 10.414 0.914
resnet 50 23524424 32 45 812.103 18.047 0.912
resnet 101 42516552 16 40 1268.082 31.702 0.907
resnet 152 58160200 16 31 1330.057 42.905 0.861
vit b 16 86025992 16 45 1920.397 42.675 0.779
vit b 32 87516680 4 40 911.545 22.789 0.745
vit l 16 303604744 4 76 10249.075 134.856 0.799
vit l 32 305592328 4 42 1966.547 46.823 0.778

Table 5.5: Small dataset evaluation results.

doing so; the other configurations do have varying loss, but over a much smaller range. It is
also notable that the configuration which achieves the lowest loss is actually mobilenet large,
not resnet 34, but this does not translate into the best accuracy as shown in figure 5.7; this
means that while the predictions made by mobilenet large are slightly less often correct than
resnet 34, when they are correct they must have slightly better contrast between the predicted
class and the other classes.

With respect to the other configurations, ViT shows a downward trend across its training.
Despite being the last configuration to be halted, it may be the case that a reduced thresh-
old for improvement in the early stopping mechanism would have allowed it to continue and
improve further; however, given the rate of improvement, we could predict that it would need
to continue training for quite some time before reaching loss values similar to MobileNet or
ResNet. ConvNeXt also showed a downward trend over the first 40 epochs, but by the time the
early stopping mechanism halted the training for it, the trend looks much more flat, so further
training is less likely to have improved performance further.
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Figure 5.7: Accuracy and validation loss during training on small dataset, for MobileNet and
ResNet.

Confusion matrices for the best performing configuration in each architecture are shown
in figure 5.8. As with the larger datasets, we again see that there is a slightly higher density
of errors involving the ig class, with the a number of instances of monocyte and neutrophil

being classified as ig, and in multiple cases also a number of ig images being classified as
neutrophil.

mAP @ 5 mAP @ 100

resnet 34 1.000 0.92000
mobilenet large 1.000 0.90500

vit l 16 0.850 0.79375
mlpmixer s16 0.900 0.75625
convnext large 0.725 0.43625

lenet5 0.425 0.35250

Table 5.6: Mean average precision (mAP) scores for best classifier configurations on the small
dataset configuration.

Lastly, the mean average precision figures for the best configuration of each architec-
ture are shown in table 5.6. We can see that the top 5 predictions of both resnet 34 and
mobilenet large are completely correct, and the top 5 for mlpmixer s16 and convnext large

are also much higher quality than the average prediction accuracies for those configurations,
meaning that their highest-confidence predictions are more accurate than their predictions in
general.

43



Anna Foix Romero 5.1 Performance by dataset size

Figure 5.8: Confusion matrices when testing the small dataset configuration, for the best-
performing configuration of each architecture.

5.1.4 Tiny dataset

The training details and accuracy for each network trained on the ’tiny’ dataset configuration
(200 training images) are shown in Table 5.7. All of the configurations were trained from
scratch.

The configuration with the best performance for this dataset size is resnet 34, at 79.1%
accuracy; the configurations with the worst performance are convnext base and both Mo-
bileNet configurations, all at 17.4% accuracy. It is remarkable that we see multiple configura-
tions with identical accuracy values; there are in fact 3 instances of configurations producing
identical results: convnext base and the two MobileNet configurations with 17.4% accuracy,
convnext tiny and convnext large with 20.0% accuracy, and three of the ViT configurations
with 59.1% accuracy.

Figure 5.9 shows the confusion matrices for each group. It is clear that for the first two
groups, the identical accuracy is because all configurations have simply learned to predict the
same class for every input. The third group, containing the three vision transformer config-
urations, has produced a more useful result; for this row, the confusion matrices are clearly
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Parameters Batch
size

Epochs Total
training
time (secs)

Training time
per epoch
(secs)

Accuracy

convnext tiny 27826280 32 47 535.680 11.397 0.200
convnext small 49460840 16 31 319.004 10.290 0.183
convnext base 87574664 8 31 252.687 8.151 0.174
convnext large 196242632 8 31 493.900 15.932 0.200

lenet5 13885580 64 66 32.936 0.499 0.313
mlpmixer s32 4640048 64 65 38.343 0.590 0.357
mlpmixer b32 10909124 64 68 56.832 0.836 0.513
mlpmixer s16 17530280 64 75 97.247 1.297 0.548
mlpmixer b16 30244472 32 54 126.355 2.340 0.487
mlpmixer l32 31283584 32 59 80.992 1.373 0.539
mlpmixer l16 71133928 8 31 190.420 6.143 0.504

mobilenet small 1526056 64 31 18.974 0.612 0.174
mobilenet large 4212280 64 31 28.229 0.911 0.174

resnet 18 11180616 64 44 45.630 1.037 0.713
resnet 34 21288776 64 70 81.073 1.158 0.791
resnet 50 23524424 32 71 134.500 1.894 0.757
resnet 101 42516552 16 59 190.597 3.230 0.765
resnet 152 58160200 16 48 208.561 4.345 0.774
vit b 16 86025992 16 41 188.609 4.600 0.391
vit b 32 87516680 4 45 110.871 2.464 0.591
vit l 16 303604744 4 66 915.314 13.868 0.591
vit l 32 305592328 4 47 236.630 5.035 0.591

Table 5.7: Tiny dataset evaluation results.

different, but each has the same sum along its diagonal. So for this third group, it looks likely
that it is more of a matter of chance that the accuracy values are identical, made more likely
by the fact that the test set is comparatively small.

The validation loss during training for both of the MobileNet configurations is shown in
Figure 5.10. Both configurations start with similar loss values at their first epoch, improve
slightly, and then get worse as training continues. Both configurations also halted training
at 31 epochs, indicating that the model selected by early stopping is the model at epoch 11.
Despite the fact that subsequent epochs did have a lower loss value, they were not lower than
the loss value at epoch 11 by a margin of at least 0.1, and so they were not recognised by the
early stopping mechanism as being improvements.

Figure 5.11 shows the validation loss of the ConvNeXt models on the tiny dataset. These loss
curves look fairly typical, with a rapid decrease from the starting value followed by stabilisation;
the larger configurations decrease more quickly, and stabilise more quickly, than the smaller
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Figure 5.9: Confusion matrices for the configurations that produced non-unique accuracy scores
when trained on the tiny dataset. Each row of matrices indicates models with identical accuracy.

configurations. However, all configurations are stabilising around the same loss value, which
suggests that they have all found the same local minima in the loss function and are fitting to
it. We saw in Figure 5.9 that three of the four configurations classify all inputs into one class;
the fourth configuration, convnext small, is depicted in Figure 5.12, and we can see that while
it does not have the same accuracy as the other models, it has also learned the behaviour of
predicting a the same class for all inputs. So this behaviour is present for all four models; the
only reason that all four do not have identical accuracy is because they have not all learned
the same class.

As noted, the most accurate models are the ResNets. Their validation loss is shown in
figure 5.13. Considering that the vertical axis is on a log scale, the initial loss values, especially
for resnet 50, are extremely high. They drop quickly, but show high variance for some time
until eventually stabilising. Unlike with the large dataset, we do not see the trend of accuracy
decreasing as the network gets larger; the second smallest configuration, resnet 34, happens
to have highest accuracy in this case, but the largest configuration resnet 152 then has the
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Figure 5.10: Validation loss during training of the MobileNet configurations on the tiny dataset.

second-highest accuracy. So, while the larger networks may have been overfitting in the case
of the large dataset, with the tiny dataset they do not appear to show the same problem.

Lastly, the mean average precision scores for the classifiers are shown in table 5.8. This in-
cludes multiple configurations for some of the architectures, as they have equally high accuracy.
However, we notice that their mean average precision scores are not equal, either at N = 5 or
at N = 100. The three vision transformer architectures have equal total accuracy, and equal
mean average precision at N = 100, but exhibit differences at the N = 5 level; this suggests
that vit b 32 may be the best of the three configurations because while it classifies things
equally well as the other two configurations on average, its highest-confidence predictions are
slightly more correct than the other two.

The two MobileNet configurations have different mean average precision scores, despite it
being shown in figure 5.9 that they are in fact classifying all inputs the same way (into class
ig). This is possible because the mean average precision is based only on the first N results for
each class. As neither configuration makes any predictions in other classes, the precision scores
for those classes are 0, while the precision score for class ig depends on how many of the N
predictions with the highest values for ig are truly of that class. So we can conclude that for
mobilenet small, while it does predict ig for every input, its 5 strongest predictions are all
wrong; while for mobilenet large, 1 of its 5 strongest predictions is correct (giving a precision
of 0.2 for the class, and a mean average precision of 0.025 across the 8 classes). Conversely,
across the 100 strongest predictions, mobilenet small includes a greater number of correct ig
predictions compared to mobilenet large.

If we were to measure mean average precision at N = 120, the size of the entire test dataset,
then we would expect both networks to have an equal score. In fact, we can measure this for
any value of N in the range 1 ≤ N ≤ 120; this is depicted in figure 5.14, and from the plot
we can see that while mobilenet large is more accurate within the first 20 results, after that
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Figure 5.11: Validation loss during training of the ConvNeXt configurations on the tiny dataset.

point mobilenet small has a greater density of correct classifications until almost the entire
testing set is retrieved.
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Figure 5.12: Confusion matrix of convnext small on tiny dataset.

mAP @ 5 mAP @ 100

resnet 34 0.750 0.11375
vit b 32 0.625 0.08500
vit l 16 0.400 0.08500
vit l 32 0.600 0.08500

mlpmixer s16 0.575 0.07875
lenet5 0.150 0.04500

convnext large 0.050 0.02875
convnext tiny 0.000 0.02750

mobilenet small 0.000 0.02500
mobilenet large 0.025 0.01625

Table 5.8: Mean average precision (mAP) scores for best (or best-equal) classifier configurations
on the tiny dataset configuration.
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Figure 5.13: Validation loss during training for all ResNet configurations on tiny dataset.

Figure 5.14: Mean average precision of both MobileNet configurations on the tiny dataset.
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5.2 Performance by network architecture

5.2.1 LeNet-5

The results of evaluating LeNet-5 across each of the different dataset sizes are collated in table
5.9. These are the same results as presented in section 5.1, but collated across all four dataset
configurations for easier comparison.

Dataset Batch
size

Epochs Total
training
time (secs)

Training time
per epoch
(secs)

Accuracy

large 64 32 432.554 13.517 0.700
medium 64 32 221.014 6.907 0.604

small 64 33 163.799 4.964 0.425
tiny 64 66 32.936 0.499 0.313

Table 5.9: Evaluation results for LeNet-5 architecture across all dataset sizes.

The overall accuracy of LeNet-5 is not very high even with the largest dataset, and gets
substantially worse as the size of the dataset decreases. This is perhaps to be expected from
the architecture which is, relatively speaking, the oldest one being evaluated; it should also be
noted that the original paper developed LeNet-5 for classification of 32x32 images of letters
and numbers, so adapting it to much larger images of blood cells is quite a departure from
its original purpose. Still, it is an interesting baseline to have, and it is quite significant that
it outperforms some of the much newer architectures, such as convnext tiny on the medium
dataset.

The characteristics of the training process are also quite interesting. Figure 5.15 shows how
the validation loss and accuracy of the model progressed when training on the large dataset.
This training process was halted at 32 epochs, meaning that the epoch with lowest loss was
epoch 12; while the variance hides it a bit, it can be seen from the graph that the loss followed
a worsening trend from that point. However, the accuracy did not; the accuracy when the
training was halted was similar to the accuracy at epoch 12. What this implies is that the
predictions made by the network still had the highest values for the correct classes roughly the
same proportion of the time, but that the values for the other classes were getting higher, such
that the maximum class in each prediction was becoming a smaller proportion of the result.

Figure 5.16 shows the validation loss during training across each of the datasets. Each
network demonstrates a rapid improvement in loss over the first few epochs, followed by a
more gradual improvement over the subsequent 10 epochs. The models training on the large
and medium configurations show much higher variance in loss compared to the small and tiny
configurations, and they also begin to get worse after around the 20th epoch; the small and
tiny configurations look more stable, with perhaps a slight decrease in performance towards the
end of the training period.

It is not clear why the large and medium configurations have much higher variance. One
possibility is that it is related to the number of batches; as the batch size is the same for each
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Figure 5.15: Validation loss and accuracy during LeNet5 training, large dataset.

dataset size, but the dataset size is different, then the larger datasets will have a greater total
number of batches per epoch. This means that for the larger datasets, the model parameters are
updated a greater number of times within each epoch. However, the gradients are recomputed
for each individual batch within the epoch, so it is not immediately clear how a greater number
of updates within an epoch would result in a higher overall change for the epoch.
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Figure 5.16: Validation loss for LeNet5 across all dataset sizes.

5.2.2 ResNet

The results of evaluating the ResNet configurations across each of the different dataset sizes
are collated in table 5.10. These are the same results as presented in section 5.1, but collated
across all four dataset configurations for easier comparison.

ResNet tends to rank amongst the best architectures for each size of dataset. It can be seen
that for each size of network, the overall decrease in performance between the large, medium,
and small datasets is similar; there is no more than a 5% decrease in performance between the
large and small datasets. However, the decrease in accuracy between small and tiny datasets
is more pronounced, of 10%-20%. This is clearer to see in figure 5.17.

Figure 5.17: Accuracy of each ResNet configuration as a function of training data size.

Figure 5.18 shows the loss during the training process for each ResNet configuration on both
the large and small datasets. We can see from the first plot that all configurations follow a
similar pattern: a general reduction in loss over the first 10 epochs, followed by a more shallow
trend downwards. There is also considerable variance in loss; while all configurations exhibit
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Parameters Batch
size

Epochs Total
training
time (secs)

Training
time per
epoch (secs)

Accuracy Dataset

resnet 18 11180616 64 40 1119.375 27.984 0.953 large
resnet 18 11180616 64 53 754.564 14.237 0.929 medium
resnet 18 11180616 64 40 286.596 7.165 0.905 small
resnet 18 11180616 64 44 45.630 1.037 0.713 tiny
resnet 34 21288776 64 46 1921.404 41.770 0.959 large
resnet 34 21288776 64 49 1002.958 20.469 0.928 medium
resnet 34 21288776 64 51 531.132 10.414 0.914 small
resnet 34 21288776 64 70 81.073 1.158 0.791 tiny
resnet 50 23524424 32 40 3069.293 76.732 0.940 large
resnet 50 23524424 32 34 1219.694 35.873 0.896 medium
resnet 50 23524424 32 45 812.103 18.047 0.912 small
resnet 50 23524424 32 71 134.500 1.894 0.757 tiny
resnet 101 42516552 16 32 3923.816 122.619 0.937 large
resnet 101 42516552 16 48 2913.578 60.700 0.914 medium
resnet 101 42516552 16 40 1268.082 31.702 0.907 small
resnet 101 42516552 16 59 190.597 3.230 0.765 tiny
resnet 152 58160200 16 31 5319.037 171.582 0.917 large
resnet 152 58160200 16 33 2808.913 85.119 0.905 medium
resnet 152 58160200 16 31 1330.057 42.905 0.861 small
resnet 152 58160200 16 48 208.561 4.345 0.774 tiny

Table 5.10: Evaluation results for ResNet architecture across all dataset sizes.

’spikes’, the effect is significantly more pronounced in the smaller configurations, resnet 18

and resnet 34. On the smaller dataset, shown in the second plot, all five configurations show
greater variance over the first 20 to 25 epochs, before suddenly dropping and stabilising.

It is notable that the highest average accuracy scores are found from the smaller config-
urations. The average of the accuracy scores across the large, medium, and small datasets
for resnet 18 is 92.9% and for resnet 34 is 93.4%, while resnet 50 is 91.6%, resnet 101 is
91.9% and resnet 152 is only 89.4%. Increasing the size of the network seems to increase the
training time while only worsening the accuracy. This is less true for the tiny configuration,
where resnet 18 has the lowest accuracy score of 71.3%, but resnet 34 has the highest score
of 79.1%.

This may be a result of the way the early stopping mechanism was configured and applied.
Figure 5.19 shows how the validation loss and accuracy progressed over the training period
for the resnet 18 configuration on the large dataset, while 5.20 shows the corresponding plot
for the resnet 152 configuration. The former model was trained for 40 epochs and the latter
for 31, before early stopping terminated each one, and this means that the optimum model
selected were the ones from the checkpoints at epochs 20 and 11 respectively. The plots of the
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Figure 5.18: Training loss for each ResNet architecture on both large and small datasets.

training process demonstrate how the larger architecture made much greater progress in the
initial epochs, reaching a loss value around 0.3 within the first 5 epochs before stabilising, while
the smaller architecture shows a much less regular progression over the initial epochs before
reaching a similar loss value around epoch 20. As the threshold for determining whether the
model is still improving is that an epoch must have a loss of at least 0.1 below the previous
best, when the model has already achieved a loss of 0.3 then a further reduction in loss as large
as 0.1 is perhaps unrealistic.
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Figure 5.19: Validation loss and accuracy during ResNet18 training, large dataset.

Figure 5.20: Validation loss and accuracy during ResNet152 training, large dataset.
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5.2.3 MobileNet V3

The results of evaluating the MobileNet V3 configurations across each of the different dataset
sizes are collated in table 5.11. These are the same results as presented in the section 5.1, but
collated across all four dataset configurations for easier comparison.

Parameters Batch
size

Epochs Total
training
time (secs)

Training
time per
epoch (secs)

Accuracy Dataset

mobilenet small 1526056 64 39 640.624 16.426 0.945 large
mobilenet small 1526056 64 56 491.767 8.782 0.914 medium
mobilenet small 1526056 64 61 283.035 4.640 0.896 small
mobilenet small 1526056 64 31 18.974 0.612 0.174 tiny
mobilenet large 4212280 64 51 1508.823 29.585 0.971 large
mobilenet large 4212280 64 54 846.217 15.671 0.924 medium
mobilenet large 4212280 64 45 367.448 8.166 0.900 small
mobilenet large 4212280 64 31 28.229 0.911 0.174 tiny

Table 5.11: Evaluation results for MobileNet configurations across all dataset sizes.

MobileNet V3 is a high-performing architecture at larger data sizes, being the highest per-
former in the large dataset and coming close to the highest in the medium and small datasets.
Notably, the accuracy figures seen here are significantly higher than the accuracies given in the
MobileNet V3 paper [19], where the two configurations were tested on the ImageNet database.
In the paper, top-1 accuracies of around 75% were reported, but here we see accuracies in the
90%-97% range.

However, it completely breaks down in the tiny dataset, with both large and small configu-
rations ultimately learning to predict all outputs in the same class, as discussed in section 5.1.4.
An interesting possible extension of this thesis would be to experiment with additional dataset
sizes between tiny (200 training images) and small (2100 training images), to get a better idea
of the size at which this breakdown begins to occur.

Excluding the tiny dataset, MobileNet V3 seems quite robust to the size of the dataset.
Halving the number of training images when going from the large to the medium dataset
results in a drop in accuracy below 5%, and halving it again (from medium to small) produces
a further drop of only 2.5%. This is visualised in figure 5.21, where we can see that the decrease
in performance has a gentle slope.

Figure 5.22 shows the validation loss over the training process for both configurations of
MobileNet. It can be seen from the figure that mobilenet small is subject to much more vari-
ance in the training process; this is particularly noticeable when comparing the configurations
on the small dataset, where mobilenet large has a much smoother curve of the loss changing
compared to mobilenet small. However, interestingly, the loss curves for the medium dataset
are quite similar, especially once the difference in scale is taken into account. It is curious
that both the large and small datasets ultimately result in convergence to a stable value, while
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Figure 5.21: Accuracy of each MobileNet V3 configuration as a function of training data size.

medium does not; this may be because of the early stopping mechanism, and if the training
process continued on the medium dataset then perhaps it would also reach a point of more
stable behaviour.
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Figure 5.22: Validation loss and accuracy during MobileNet V3 training.

5.2.4 Vision Transformer (ViT)

The results of evaluating the Vision Transformer configurations across each of the different
dataset sizes are collated in table 5.12. These are the same results as presented in section 5.1,
but collated across all four dataset configurations for easier comparison.

Overall, the performance of ViT is disappointing, typically in the 75%-85% range. This is
significantly worse than the results in the paper [16], where a configuration such as vit l 16

achieved a mean accuracy of 99.74% on the Oxford Flowers benchmark and 99.42% on the
CIFAR-10 benchmark; here, the same configuration does not even exceed 90%. However, it is
important to note that in the paper, the networks were pre-trained on the JFT-300M dataset
before being fine-tuned for each benchmark, while here we have not performed any pre-training.

The configurations that break the input image down into a larger number of smaller patches
(vit b 16 and vit l 16) have consistently higher performance than the configurations that use
a smaller number of larger patches. This is despite the latter configurations having a higher
number of parameters. Intuitively it makes some sense that breaking the image down into
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Parameters Batch
size

Epochs Total
training
time (secs)

Training
time per
epoch (secs)

Accuracy Dataset

vit b 16 86025992 16 39 6663.277 170.853 0.867 large
vit b 16 86025992 16 52 4418.889 84.979 0.862 medium
vit b 16 86025992 16 45 1920.397 42.675 0.779 small
vit b 16 86025992 16 41 188.609 4.600 0.391 tiny
vit b 32 87516680 4 31 2772.768 89.444 0.787 large
vit b 32 87516680 4 31 1390.486 44.854 0.755 medium
vit b 32 87516680 4 40 911.545 22.789 0.745 small
vit b 32 87516680 4 45 110.871 2.464 0.591 tiny
vit l 16 303604744 4 36 19202.255 533.396 0.833 large
vit l 16 303604744 4 59 15906.408 269.600 0.867 medium
vit l 16 303604744 4 76 10249.075 134.856 0.799 small
vit l 16 303604744 4 66 915.314 13.868 0.591 tiny
vit l 32 305592328 4 43 8485.654 197.341 0.767 large
vit l 32 305592328 4 43 4033.520 93.803 0.789 medium
vit l 32 305592328 4 42 1966.547 46.823 0.778 small
vit l 32 305592328 4 47 236.630 5.035 0.591 tiny

Table 5.12: Evaluation results for ViT configurations across all dataset sizes.

smaller patches will allow the network to learn more fine-grained policies, though taken to an
extreme (of 1x1 patches) this would very likely break down, so there must be some optimal
patch size that could be searched for as a hyperparameter.

Compared to some of the other architectures, we also see from figure 5.23 that ViTs are
more sensitive to smaller datasets, where the performance gets worse at a nonlinear rate as the
size of the training data decreases, especially for the smaller patch sizes.

It is also interesting to examine the errors made by ViT in general. Figure 5.24 shows the
average distribution of classifications across each size of dataset, for each configuration. We see
some noticeable patterns in the errors across all configurations: classification of ig as monocyte
or neutrophil, but also misclassification of erythroblast, ig and lymphocyte as neutrophil.
While we have previously noted that some instances in the ig class have a different exposure
and that may have affected classifications involving that class, that does not explain all of these
misclassifications.
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Figure 5.23: Accuracy of each ViT configuration as a function of training data size.

Figure 5.24: Average normalized confusion matrix for each ViT configuration across all dataset
sizes.

61



Anna Foix Romero 5.2 Performance by network architecture

5.2.5 MLP-Mixer

The results of evaluating the MLP-Mixer configurations across each of the different dataset
sizes are collated in table 5.13. These are the same results as presented in section 5.1, but
collated across all four dataset configurations for easier comparison.

Parameters Batch
size

Epochs Total
training
time (secs)

Training
time per
epoch (secs)

Accuracy Dataset

mlpmixer s32 4640048 64 31 473.770 15.283 0.789 large
mlpmixer s32 4640048 64 32 241.749 7.555 0.723 medium
mlpmixer s32 4640048 64 33 133.229 4.037 0.705 small
mlpmixer s32 4640048 64 65 38.343 0.590 0.357 tiny
mlpmixer b32 10909124 64 31 784.265 25.299 0.776 large
mlpmixer b32 10909124 64 31 386.460 12.466 0.692 medium
mlpmixer b32 10909124 64 31 195.001 6.290 0.701 small
mlpmixer b32 10909124 64 68 56.832 0.836 0.513 tiny
mlpmixer s16 17530280 64 31 1329.452 42.886 0.818 large
mlpmixer s16 17530280 64 33 696.778 21.114 0.793 medium
mlpmixer s16 17530280 64 31 329.826 10.640 0.755 small
mlpmixer s16 17530280 64 75 97.247 1.297 0.548 tiny
mlpmixer b16 30244472 32 31 2811.958 90.708 0.832 large
mlpmixer b16 30244472 32 31 1402.966 45.257 0.769 medium
mlpmixer b16 30244472 32 32 701.543 21.923 0.736 small
mlpmixer b16 30244472 32 54 126.355 2.340 0.487 tiny
mlpmixer l32 31283584 32 32 1527.609 47.738 0.829 large
mlpmixer l32 31283584 32 36 823.259 22.868 0.784 medium
mlpmixer l32 31283584 32 31 356.401 11.497 0.737 small
mlpmixer l32 31283584 32 59 80.992 1.373 0.539 tiny
mlpmixer l16 71133928 8 31 7564.939 244.030 0.825 large
mlpmixer l16 71133928 8 31 3730.173 120.328 0.739 medium
mlpmixer l16 71133928 8 31 1917.389 61.851 0.744 small
mlpmixer l16 71133928 8 31 190.420 6.143 0.504 tiny

Table 5.13: Evaluation results for MLP-Mixer configurations across all dataset sizes.

As can be seen in figure 5.25, performance of MLP-Mixer seems to be more or less linear in
the size of the dataset for sizes above 2100 (i.e. for all dataset configurations except tiny), but it
then sharply decreases below that point. The configurations with 16x16 patch sizes consistently
have slightly higher accuracy than the configurations with 32x32 patch sizes.

These results are in fact comparable to the ImageNet top-1 accuracy values reported in
the paper [29]; the authors of that paper reported accuracy values ranging between 71.8% and
81.6%, close to the range of 69.2% to 83.2% reported across the large, medium, and small
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datasets. No pre-training was used to obtain the figures in the paper so the comparison is fair.

Figure 5.25: Accuracy of each MLP-Mixer configuration as a function of training data size.

Training behaviour is also very consistent across the different configurations. In all dataset
configurations except for tiny, the early stopping mechanism halted training at or soon after
the 31st epoch, which is the earliest point at which it is permitted to; this implies that in all
of these cases the first 10 epochs were generally enough to bring the model to a minimum loss
value, while training on the tiny dataset required 2-2.5x more epochs to reach a point of no
further improvement.

5.2.6 ConvNeXt

The results of evaluating the ConvNeXt configurations across each of the different dataset sizes
are collated in table 5.14. These are the same results as presented in section 5.1, but collated
across all four dataset configurations for easier comparison.

Figure 5.26: Accuracy of each ConvNeXt configuration as a function of training data size.

ConvNeXt was the slowest network to train, and competed with LeNet-5 for worst classifi-
cation performance. While the numbers seen on the large dataset - 80.3% to 85.0% - are similar
to the numbers reported in the paper [30], the numbers for the smaller datasets are much worse.
Figure 5.26 visualises this, and it is clear that the performance drops off much more quickly
than the other models: the larger configurations convnext large and convnext base do not see
much decrease in accuracy when going from 8544 to 4250 training images, but drop off quickly if
the dataset size is lowered further, while the smaller configuration convnext small has a more
noticable decrease, and convnext tiny drops hugely between the large and medium dataset
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Parameters Batch
size

Epochs Total
training
time (secs)

Training
time per
epoch (secs)

Accuracy Dataset

convnext tiny 27826280 32 100* 39372.405 393.724 0.803 large
convnext tiny 27826280 32 51 12885.321 252.653 0.430 medium
convnext tiny 27826280 32 63 7868.949 124.904 0.466 small
convnext tiny 27826280 32 47 535.680 11.397 0.200 tiny

convnext small 49460840 16 79 22896.489 289.829 0.842 large
convnext small 49460840 16 82 15342.594 187.105 0.743 medium
convnext small 49460840 16 54 4616.715 85.495 0.482 small
convnext small 49460840 16 31 319.004 10.290 0.183 tiny
convnext base 87574664 8 68 20278.432 298.212 0.850 large
convnext base 87574664 8 100* 14861.772 148.618 0.853 medium
convnext base 87574664 8 34 2562.891 75.379 0.441 small
convnext base 87574664 8 31 252.687 8.151 0.174 tiny
convnext large 196242632 8 63 46613.753 739.901 0.840 large
convnext large 196242632 8 100* 33614.001 336.140 0.839 medium
convnext large 196242632 8 63 10597.445 168.213 0.619 small
convnext large 196242632 8 31 493.900 15.932 0.200 tiny

Table 5.14: Evaluation results for ConvNeXt configurations across all dataset sizes. Epoch
values marked with * indicate configurations where the early stopping mechanism did not end
the training early.

sizes. The figures in the paper include measurements from ConvNeXts that went through a
pre-training process with the ImageNet-22k dataset, while the networks here have not been
pre-trained, so it is perhaps expected that we would see worse performance; but it is interesting
that even without pre-training we do see comparable performance for the large dataset.

ConvNeXt was also the architecture which most frequently was not stopped by the early
stopping mechanism, meaning that it continued to show reductions in loss throughout the train-
ing period. An example of this is shown in figure 5.27, which is the training of convnext tiny

on the large dataset; there is a very clear linear decrease in loss and corresponding linear in-
crease in accuracy, and so training for a greater number of epochs would likely have seen the
accuracy increase further. However, the high seconds per epoch values - in this case, 393.72
seconds, or 6.5 minutes, per epoch - makes increasing the total number of epochs an expensive
proposition. Figure 5.28 puts this in context with the other model configurations; in fact it
seems that all configurations follow this generally linear improvement in loss, but slope of the
improvement for the tiny configuration is much worse than for the larger configurations.

When reviewing the results of the tiny dataset, it was observed that all four ConvNeXt
configurations had learned the behaviour of predicting the same class for all inputs. Figure
5.29 shows the confusion heatmaps for all configurations across all datasets, making it easy
to see the progression towards this state as the dataset size decreases. We can see that even
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Figure 5.27: Validation loss and accuracy during convnext tiny training, large dataset.

Figure 5.28: Validation loss for all configs training on the large dataset.
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with the medium dataset the convnext tiny model has begun to output classifications in only
a limited subset of the available classes, and by the time we reach the small dataset, all four
configurations are showing a strong bias towards only one or two classes. Notably, platelet
seems to be exempt from this effect, in that the majority of instances in that class are still
predicted correctly even when the rest of the model has broken down.

Figure 5.29: Confusion heatmaps for all configs on all datasets. Each row of maps was produced
from models training on the same dataset, with the largest dataset at the top and the smallest
at the bottom.

5.3 Performance of pre-trained models

In addition to evaluating models trained from scratch, three architectures - ResNet, Mo-
bileNetV3, an ConvNeXt - were also evaluated on the tiny dataset using pre-trained models
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available in the torchvision library [3]. Each model was pre-trained on the ImageNet database,
optimizing for the ImageNet-1K classification task; the output layer of each model was then
discarded and replaced with a new output layer configured for 8 classes, instead of the 1000
classes present in ImageNet. The resulting models were then trained on the tiny dataset. Only
the parameters in the new output layer were trained; the remaining parameters within the
network were excluded from modification. Batch sizes were the same as for the non-pre-trained
models, as listed in section 5.1.4.

The evaluation results of each pre-trained model are shown in table 5.15.

Parameters Batch
size

Epochs Total
training
time (secs)

Training time
per epoch
(secs)

Accuracy

convnext tiny 7688 32 32 30.907 0.966 0.800
convnext small 7688 32 45 61.835 1.374 0.870
convnext base 10248 32 52 95.751 1.841 0.852
convnext large 15368 32 42 126.303 3.007 0.878
mobilenet small 599048 64 70 33.167 0.474 0.461
mobilenet large 1240328 64 60 33.369 0.556 0.513

resnet 18 4104 64 56 32.573 0.582 0.783
resnet 34 4104 64 57 41.400 0.726 0.678
resnet 50 16392 64 67 65.944 0.984 0.687
resnet 101 16392 64 53 74.024 1.397 0.730
resnet 152 16392 64 66 119.799 1.815 0.730

Table 5.15: Evaluation results for pre-trained model configurations on the tiny dataset.

From these configurations, the highest performer is convnext large with 87.8% accuracy,
while the lowest performer is mobilenet small with 46.1%. This surpasses the best perfor-
mance on the tiny dataset with the non-pre-trained models (resnet 34, with 79.1% accuracy),
and also surpasses the performance of non-pre-trained ConvNeXt even on the large dataset.

Compared to the results for the non-pre-trained models on the tiny dataset shown in table
5.7, the differences are stark. Table 5.16 shows the ratios between the results of the non-pre-
trained models and the pre-trained models. We can see that all of the ConvNeXt configurations
are at least 4x as accurate, and the MobileNet configurations are 2.5-3x as accurate. However,
with the exception of resnet 18, the ResNet configurations are slightly less accurate as a result
of pre-training. We do also see significantly reduced training times and seconds per epoch values
for all configurations, which is to be expected when the number of parameters actually being
optimised has been reduced so much - in the case of convnext large, only 0.0078% as many
parameters need to be trained.

Validation loss for the best configuration of each model is shown in figure 5.30. One im-
mediately notable aspect is that while the ResNet and ConvNeXt configurations show a clear
downward trend, the MobileNetV3 configuration has not decreased much at all across the train-
ing period. While the pre-trained configuration is clearly much better than the non-pre-trained
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Accuracy Epochs Parameters Training time Time per epoch

convnext tiny 4.000000 0.680851 0.000276 0.057696 0.084742
convnext small 4.761905 1.451613 0.000155 0.193839 0.133534
convnext base 4.900000 1.677419 0.000117 0.378933 0.225902
convnext large 4.391304 1.354839 0.000078 0.255725 0.188749
mobilenet small 2.650000 2.258065 0.392547 1.748004 0.774116
mobilenet large 2.950000 1.935484 0.294455 1.182076 0.610739
resnet 18 1.097561 1.272727 0.000367 0.713846 0.560879
resnet 34 0.857143 0.814286 0.000193 0.510643 0.627105
resnet 50 0.908046 0.943662 0.000697 0.490285 0.519555
resnet 101 0.954545 0.898305 0.000386 0.388378 0.432346
resnet 152 0.943820 1.375 0.000282 0.574409 0.417752

Table 5.16: Proportion change from non-pre-trained to pre-trained configurations.

one, which ultimately classified all images in a single class, it also looks like additional epochs
will not significantly improve its performance further. For ResNet, we see the same kind of
high variance as we have seen with non-pre-trained models, while the ConvNeXt exhibits it to
begin with, but then stops at a point consistent with the reduction in learning rate shown in
figure 5.31. The reduction in learning rate does not seem to have the same stabilising effect on
the ResNet.

The confusion matrices for the best pre-trained configuration of each architecture are shown
in figure 5.32. We can see that for resnet 18 and convnext large, we do not see the same kind
of pattern as we have seen in previous confusion matrices; in particular, there is no confusion
between classes ig, monocyte and neutrophil. For MobileNet V3, we see that the errors are
not distributed across the matrix, but are primarily focused around misclassifying instances as
lymphocyte.

mAP @ 5 mAP @ 100

convnext large 0.950 0.12625
resnet 18 0.850 0.11250

mobilenet large 0.425 0.07375

Table 5.17: Mean average precision results for pre-trained configurations.

Lastly, the mean average precision scores for the best pretrained models are shown in figure
5.17. Both resnet 18 and convnext large show an mAP@5 accuracy which is greater than
their average accuracy (78.3% and 87.8% respectively), while for mobilenet large the mAP@5
accuracy is slightly lower than the average accuracy (51.3%). The mAP@100 accuracy for all
models is low, but this is because the tiny test dataset does not contain enough instances in
each class.
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Figure 5.30: Validation loss for pre-trained models.

Figure 5.31: Learning rate of pretrained models during training process

Figure 5.32: Confusion matrices for pre-trained models.
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Chapter 6

Discussion

As per the original proposal, we are interested in answering two questions: firstly, which ar-
chitecture is the best choice for classification of peripheral blood smear imagery? Secondly, to
what extent is it possible to adapt these architectures to smaller datasets?

The two architectures that consistently show the highest accuracy are ResNet and Mo-
bileNet, with the exception of the tiny dataset configuration where the MobileNet configura-
tions break down. So, if we are looking for a single architecture which balances high accuracy
against robustness with small data sets, ResNet seems to be the clear winner. Conveniently, it
is also one of the fastest to train, with even the largest configuration (152 layers) taking under
an hour and half to train on the largest dataset.

One of the advantages of having used the same dataset as [1] is that we are able to directly
compare our results. In that paper, fine-tuning the Vgg-16 architecture was able to classify the
images with 96% accuracy. We have not examined the Vgg-16 architecture in this thesis, but
we note that the MobileNet V3 model was able to surpass that performance and achieve 97.1%
accuracy, despite using a substantially smaller training data set size, no data augmentation, and
training from scratch. MobileNet V3’s degradation in performance as the dataset got smaller
perhaps makes it less suitable for some applications, but if a large dataset is available then it
appears to be the best choice.

It is interesting that the best ResNet configuration for each size of dataset is typically not
the largest one. In fact, the smallest two configurations (18 and 34 layers) have better accuracy
than the largest one across all sizes of dataset. Despite the larger model being capable of
learning more complex functions than the smaller model, it has not done so in this case. This
is not likely to be a consequence of the architecture itself, but instead a consequence of the
hyperparameters used; it has been previously observed [49] that changes to the training process
itself can significantly improve ResNet performance, and while in this thesis it was helpful to
keep the training parameters consistent to make the results more comparable, it is possible that
the larger configurations would have benefitted from more flexibility and exploration around
learning rate, batch size, and early stopping.

It is also interesting to see MobileNet perform so well, considering that the primary moti-
vation behind its design is to optimise for the ability to run on mobile and embedded systems.
We might have expected that these hardware constraints would have resulted in a trade-off,
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where accuracy is worsened in order to make the network smaller and more efficient to evaluate,
but it seems that this is not the case: despite being much smaller, it is more than capable of
keeping up with the performance of ResNet, at least for larger training data set sizes.

ViT, MLP-Mixer, and ConvNeXt are newer and more advanced architectures, but they did
not demonstrate good performance, both compared to the other models in this thesis and also
compared to their performances as presented in their papers. The primary explanation here is
that none of these models were subject to a pre-training process. This suggests that the use
of pre-training and transfer learning is a significant factor in the success of these architectures;
it is not the structure of the network alone that makes them successful, but the state that the
network is in after the pre-training process is completed.

This raises a lot of questions about that pre-training process: what are the properties of
a good dataset to use for pre-training? What are the features that the model has actually
learned from the pre-training? Would the model perform just as well if pre-trained on different
datasets? Given that these architectures are developed primarily with recognition of full-color
photographs of real-world objects in mind, it makes sense to use a dataset such as ImageNet
[14] for pre-training them, as the dataset is built on that kind of image; but when applying the
model to a much more specialised domain such as peripheral blood smear microscopy, is the
same kind of pre-training really appropriate? If the features that the model has learned are
oriented around features such as colour, then this will not help when dealing with monochrome
microscope images, but features that are more related to shape or curvature may well be useful.

We have seen a number of instances where the training process may not have been sufficiently
regularised. The high variability in loss for some networks, as well as the sometimes surprising
behaviour of the early stopping mechanism, suggest that further iteration on both the learning
rate adjustment and the early stopping mechanism may have been beneficial. In particular,
once it became necessary to alter the batch size in order to fit into available GPU memory,
it would probably have been appropriate to adjust the learning rate as well; one suggestion
[25] is that when multiplying the batch size by k, the learning rate should also be multiplied
by
√
k, though other authors suggest a simple linear scale. This may have produced better

accuracy from some of the models, at the expense of having an additional difference between
the configurations to reason about.

When considering the best-performing models in the large dataset, figure 5.2 shows that
both ResNet and MobileNet tended to have the same confusion: mistaking monocytes and
neutrophils for immature granulocytes, and vice versa. Note that neither network mistook a
significant number of monocytes for neutrophils or neutrophils for monocytes. It would be
interesting to carry out a study of the classification mistakes made by specialist clinicians, to
see whether this is a common confusion amongst specialists as well, or whether it is an area
where the deep learning model is falling behind the specialist.

The last point to make with regards to the first question is about a limitation of the dataset.
While the dataset used includes 8 different types of cell, 6 of them are types of white blood
cell. Of the remaining two, one is the platelet, and the other is the erythroblast - an immature
red blood cell with a nucleus. The dataset does not include any erythrocytes (mature red
blood cells). These cells may be relatively easy to identify because they are the ones lacking
a nucleus, but given that the original goal of the thesis was to be able to identify all of the
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common and clinically interesting cells in blood smear microscopy, it would surely have been
good to include the erythrocytes, the most common cell type in the blood, within the dataset.
In fact, almost all of the images in the dataset do include red blood cells in the background -
their clear ’donut’ shape is visible in the example images in figure 4.2 - but they are not isolated
or labelled, and the staining method used to highlight the other cell types would not work with
them, so preparing equivalent images may be difficult. It is possible that this aspect of the
problem is better solved simply by image segmentation techniques, where all cells present in
an image are distinguished, and then classification could be applied on the basis that all cells
which are not the central cell in the image should be classified as erythrocytes.

Regarding the question of how well these techniques can be adapted to smaller datasets: we
have seen that the ResNet architecture still retains an accuracy of 79.1% even when training
with only 200 labelled images, but the other architectures all demonstrated a significant loss in
quality. However, once pre-training was applied, ConvNeXt then became the most successful
architecture, achieving an accuracy of 87.8%.

Pre-training evidently makes a significant difference, at least for ConvNeXt and MobileNet
V3. If the networks are expected to learn even the most basic features of images - such as the
the idea that adjacency is important, something that is structurally encoded in CNNs such as
ResNets but is not present in an architecture such as ViT - then it is not actually necessary to
learn these things from the small dataset of blood cell images, but can be learned from other
image datasets first, and then transfer learning can be used to begin training on the blood
cell images with a model that already has many of the interesting relationships captured in its
parameters.

We should also consider the choice of 200 as the size for the tiny data set. This was chosen
somewhat arbitrarily, and we have seen that the quality of each architecture appears to decrease
in a non-linear way, so small changes to this number may produce a disproportionate effect on
prediction quality. If clinicians are prepared to label an additional 50 or 100 images - or if they
are in practice not prepared to label as many as 200 - then it may have significant impact on
the performance. Another way to increase this number, without requiring any extra work by
clinicians, would be to use data augmentation techniques to generate additional synthetic data
from the existing labelled images. The risk with this technique is that it fails to capture the
true diversity of how blood cells may present in microscope images, as the transformations we
would perform in data augmentation would likely be limited to things that change the entire
image - adjusting the exposure, the contrast, rotating or flipping, etc - but it would still be
worth exploring.

From the confusion matrices in figure 5.9, we saw that both ConvNeXt and MobileNet broke
down to the point of predicting all inputs as a single class, though ViT was a bit more successful.
One thing to note about the ViT confusion matrices, as well as the ConvNeXt matrices on the
small dataset in figure 5.29, is that accuracy of predictions for platelets remained high even
when the rest of the model was breaking down. It is interesting that platelets would be exempt
in this way. One possible explanation is that platelets tend to be smaller than the other types
of cell, and so the network was simply classifying based on cell size, but more investigation
would be needed to confirm this.
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Chapter 7

Conclusions

7.1 Conclusions

In this thesis, we have explored the use of six different neural network architectures to the
problem of classifying blood cell images, with particular attention paid to the effect of dataset
size on classifier performance. We conclude that the best choice of architecture for classifying
such images, when no models are pre-trained, is the ResNet architecture. We also conclude
that the ResNet architecture is the most robust choice when training on very small datasets,
that it is possible to train a suitable ResNet model with only 200 images and still obtain
a classification accuracy of 79.1%. When model pre-training and transfer learning is used,
we conclude that ConvNeXt surpasses ResNet, with a classification accuracy of 87.8%. Our
observation of MobileNet V3 achieving classification accuracy of 97.1% also exceeds the previous
best known performance of any classifier on this specific dataset.

Beyond these answers to the initial research questions, there are also a number of other
things we have learned. We have seen that a number of other architectures - including ViT,
MLP-Mixer, and ConvNeXt - do not perform nearly as well as in their literature across most
configurations, at least when not pre-trained. We have also seen that their performance degrades
with small datasets, particularly with ConvNeXt, and that this degradation in performance is
both non-linear and also dependent on network size in most cases. However, we have also seen
that applying pre-training results in significant performance improvements for ConvNeXt and
MobileNet V3 at least, when classifying images in a small dataset.

With reference to the original research objectives, we believe they have all been met to
a reasonable standard, and in some cases exceeded: the original objective was to develop a
comparative analysis of 3 architectures across 2 sizes of dataset, but in fact we have developed
an analysis of 6 architectures across 4 sizes of dataset.

7.2 Future work lines

There are a number of interesting potential lines of future work. The most obvious one is to
extend the analysis to include pre-training of the remaining architectures, either by finding and
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adapting existing pre-trained models, or by performing pre-training of each model ourselves.
It would then make sense to extend the experiments with the pre-trained models to include
all four sizes of dataset, rather than only the tiny dataset size. Given that blood cell imagery
is quite specialised and different from what will be found in most large image databases (such
as ImageNet), performing our own pre-training would also make it possible to explore whether
using different pre-training datasets have different impacts.

It would then be natural to extend the comparison to additional deep learning architectures,
such as Xception [11] or ConvMixer [44], or to other newer state-of-the-art networks that may
be published after this thesis.

Given the quite pronounced difference between ’small’ and ’tiny’ dataset sizes in many of
the results, another simple extension of this thesis would be to conduct further experiments
with additional dataset sizes between the two. This could provide more insight into the point at
which MobileNet breaks down, as well as better refining the nonlinear decrease in performance
experienced by ResNet (see figure 5.17), amongst other things.

As with many machine learning problems, further experimentation could be performed with
the learning hyperparameters. In particular, the approach taken to adjusting the learning could
be changed, or at least the initial learning rate and thresholds for adjusting it could be altered;
this may help to reduce the high variance seen in some of the models and configurations,
such as the smaller ResNet models. Secondly, it may be appropriate to experiment with the
batch size. In this thesis the batch size was generally set for practical reasons, using a value
that was as high as possible while still fitting inside available GPU memory; if a GPU with
more video memory could be obtained, or if the implementation could be altered to use some
kind of distributed training and evaluation across multiple GPUs, then it would be possible to
explore larger batch sizes without running out of GPU memory. Alternatively, smaller batch
sizes could be explored for the smaller models, increasing training time but allowing more direct
comparison between the results from different model configurations. Thirdly, the early stopping
mechanism could be further developed; while two strategies were explored and ruled out in this
thesis, the mechanism that was used may still not be optimal, particularly with regards to the
threshold of 0.1 required for an epoch to be considered an improvement over previous epochs.
Expressing the threshold as a percentage of the loss value, rather than an absolute value, may
help to prevent the early stopping mechanism from being applied prematurely when the model
has reached low loss values but is still improving. Another aspect of the learning process that
could be modified is the optimizer used; adopting the Adam [23] or AdamW [31] optimisers
may improve accuracy of multiple configurations.

There are multiple opportunities regarding data augmentation. Firstly, it would be appro-
priate to explore data augmentation as a way of further mitigating batch effects in the data. It
was seen in the confusion matrices for each of the datasets that most of the misclassifications
involved the ig class, which we observed at the dataset preparation stage was exhibiting a
batch effect with a difference in exposure compared to the other classes. While we attempted
to correct for this by normalizing each of the images, an alternative approach would be to
instead deliberately introduce additional images in each class which have intentionally altered
exposure, to try and prevent the models from learning that the difference in exposure is signif-
icant. It still might be a challenge to do this in a way that results in an equal distribution of
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exposure levels for each cell type, but it seems worth exploring.
Secondly, it would be worthwhile to explore the extent to which data augmentation can

compensate for datasets of limited size. As the goal of using a small dataset is to limited the
number of images that must be manually labelled, data augmentation techniques offer a way to
obtain a larger dataset without increasing the amount of manual work that must be performed.
We saw that the performance of most models dropped sharply between the small (2100 training
images) and tiny (200 training images) dataset configurations; it may be possible to take the
200 manually labelled images represented by the tiny set but increase the dataset size to 2100
by generating copies of these images with altered exposure, that are rotated, translated, have
noise added, etc. If this is able to recreate the accuracy seen on the small dataset then it would
be a notable improvement.

Another interesting direction of exploration would be to examine whether image segmen-
tation techniques, such as StarDist [48] or SplineDist [32], can assist the classification process.
In this thesis, we have provided raw images to each model and asked for a single classification
of each image, but in a clinical setting it may be impractical to assume that every microscopic
image from a peripheral blood smear only contains a single cell of interest, and that we may
in fact want to identify multiple different cells at different locations in the image. Further-
more, segmentation techniques may allow us to provide the model with an extra input channel
containing a mask that indicates which pixels are actually part of the cell of interest. If the
segmentation technique used is able to generate a separate mask for each cell in the image, then
this may not only allow us to increase the accuracy of the classifier for the individual cell by
preventing it from using information that is not part of the cell itself, but it would also allow
us to feed the same input image to the classifier with a different mask for each cell, producing
a separate classification result for each cell in the image.

For the models themselves, it could be interesting to explore whether modifying the im-
plementations to accept 1-channel grayscale inputs instead of 3-channel has any impact on
performance, either from the point of view of accuracy or from the point of view of training
behaviour and speed. It was not possible to explore this during this thesis due to the fact
that PyTorch does not expose direct control over the number of input channels for its imple-
mentations of the models, but given more time to develop custom implementations of each
architecture similar to the LeNet-5 implementation, adapting the architectures to 1-channel
inputs should be achievable. Conversely, it may also be interesting to remove the greyscale
preprocessing step and provide the networks with full colour images; in principle discarding the
colour information is forcing the networks to learn features based on shape and value rather
than colour, but this could be explored experimentally.

7.3 Planning retrospective

Overall, the work has proceeded according to the plan and methodology laid out at the begin-
ning of the thesis.

The biggest deviation was the decision to perform additional experiments with pre-trained
models. It was not realised until the initial experiments had been completed that the models
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without pre-training would have such poor performance on the tiny dataset, and it was not
until this late point that it was discovered that the torchvision library’s pre-trained models
could be used for transfer learning. So, the additional experiments with pre-trained models
were a late addition to the thesis.

With regards to the sequence of tasks carried out, the set of architectures to be evaluated
was expanded from 3 to 6 prior to performing analysis on the small dataset. In hindsight, this
was not the best choice; it would have been better to complete the analysis on the first three
models entirely, before expanding the scope to include 3 additional models. This would have
reduced risk by ensuring that the initial objectives were fully met before expanding the scope,
and would have helped to inspire investigation of pre-trained models earlier in the project.

The original estimate of 5 days for the implementation of each architecture turned out to be
a significant overestimate, due to the discovery of the model library in torchvision that made
it extremely quick to create and train instances of each architecture of interest.

With regards to the methodology, it was necessary to iterate somewhat on the implemen-
tation of the training process, particularly with regards to the early stopping mechanism. The
original work plan suggested spending 11 days to develop this implementation of the training
process before carrying out the training for each architecture of interest, but in practice this was
not reflective of the right way to develop such an implementation: the implementation needed
to be developed at the same time as implementing at least two of the architectures, in order
to fully ensure that the implementation was fit for purpose. The initial 10 days were useful for
becoming familiar with the PyTorch framework and setting up the basic training algorithm, as
well as supporting facilities such as tools for visualisation and evaluation, but it became clear
as architectures were subsequently implemented that further changes were needed to the core
algorithm and so these were made simultaneously with implementing the architectures.

The initial plan also laid out 20 days at the end of the project for writing this thesis
report, but in hindsight it would have been a better plan to break the report up into smaller
milestones and ensure that it was being written throughout the entire course of the project.
Writing the analysis of the early results as soon as they were available, rather than waiting
until all architectures had been fully evaluated for each dataset before beginning to write the
analysis of that dataset, would have revealed some issues earlier and perhaps presented more of
an opportunity to improve the methodology and increase the contribution made by this thesis.
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Chapter 8

Glossary

backpropagation training An algorithm for training a neural network in which the gradients
and necessarily modifications to network parameters are computed one layer at a time,
starting at the final layer and working backwards, as opposed to calculating the gradients
across the entire network simultaneously. 25

batch effect An observable and unintended bias in sections of the input, resulting from aspects
of the way that ’batch’ of data was collected which differs from other data. For example:
bias introduced by using a different microscope; using a staining fluid which was not
prepared to the exact same specifications as for other samples; a different background
light level when taking photographs; differences in how clinicians carried out the data
collection process; etc. 21, 22

channel One component of information that is present for each entry in the data. For example,
colour images typically have 3 channels for each pixel in the image: one for red, one for
green, and one for blue. 22

checkpoint A record of the current state of the system, including all information required to
restore the system to this state at a future point in time. 27

Convolutional Neural Network A neural network which features one or more layers that
apply a shared set of weights to multiple different neighbourhoods in the input data. 11,
16

early stopping The practice of halting the training process for a model once it appears that
further training will not produce any improvement. 26

epoch One iteration of the training process, including a complete pass through the training
data and any subsequent validation and adjustment to the learning parameters. 25

GPU Graphics Processing Unit, a specialist piece of hardware in a computer. While GPUs
were originally created for graphics rendering tasks, they have been found in recent years
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to be also very well suited to large-scale matrix operations, such as those involved in
evaluating neural networks. 26

gradient descent An algorithm for finding the minimum value of a function. The function
is differentiated with respect to its inputs, in order to find the gradient. This gradient is
used to modify each input by a small amount, and then the function is evaluated again.
The process is repeated until the gradients are sufficiently small. 25

learning rate When performing gradient descent, the amount by which parameters are mod-
ified with each step of the algorithm. A small learning rate means that parameters are
modified by small amounts, while a larger learning rate means that they are modified by
larger amounts. 26

loss function A function that describes the level of error in predictions made by a model.
The loss function must always be differentiable with respect to the parameters of the
model, because this allows us to derive a measure of the extent to which changes in the
parameters will change the loss function, so that we can iteratively modify the parameters
and reduce the level of error. 24

one-hot encoding A method of representing a numeric variable which is categorical (i.e. the
ID number of a category) as a vector of numbers, where each component of the vector
corresponds to one possible category. The vector is zero in all components apart from the
component representing the desired ID number; that component is set to one. 23, 24

peripheral blood smear A thin layer of blood which is smeared on a microscope slide or film
and then stained to make it possible to examine the cells under a microscope. 11, 12, 19

pre-training Training a model on a separate dataset before using transfer learning techniques
to adapt and train it for the problem at hand, so that the initial weights of the network
have already been fitted to a (typically related) problem. 29, 56, 59, 60, 66

preprocessing Modifications made to data before analysing it or using it to fit a model.
This may include modifications such as cropping, rotating, reducing noise, increasing or
decreasing brightness and contrast, or more complex modifications such as edge detection.
22
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