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Author: Núria Jolis Orriols

Tutor: Nuria Pérez Álvarez
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Núria Jolis Orriols

Abstract
L’aprenentatge automàtic és una àrea emergent que crea sistemes informàtics
que, mitjançant l’ús d’algoritmes i models estad́ıstics, són capaços d’aprendre de
dades existents i fer inferències sobre noves dades. El desenvolupament de mod-
els d’aprenentatge automàtic ha estat una eina per treballar amb grans bases de
dades com els registres sanitaris electrònics per millorar la qualitat de l’assistència
sanitària, l’eficiència, la investigació cĺınica i la reducció de costos.
L’objectiu principal d’aquest TFM ha estat inferir sobre la predicció de la super-
vivència de pacients d’un registre de salut digital mitjançant la implementació de
tres algoritmes de classificació d’aprenentatge automàtic. Per fer-ho, s’ha desen-
volupat un protocol bàsic per a principiants en l’aprenentatge automàtic que consta
de sis passos: (1) una estudi exploratori de les dades amb anàlisi estad́ıstic univari-
ant i bivariant, (2) neteja i curació de les dades perquè puguin ser analitzades pels
models, (3) anàlisi multivariant per conèixer la relació i interacció de les variables
predictives amb la variable resposta, (4) aplicació de 3 dels models de classificació
d’aprenentatge automàtic més comuns: SVM, ANN i RF, (5) validació mitjançant
la tècnica de validació ”k-fold cross-validation”, (6) finalment una avaluació i com-
paració del rendiment dels models generats a partir de paràmetres com la precisió
balancejada i l’AUC.
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Núria Jolis Orriols

Abstract
Machine learning is an emerging area that creates computer systems that by using
algorithms and statistical models are capable of learning from existing data and
making inferences to new data. The development of machine learning models has
been a tool for working with large databases such as electronic health records to
improve healthcare quality, efficiency, clinical research and capture billing data.
The main objective of this TFM has been to infer on patients’ survival prediction
using an electronic health record and through the implementation of three machine
learning classification algorithms. To do this, a basic protocol for beginners in ma-
chine learning has been developed which consists of six steps: (1) an exploratory
analysis of the data with univariate and bivariate statistical analysis, (2) cleaning
and curing of the data so that it can be analyzed, (3) multivariate analysis to know
the relationship of predictive variables and their interaction with the response vari-
able, (4) application of 3 of the most common machine learning classification models,
(5) validation using k-fold cross-validation technique, (6) finally an evaluation and
comparison of the generated models by means of some parameters such as balanced
accuracy and AUC.

4



Contents

1 Summary 9

2 Introduction 10
2.1 Context and rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Applied methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Project planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Brief summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 State of the art 16

4 Methodology 19
4.1 EHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 EDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Exploratory data and bivariate analysis . . . . . . . . . . . . . . . . . . . 20
4.3 Data clean-up and data curation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Multivariate analysis: multiple logistic regression . . . . . . . . . . . . . . . . . 23
4.5 Classification using ML algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5.2 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 k-fold cross-validation for models’ validation . . . . . . . . . . . . . . . . . . . . 28
4.7 Parameters for models’ evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Results 31
5.1 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Exploratory data and bivariate analysis . . . . . . . . . . . . . . . . . . . 31
5.2 Data clean-up and data accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Multivariate analysis: multiple logistic regression . . . . . . . . . . . . . . . . . 43
5.4 Classification by predictive machine learning algorithms . . . . . . . . . . . . . . 48

5.4.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.2 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.3 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5
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Chapter 1

Summary

The report is divided into the following chapters:

Chapter 1: Summary. Brief summary of the project.

Chapter 2: Introduction. Includes the context and rationale of the work, the objectives,
the strategy carried out, and the detailed planning of the tasks.

Chapter 3: State of the art. Introduction to machine learning and supervised classification
algorithms, focusing on the models used (SVM, ANN and RF); background of the methods for
handling missing values; and presentation of the database, the ”problem” to classify and its
importance in healthcare.

Chapter 4: Methodology. Detailed information about the database and the steps followed
to conduct the EDA, the data curation, the application of ML models, and the parameters used
for the comparison.

Chapter 5: Results. Tables and results of the methodology described in the fourth chapter.

Chapter 6: Discussion. Discussion and reflection of the work: from the fulfillment of the
objectives to the results obtained.

Chapter 7: Conclusions. Work’s closure. Summary of the previous chapters, analysis of the
things learned and assessment of the objectives set.

Chapter 8: Glossary. Definition of the most relevant terms and acronyms used within the
report.

Chapter 9: Bibliography. A numbered list of the bibliographical references used within the
report.

9



Chapter 2

Introduction

2.1 Context and rationale

During the last decades, there has been tremendous technology development together with an
increase in the amount of available data. Therefore, new areas dedicated to the use and study
of this data rose. One example of these emerging areas is Machine Learning (ML).

Machine learning can be defined as an artificial intelligence technology that tries to emulate
human intelligence by learning from the surrounding environment [11]. It creates computer
systems that, by using algorithms and statistical models, are capable of reviewing data, look-
ing for patterns, inferring future behaviors through a process of training, and also improving
automatically by learning from new data. These techniques are being applied successfully in
diverse fields such as pattern recognition, object detection, text interpretation, computer vision,
finance, entertainment, computational biology, and medical and biomedical applications [11].
Specifically, in the area of medical and biomedical applications, machine learning algorithms are
being developed with great interest because they can have a big impact in predicting patients’
outcome, patients’ diagnosis, improving healthcare response time, etc. Therefore, they can help
the health system in being more efficient, more objective, and reduce economic expenses.

Another emerging area that is helping to implement machine learning algorithms is the devel-
opment of Electronic Health Records (EHR). EHRs are patients’ health data systematically
collected in a digital format aimed to improve healthcare quality, efficiency, clinical research
and capture billing data [7]. They present both new challenges as well as opportunities because
although their use is worldwide extended and more information is available, they are still not
universally standardized; the databases are usually incomplete and they do not share the same
collecting process, amount of data per patient, and they do not take into account a possible
bias [12].

This work consists of a comparative study between some of the most commonly used classifi-
cation algorithms in ML: Support Vector Machines (SVM), Artificial Neural Networks (ANN)
and Random Forest (RF). The data used is an EHR about heart failure patients admitted
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Núria Jolis Orriols 2.2 Objectives

to the Intensive Care Units (ICU) and the algorithms will be applied to predict the patients’
outcome.
During the process, I learned about EHRs; managing, processing and curating a database with
R software so it can be used for prediction analysis; programming ML algorithms and their
evaluation.

2.2 Objectives

1. Learn machine learning classification techniques and models applicable to predictive anal-
ysis.

1.1 Conduct a search in Google, Scholar Google and Pubmed with the keywords: ”pre-
dictive models”, ”machine learning”, ”classification algorithms”, ”neural network/support
vector machine/random forest”.

1.2 Describe the basic principles of three supervised classification algorithms: SVM,
ANN and RF.

1.3 Search for scientific reports in which classification models of ML have been applied
to an EHR to predict a diagnosis or an outcome.

1.4 Obtain a basic code of each of the algorithms in R.

2. Explore data clean-up and data curation methods using R software for converting an
EHR into an analyzable database.

2.1 Obtain an EHR of interest.

2.2 Search in Google, Scholar Google, and Pubmed with the keywords: ”data clean-up”,
”handling of missing values in R”, ”exploratory data analysis”, ”univariate analysis”
and ”multivariate analysis.

2.3 Conduct an Exploratory Data Analysis (EDA) to get to know the database and the
possible predictors.

2.4 Apply data clean-up and data curation methods to obtain four statistically analyz-
able datasets.

11



Núria Jolis Orriols 2.3 Applied methodology

3. Conduct a study to predict the outcome of a classification by comparing the performance
of three classification algorithms.

3.1 Apply the three different algorithms on the four databases.

3.2 Evaluate the results obtained with each algorithm on each dataset.

3.3 Validate the best models using k-fold cross-validation technique.

3.4 Compare the results for the three methods of handling the missing values.

3.5 Compare and determine the most optimal classification model.

2.3 Applied methodology

Two possible methodologies were identified at the beginning of the project:

1. Start by choosing a proper EHR for classification analysis and then select the three or
four more suitable predictive models to apply to it.

2. Start with a learning phase of classification predictive models in ML, choose the more
interesting or more common, and then select an EHR to apply them on it.

The second strategy was the selected one because I did not have a specific EHR of interest, and
what I wanted to learn with this work was to apply some of the most common classification
algorithms to a real database. Therefore, I considered it best to start with a learning phase of
the topic instead of spending lots of time looking for a suitable database which in the end, it
is not very realistic.
Secondly, I chose the models that I found more interesting or more common for classification:
SVM, ANN and RF.
Third, an Exploratory Data Analysis (EDA) was conducted on the database to study the vari-
ables and their relationship with the primary response.
Fourth, to complement the work, a search for strategies to deal with missing values was also
carried out. Then, four datasets were created using some methods and the classification models
were applied to them.
Finally, a comparison between the algorithms’ performance on the datasets was carried out to
determine the best method for handling missing values and the most optimal algorithm.

12



Núria Jolis Orriols 2.4 Project planning

2.4 Project planning

The total time to develop the project was about 14 weeks from the 16th of February to the 2nd of
June. To organize the project’s development, the tasks were divided into seven phases: project
contents definition, work plan development, theoretical learning phase, EDA, data clean-up and
curation, application and comparison of the ML models, and drafting the report.

The project contents definition was accomplished in one week and consisted in describing the
specific area of the project and justifying the rationale.
The work plan development was accomplished in twelve days and consisted in describe and
timing the different tasks that have to be performed and defining the limits of the project.
The theoretical learning phase was carried out for four weeks and consisted in learning about
the state of the art of the ML prediction models; looking for a base code in R for the selected
methods (SVM, ANN, and RF); and searching for methods to deal with the missing values.
The EDA was accomplished in about three weeks and consisted in selecting an EHR, and ex-
ploring the variables and their relationship with the primary feature.
The data clean-up and data curation was carried out in one week. Three methods to handle
missing values were used to obtain statistical analyzable datasets.
The application of ML algorithms was complete in four weeks and consisted in training the
models, performing predictions, evaluating and validating the results, improving the models if
possible and finally comparing the results on the different datasets.
The draft of the report has been done since the start of the theoretical learning phase to gather
all the information about the project in one document. Only the contents of the results, the
discussion, and the conclusions were left for the last two weeks, together with time for un-
planned tasks.

A Gantt graphic of the detailed tasks can be seen in Figure 2.1.
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Núria Jolis Orriols 2.4 Project planning

Figure 2.1: Gantt’s diagram detailing the planned tasks generated using the free software
”GanttProject”.
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Núria Jolis Orriols 2.5 Brief summary of contributions

Risk analysis

Initially, an assessment of the risks that could arise during the work was carried out:

• Time could be a limiting factor. Therefore, the initial project planning will consist of
applying the three classification models with basic and default parameters. If there is
time left during the designated time for unplanned tasks, models selection for choosing
better parameters will be intended.

• Because working with EHR can be laborious, data management and cleaning may take
longer than expected. If this is the case, the database could be simplified or it could be
decided to change it to a simpler one, ready for analysis.

• As the project strategy is to first select the ML models that I want to learn and then
applied them to an EHR, it might happen that the models chosen could not be the best
for the particular database. If that is the case and there is the time during the designated
two weeks for unplanned tasks, a fourth classification model could be added.

2.5 Brief summary of contributions

This work has contributed to the development of a basic protocol for machine learning beginners
with specific techniques for the analysis of EHR databases and for the generation, evaluation
and comparison of machine learning prediction models according to the scientific question that
was wanted to address. In this case, it was the prediction of the survival of patients admitted
to the ICU with heart failure.

In addition, it provides an updated state of the art and bibliography on machine learning and
its algorithms, and on electronic health records.

Importantly, all code and data can be found in Github: https://github.com/njolis/TFM_

UOC.git.
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Chapter 3

State of the art

In cognitive science, learning is typically referred to as the process of gaining information
through observations. ML is part of an Artificial Intelligence (AI) study field interested in the
development of computer algorithms to transform data into intelligent action [23]. In other
words, the machine is trained on some data, and then, the algorithms are applied so that the
machine can make predictions and learn, respectively, on the given datasets [10]. It can be con-
sidered to learn if it can gather experience by doing a certain task and improve its performance
in doing similar tasks in the future [23]. The formal definition presented by Tom Mitchell states
that ”A computer program learns from experience E for some performance measure P and some
task T, if its performance on T, as measured by P, improves with experience .” [27].

The basic learning process consists of four interrelated components that try to emulate the
process in which humans learn to a large extent [6]:

• Data storage or input data.

• Abstraction: translation of stored data through deriving a conceptual map or a model
into broader representation concepts. Also called training.

• Generalization: creates knowledge from abstracted data and inferences that drive action
in a new context so it can be used to take future decisions.

• Evaluation: a mechanism to measure the utility of learned knowledge and inform potential
improvements.

According to the nature of the data labeling, machine learning can be divided into supervised
(labeled), unsupervised (no labeled) and semi-supervised (partially labeled) [11]. Supervised
machine learning, also called predictive machine learning, is one of the most established areas
and consists of the use of training data upon which the machine builds a predictive model
that can be used in test data to assign a label for each record in the test data (Figure 3.1)
[6]. Supervised learning can be divided into classification when the feature is categorical, and
regression, when the variable is numerical. Common classification algorithms are k-nearest

16
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Figure 3.1: Supervised learning [6].

neighbor (KNN), Naive Bayes, decision trees, ANN, SVM, RF, etc. Popular regression algo-
rithms are linear regression, logistical regression and polynomial regression.
Among the classification algorithms, this thesis has focused on SVM, ANN and RF because they
have been found to be a good start in ML supervised classification algorithms and that they
have been used in many studies related to the purpose of medical prediction or classification
[1], [2], [8], [14], [26], [32], [36], [39] [40].
The application of ML in healthcare is an active area of research. Internationally, the adoption
of EHRs is increasing due to strategies and agencies that incentivize their use as it provides
access to a large number and variety of variables that enable high-quality classifications and
predictions while ML offers the methods to handle the large volumes for high-dimensional data
that are typical in healthcare settings. ML applied to EHRs can generate actionable insights
from improving upon risk score systems to predicting the onset of disease, to streamlining hos-
pital operations. As a result, its application is at the forefront of modern clinical informatics
in science and medicine [3].

An example of an EHR is the Medical Information Mart for Intensive Care (MIMIC-III)
database, which contains information on ICU-admitted heart failure patients. Predictors of
the mortality for these patients remain poorly characterized and this project intends to shed
some light on it.

Heart failure is the terminal phase of heart disease and it is the major cause of cardiovascular
morbidity and mortality. Therefore is a threat to human health and social development [24].
As a life-threatening disease, heart failure patients may require immediately life-saving care

17
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only available in ICUs and identifying those at a higher risk of poor outcomes can still be
improved.
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Chapter 4

Methodology

This project has been developed using Rmarkdown, Rstudio software (Version 1.4.1106) and
several specific R packages.

The methodology has followed seven steps: (1) obtaining an EHR, (2) exploratory data analysis,
(3) data clean-up and data curation, (4) multivariate analysis, (5) application of the supervised
classification algorithms, (6) models validation and evaluation, and (7) models performance
comparison.

4.1 EHR

The dataset used in the project is a publicly available subset extracted from the EHR MIMIC-
III database (version 1.4, 2016) by Li et al., 2021 in a .csv format [24].

The MIMIC-III database (version 1.4, 2016) contains clinical data associated with 46.520 pa-
tients and 58.976 admissions to the ICU of the Beth Israel Deaconess Medical Center in Boston,
Massachusetts (USA). The data was acquired during routine hospital care between 1 June, 2001
and 31 October, 2012 [18].

From this database, Li et al., 2021 extracted using Structured Query Language queries (SQL)
with PostgreSQL (V.9.6) a subset based on demographic characteristics, comorbidities, vital
signs and laboratory values of 1177 adult subjects (older than 18 years old) that were admitted
to the ICU and suffered from heart failure. Heart failure was identified by manual review
of the ICD-9, which is the diagnostic code description based on the ninth revision of the
International Classification of Diseases developed by the World Health Organization. Patients
without ICU record, data missing for left ventricular ejection fraction (LVEF) or N-terminal
pro-brain natriuretic peptide (NT-proBNP) were excluded from the data. Figure 4.1 shows
the flowchart of the selection of the patients.

19



Núria Jolis Orriols 4.2 EDA

Figure 4.1: Flowchart of patients selection [24].

4.2 EDA

The dataset provided by Li et al., 2021 contains 1177 observations and 51 variables. Before
approaching the EDA, a first data clean-up was performed and a final dataset of 1176 obser-
vations and 48 variables was obtained (see section 4.3 for more details). The 48 variables have
been divided into five groups: primary response, demographic features, vital signs, comorbidi-
ties and laboratory works. A table of the variables group, name and a brief description can be
found in Appendix A.

The primary response is the variable called outcome, in-hospital mortality defined as the vital
status at the time of hospital discharge in survivors and non-survivors. It is the variable whose
behavior shall be modeled and the 47 variables left are considered candidate predictors.

4.2.1 Exploratory data and bivariate analysis

For all variables, descriptive analyses of the data have been performed. Numerically, absolute
and relative frequencies in addition to counting and percentage of the missing values are de-
scribed for the 11 qualitative variables. Mean, median, extreme values, and absolute frequency
and percentage of the missing values are described for the 37 quantitative variables. The ex-
ploratory data visualization of the categorical variables has been approached with bar plots
whereas for numerical features, boxplots have been chosen to observe its distribution depend-
ing on the outcome.

The bivariate analysis consist in the study of the relationship of two variables, the primary
response (outcome) and one predictor.

20



Núria Jolis Orriols 4.3 Data clean-up and data curation

As far as I know, in order to assess group comparisons, Li et al., 2021 used a Wilcoxon rank-sum
test for continuous variables and two-sided Pearson’s chi-squared test or Fisher’s exact tests
for categorical variables. Therefore, they did no apply multivariate testing [24].

In this thesis, to assess differences between the outcome and other categorical variables groups’
proportions, a Fisher’s exact test has also been performed. For numerical variables, an assess-
ment of the normality distribution of the variables has been done using Q-Qplots and Shapiro-
Wilk tests. According to the results, none of the variables present a normal distribution and
in consequence, the non-parametric Wilcoxon rank-sum test was performed when comparing
two groups. The R package ”statix” was used to conduct the tests. The results of Q-Qplots
and Shapiro-wilk test can be found on the complementary material in the Github repository
provided in section 2.5.

4.3 Data clean-up and data curation

The first part of the data clean-up consisted in removing the variables “group” and ”ID” as they
did not provide relevant information about patients’ health. In addition, an observation that
is missing for the outcome variable is also deleted. Finally, a new variable called mean arterial
pressure (MAP) was created to combine systolic and diastolic blood pressure.This variable can
be defined as the average arterial pressure throughout one cardiac cycle, systole, and diastole,
and it can be estimated as follows:

MAP = DP +
SP −DP

3

Where DP is the diastolic blood pressure and SP is the systolic blood pressure [9].

The data curation consists of the study and handling of missing values. Missing data can be
defined as the data value that is not stored for a variable in the observation of interest. It is
a is relatively common problem in almost all research and can have a significant effect on the
conclusions that can be drawn from the data [19]. Moreover, it is one of the biggest challenges
in building EHR-based models because many algorithms are very sensitive about it and they
can bias the results and reduce their accuracy.

The choice of a statistical method to deal with missing observations depends on the type of
missing variables and the assumed missing data mechanism [16], [17]. Formally there are three
types of missing values:

1. Missing At Random (MAR): The probability of missing values depends on observed vari-
ables but it is not related to the specific missing values. There is a relationship, some
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pattern, between the missing data and the observed values which may cause bias in further
analysis.

2. Missing Completely At Random (MCAR): The probability of missing values is the same
for all the observations and they are completely independent of other data. Even though
this is rarely the case, when it is assumed, the statistical analysis remains unbiased.

3. Missing Not At Random (MNAR): The probability of missing values is related to their
values. There is a pattern in missing data that the observed data can not explain. It may
also result in bias in statistical analysis.

There are several methods for dealing with the missing observations and some of them are
described below:

• Deletion: probably the most widely used method. It involves the deletion of observations
or features containing missing values. It is not generally recommended, especially if the
missing value is of the type MNAR because it can bias the results as it might delete some
useful data from the dataset and often results in a substantial decrease in the sample size
and loss of power. It may be appropriate for missing data related to the primary outcome
of the study [30].

• Imputation: It consist in substitute missing values with meaningful replacements. Used
in case of MAR and MNAR.

– Single imputation: are simple approaches for handling missing data and are popular
in practice, however, in most cases they are not guaranteed to provide valid inferences
[16].

∗ Replacing with the mean: the most common for quantitative features but it is
not appropriate if there are outliers.

∗ Replacing with median: recommended for quantitative features in case of out-
liers and skewed data distribution.

∗ Replacing with mode: used for categorical features.

– Multiple imputation: allow for uncertainty in the estimated values and can be
thought of in three distinct steps: imputation, analysis and pooling of the results.
Two examples of multiple imputation methods are:

∗ KNN (K-nearest neighbor) imputation: a machine learning-based method that
uses a Euclidean distance to find the nearest neighbor. It can predict the at-
tributes using the most frequent value or the average among neighbors. The
main disadvantage is that searches through the complete dataset, so it has lim-
ited scope when it comes to larger ones. Works well with both discrete and
continuous attributes [17].

∗ MICE (Multiple Imputation by chained equations): is a less biased method at
the cost of being computationally expensive. It is a semi-parametric Markov

22



Núria Jolis Orriols 4.4 Multivariate analysis: multiple logistic regression

Chain Monte Carlo (MCMC) approach which assumes MAR data is replaced
with a set of plausible values which contain the natural variability and uncer-
tainty of the right values. Missing values are estimated by creating a series of
regression or other suitable models [16], [21].

In this thesis dataset, there are 1901 missing values (3.4%) found in 18 out of 48 variables.
Even though the percentage of missing values is a 3.4% and it could be considered negligible,
ML classification models are very sensitive to missing values. Therefore, in order to be able to
make the predictions and to study some of the methods mentioned above, three datasets have
been generated using three different methods. Altogether, the ML classification algorithms
have been applied to four different datasets:

(A) Dataset with no methods applied.

(B) Dataset with listwise deletion (complete cases).

(C) Dataset with imputation by KNN.

(D) Dataset with imputation by MICE-PMM.

The dataset A has been obtained in the first part of the data clean-up and data curation.

The dataset B has been obtained using the complete.cases() function of the R package ”stats”.

The dataset C has been obtained using the kNN() function of the R package ”VIM”. As the
optimal K value (number of nearest neighbors) is usually found as the square root of N (the
total number of samples), a K=34 has been set as the dataset consist in 1176 observations.

The dataset D has been generated using the R package ”MICE” with mice() function and the
PMM (Predictive Mean Matching) method. The MICE-PMM is one of the MICE variations
suggested to impute non-normally distributed data [16]. A specific seed (12345) is fixed to be
able to replicate the results. Because of the use of the seed the results are somewhat dependent
on this initial choice, to reduce this effect a higher number of multiple imputations is selected
by changing the default parameter m=5 to m=30.

4.4 Multivariate analysis: multiple logistic regression

Multiple or multivariable logistic regression (MLR) is a modeling method that can be used
to estimate the relationship between a binary dependent variable (Y) and several independent
variables (X). Its goal is to find an equation that best predicts the probability of obtaining a
particular value of the Y variable as a function of the X variables using maximum likelihood
estimation. The independent variables can be continuous, categorical, or ordinal.

The logistic regression method assumes that:
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1. The variable outcome (Y) is a binary or dichotomous variable.

2. There is a linear relationship between the logit of the outcome and each predictor vari-
ables. The logit function is logit(p) = log(p/(1-p)), where p are the probabilities of the
outcome. There are more options for transformations but the ease of calculation and
the interpretation (of the logit) as the logarithm of the ODDS in favor of success, make
logistics the most used.

3. There is no influential values (extreme values or outliers) in the continuous predictors.

4. There is no high intercorrelations.

Therefore, logistic regression estimates the probability of an event occurring, such as survival
or not survival, based on a given dataset of independent variables. Since the outcome is a
probability, the dependent variable is bounded between 0 and 1, so it is logical to use a Bernoulli
distribution. In logistic regression, a logit transformation is applied on the odds—that is, the
probability of success divided by the probability of failure [28], [34], [38]. This is also commonly
known as the log odds, or the natural logarithm of odds, and this logistic function is represented
by the following formulas:

Yi Br(pi) i.i.d

logit(pi) = log(
pi

1− pi
) = β0 + β1X1 + · · ·+ βiXi

Where pi represents the probability of success, Xi are the explanatory variables, βi represents
the change in the logit of the probability associated with a change in one unit in Xi, i = 1, ..., n
and n is the number of explanatory variables.

Relationship between ODDS and linear predictor:

pi
1− pi

= exp(β0 + β1X1 + · · ·+ βiXi)

This expression defines a multiplicative model for the ODDS. So a change of a unit in Xi would
mean that the ODDS would be multiplied by exp(βi).

In this work, the multiple logistic regression has been implemented using the glm() function
of the R package ”stats” on the four datasets. The best model for each dataset has been
determined by a stepwise procedure using the stepAIC() function of the R package ”MASS”. It
selects models to minimize the AIC (Akaike Information Criterion),which in statistics, is used
to compare different possible models and determine which one is the best fit for the data. AIC
is calculated as follows:

AIC = −2log(likelihood) + 2k
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Núria Jolis Orriols 4.5 Classification using ML algorithms

Where k is the number of model parameters. It is a weight between the likelihood of the model
and a penalty for using too many independent variables. The lower the AIC, the better the
model. R allows the AIC to be used as a criterion when selecting the independent variables to
include or remove from a model: the goal is to minimize the AIC as much as possible.

The best-fitted model according to AIC is the one that explains the greatest amount of varia-
tion using the fewest possible independent variables.

For further information on AIC consult [5] and [41].

4.5 Classification using ML algorithms

In this project, three supervised classification algorithms have been modeled (SVM, ANN and
RF) on the four different datasets mentioned in section 4.3.
Before generating the models, data partition has been performed having 70% of the data ran-
domly selected for training the models and the 30% left for testing. In addition, to ensure
analysis reproducibility, a seed has been defined.

4.5.1 Support Vector Machine

SVM is a supervised learning algorithm used to solve regression and classification problems.
Its underlying idea is based on finding the optimal ”hyperplane” that separates observations
belonging to one class from another based on patterns of information about those observations
called features [31]. The hyperplane drawn corresponds to a n-dimensional space in which the
mean-squared error is minimized, and the margin of separation between the two classes is max-
imised [10].

When input data can not be linearly separated, a kernel (or non-linear) function is used to
transform the support vectors to a higher-dimensional feature space. Then, a linear classifier is
used for classification [31]. Some well-known kernel functions include the Radial bases function
(RBF), the polyomial, the Gaussian, the sigmoid, etc. The Gaussian and Laplace RBF and
Bessel kernels are general-purpose kernels used when there is no prior knowledge about the
data. The linear kernel is useful when dealing with large sparse data vectors (usually in text
categorization). The polynomial kernel is popular in image processing and the sigmoid kernel
is mainly used as a proxy for neural networks [20].

In this case, the SVM algorithm has been implemented using the ksvm() function of the ”kern-
lab” R package and several kernels such as linear, Gaussian radial and polynomial have been
tested seeking the best performance.
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Figure 4.2: General classification hyperplane representation of SVM algorithm[4]

4.5.2 Artificial Neural Network

ANN models the relationship between a set of input signals and an output signal using a model
derived from our understanding of how a biological brain responds o stimuli from sensory inputs
[23]. It mimics biological learning networks. The basic processing elements are called artificial
neurons or nodes. Each node has its own input, from which it receives communications from
other nodes and/or from the environment and its own output, from which it communicates
with other nodes or with the environment. Finally, each node has a function f through which
it transforms its own global input into output [15].

Figure 4.3: Diagram of a single processing element (PE) containing a neuron, weighted den-
drites, and axons to process the input data and calculate an output [15].

The basic architecture consists of three types of neuron layers: input, hidden, and output
layers. The most popular architecture is the feed-forward network, the signal flow is from
input to output units, strictly in a feed-forward direction. The data processing can extend over
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multiple (layers of) units, but no feed-back connections are present [15].

Figure 4.4: Feed-forward neural network architecture [15].

In supervised learning, an input vector is presented together with a set of desired responses,
one for each node, at the output layer. The neuron impulse is computed as the weighted sum
of the input signals, transformed by the transfer function. A forward pass is done, and the
errors or discrepancies between the desired and actual response for each node in the output
layer are found. These are then used to determine weight changes in the net according to the
prevailing learning rule. The learning capability of an artificial neuron is achieved by adjusting
the weights in accordance to the chosen learning algorithm [35].

In this work, the ANN algorithm has been implemented using the compute() function of the
”neuralnet” R package. Models with one and three hidden nodes have been tested seeking the
best accuracy.

4.5.3 Random Forest

The decision tree is a technique of a supervised learning algorithm that is used for classifica-
tion. The algorithm groups attribute depending upon the values in order of their ascending or
descending order. The decision tree consist of branches and nodes where the node represents
attributes of a group that is to be classified, and the branch displays the value which a node can
take [10]. The RF is an ensemble of decision trees combined to get more accurate predictions.
It is a non-linear classification algorithm. It is called random because it chooses predictors
randomly at a time of training, and forest because it takes the output of multiple trees to make
a decision [23]. Figure 4.6 shows the main idea of the algorithm which steps are as follows:

1. Draw a ntree bootstrap sample of size n (randomly choose n samples from training data).
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2. Grow a decision tree for each bootstrap sample by choosing the best split based on a
random sample of mtry predictors at each node.

3. Predict new data using majority votes for classification and average for regression based
on ntree trees.

Figure 4.5: Basic idea of random forest [13].

One of its main advantages is that its avoids overfitting. In addition, it can deal with a large
number of features and it helps to identify the important variables.

It mainly contains two user-friendly parameters: ntree (number of trees) and mtry (number of
variables randomly chosen as candidates at each split).

In this work, RF models have been applied using the randomForest() function of the ”random-
Forest” R package. The randomForest () function has been used with the default parameters
of number of trees = 500 and mtry = sqrt(p); where p=number of variables.

4.6 k-fold cross-validation for models’ validation

Cross-validation is a statistical method of evaluating and comparing learning algorithms by
dividing data into two segments: one used to train a model and the other used to validate
the model. k-fold cross-validation is a special case of cross-validation and it is one the most
common techniques for model evaluation and model selection in machine learning practice. The
main idea is that the data is first randomly split into k equal-sized subsets or folds. Then, the
train-then-test procedure is repeated k times: each time, one of the k subsets is used as a test
set, and the rest of the k – 1 subsets are used for learning or to form the training set [33].
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For learning algorithms’ evaluation or validation, the model uses k-1 folds of data in each it-
eration for learning and subsequently models are asked to make predictions about the data in
the validation fold. The performance of the algorithm in each fold is tracked using a prede-
termined performance metric-like accuracy. Eventually, the cross-validation performance is the
compute of the arithmetic mean or other methodologies over the k performance estimates from
the validation sets.

The idea is to reduce the bias by using more training data in contrast to setting aside a portion
of the dataset as test data and test folds are not overlapping. In practice, k-fold cross-validation
technique is more used for model selection.

Kohavi’s experiments on various real-world datasets suggest that 10-fold cross-validation offers
the best trade-off between bias and variance [22] .

After fitting the ML algorithms into training data and predicting the primary response classi-
fication with the test sets, the models with the best performance have been selected for being
validated with the method of k-fold cross-validation. For conducting this validation technique,
the ”caret” R package has been used.

4.7 Parameters for models’ evaluation

When performing classification predictions, there are four possible outcomes:

• True Positive (TP): predicted positive that are actually positive.

• True Negative (TN): predicted negative that are actually negative.

• False Positive (FP): predicted negative that are actually negative.

• False Negative (FN): predicted negative that are actually positive.

These four outcomes can be obtained by plotting a confusion matrix between the predictions
made by the model on the test data and their actual class. The confusion matrix is performed
with the function confusionMatrix () of the R package “caret”. In addition to the outcomes,
the confusion matrix also report several metrics used to evaluate the model [23], [29], [37]:

• Accuracy: indicates the % of the correct classified observations. TP + TN / TP + TN
+ FP + FN.

• Sensitivity or recall: indicates the true positive rate = TP / (TP+FN).

• Specificity: indicaes the true negative rate = TN / (FP + TN).

• Precision: indicates the predictive positive value = TP / TP + FP.
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• F-Measurement: mean of sensitivity and precision = (2 x Precision x Recall) / (Precision
+ Recall).

• Cohen’s Kappa statistic: calculated as the accuracy but normalizing at the baseline the
random chance of the dataset. According to the scheme a value provided by Landis
and Koch (1977) a kappa <0 indicates no agreement, 0–0.20 as slight, 0.21–0.40 as fair,
0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement.

• Balanced Accuracy: the average of sensitivity and specificity and its use is recommended
when facing imbalanced data = (Sensitivity + Specificity) / 2.

In addition to these estimates, to analyse a model efficiency and accuracy two more parameters
can be used:

• ROC (Receiver Operating Characteristics): is a plot confronting the recall (true positive
rate) against the false positive rate (1-specificity) at various threshold settings.

• AUC (Area Under the Curve): is the measure of the ability of a classifier to distinguish
between classes and is used as a summary of the ROC curve. The higher the AUC, the
better the performance of the model at distinguishing between the positive and negative
classes. For this metric, a value of 0,5 indicates the classifier is not better than random
guessing.
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Chapter 5

Results

5.1 Exploratory data analysis

5.1.1 Exploratory data and bivariate analysis

All Wilcoxon-rank tests results can be found on the complementary material in the Github
repository provided in section 2.5.

In addition, for all contrast tests, a significance level of 0,05 will be considered.

Summary tables of the variables and their descriptive statistics for the categorical variables are
shown in Table 5.1 and 5.2: MIMIC-III subset of qualitative variables I and II respectively. For
numerical variables results are found in Table 5.3 and 5.4: MIMIC-III subset of quantitative
variables I and II respectively.

Table 5.1: MIMIC-III subset of qualitative variables I

Descriptive statistic NAsVariable
group

Variable Categories
n % Count %

Primary
response

outcome Survivor 1017 86.48 0 0

Non-survivor 159 13.52
Demographic

features
gender Female 618 52.55 0 0

Male 558 47.45
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Table 5.2: MIMIC-III subset of qualitative variables II

Descriptive statistic NAsVariable
group

Variable Categories
n % Count %

Comorbidities atrialfibrillation Yes 531 45.15 0 0
No 645 54.85

CHD.with.no.MI Yes 101 8.59 0 0
No 1075 91.41

COPD Yes 89 7.57 0 0
No 1087 92.43

deficiencyanemias Yes 399 33.93 0 0
No 777 66.07

depression Yes 140 11.90 0 0
No 1036 88.10

diabetes Yes 495 42.09 0 0
No 681 57.91

hyperlipemia Yes 447 38.01 0 0
No 729 61.99

hypertensive Yes 844 71.77 0 0
No 332 28.23

renal.failure Yes 429 36.42 0 0
No 747 63.52

Table 5.3: MIMIC-III subset of quantitative variables I

Variable N Mean Min Median Max NAs %NAs
Demographic features
BMI 962 30.19 13.35 28.31 104.97 214 18.2
age 1176 74.05 19.00 77.00 99.00 0 0.0
Vital signs
heart.rate 1164 84.58 36.00 83.61 135.71 12 1.0
respiratory.rate 1164 20.80 11.14 20.37 40.90 12 1.0
temperature 1158 36.68 33.25 36.65 39.13 18 1.5
SP.O2 1164 96.27 75.92 96.45 100.00 12 1.0
urine.output 1141 1899.28 0.00 1675.00 8820.00 35 3.0
m.a.p 1161 79.02 51.16 77.30 129.01 15 1.3
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Table 5.4: MIMIC-III subset of quantitative variables II

Variable N Mean Min Median Max NAs %NAs
Laboratory
Blood count

hematocrit 1176 31.91 20.31 30.80 55.42 0 0.0
RBC 1176 3.57 2.03 3.49 6.58 0 0.0
MCH 1176 29.54 18.12 29.75 40.31 0 0.0
MCHC 1176 32.86 27.82 32.99 37.01 0 0.0
MCV 1176 89.90 62.60 90.00 116.71 0 0.0
RDW 1176 15.95 12.09 15.51 29.05 0 0.0
leucocyte 1176 10.72 0.10 9.68 64.75 0 0.0
platelets 1176 241.52 9.57 222.67 1028.20 0 0.0
neutrophils 1032 80.12 5.00 82.47 98.00 144 12.2
basophils 917 6.23 0.10 0.30 675.00 259 22.0
lymphocyte 1031 12.23 0.97 10.47 83.50 145 12.3
Coagulations

PT 1156 17.49 10.10 14.64 71.27 20 1.7
INR 1156 4.07 0.87 1.30 975.00 20 1.7

Chemistry
creatine.kinase 1011 246.94 8.00 89.50 42987.50 165 14.0
creatinine 1176 16.00 0.27 1.33 975.00 0 0.0
urea.nitrogen 1176 36.29 5.36 30.61 161.75 0 0.0
glucose 1159 148.80 66.67 136.40 414.10 17 1.4
blood.potassium 1176 4.18 3.00 4.11 6.57 0 0.0
blood.sodium 1176 138.90 114.67 139.25 154.74 0 0.0
blood.calcium 1175 8.50 6.70 8.50 10.95 1 0.1
chloride 1176 102.29 80.27 102.52 122.53 0 0.0
anion.gap 1176 13.92 6.64 13.67 25.50 0 0.0
magnesium.ion 1176 2.12 1.40 2.09 4.07 0 0.0
Venous blood
pH 885 7.38 7.09 7.38 7.58 291 24.7
bicarbonate 1176 26.91 12.86 26.50 47.67 0 0.0
lactic.acid 948 8.36 0.50 1.62 975.00 228 19.4
PCO2 883 45.54 18.75 43.00 98.60 293 24.9
Heart specific
EF 1176 48.71 15.00 55.00 75.00 0 0.0
NT.proBNP 1176 11011.04 50.00 5837.75 118928.00 0 0.0

Primary response

As mentioned, the primary outcome of the study is in-hospital mortality, defined as the vital
status at the time of hospital discharge in survivors and non-survivors. The barplot in Figure
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5.1 shows that there is an 86,41% (1017) of survivors and a 13,51% (159) of non-survivors.
Therefore, the data is not balanced.

86.48%

13.52%

0.00

0.25

0.50

0.75

Survivor Non−survivor
Outcome

P
er

ce
nt

Figure 5.1: Percentage of Patients’ outcome.

Demographic features

• Age and gender: The age of the patients in this study ranges from 19 to 99 (Table 5.3)
and there are 52,55% of females and 47,45% of males (Table 5.1). Figure 5.2 a) shows
that among survivors, the incidence is higher between 60 and 90 years old, and in non-
survivors, between 80 and 90 years old; independently of the gender. Wilcoxon test for the
age results in a p-value of 0,017 indicating that there are significant differences between
age and outcome. Fisher’s exact test for gender presents an odds ratio of 0,88, close to
1, and a p-value of 0,44 meaning that there is no significant evidence that gender and
outcome are different (Table 5.5).

• BMI: Patients’ BMI ranges from 13,35 to 104,95 and presents an 18,3% of missing values
(Table 5.3). Although the median of the two groups looks similar in Figure 5.2 b), the p-
value of the Wilcoxon test is 0.017 meaning that there are significant differences between
BMI and outcome.
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Figure 5.2: From left to right: a) Barplot of age groups by gender and outcome. b) BMI’s
distribution by outcome.

Table 5.5: Gender’s Fisher’s exact test results

Categorical Class outcome Categorical Class n TOTAL Freq OR pvalor
M 478 47.00

Survivor
F 539

1017
53.00

M 80 50.31
gender

Non-survivor
F 79

159
49.69

0.88 0.44

Vital signs

The group of vital singles comprises six variables: MAP, heart rate, respiratory rate, oxygen
saturation, temperature and urine output.

The boxplots in Figure 5.3 indicate that the group of non-survivors presents elevated heart and
respiratory rates, lower MAP and urine output, and similar temperature and oxygen saturation
compared to survivors.
All p-values resulting from the Wilcoxon-rank test are <0,05; therefore, there is statistical
evidence to affirm that there are differences between the outcome and all vital signs.
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Figure 5.3: Vital signs’ distribution by outcome.

Comorbidities

The group of comorbidities comprises nine attributes: atrial fibrillation, coronary heart disease
with no myocardial infarction, chronic obstructive pulmonary disease, depression, diabetes mel-
litus, hyperlipidemia, hypertension, hypoferric anemia and renal failure.

Barplot in Figure 5.4 shows that the most prevalent comorbidity is hypertension which is found
in almost 75% of the patients followed by atrial fibrillation, diabetes, hyperlipemia, renal fail-
ure and deficiency anemia, which are present between 30% and 50% of the patients. Finally,
coronary heart disease with no myocardial infarction, chronic obstructive pulmonary disease
and depression are suffered by less than 10% of the patients.

Bar plots in Figure 5.5 display that in general, the presence of comorbidities is smaller among
non-survivors than survivors except for atrial fibrillation, which is more prevalent in non-
survivors than survivors. In the case of coronary heart disease with no myocardial infarction,
chronic obstructive pulmonary, diabetes and depression, there seems to be very little difference
between the incidence among survivors and non-survivors. These results are mainly confirmed
by Fisher’s test results (Table 5.6), in which the p-value of the variables coronary heart disease
with no myocardial infarction, chronic obstructive pulmonary and diabetes resulted in >0,05;
therefore, there is significant evidence that these features are no different compared to the pri-
mary response. The p-value of diabetes is 0,04, and although it is statistically significant, it is
very close to the limit. The p-values of the rest of the comorbidities are <0,05.
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Núria Jolis Orriols 5.1 Exploratory data analysis

Patients with atrial fibrillation have 1,81 times more likely to die whereas patients with
hypertension, deficiency anemia, depression, hyperlipemia and renal failure have 1,56, 1,96,
1,39 and 2,08 times more likely to survive (Table 5.6).
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Figure 5.4: Percentage of the presence of the comorbidities.
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Figure 5.5: Comorbidities’ proportion by outcome.
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Table 5.6: Comorbidities’ Fisher’s exact test results.

Comorbidity outcome Class n TOTAL Freq OR pvalor
No 274 26.94

Survivor
Yes 743

1017
73.06

No 58 36.48
hypertensive

Non-survivor
Yes 101

159
63.52

0.64 0.02

No 578 56.83
Survivor

Yes 439
1017

43.17
No 67 42.14

atrialfibrillation
Non-survivor

Yes 92
159

57.86

1.81 0

No 928 91.25
Survivor

Yes 89
1017

8.75
No 147 92.45

CHD.with.no.MI
Non-survivor

Yes 12
159

7.55

0.85 0.76

No 579 56.93
Survivor

Yes 438
1017

43.07
No 102 64.15

diabetes
Non-survivor

Yes 57
159

35.85

0.74 0.1

No 653 64.21
Survivor

Yes 364
1017

35.79
No 124 77.99

deficiencyanemias
Non-survivor

Yes 35
159

22.01

0.51 0

No 888 87.32
Survivor

Yes 129
1017

12.68
No 148 93.08

depression
Non-survivor

Yes 11
159

6.92

0.51 0.04

No 620 60.96
Survivor

Yes 397
1017

39.04
No 109 68.55

hyperlipemia
Non-survivor

Yes 50
159

31.45

0.72 0.08

No 625 61.46
Survivor

Yes 392
1017

38.54
No 122 76.73

renal.failure
Non-survivor

Yes 37
159

23.27

0.48 0

No 935 91.94
Survivor

Yes 82
1017

8.06
No 152 95.60

COPD
Non-survivor

Yes 7
159

4.40

0.53 0.14
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Laboratory works

The group of laboratory works comprises 29 of the 48 variables on the dataset. As shown in
Table A.3 (Annex A), they have been distributed in five groups: blood cell count, coagulation
factors, chemistry (substances in blood related to its chemical balance), venous blood measure-
ments and heart specific indicators.

Although looking at the boxplots in Figures 5.6, 5.7, 5.8, 5.9 and 5.10 it seems that the variables
MHC, MCHC, MCV, RBC, sodium, chloride, creatine kinase, creatinine, glucose, magnesium
and EF have similar medians, all p-values of the Wilcoxon-rank test resulted in <0,05. There
are many outliers in many variables, and because of that, results are better concluded with
the Wilcoxon test. Therefore, there is statistical evidence to affirm that there are differences
between the outcome and all laboratory work variables.
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Figure 5.6: Cell count factors by outcome.
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Figure 5.7: Blood chemical substances by outcome.
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Figure 5.8: Heart specific factors by outcome.
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Figure 5.9: Coagulation factors by outcome.
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Figure 5.10: Venous blood factors by outcome.

5.2 Data clean-up and data accuracy

As mentioned in the section of methodology, the first part of the data clean-up and data accu-
racy was to make some modifications in the dataset provided by Li et al., 2021 to finally obtain
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a dataset of 1176 observations and 48 variables.

After that, an analysis of the missing values have been conducted and the results show that
in this thesi’s dataset, there are 1901 missing values (a 3.4%) found in 18 out of 48 variables:
BMI, heart.rate, respiratory.rate, SP.O2, temperature, urine.output, basophils, lymphocytes,
neutrophils, INR, PT, blood.calcium, creatine.kinase, glucose, lactic.acid, PCO2 and pH.

Of those 18 features, the variables PCO2, pH, basophils, lactic.acid, BMI, creatine.kinase, lym-
phocytes and neutrophils, have between 10 and 25% of missing values whereas the other 10
features presents less than the 10%.

According to Figure 5.11, some of the variables seem to have a pattern of missing data. Even
though the percentage of missing values is very low and it could be considered negligible, it is
assumed that we are dealing with MAR or MNAR.

Figure 5.11: Pattern of missing values

According to section 4.3, in orderd to be able to make predictions and to study some of the
methods described to deal with missing values, four different datasets have been created. Table
5.7 contains a summary of their properties. The multivariate analysis and the prediction
classification with ML models have been applied on all of them.
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Table 5.7: Properties of input datasets.

Dataset Methodology applied No. of observations No. of features % NA
A - 1176 48 3.37
B Listwise deletion 428 48 0
C KNN imputation 1176 48 0
D MICE-PMM 1176 48 0

5.3 Multivariate analysis: multiple logistic regression

As mentioned, multiple logistic regression has been first performed on the four different datasets
with the full model (with all the covariates) and then, a stepwise procedure based on the AIC
has been applied to obtain the best model with the variables that contribute the most to explain
the primary response. Only the best models determined by the ”stepAIC()” R function with
the lowest AIC are shown in this section. However, all models can be found on the Github
repository mentioned in section 2.5.

The full model is fitted as follows:

outcome ∼ age + gender + BMI + hypertensive + atrialfibrillation + CHD.with.no.MI +
diabetes+deficiencyanemias+depression+hyperlipemia+renal.failure+COPD+heart.rate+
respiratory.rate+temperature+SP.O2+urine.output+hematocrit+RBC+MCH+MCHC+
MCV +RDW + leucocyte+ platelets+neutrophils+ basophils+ lymphocyte+PT + INR+
NT.proBNP + creatine.kinase + creatinine + urea.nitrogen + glucose + blood.potassium +
blood.sodium+ blood.calcium+ chloride+ anion.gap+magnesium.ion+ pH + bicarbonate+
lactic.acid+ PCO2 + EF +m.a.p.

The model fitting with the dataset A has only been accomplished with the full model. It is not
possible to reduce the model with the ”stepAIC()” R function because this dataset contains
missing values. The model fitting must apply the models to the same dataset and dimensions
and with the missing values the dimensions of the dataset change.
The best MLR model obtained based on the AIC criterion by the R function mentioned above
on the dataset B is a model fitted with 20 variables. Table 5.8 shows that the variables age,
heart.rate, leucocyte, PT, urea.nitrogen, glucose, chloride, anion.gap, magnesium.ion and PCO2
present a negative coefficient so the probability of surviving is reduced when these variables
increase when taking into account all the features included in the model.
The variables BMI, artrialfibrillation (Yes), deficiencyanemias(Yes), renal.failure(Yes), COPD
(Yes), temperature, platelets, neutrophils, lymphocyte and blood.calcium present a positive
coefficient. Taking into account all variables included in the model, the probability of surviving
increases when these variables also increase.

Therefore, this model denotes that the risk factors for non-surviving are being old, presenting
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an elevated heart rate, high count of leucocytes, elevated PT, urea nitrogen, glucose, chloride,
anion gap, magnesium and PCO2.

Taking into account all variables included in the model, the variables with significant p-value
(<0,05) are age, deficiencyanemias, renal.failure, platelets, PT, blood.calcium, anion.gap and
PCO2; which means that there is statistical evidence to affirm that they are different from the
primary response.

Table 5.8: MLR of dataset B after applying stepwise.

Reduced MLR model of dataset B

Formula:

outcome ∼age + BMI + atrialfibrillation + deficiencyanemias
+ renal.failure + COPD + heart.rate + temperature + leucocyte
+ platelets + neutrophils + lymphocyte + PT + urea.nitrogen +
glucose + blood.calcium + chloride + anion.gap +
magnesium.ion + PCO2

AIC: 239.6
Estimate Odds Std. Error z value Pr(> |z|)

(Intercept) -5.831 0.003 15.437 -0.378 0.706
age -0.053 0.948 0.02 -2.667 0.008 **
BMI 0.039 1.04 0.027 1.471 0.141
atrialfibrillationYes 0.699 2.012 0.461 1.515 0.13
deficiencyanemiasYes 1.405 4.075 0.518 2.713 0.007 **
renal.failureYes 2.419 11.238 0.545 4.438 0.000 ***
COPDYes 1.385 3.996 0.762 1.818 0.069
heart.rate -0.024 0.976 0.013 -1.919 0.055
temperature 0.483 1.621 0.314 1.539 0.124
leucocyte -0.072 0.931 0.046 -1.563 0.118
platelets 0.007 1.007 0.002 3.004 0.003 **
neutrophils 0.069 1.072 0.048 1.428 0.153
lymphocyte 0.123 1.131 0.068 1.808 0.071
PT -0.067 0.936 0.029 -2.331 0.020 *
urea.nitrogen -0.019 0.981 0.011 -1.67 0.095
glucose -0.005 0.995 0.003 -1.554 0.120
blood.calcium 0.841 2.318 0.366 2.297 0.022 *
chloride -0.078 0.925 0.043 -1.801 0.072
anion.gap -0.346 0.707 0.107 -3.238 0.001 **
magnesium.ion -1.205 0.3 0.758 -1.589 0.112
PCO2 -0.064 0.938 0.022 -2.892 0.004 **

The final model conducting MLR with the stepAIC() R function on dataset C presents 18
variables. Table 5.9 shows the results of this model. In this case, the variables heart.rate,
respiratory.rate, RDW, leucocyte, PT, urea.nitrogen and blood.potassium present a negative
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coefficient so when taking into account all the features included in the model, the probability
of surviving is reduced with an increase of these variables. The variables BMI, deficiencyane-
mias(Yes), renal.failure(Yes), COPD (Yes), temperature, SP.O2, urine.outpu, platelets, lym-
phocyte, creatinine and blood.calcium present a positive coefficient. Taking into account all
variables included in the model, the probability of surviving increases when these variables also
increase.

Regarding all variables included in this model, the risk factors for non-surviving are presenting
an elevated heart and respiratory rate, elevated blood count of leucocytes and RDW, elevated
PT, urea nitrogen and potassium.

The variables with significant p-value (<0,05) are BMI, deficiencyanemias, renal.failure, COPD,
heart.rate, SP.O2, urine.output, RDW, leucocyte, platelets, lymphocyte, urea.nitrogen, blood.potassium
and blood.calcium; which means that there is statistical evidence to affirm that they are dif-
ferent from the primary response considering all variables included in the model.
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Table 5.9: MLR of dataset C after applying stepwise.

Reduced MLR model of dataset C

Formula:

outcome ∼BMI + deficiencyanemias + renal.failure + COPD +
heart.rate + respiratory.rate + temperature + SP.O2 +
urine.output + RDW + leucocyte + platelets + lymphocyte +
PT + creatinine + urea.nitrogen + blood.potassium +
blood.calcium

AIC: 719.43
Estimate Odds Std. Error z value Pr(> |z|)

(Intercept) -19.498 0.000 7.976 -2.445 0.015 *
BMI 0.031 1.032 0.015 2.059 0.039 *
deficiencyanemiasYes 0.764 2.147 0.238 3.214 0.001 **
renal.failureYes 1.192 3.295 0.257 4.635 0.000 ***
COPDYes 1.060 2.887 0.446 2.378 0.017 *
heart.rate -0.019 0.981 0.007 -2.777 0.005 **
respiratory.rate -0.041 0.959 0.027 -1.547 0.122
temperature 0.288 1.333 0.169 1.700 0.089
SP.O2 0.116 1.124 0.046 2.556 0.011 *
urine.output 0.000 1.000 0.000 2.564 0.010 *
RDW -0.113 0.893 0.046 -2.433 0.015 *
leucocyte -0.057 0.945 0.018 -3.080 0.002 **
platelets 0.003 1.003 0.001 3.490 0.000 ***
lymphocyte 0.031 1.032 0.016 1.990 0.047 *
PT -0.023 0.978 0.012 -1.877 0.060
creatinine 0.002 1.002 0.002 1.273 0.203
urea.nitrogen -0.024 0.976 0.005 -4.717 0.000 ***
blood.potassium -0.720 0.487 0.243 -2.967 0.003 **
blood.calcium 0.709 2.032 0.187 3.797 0.000 ***

The final MLR model on dataset D has been accomplished fitting 25 variables. Table 5.10 shows
that the variables the variables age, MCH, RDW, leucocyte, blood.potassium, blood.sodium,
heart.rate, respiratory.rate, lactic.acid, PCO2 and m.a.p present negative coefficients which
means that the probability of surviving is reduced when they increase considering all features
included in the model. The variables deficiencyanemias(Yes), renal.failure(Yes), COPD (Yes),
MCHC, platelets, chloride, bicarbonate, BMI, temperature, SP.O2, urine.output, blood.calcium
and m.a.p present a positive coefficient.

With this model, the risk factors for non-surviving are being old, presenting an elevated heart
and respiratory rate, elevated blood count of MCH, RDW and leucocyte, and having elevated
urea.nitrogen, blood.potassium, blood.sodium, magnesium.ion, lactic.acid and PCO2.

The variables with significant p-value (<0,05) are deficiencyanemias, renal.failure, COPD,
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heart.rate, SP.O2, RDW, leucocyte, platelets, lymphocyte, urea.nitrogen, chloride, bicarbon-
ate, blood.calcium, acid.lactic and PCO2; which means that there is statistical evidence to
affirm that they are different from the primary response considering the formula of the model.

Table 5.10: MLR of dataset D after applying stepwise.

Reduced MLR model of dataset D

Formula:

outcome ∼age + deficiencyanemias + renal.failure + COPD +
MCH + MCHC + RDW + leucocyte + platelets + urea.nitrogen
+ blood.potassium + blood.sodium + chloride + magnesium.ion
+ bicarbonate + BMI + heart.rate + respiratory.rate +
temperature + SP.O2 + urine.output + blood.calcium + lactic.acid
+ PCO2 +m.a.p

AIC: 712.58
Estimate Odds Std. Error z value Pr(> |z|)

(Intercept) -21.281 0.000 9.919 -2.146 0.032 *
age -0.017 0.983 0.009 -1.850 0.064
deficiencyanemiasYes 0.753 2.123 0.245 3.076 0.002 **
renal.failureYes 1.325 3.762 0.265 4.994 0.000 ***
COPDYes 1.144 3.138 0.475 2.407 0.016 *
MCH -0.081 0.923 0.049 -1.649 0.099
MCHC 0.198 1.219 0.106 1.878 0.060
RDW -0.108 0.898 0.052 -2.093 0.036 *
leucocyte -0.072 0.931 0.019 -3.767 0.000 ***
platelets 0.003 1.003 0.001 3.320 0.001 ***
urea.nitrogen -0.016 0.984 0.006 -2.617 0.009 **
blood.potassium -0.512 0.599 0.278 -1.838 0.066
blood.sodium -0.118 0.889 0.062 -1.920 0.055
chloride 0.114 1.121 0.055 2.071 0.038 *
magnesium.ion -0.745 0.475 0.430 -1.732 0.083
bicarbonate 0.173 1.189 0.050 3.475 0.001 ***
BMI 0.021 1.021 0.015 1.418 0.156
heart.rate -0.019 0.981 0.007 -2.717 0.007 **
respiratory.rate -0.040 0.961 0.027 -1.450 0.147
temperature 0.265 1.303 0.174 1.517 0.129
SP.O2 0.112 1.119 0.048 2.350 0.019 *
urine.output 0.000 1.000 0.000 1.430 0.153
blood.calcium 0.782 2.186 0.206 3.800 0.000 ***
lactic.acid -0.003 0.997 0.001 -2.780 0.005 **
PCO2 -0.022 0.978 0.010 -2.288 0.022 *
m.a.p 0.021 1.022 0.011 1.878 0.060

The overall risk factors common among the three reduced final models are presenting an elevated
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heart rate, high count of leucocytes, and elevated urea nitrogen. Elevated respiratory rate,
RDW count, magnesium and potassium were common in two out of three models.

5.4 Classification by predictive machine learning algo-

rithms

5.4.1 Support Vector Machine

The classification using SVM has been tested with three different approaches: linear classifi-
cation, Gaussian radial kernel classification and polynomial kernel classification. Except for
kernel specification, the ksvm() function has been conducted with the other default arguments.
The parameters obtained with model performances are summarized in Figure 5.12.

Models generated with the dataset A did not converge because it presents missing values.
With linear classification, the model on dataset B present better balanced accuracy, sensitivity,
kappa and AUC compared to models on datasets C and D which are very similar and present
better overall accuracy, specificity, PPV and NPV.

Parameters’ results of linear classification are the same as those obtained by polynomial kernel
classification. The performance of the models using radial kernel classification is worst com-
pared to linear or polynomial. Between linear and polynomial classification, the simplest model
(linear) is selected as the best one.

After selecting the linear SVMmodels, a 10-folds cross-validation has been conducted to validate
the results on those models. Figure 5.12 shows that the validation results model on dataset C
is better with all metrics compared to models on dataset B and D.
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Figure 5.12: SVMmodels results. Acc= accuracy; B.acc= balanced accuracy; Sens= sensitivity,
Spec= specificity; PPV= positive predicted value; NPV = negative predicted value.

5.4.2 Artificial Neural Network

First, to generate ANN models, variables have been escalated using a normalize function.

The ANN models have been performed on the four datasets with the default parameters of the
neuralnet() R function with one and three nodes or neurons in the hidden layer. The algorithm
used by default is the backpropagation. The number of hidden neurons affects how well the
network can separate the data. A large number of hidden neurons will ensure correct learning
but its performance on new data and its ability to generalize is compromised. With too few
hidden neurons, the network may be unable to learn the relationships amongst the data and
the error will fail to fall below an acceptable level.

The metric parameters obtained with model performances are summarized in Figure 5.13.
As for SVM, the ANN model with dataset A did not converge because of the missing values.
Regarding datasets B, C and D the best models are obtained with one node in the hidden layer
as all metrics are a little bit higher.

In this case, a 10-folds cross-validation has been conducted to validate the results of all models
with one hidden neuron on datasets B, C and D. After validation, performance in dataset B
model decreases and the best model obtained is the one performed on dataset C.
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Figure 5.13: ANN models results. Acc= accuracy; B.acc= balanced accuracy; Sens= sensitivity,
Spec= specificity; PPV= positive predicted value; NPV = negative predicted value.

5.4.3 Random forest

The classification using a basic RF model has been performed selecting the parameters ntrees=500
(by default) and mtyr= sqrt(p); being p the number of the variables. As with SVM and ANN,
the model with dataset A did not converge. The parameters obtained with models perfor-
mances on datasets B, C and D are summarized in Figure 5.15.

In addition to model’s performance parameters, random forest has the advantage of showing
the most important variables for the model. Graphics of the variables importance are found
in Figure 5.14 in which it can be observed that with the model applied on dataset B the
five more important covariates are blood.calcium, lymphocyte, anion.gap, INR and bicarbon-
ate. For model applied on dataset C are lactic.acid, anion.gap, lymphocyte, bicarbonate and
urine.output. Finally, for model applied on dataset D are anion.gap, lactic.acid, bicarbonate,
blood.calcium and lymphocyte.

Overall, although they are not in the same order, the covariates lymphocyte, anion.gap and
bicarbonate are common within the five more important variables between the three models;
meaning that they have a strong relationship with the primary response.

The results in Figure 5.15 indicate that the best model obtained with random forest algorithm
is with dataset D.

A 10-fold cross-validation has been performed on models with datasets B, C and D. The results
of the validation technique confirm that the best model is obtained with dataset D.
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Figure 5.14: Variables impact in RF models.

Figure 5.15: RF models results. Acc= accuracy; B.acc= balanced accuracy; Sens= sensitivity,
Spec= specificity; PPV= positive predicted value; NPV = negative predicted value.

51



Chapter 6

Discussion

The objectives of this thesis consisted in learning about ML classification algorithms and EHR
databases, learning data clean-up and data curation techniques to be able to obtain analyzable
datasets and performing a study of binary classification.

6.1 Comments on the database

The selected database was a subset of the MIMIC-III open database created by Li et al., 2021
[24]. Working with this subset was selected in the first place because it is freely accessible and
is easy to use for learning objectives as the data extraction of the different MIMIC-III tables
was already done.
It was modified during the first phase of data clean-up and data curation and it finally consisted
of 1176 observations and 48 variables. The primary response to predict was the outcome, and
of those 1176 observations, 86.48% survived and 13.52% died. Therefore, the data was very
imbalanced.

Because of the size of the dataset, no variable transformations have been applied and the
outliers have not been dealt with as it was considered that it was possible to perform a non-
parametric statistical test. This decision might have had a bad impact on the results and these
two problems would have been addressed if time had allowed it.

The results of the bivariate analysis found enough statistical evidences to affirm that there were
differences between the outcome and all the covariates except for gender, Coronary Heart Dis-
ease with no Myocardial Infarction (CHD.with.no.MI), Chronic Obstructive Pulmonary Disease
(COPD) and depression.

The study of the missing values showed only 3.4% of the values were missing but because of the
sensitivity of machine learning models in front of incomplete datasets, three methods to deal
with missing values were explored: listwise deletion, KNN imputation and MICE. A total of
four datasets were prepared for the multivariate analysis and the prediction of the classification
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algorithms.

6.2 Comments on the multivariate analysis

The multivariate analysis with multiple logistic regression was done to get to know the variables
that contribute the most to explaining the outcome of the patients.

The stepAIC() R function did not work with dataset A because of the missing values. A manual
stepwise procedure could be done by removing the variables with a higher p-value (one at a
time) until the AIC did not decrease.

The best models obtained on datasets B, C and D were fitted with 20, 18 and 25 variables
and present an AIC of 239,6, 719,43 and 712,58 respectively. Although datasets C and D
have the same dimensions, the models obtained are different because the imputed values are
not the same. As both have similar AIC values, the best model between those two would be
the MLR on dataset C because it includes fewer covariates and it makes the model more simple.

Regarding all variables included in each model, the automatic ”stepwise” logistic regression
model determined the following features (common between the three generated models) to be
key risk predictors for patients’ outcome: elevated heart rate, high count of leucocytes, and
elevated urea nitrogen.

However, the results of the multivariate analysis are questioned because many variables with
positive estimates do not have clinical or biological sense. A possible explanation would be that
the models do not fit correctly because two of the logistic regression assumptions are violated:
the outliers of the continuous predictors have not been dealt with, and the intercorrelation
between covariates has not been checked either. Therefore, there are too many variables that
depend on each other to explain the models and that can guide to misleading results. In
addition, a validation of the models could be conducted.

6.3 Comparison of the supervised classification algorithms

Table 6.1 summarizes the best model obtained with each algorithm and its parameters after
the 10-folds cross-validation.
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Table 6.1: Comparison with the metrics of the best performed predictions.

Algorithms Dataset Acc B.acc Sens Sepc PPV NPV Kappa AUC
Linear SVM C 0,887 0,618 0,245 0,990 0,800 0,891 0,332 0,618
ANN one HN C 0,880 0,610 0,228 0,991 0,813 0,883 0,312 0,610

RF D 0,887 0,592 0,188 0,997 0,900 0,886 0,276 0,592
HN= hidden node; Acc= accuracy; B.acc= balanced accuracy; Sens= sensitivity, Spec= speci-
ficity; PPV= positive predicted value; NPV = negative predicted value.

Considering that our particular dataset presents a very imbalanced data, AUC, balanced ac-
curacy and kappa values will be more informative as the general accuracy is misled by the
majority class. Taking into account those metrics, we can conclude that the linear SVM model
is the algorithm that classifies better the testing set closely followed by ANN with one hidden
node. Although they are the best models obtained, the AUC values are relatively >0,5, which
means that they are slightly better than random guessing. The values of the Cohen’s kappa
statistic indicates that the classifiers just provide a fair classification on new data as they are
between 0,21–0,40 of Landis and Koch (1977) scheme value. Finally the balanced accuracy is
the 62% indicating a regular precision of the classification.

Overall, the models obtained are not very good and considerably poorer than the XGBoost
model and LASSO regression model described by Li et al., 2021 in the original article [24].
Considering that in this thesis only basic models have been conducted, probably a further
study with best model selection parameters would be able to improve our models.

Reviewing the algorithms individually, the random forest had several advantages although it
has been the most computational consuming. It offered a prioritization of the variables which
has great value for medical and scientific personnel. The five more used variables were an-
ion.gap, lactic.acid, bicarbonate, lymphocyte and blood.calcium. Strangely non of them are
heart specific factors.
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Chapter 7

Conclusions

7.1 Conclusions

Here we highlight the main conclusions of the present thesis:

• The bivariate statistical analysis found almost al covariates different from the outcome.

• The multivariate analysis results are inconsistent due to the amount of variables included
in each model and probably because outliers and intercorrelation have not been dealt
with.

• Non of the models worked with the dataset containing missing values.

• Models performed on the dataset with listwise deletion obtained slightly worst results
than models on datasets with imputation methods.

• There is no big difference between imputating with KNN or MICE methods.

• In general, the models obtained in this thesis have a poor performance.

• Linear support vector machine algorithm on dataset C is the best model obtained.

7.2 Future perspectives

Several questions and issues have been left open for future work:

First I would address the analysis and treatment of the extreme values or outliers within the
covariates together with a study of the intercorrelations to improve the EDA and the multiple
logistic regression models.

An important theme of the thesis and related to one of our objectives was to introduce myself
into the new world of machine learning and, as I was not an expert, I performed basic prediction
algorithms with its default parameters. A further model selection and new training could easily
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achieve models with better results.

In addition, an analysis of PCA (Principal Component Analysis) could be carried out to reduce
the covariates to include in the models and maybe this would lead to better prediction outcomes.

Finally, ensemble-based machine learning techniques which are a combination of several base
models to produce one optimal predictive model could be explored as it has been reported to
be successful for imbalanced datasets [25].

7.3 Planning follow-up

To assess the compliance to the original plan we’ll use the milestones described in section 2.4.:

• PAC0 - (23 of February 2022) Definition of the contents of the work

• PAC1 - (7 of March 2022) Workplan

• PAC2 - (21 of April 2022) Workplan - phase 1

• PAC3 - (16 of May 2022) Workplan - phase 2

• PAC4 - (2 of June 2022) memory delivery

• PAC5 - (6 of June 2022) we must have prepared the thesis presentation

Excepting the fifth milestone, which is due for completion after the submission of this thesis,
all the other assignments have been completed on time and according to plan.

Regarding the methodology, the commitment to the initial goals has been mainly accomplished
and in addition, multivariate analysis has been included. Although in the end, it did not con-
tribute to significant results, it completed the statistical analysis.

However, the exploratory and statistical analysis of such a big dataset has been a challenge and
several improvements could be further performed out of the planned milestones.

Overall, with this thesis I have been able to learn and deepen in machine learning supervised
classification algorithms and statistical techniques that I had seen more superficially during the
master’s degree. It provided an introductory guide for anyone who wishes to discover prediction
models.
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Chapter 8

Glossary

8.1 List of abbreviations

AIC. Akaike Information Criterion.
AI. Artificial Intelligence.
ANN. Artificial Neural Networks.
AUC. Area Under the Curve.
BMI. Body Mass Index.
EDA. Exploratory Data Analysis.
EHR. Electronic Health Records.
FN. False Negative.
FP. False Positive.
HN. Hideen Node.
ICU. Intensive Care Unit.
KNN. K-Nearest Neighbour.
LVEF. Left Ventrifuclar Ejection Fraction.
MAP. Mean Arterial Pressure.
MAR. Missing At Random.
MCAR. Missing Completely At Random.
MCMC. Markov Chain Monte Carlo.
MICE-PMM. Multiple Imputation by Chained Equations - Predictive Mean Matching.
MIMIC-III. Medical Information Mart for Intensive Care.
ML. Machine Learning.
MLR. Multiple Logistic Regression.
MNAR. Missing Not At Random.
NT-proBNP. N-Terminal Pro-Brain Natriuretic Peptide.
PPV. Positive Predicted Value.
ROC. Receiver Operating Characteristics.
RF. Random Forest.
SVM. Support Vector Machines.
TN. True Negative.
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TP. True Positive.

8.2 Brief definitions

Akaike Information Criterion. Is a mathematical method for evaluating how well a model
fits the data it was generated from. In statistics, AIC is used to compare different possible
models and determine which one is the best fit for the data.

Artificial Neutral Networks. A computing system inspired by the biological neutral net-
works that can be applied to both regression and classification problems. Neurons in the
network receive, integrate, process and transfer input data to generate a final outcome.

Atrialfibrillation. Atrial fibrillation is a heart condition that causes an irregular and of-
ten abnormally fast heart rate. A normal heart rate should be regular and between 60 and 100
beats a minute when you’re resting. You can measure your heart rate by checking your pulse
in your wrist or neck.

Electronic Health Records. An electronic health record (EHR) is a digital version of a
patient’s paper chart. EHRs are real-time, patient-centered records that make information
available instantly and securely to authorized users.

False Negative Incorrectly predicted the number of instances as not required.

False Positive. Number of instance which incorrectly predicted.

Multiple Logistic Regression. Is a statistical technique that can be used to analyze the
relationship between a single dependent variable and several independent variables. The objec-
tive of multiple regression analysis is to use the independent variables whose values are known
to predict the value of the single dependent value.

Machine Learning. Machine learning is a branch of artificial intelligence (AI) and com-
puter science which focuses on the use of data and algorithms to imitate the way that humans
learn, gradually improving its accuracy.

Random Forest. Is a classification algorithm consisting of many decisions trees. It uses
bagging and feature randomness when building each individual tree to try to create an un-
correlated forest of trees whose prediction by committee is more accurate than that of any
individual tree.

Support Vector Machines. Supervised learning algorithm that estimates the value or class of
an observation by constructing hyperplanes that split the data into fairly homogeneous subsets.
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True Negative Correctly predicted the number of instances as not required.

True Positive. Number of instance which correctly predicted.
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Appendix A

Variables description

Table A.1: Variables description I

Variables description

Group Name Description
Primary response outcome Vital status at

hospital discharge
Demographic features age Are

gender Sex
BMI Body Mass Index

Comorbidities atrialfibrillation: Atrial fibrillation
CHD.with.no.MI Coronary Heart

Disease with no
Myocardial Infarction

COPD Chronic Obstructive
Pulmonary Disease

deficiencyanemias Hypoferric anaemia
depression Depression
diabetes Diabetes mellitus

hyperlipemia Hyperlipidaemia
hypertensive Hypertension
renal.failure Chronic renal

insufficiency
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Table A.2: Variables description II

Group Name Description
Vital signs Diastolic blood pressure Diastolic blood

pressure (mmHg)
heart.rate Rythm of the heart (bpm)

reapiratory.rate Rythm of breath (bpm)
SP.02 Oxygen saturation (%)

Systolic blood pressure Systolic blood
pressure (mmHg)

temperature Subject body temperature
at admission time (C)

urine.output Urine 24-hour volume (ml)
m.a.p Mean arterial pressure

(Systolic + 2*Diastolic)/3
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Table A.3: Variables description III

Group Name Description
Laboratory
Blood count basophils Basophils (%)

hematocrit Red blood cells
in blood (%)

leucocyte White cells (x10ˆ9/L)
lymphocyte Lymphocytes (%)

MCH Mean corpuscular
haemoglobin (pg)

MCHC Mean corpuscular
haemoglobin concentration (%)

MCV Mean corpuscular
volume (fL)

neutrophils Neutrophils (%)
platelets Platelet count (x10ˆ9/L)
RBC Red Blood Cells (x10ˆ12/L)
RDW Red blood cell

distribution width (%)
Coagulations INR International Normalised

Ratio
PT Prothrombin time (s)

Chemistry anion.gap Blood anion gap (mEq/ml)
blood.calciun Blood calcium (mg(dL)

blood.potassium Blood potassium (mEq/ml)
blood.sodium Blood sodium (mEq/ml)

chloride Blood chloride (mEq/ml)
creatine.kinase Creatine kinase (IU/L)

creatinine Creatinine (mg/dL)
glucose Glucose (mEq/ml)

magnesium.ion Blood Magnesium
ion (mg/dL)

urea.nitrogen Blood urea nitrogen (mg/dL)
Venous blood bicarbonate Blood bicarbonate

(mEq/ml)
lactic.acid Lactate (mmol/L)
PCO2 Partial pressure of carbon

dioxide in artery (mmHg)
pH pH

Heart specific EF Left Ventricular
Ejection fraction (%)

NT. proBNP N-terminal pro-brain
natriuretic peptide (pg/ml)
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