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Abstract

Two years after the start of the pandemic caused by the COVID-19 virus, the Spanish health

system has been on the verge of collapse on several occasions, forcing an adaptation of the

system and professionals and highlighting some of the structural organizational shortcomings.

From the scientific and educational fields, the need arises to alleviate these deficiencies

through innovation.

Unlike to what could happen in the past, a vast amount of data and information is currently

available. Given such an amount of data, and in order to alleviate the effects of the pandemic

on society, it is vital to identify relevant factors that help to identify situations of high spread

of the virus in advance.

The present work seeks to understand if the meteorological, mobility and demographic

factors are relevant in the spread of the virus. To do this, public data combined with machine

learning techniques applied to the prediction of time series will be used.

The ultimate goal will be to provide tools that make it possible to predict coronavirus

outbreaks, thus being able to optimize the available health resources.

Keywords: COVID-19, Time series forecasting, Meteo, Mobility
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Resumen

Tras dos años desde el inicio de la pandemia provocada por el virus COVID-19, el sistema

sanitario español ha estado al borde del colapso en varias ocasiones, forzando una adaptación

del sistema y de los profesionales y poniendo de manifiesto algunas de las carencias organizativas

estructurales y profesionales del mismo.

Desde el ámbito cient́ıfico y docente, surge la necesidad de paliar dichas carencias mediante

la innovación.

Al contrario de lo que pod́ıa ocurrir en el pasado, actualmente se dispone de una cantidad

inmesa de datos y de información. Ante tal cantidad de datos, y de cara a paliar los efectos de

la pandemia en la sociedad, resulta vital la identificación de factores relevantes que ayuden a

identificar con antelación situaciones de alta propagación del virus.

El presente trabajo busca comprender si los factores meteorológicos, de movilidad y de-

mográficos resultan relevantes en la propagación del virus. Para ello, se utilizarán datos públicos

combinados con técnicas de machines learning aplicadas a la predicción de series temporales.

El objetivo último será dotar de herramientas que posibiliten la predicción de brotes de

coronavirus, pudiendo de esta forma optimizar los recusos sanitarios disponibles.

Keywords: COVID-19, Predicción series temporales, Meteo, Movilidad
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Chapter 1

Definition and planning of the work

1.1 Description, interest and relevance of the proposal

The Spanish National Microbiology Center (CNME) registered the first case of SARS-CoV-2

(COVID-19) in January 2020 at the Virgen de Guadalupe Hospital in La Gomera 1. Since then

thousands of infected and deceased have come to collapse the national health system.

Two years after the start of the pandemic, Spain is facing the sixth wave with a cumulative

total of 11 million infected and almost 100,000 deaths 2. The high vaccination rate has cushioned

the impact of the new variants of COVID-19. However, the relative ignorance of the virus, as

well as the inability of administrations to predict its outbreaks, continue to put the health

system at risk.

Transmission of the virus occurs primarily through exhalation of very small respiratory

droplets and particles that contain the virus even when the infected person has no symptoms.

According to the World Health Organization (WHO), infected people are apparently most

contagious just before symptoms appear (about two days before) and in the first phase of the

disease 3. Said respiratory particles can be inhaled by people and/or deposit on their eyes, nose

or mouth.

The current measures that governments are taking to mitigate the socioeconomic impact

of COVID-19 and support the economic recovery of the countries seem to have a tendency

towards coexistence with the virus. This strategy is mainly supported by the high vaccination

rate that minimizes the potential health effects of the virus. Given this scenario, obtaining a

prediction model that includes factors considered key in transmission will be vital for proper

optimization of the health system’s resources.

1https://gacetamedica.com/investigacion/espana-confirma-su-primer-caso-de-coronavirus/
2https://www.rtve.es/noticias/20220225/mapa-del-coronavirus-espana/2004681.shtml
3https://www.who.int/es/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-

transmitted
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4 Definition and planning of the work

The main objective of this work will be the use of machine learning techniques applied

to time series for the prediction of COVID-19 outbreaks. For this, meteorological data and

mobility data will be used, detailing demographic factors as far as possible.

1.2 Objectives

The main objectives are:

• Identify whether meteorological and mobility factors are important in predicting COVID-

19 outbreaks

• Use of machine learning and time series prediction techniques for modeling the evolution

of the virus

For which, it will be necessary to achieve a series of secondary objectives:

• Identification of relevant data and study of the possibilities they offer

• Understand the behavior of the virus by analyzing the medical literature

• Identification of machine learning and prediction techniques that best suit the purpose of

our project

1.3 Methodology to be used

During the course of the project, a quantitative methodology will be adopted that allows us to

analyze the data numerically with the aim of generalizing and objectifying the results from the

available data [6].

A search of the medical literature will be carried out to understand the propagation behavior

of COVID-19. This behavior will be combined with:

• COVID-19 data obtained from the National Epidemiological Surveillance Network (RE-

NAVE) through the SiViES (Surveillance System of Spain) computer platform managed

by the National Epidemiology Center (CNE)

• Meteorological data provided by the AEMET and by global climatological models

• Mobility data from the study carried out by the Ministry of Transport, Mobility and

Urban Agenda (MITMA) during the COVID-19 pandemic, as well as data from large

technology companies (Google, Apple, ...)
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• Demographic data from the National Institute of Statistics.

Furthermore, it will be necessary to carry out an exploratory analysis of the state of the art

of machine learning techniques applied to time series, as well as the toolkit and programming

languages that best adapt to them.

The progress of the project will be controlled by the Kanban flow method4 where work flows

continuously through ’To-do’, ’Doing’ and ’Done’ cards reviewed weekly.

1.4 Planning

PEC 1 - Definition and planning Planning
Duration Start Finish

Topic selection and initial research 4 days 16/02/2022 19/02/2022
Description, interest and relevance of the proposal 3 days 19/02/2022 21/02/2022
Objectives and personal motivation 3 days 22/02/2022 24/02/2022
Methodology to be used and planning 2 days 24/02/2022 25/02/2022
Abstract preparation + PEC 1 delivery 2 days 26/02/2022 27/02/2022

Table 1.1: PEC-1: Planning

PEC 2 - State of the art / Market analysis Planning
Duration Start Finish

Search bibliography on COVID-19 transmission 3 days 28/02/2022 02/03/2022
Study previous works on the field 3 days 03/03/2022 05/03/2022
Identify techniques for data cleaning/transformation 2 days 06/03/2022 07/03/2022
Identify machine learning techniques 3 days 08/03/2022 10/03/2022
Refine and adapt PEC 1 achievements 2 days 11/03/2022 12/03/2022
PEC 2 delivery 1 days 13/03/2022 13/03/2022

Table 1.2: PEC-2: Planning

4https://todoist.com/productivity-methods/kanban



6 Definition and planning of the work

PEC 3 - Work design and implementation Planning
Duration Start Finish

Toolkit and programming language (R / Python) 5 days 14/03/2022 18/03/2022
Extract, transform and load data 25 days 19/03/2022 12/04/2022
Models review 5 days 13/04/2022 17/04/2022
Models selection 3 days 18/04/2022 05/05/2022
Prediction analysis 2 days 06/05/2022 14/05/2022
PEC 3 delivery 1 days 15/05/2022 15/05/2022

Table 1.3: PEC-3: Planning

PEC 4 - Official report writing Planning
Duration Start Finish

Review documentation generated 2 days 16/05/2022 17/05/2022
Conclusions from of the results 3 days 18/05/2022 20/05/2022
Write master thesis (official format) 9 days 21/05/2022 29/05/2022
Adaptation of content according to recommendations 6 days 30/05/2022 05/06/2022

Table 1.4: PEC-4: Planning

PEC 5 - Public defense Planning
Duration Start Finish

Preparation of the defense 7 days 06/06/2022 12/06/2022
Public defense 12 days 13/06/2022 24/06/2022

Table 1.5: PEC-5: Public defense
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Figure 1.1: Gantt project diagram
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Chapter 2

State of the art

2.1 Brief introduction to coronaviruses

2.1.1 History

Coronaviruses are a family of enveloped, single-stranded-RNA viruses that can affect both

humans and animals.

The first known pandemic caused by this kind of pathogens was at the beginning of the

21st century. On that occasion, an atypical pneumonia, later named Severe Acute Respiratory

Syndrome (SARS-CoV-1 or SARS), emerged in Foshan, Guangdong Province, mainland China,

in November 2002 [19] [23].

Its infectiousness, with some 8000 patients and a total of 774 deaths in 26 different countries,

opened a source of debate about the need to coordinate a global response to contain such threats

[19].

Later in 2012, a respiratory pathology caused by another coronavirus (Middle East respi-

ratory syndrome coronavirus, or MERS-CoV) was detected for the first time in Saudi Arabia.

According to the World Health Organization (WHO), the mortality rate during that outbreak

was approximately 35% of reported patients.1

Seventeen years after the outbreak of SARS and seven years since the first case of MERS,

the World Health Organization declared a global pandemic due to the spread of COVID-19

(also known as SARS-CoV-2). Globally, as of March 11, 2022, 452,052,304 confirmed cases of

COVID-19, including 6,027,059 deaths, have been reported to WHO.2

1https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-
cov)

2https://covid19.who.int/

9
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Figure 2.1: Global covid-19 situation March, 2022

In all cases, there are trends that identify its origin in animals. However, the highest rate

of transmission was identified among humans.

2.1.2 Symptoms

The initial manifestations of coronaviruses are not specific, and cannot be clinically differ-

entiated from other acute community-acquired pneumonias [2]. Typical symptoms are fever,

cough and respiratory distress. Pneumonia is also frequent, but not always present [22]. But

it is not only limited to these symptoms. Muscle or body aches, headache, sore throat and

gastrointestinal symptoms, including diarrhea, have also been reported.3

The infection is not only manifested in the respiratory tract, but is also present in respiratory

secretions, feces, urine, and tissue specimens from lung biopsy [19].

SARS and MERS were more aggressive and lethal than COVID-19. However, the latter

spreads more rapidly, sometimes with hidden symptoms, allowing each infected person to infect

several others.

2.1.3 Vaccines

Studies of SARS-CoV-1 vaccines were initiated and tested in animal models. Inactivated whole

virus was used in ferrets, non-human primates and mice. All vaccines resulted in protective

immunity, but there were complications; the vaccines resulted in immune disease in the animals.

3https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
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No human studies were conducted, nor were the vaccine studies taken further because the virus

disappeared. 4 5 [17]

Considering the rapid spread of COVID-19 around the world, the academia, industry and

government collaborated closely to develop and test various vaccines at an unprecedented pace

[14]. As a result, in December 2020 the first vaccine has been available under EUA licen-

sure for humans. As of March 6, 2022, a total of 10,704,043,684 doses of vaccines have been

administered. 6

Figure 2.2: Spanish vaccination roadmap [https://www.vacunacovid.gob.es/]

2.2 Spread based on mobility

While prior health crises, such as SARS, impacted in the mobility, the COVID-19 pandemic

is unprecedented, resulting in exceptional impacts on the mobility trends and transportation

sector [1].

The COVID-19 pandemic has mobilised science communities across all over the world spark-

ing a great deal of data exchange and collaboration.

One of the strategies implemented by governments that has had the best results in curbing

the virus has been mobility restrictions. The main idea behind them is that high levels of

4https://theconversation.com/the-mysterious-disappearance-of-the-first-sars-virus-and-why-we-need-a-
vaccine-for-the-current-one-but-didnt-for-the-other-137583

5https://pubmed.ncbi.nlm.nih.gov/27076136/
6https://covid19.who.int/

https://www.vacunacovid.gob.es/
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mobility contribute to the spread of the virus. Based on this factor, many mobility-related

studies have been published over the past few months.

Kraemer et al [12], in their localized study in the provinces of origin of the virus, concluded

that travel restrictions were particularly useful in the early stage of an outbreak when it is

confined to a certain area that acts as major source. Carteni et al [5] estimated that showed that

during the first outbreak on Italy mobility habits represent the variable that mainly explains

(from a statistical perspective) the number of COVID-19 infections. Furthermore, research

results showed that the number of new COVID-19 cases in one day was directly related to the

trips performed three weeks (21 days) before.

On the other hand, Nikos Askitas et al [3], studied how the ’lockdown policies’ affects the

daily incidence of COVID-19 and mobility patterns finding that cancelling public events and

enforcing restrictions on gatherings, which restrict mobility in numerous and dense locations,

have the largest effect on curbing the pandemic in terms of statistical significance and levels

of effect. Interestingly, they also pointed out that restrictions on internal movement, public

transport closures and international travel controls do not lead to a significant reduction of new

infections.

More recently, Badr et al [4] examined mobility changes in 25 US counties and found evidence

that reductions in mobility reduced growth in cases. Ilin et al [11] found evidences that mobility

data alone were sufficient to meaning-fully forecast COVID-19 infections 7-10 days ahead at

all geographic scales. Nouvellet et al [18] concluded that for 52 countries having experienced,

or still experiencing, substantial active SARS-CoV-2 transmission, there was a strong link

between mobility measures and transmissibility, supporting the implementation of population-

wide social distancing interventions to control the epidemic.

In Spain, the high heterogeneity in incidence between similar areas despite the uniform mo-

bility control measures taken suggests that multi-seeding (several independent (non-clustered)

infected individuals arrive at a susceptible population) could have played an important role in

shaping the spreading of the disease [15]. Mattia Mazzoli and cia addressed the question of how

relevant is multi-seeding for the epidemic indicators in a population. They found that local

peaks of incidence and mortality strongly correlate with mobility occurred in the early-stage

weeks occurred in Madrid, city consider the “hub” in Spain due to economic and social reassons

[15].

2.3 Spread based on meteorology

Viruses can be transmitted through the influence of several factors. It has already been sug-

gested that meteorological factors, such as temperature and humidity, are related to the spread
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of certain infectious diseases [16].

Early in the pandemic, some studies indicated that mean temperature correlated signif-

icantly with the spread of COVID-19 [21]. At the same time, another study focusing on

major Turkish cities concluded that the climatic factors that best correlated with the spread

of COVID-19 were the mean temperature on the day of positive measurement and the wind

speed 14 days before positive detection [20]. Hypotheses that were later validated by another

study conducted in Russia [13].

However, the conclusions of these studies should be analyzed with caution. Other studies

carried out in other countries, such as the study conducted in South Asian countries [8], have

obtained results that are not in line with the above.

In Spain, Fernández-Ahúja et al [7] found in their study that mean temperature is the

atmospheric variable that best correlates with virus spread. In their case they used the density

of positives in PCR tests. Being more specific, they indicate that low minimum temperatures

correlate better than high minimum temperatures. This may be due to the fact that the spread

of the virus in cold environments is accelerated, although it may also be due to the tendency of

people to stay indoors in adverse weather conditions. Similarly, they indicate that atmospheric

pressure may also be a relaxing factor in the density of positives in PCR tests. While they

found no evidence that ambient humidity, daily sunshine hours, or precipitation substantially

influenced it.

The effects of meteorological variability on COVID-19 transmission is an emerging area of

interest. However, the conclusions are highly varied and depend on the location and quan-

tity/quality of data used. In conclusion, from both the analysis of the available literature and

the review of the article by McClymont et al [16], temperature appears to be the most promising

variable for studying virus infectivity. On the other hand, humidity presents different results

according to the different articles analyzed. Finally, both wind speed and precipitation show

inconsistent results, so they will not be taken into account during our analysis.

2.4 Data sources

Since the beginning of the pandemic, governments, universities and some technology companies

have made available to the community data related to infections, deaths, mobility, etc...

In Spain, the Ministry of Transport, Mobility and Urban Agenda put out to contract a

mobility study using Big Data technology. The objective of the study is to provide a character-

ization of mobility at national, autonomic, provincial and local levels, to support the monitoring

of the evolution of the disease, to evaluate the effectiveness of the mobility restriction measures
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adopted, as well as to support decision making during this stage of the COVID-19 pandemic.7

The analysis compares daily mobility with that of an equivalent typical week prior to the

crisis. The week chosen was from 14-February-2020 to 20-February-2020, which had a normal

mobility behavior, as there were no public holidays in any autonomous community.

Similarly, the National Institute of Statistics (INE) has been carrying out population mo-

bility studies from mobile telephony since 2019. 8 Currently, the INE is publishing mobility

data every week, relating to two specific days of the previous week (Wednesday and Sunday)

In the wake of the pandemic, both Google and Apple began publishing mobility reports

based on anonymized data from those users who have location history enabled on their Android

and Apple devices, respectively. 9 10

Figure 2.3: Apple‘s mobility report for Spain

7https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data
8https://www.ine.es/experimental/movilidad/experimental em4.htm
9https://www.google.com/covid19/mobility/

10https://covid19.apple.com/mobility
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The objective of these Local Mobility Reports is to provide valuable information on the

changes that have occurred in people’s mobility as a result of the policies that have been put in

place to combat COVID-19. In the case of Google, these reports show movement trends over

time sorted by geographic area and classified into various categories of locations, such as stores

and entertainment spaces, supermarkets and pharmacies, parks, transportation stations, work-

places, and residential areas. Moreover Apple aggregates the data into the following categories:

public transportation, walking and driving.

As for meteorological data, as they are not specific to the current pandemic, they have been

collected for many years. These can be consulted, both in national pages, such as the Agencia

Estatal de Meteorológica (AEMET)11, in international models such as the European Centre

for Medium-Range Weather Forecasts (ECMWF), the Icosahedral Nonhydrostatic (ICON),

The Global Forecast System (GFS) which is a National Centers for Environmental Prediction

(NCEP) weather forecast model that generates data for dozens of atmospheric and land-soil

variables, including temperatures, winds, precipitation, soil moisture, and atmospheric ozone

concentration. 12

Figure 2.4: Data from ECMWF [https://www.windy.com/]

11http://www.aemet.es/es/portada
12https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast

https://www.windy.com/
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Covid data will be extracted from periodical publications by the Ministry of Health 13, from

the National Center of Epidemiology (CNE) 14 and from the repository published by the Johns

Hopkins University of Medicine. 15

2.5 Machine learning techniques

Using algorithms or techniques to make predictions is not new. For example, exponential

smoothing (ETS) was proposed in the late 1950s. However, the nature, volume and complexity

of data availability is changing and that changes bring with them complexity in analysing these

data.

Machine learning techniques are relatively new. They bring the ability to learn and improve

its performance without being explicitly programmed in advance.

Relevant to the present project, time series analysis are methods used for analysing time

series data in order to extract meaningful statistical information from the data. Time series

forecasting however, is all about predicting future values based on previously observed values

over time.

There are four general components that a time series forecasting model is comprised of 16:

• Trend: Increase or decrease in the series of data over longer a period.

• Seasonality: Fluctuations in the pattern due to seasonal determinants over a period.

• Cyclical variations: Occurs when data exhibit rises and falls at irregular intervals.

• Random or irregular variations: Instability due to random factors that do not repeat in

the pattern.

Plenty of methods for time series forecasting have been introduced over the years, being

some of the most successful ones motivated by ETS methodology.

Forecasts produced using ETS are weighted averages of past observations, the weights of

which decay exponentially as the observations age [9]. The simplest of the exponential smooth-

ing methods is naturally called Simple Exponential Smoothing (SES). This method is suitable

for forecasting data without a clear trend or seasonal pattern. Increasing in complexity, dou-

ble exponential smoothing can model trend components and level components for univariate

13https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/home.htm
14https://cnecovid.isciii.es/
15https://coronavirus.jhu.edu/map.html
16https://www.advancinganalytics.co.uk/blog/2021/06/22/10-incredibly-useful-time-series-forecasting-

algorithms
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time series data while Holt-Winters Exponential Smoothing, also known as triple exponential

smoothing, can model seasonality, trend, and level components for univariate time series data.

On the other hand, ARIMA models are among the currently most widely used approaches

for time series forecasting providing with exponential smoothing a complementary approach to

the problem. While exponential smoothing models are based on a description of the trend and

seasonality in the data, ARIMA models aim to describe the autocorrelations in the data [9]

and can be classified into two different formats: non-seasonal and seasonal.

Non-seasonal ARIMA model are a combination of:

• an autoregression model, where we forecast the variable of interest using a linear combi-

nation of past values of the variable (autoregression indicates that it is a regression of the

variable against itself) [AR(p) model].

• a difference in the nonseasonal observations [I(d)].

• a moving average model, where rather than using past values of the forecast variable in

a regression, a moving average model uses past forecast errors in a regression-like model

[MA(q) model].

The seasonal format adds to the non-seasonal part of the model terms that imply seasonal

period reversals.

Figure 2.5: Seasonal ARIMA Model

Both ARIMA and ETS allow the inclusion of information from past observations of a series,

but not the inclusion of other information that may also be relevant. Dynamic regression

models, on the contrary, allows for the inclusion of a lot of relevant information from external

predictor variables, which may explain some of the historical variation, but do not allow for

the subtle time series dynamics that can be handled with ARIMA models [9]

There are also other advanced forecasting methods such as the neural network models.

Artificial Neural Networks (ANNs) are a set of algorithms inspired by the communication

mechanism of the biological neuron. They have proven to be a good approach to problems

where knowledge is imprecise or time-varying. Their ability to learn makes neural networks
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both adaptive and elaborate algorithms allowing complex nonlinear relationships between the

response variable and its predictors.

Starting from the basic unit (the neuron) and its most basic application (the perceptron),

neural networks can be increased in complexity by the organization of neurons in different

layers. Each architecture can be valid for different applications. Additionally, it is possible to

add feedback mechanisms to modify the activation of each neuron. These networks are known

as Recurrent Neural Networks (RNN). This type of connections can be very useful for dealing

with sequences of data, as in the case of time series.

Figure 2.6: Artificial neural networks architecture

Based on ANNs, there are some algorithms often used to solve time series forecasting prob-

lems17.

• Prophet: Prophet, which was released by Facebooks Core Data Science team, is an open-

source library developed by Facebook and designed for automatic forecasting of univariate

time series data.

• LSTM: Long Short-Term Memory (LSTM) is a type of recurrent neural network that can

learn the order dependence between items in a sequence.

• DeepAR: DeepAR developed by Amazon is a probabilistic forecasting model based on

autoregressive recurrent neural networks.

• N-BEATS: N-BEATS is a custom Deep Learning algorithm which is based on backward

and forward residual links for univariate time series point forecasting.

17https://www.advancinganalytics.co.uk/blog/2021/06/22/10-incredibly-useful-time-series-forecasting-
algorithms
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• Temporal Fusion Transformer (Google): A novel attention-based architecture which com-

bines high-performance multi-horizon forecasting with interpretable insights into temporal

dynamics.
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Chapter 3

Work design and implementation

3.1 Hosting and code access

In order to facilitate the presentation of the results and the development of the project, a book

has been hosted on a public Github repository.

The book was written with the Quarto1 publishing system and hosted at https://jperezord.

github.io/ using Github pages.

Throughout that book, it is exposed the acquisition, cleaning and exploration process of

the starting data. It also includes the development of the predictive models used for outbreak

prediction and the results obtained.

All the cleaning, the visual analysis and the prediction using ARIMA was developed in R

while the LSTM was developed using Python.

1https://quarto.org/

21

https://jperezord.github.io/
https://jperezord.github.io/
https://quarto.org/
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Figure 3.1: Project book hosted on Github Pages [https://jperezord.github.io/]

3.2 Data preprocessing

Since our study is focused in Spain all the source information has been chossen from official

institutions when possible.

• CNE (National Epidemiology Center) offers information related to infections, recoveries

and deaths reported by local and regional governments in Spain.

• INE (Spanish National Institute of Statistics) provides measurent mobility between areas

during the period starting in March-2020 and ended in 2021.

• GOOGLE, even when it is not an official source, provides information related to mobility

using the Google ecosystem application services such as Android widely implemented all

over the world. It also provides daily data with more detail than INE.

• AEMET, which is the Meteorological State Agency, provides meteorological services under

the competence of the State and support for the exercise of other public policies and

private activities.

https://jperezord.github.io/
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In order to limit our scope, we have selected a series of spanish provinces, which are consid-

ered representative, both in terms of volume and location. The provinces listed in alphabetical

order are as follows:

• Asturias

• Barcelona

• Madrid

• Málaga

• Sevilla

3.2.1 CNE data2

The data published in the CNE COVID-19 Panel offers information related to infections, re-

coveries and deaths reported by local and regional governments in Spain. It comes from the

individualised declaration of COVID-19 cases to the National Epidemiological Surveillance Net-

work (RENAVE) through the SiViEs computer application.

Figure 3.2: Example of hospitalization and cases reported by province

In SiViEs, all reported cases are accounted for, following the surveillance strategy in force

at the time.

In the current work, we will use two datasets from CNE:

• casos tecnica provincia.csv: Number of cases by diagnostic technique and province (of

residence). After the cleaning process we get 42588 rows with information from January

1, 2020 to March 29, 2022.

2https://jperezord.github.io/cne_data.html

https://jperezord.github.io/cne_data.html
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– provincia iso: ISO code of the province of residence.

– fecha: date considering onset of diagnosis minus 6 days when possible. If this is not

possible, the date of the symptoms, or diagnostic for asymptomatic, is considered

for the calculation.

– num casos: number of cases by diagnostic technique and province of residence.

– num casos prueba pcr: number of cases with PCR laboratory test or molecular tech-

niques

– num casos prueba test ac: number of cases with laboratory test of rapid antibody

test.

– num casos prueba ag: number of cases with laboratory test of antigen detection test

antigen test.

– num casos prueba elisa: number of cases with high-resolution serology laboratory

testing.

– num casos prueba desconocida: number of cases without information on laboratory

testing.

• casos hosp uci def sexo edad provres.csv: number of hospitalisations, number of admis-

sions to ICU and number of deaths by sex, age and province of residence. After the

cleaning process we get 1277640 rows with information from January 1, 2020 to March

29, 2022.

– provincia iso: ISO code of the province of residence.

– fecha: data. For cases the date of diagnosis is used and for Hospitalisations, ICU

admissions and deaths, the cases are represented by date of hospitalisation (failing

this, date of diagnosis, and if not, date of death).

– sexo: sex of cases: H (male), M (female), NC (not stated).

– grupo edad: age group to which the case belongs: 0-9, 10-19, 20-29, 30-39, 40-49,

50-59, 60-69, 70-79 , ≥ 80 years. NC: not stated.

– num casos: number of reported cases confirmed as having a positive diagnostic test

for active infection (PDIA) as infection (PDIA) as set out in the Early Detection

Strategy, surveillance and control strategy for COVID-19 and in addition cases no-

tified before 11-May that required hospitalisation, ICU admission or required hospi-

talisation, ICU admission or died with a clinical diagnosis of COVID19, according

to the case definitions in force at the time.
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– num hosp: number of hospitalised cases.

– num uci: number of cases admitted to ICU.

– num def: number of deaths.

3.2.2 INE data3

The main objective of the INE dataset is to measure mobility between areas during the period

starting in March-2020 and ended in December-2021.

The population scope is made up of the mobile telephones of the resident population in

Spain of the three main mobile operators. Foreign numbered phones are excluded, usually

mobiles in the hands of tourists which operate in Spain while roaming.

Data is available in the Spanish National Institute of Statistics grouped by autonomous

communities, provinces and even islands. However, the information provided is not daily, so

we have opted to interpolate the missing information to obtain daily details.

Once downloaded in csv format and cleaned we get 34008 rows with information for all

the provinces from March 16, 2020 to December 29, 2021. As to information columns, it is

provided:

• fecha: date.

• province: province name.

• flujo: mobility percentage.

3.2.3 Google data4

The data published by Google offers information related to mobility using the Google ecosystem

application services such as Android. The dataset information is available worldwide, but in

our case, only the information relating to Spain was extracted.

The Google Mobility Reports aim to provide insights into what has changed in response

to policies aimed at combating COVID-19. The reports chart movement trends over time by

geography, across different categories of places such as retail and recreation, supermarkets and

pharmacies, parks, public transport, workplaces and residential.

Each Community Mobility Report is broken down by location and displays the change in

visits to places.

3https://jperezord.github.io/ine_data.html
4https://jperezord.github.io/google_data.html

https://jperezord.github.io/ine_data.html
https://jperezord.github.io/google_data.html
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Figure 3.3: Visits to workplaces and workplaces vs infections by province

Data provided by Google are splitted in different files by year. For spanish data, files with

format ”20XX ES Region Mobility Report.csv” were extracted being ”XX” the year contained

inside.

Once cleaned, google data contains 40250 rows with information related to all the provinces

in Spain. The information ranges from February 12, 2020 to April 29, 2022. It provides detail

information about:

• CA: autonomous communities codes.

• province: province names.

• iso 3166 2 code: province iso code.

• fecha: date.

• mob grocery pharmacy: Mobility trends for places like grocery markets, food warehouses,

farmers markets, specialty food shops, drug, stores, and pharmacies.

• mob parks: Mobility trends for places like national parks, public beaches, marinas, dog

parks, plazas, and public garden

• mob residential: Mobility trends for places of residence.

• mob retail recreation: Mobility trends for places like restaurants, cafes, shopping centers,

theme parks, museums, libraries, and movie theaters.

• mob transit stations: Mobility trends for places like public transport hubs such as subway,

bus, and train stations.

• mob workplaces: Mobility trends for places of work.
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3.2.4 AEMET data5

Spanish State Meteorological Agency’s data are available throug its service AEMET OpenData.

AEMET OpenData is a REST API (Application Programming Interface. REpresentational

State Transfer) through which data can be downloaded free of charge. It allows the dissemi-

nation and reuse of the Agency’s meteorological and climatological information, in the sense

indicated in Law 18/2015, of July 9, amending Law 37/2007, of November 16, on the reuse of

public sector information.

AEMET OpenData allows two types of access where both allow access to the same data

catalog and data download in reusable formats:

• General Access: It is a graphical access, intended for the general public. Its purpose is to

allow access to data for users in a friendly way.

• AEMET OpenData API: it allows another type of interaction with the data. This in-

teraction is characterized by the possibility of being periodic and even programmed from

any programming language.

For the present study, we used last method to download data from:

• Asturias airport

• Barcelona airport

• Madrid airport

• Málaga airport

• Sevilla airport

Once cleaned, it provides information from January 1, 2020 to March 31, 2022 related to:

• fecha: date.

• provincia: province name.

• tmed: average temperature (ºC).

• prec: precipitations (mm).

• tmin: minimum temperature (ºC).
5https://jperezord.github.io/aemet_data.html

https://jperezord.github.io/aemet_data.html


28 Work design and implementation

• tmax: maximum temperature (ºC).

• wd: wind direction (º).

• ws: wind speed average (m/s).

• ws max: wind speed maximum (m/s).

• sol: hour of sun light (hr).

3.3 Relevant variables

From visual, correlation and PCA analysis the variables that contribute the most to explain

the variance of the data are the average temperature from the meteorological data and tran-

sit/grocery/retail information from the mobility provided by Google.

INE mobility data in addition to being less detailed than Google, do not contribute as much

as Google data did.

It is also important the number of hospitalizations in Asturias, Málaga and Sevilla, but

since that variable is not usefull to predict covid cases in advanced, we will not feed future

models with it.

Both correlation and PCA analysis shows that in Madrid the average temperature is im-

portant to explain the variance of data.

Figure 3.4: Example of correlation and PCA analysis
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3.4 Preparation for modelling

Firstly, although information is available from the beginning of 2020, it has been decided to

train the model with data after June 14, 2020. Data on the onset of the coronavirus pandemic

must be treated with particular caution due to the level of uncertainty. In addition, during

this initial period, the population was totally confined, so any relevant information that can be

extracted cannot be extrapolated to later situations.

Secondly, we adopted two approaches to select train and test data. As the latest wave of

the coronavirus has had a much higher incidence than the rest, it has been decided to analyze

two different periods. On the one hand, information prior to the start of the latest incidence

wave. On the other hand, information related to the deceleration period of the occurrence

corresponding to the last wave.

• First approach: train data from June 14, 2020 to October, 14 2021.

• Second approach: train data from June 14, 2020 to January, 31 2022.

In both approaches the forecast horizon was 7, 14 and 21 days from the final date of the

train data. We also did a 90 days horizon in order to test the quality of the predictions in long

terms.

A similar procedure has been applied to LSTM modelling, in which an attempt has been

made to predict both the last wave, the peak and the period of contagion decline of the last

wave. For the latter method, training based on the last 90 days of incidence has been chosen

for the prediction of a future incidence value.

3.5 ARIMA

As discussed in the analysis of the state of the art, time series are composed of a number of

common patterns: trend, seasonal, cyclic and white noise or irregular variations [9].

The Seasonal and Trend decomposition using Loess (STL) is a versatile and robust method

for decomposing time series on those patterns which will be useful to analyse the typology of

the data we are dealing with.

Our modelling procedure has followed the basis set out by R.Hyndman and G.Athanasopoulos

[9]. When fitting an ARIMA model to a set of (non-seasonal) time series data, the following

procedure provides a useful general approach.

1. Plot the data and identify any unusual observations.



30 Work design and implementation

2. Apply STL decomposition and transform the data stabilizing the variance by using a

Box-Cox transformation.

3. If the data are non-stationary, take first differences of the data until the data are station-

ary.

4. Examine the ACF/PACF

5. Try the chosen model(s), and use the AICc to search for a better model.

6. Check the residuals from the chosen model by plotting the ACF of the residuals testing

the residuals.

7. Once the residuals look like white noise, calculate forecasts.

We did both an univariate and multivariate forecast perspectives in order to look at the

differences between variables considered relevant in the infection levels.

We used the ARIMA() function from fable R package that uses a variation of the Hyndman-

Khandakar algorithm [10], which combines unit root tests, minimisation of the AICc and MLE

to obtain an ARIMA model.

To quantify the quality of the models, we used scale-dependent measures based on the

absolute errors and squared errors:

• Mean absolute error: MAE = mean(|et|)

• Root mean squared error: RMSE =
√
mean(|e2t |)

3.6 LSTM

In ARIMA models it is required to first remove the trend and seasonality, for example by

computing the difference between the value at each time step and the value one year earlier.

After the model is trained and makes predictions, you would have to add the seasonal pattern

back to get the final predictions.

On the contrary, when using recurrent neural network (RNNs) no such action is needed,

improving performance in some cases since the model will not have to learn the trend or the

seasonality. What is necessary on the other hand is to normalize the input data to the network.

The RNN used in our work was the Long short-term memory (LSTM) which uses a sequences

of data to predict the next one. LSTM networks are well-suited to making predictions based

on time series since there can be lags of unknown duration between important events in a time

series.
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For the application of this methodology, it has been decided to apply a slightly different

approach to that applied for the ARIMA case. On the one hand, a prediction has been made

with all available information. Since the sequence is 90 days, this approximation helps us to

predict whether the model is capable of analysing the maximum peak of infection in the sixth

wave, as well as its decline curve.

On the other hand, information prior to the start of the sixth wave has been analysed. The

objective in this case is to see if the model is able to predict both the onset and the peak and

trough of the sixth wave.

As to the configuration of the LSTM networks, we have choosen to use the following struc-

ture:

• The first layer is the input of the data. We decided to use a 90 days sequence.

• Three hidden layers would be in charge of learning with 50, 25 and 5 neurons respectively.

• A final dense layer with ReLu activation which returns the forecasted number of new

covid infections.

The parameters used to train the previous networks has been:

• Adam as the optimization functions due to its efficiency.

• A batch size of 1000

• An epoch of 30

Results were analyzed using RMSE as in the ARIMA models exposed previously.
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Figure 3.5: Model summary of LSTM network
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Results

4.1 Visual analysis

In the section ’Task 3: Visual analysis’ of the repository hosted on Github Pages https:

//jperezord.github.io/visual.html, the representation of each of the variables by itself

and against the variable number of cases is shown in detail.

Each of the graphs groups the information by provinces, where the different incidence of

covid in each of the regions can be seen.

Due to the disparity between the incidences of the population centres Madrid and Barcelona,

and in order to see in detail the information of each of the provinces, the scaling of the y-axis

has been released.

Figure 4.1: Covid incidence by province: fixed vs free Y axis

From the visual analysis the idea is drawn that it is possible that the data reported by the

33
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34 Results

different provinces may not have the same consistency. For example, while the number of covid

cases identified in the last wave in Asturias are supported by PCR testing, in Barcelona the

proportion is minimal. This could indicate that many cases in Asturias have not been reported

because PCR testing were not available or that in Barcelona more cases have been counted

than could actually be associated with Covid-19.

However, the incidence of the latest wave, which has been much greater than in the rest,

also suggests that the cases reported at the beginning of the pandemic may have been under-

estimated. Similarly, an analysis of the incidence of each of the covid-19 mutations in each

province could help explain this behaviour.

Figure 4.2: Covid incidence supported by PCR testing

4.2 ARIMA results

4.2.1 Univariate

Univariate = ARIMA models using number of cases
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Model Province RMSE MAE

arima at1 Asturias 10.3 7.00
arima at2 Asturias 9.97 7.28
Snaive Asturias 14.0 9.98

arima at1 Barcelona 64.7 54.8
arima at2 Barcelona 68.1 55.2
Snaive Barcelona 79.0 67.8

arima at1 Madrid 163.0 144.0
arima at2 Madrid 163.0 144.0
Snaive Madrid 124.0 105.0

arima at1 Málaga 22.6 21.8
arima at2 Málaga 22.9 22.3
Snaive Málaga 22.9 19.8

arima at1 Sevilla 11.4 8.80
arima at2 Sevilla 11.4 8.93
Snaive Sevilla 16.0 13.7

Table 4.1: Univariate ARIMA: 7 days forecasts before 6th epidemiological period

Model Province RMSE MAE

arima at1 Asturias 14.3 11.1
arima at2 Asturias 14.2 11.5
Snaive Asturias 16.0 11.4

arima at1 Barcelona 73.8 57.1
arima at2 Barcelona 76.8 58.4
Snaive Barcelona 87.1 76.0

arima at1 Madrid 178.0 155.0
arima at2 Madrid 178.0 155.0
Snaive Madrid 126.0 105.0

arima at1 Málaga 27.7 24.0
arima at2 Málaga 29.0 25.2
Snaive Málaga 22.7 18.7

arima at1 Sevilla 9.82 7.83
arima at2 Sevilla 9.88 7.91
Snaive Sevilla 19.3 16.4

Table 4.2: Univariate ARIMA: 14 days forecasts before 6th epidemiological period
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Model Province RMSE MAE

arima at1 Asturias 13.5 10.5
arima at2 Asturias 13.7 11.0
Snaive Asturias 15.6 11.5

arima at1 Barcelona 107.0 75.5
arima at2 Barcelona 103.0 73.6
Snaive Barcelona 119.0 90.4

arima at1 Madrid 210.0 177.0
arima at2 Madrid 210.0 177.0
Snaive Madrid 140.0 117.0

arima at1 Málaga 33.3 29.2
arima at2 Málaga 34.8 30.7
Snaive Málaga 22.0 18.6

arima at1 Sevilla 11.3 8.54
arima at2 Sevilla 11.4 8.61
Snaive Sevilla 22.1 19.1

Table 4.3: Univariate ARIMA: 21 days forecasts before 6th epidemiological period

Model Province RMSE MAE

arima at1 Asturias 1211 704
arima at2 Asturias 1221 714
Snaive Asturias 1213 704

arima at1 Barcelona 9027 5072
arima at2 Barcelona 8907 4964
Snaive Barcelona 8890 4939

arima at1 Madrid 8744 5008
arima at2 Madrid 8744 5008
Snaive Madrid 8564 4792

arima at1 Málaga 1100 680
arima at2 Málaga 1099 677
Snaive Málaga 1049 628

arima at1 Sevilla 1161 682
arima at2 Sevilla 1161 682
Snaive Sevilla 1161 677

Table 4.4: Univariate ARIMA: 90 days forecasts before 6th epidemiological period
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Model Province RMSE MAE

arima at1 Asturias 272 251
arima at2 Asturias 334 317
Snaive Asturias 586 570

arima at1 Barcelona 4824 4569
arima at2 Barcelona 4383 4145
Snaive Barcelona 8139 7870

arima at1 Madrid 788 629
arima at2 Madrid 788 629
Snaive Madrid 2070 1836

arima at1 Málaga 190 152
arima at2 Málaga 190 152
Snaive Málaga 240 191

arima at1 Sevilla 78.6 56.6
arima at2 Sevilla 78.8 55.9
Snaive Sevilla 368 311

Table 4.5: Univariate ARIMA: 7 days forecasts end of the 6th epidemiological period

Model Province RMSE MAE

arima at1 Asturias 332 310
arima at2 Asturias 447 424
Snaive Asturias 812 769

arima at1 Barcelona 7100 6582
arima at2 Barcelona 6534 6038
Snaive Barcelona 10606 9985

arima at1 Madrid 612 467
arima at2 Madrid 612 467
Snaive Madrid 3386 2914

arima at1 Málaga 290 229
arima at2 Málaga 290 229
Snaive Málaga 223 170

arima at1 Sevilla 223 156
arima at2 Sevilla 224 157
Snaive Sevilla 338 299

Table 4.6: Univariate ARIMA: 14 days forecasts end of the 6th epidemiological period
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Model Province RMSE MAE

arima at1 Asturias 411 381
arima at2 Asturias 543 514
Snaive Asturias 980 920

arima at1 Barcelona 8400 7823
arima at2 Barcelona 7750 7199
Snaive Barcelona 12018 11275

arima at1 Madrid 851 664
arima at2 Madrid 851 664
Snaive Madrid 4584 3903

arima at1 Málaga 267 203
arima at2 Málaga 267 203
Snaive Málaga 279 227

arima at1 Sevilla 208 154
arima at2 Sevilla 209 155
Snaive Sevilla 430 381

Table 4.7: Univariate ARIMA: 21 days forecasts end of the 6th epidemiological period

Model Province RMSE MAE

arima at1 Asturias 631 589
arima at2 Asturias 735 702
Snaive Asturias 1359 1282

arima at1 Barcelona 12454 11642
arima at2 Barcelona 11449 10693
Snaive Barcelona 15796 14809

arima at1 Madrid 2217 1701
arima at2 Madrid 2217 1701
Snaive Madrid 7446 6507

arima at1 Málaga 278 190
arima at2 Málaga 278 190
Snaive Málaga 525 443

arima at1 Sevilla 208 157
arima at2 Sevilla 207 156
Snaive Sevilla 850 738

Table 4.8: Univariate ARIMA: 57 days forecasts end of the 6th epidemiological period
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Figure 4.3: ARIMA Univariate results. Left column predictions prior to the start of the last
wave. Right column predictions during the deceleration of the incidence of the last wave.
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4.2.2 Multivariate

Multivatiare = ARIMA models using number of cases + average temperature + Google mobil-

ity.

Figure 4.4: ARIMA Multivariate results. Left column predictions prior to the start of the last

wave. Right column predictions during the deceleration of the incidence of the last wave.
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Model Province RMSE MAE

arima at1 Asturias 9 5.65
arima at2 Asturias 9.84 6.95
Snaive Asturias 14.0 9.98

arima at1 Barcelona 75.9 67
arima at2 Barcelona 88.5 79
Snaive Barcelona 80.0 67.1

arima at1 Madrid 114.0 98.7
arima at2 Madrid 114.0 98.7
Snaive Madrid 123.0 102.0

arima at1 Málaga 18.0 16.2
arima at2 Málaga 18.3 16.3
Snaive Málaga 22.9 19.8

arima at1 Sevilla 9.18 7.23
arima at2 Sevilla 10.6 8.11
Snaive Sevilla 15.6 13.3

Table 4.9: Multivariate ARIMA: 7 days forecasts before 6th epidemiological period

Model Province RMSE MAE

arima at1 Asturias 11.7 8.37
arima at2 Asturias 15.0 12.1
Snaive Asturias 16.0 11.4

arima at1 Barcelona 72.1 63.5
arima at2 Barcelona 91.4 80.9
Snaive Barcelona 88.0 75.0

arima at1 Madrid 118.0 102.0
arima at2 Madrid 118.0 102.0
Snaive Madrid 124.0 102.0

arima at1 Málaga 21.1 17.6
arima at2 Málaga 21.7 17.9
Snaive Málaga 22.7 18.7

arima at1 Sevilla 8.67 7.40
arima at2 Sevilla 10.4 7.82
Snaive Sevilla 18.4 15.6

Table 4.10: Multivariate ARIMA: 14 days forecasts before 6th epidemiological period
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Model Province RMSE MAE

arima at1 Asturias 10.5 7.85
arima at2 Asturias 14.8 12.1
Snaive Asturias 15.6 11.5

arima at1 Barcelona 82.2 67.8
arima at2 Barcelona 91.9 83.2
Snaive Barcelona 119.0 90.1

arima at1 Madrid 148 121.0
arima at2 Madrid 148.0 121.0
Snaive Madrid 137.0 112.0

arima at1 Málaga 26.2 22.0
arima at2 Málaga 26.0 22.0
Snaive Málaga 22.0 18.6

arima at1 Sevilla 10.7 8.64
arima at2 Sevilla 14.6 10.9
Snaive Sevilla 22.1 18.2

Table 4.11: Multivariate ARIMA: 21 days forecasts before 6th epidemiological period

Model Province RMSE MAE

arima at1 Asturias 1200 691
arima at2 Asturias 1229 721
Snaive Asturias 1213 704

arima at1 Barcelona 8726 4788
arima at2 Barcelona 5750 4736
Snaive Barcelona 8865 4913

arima at1 Madrid 8366 4665
arima at2 Madrid 8366 4665
Snaive Madrid 8525 4752

arima at1 Málaga 1042 629
arima at2 Málaga 1007 601
Snaive Málaga 1049 628

arima at1 Sevilla 1168 689
arima at2 Sevilla 1200 717
Snaive Sevilla 1161 680

Table 4.12: Multivariate ARIMA: 90 days forecasts before 6th epidemiological period
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Model Province RMSE MAE

arima at1 Asturias 272 248
arima at2 Asturias 336 319
Snaive Asturias 586 570

arima at1 Barcelona 374 304
arima at2 Barcelona 1213 1168
Snaive Barcelona 7943 7681

arima at1 Madrid 509 401
arima at2 Madrid 569 462
Snaive Madrid 1869 1649

arima at1 Málaga 169 128
arima at2 Málaga 162 117
Snaive Málaga 240 191

arima at1 Sevilla 75.6 58.3
arima at2 Sevilla 72.4 52.1
Snaive Sevilla 356 300

Table 4.13: Multivariate ARIMA: 7 days forecasts end of the 6th epidemiological period

Model Province RMSE MAE

arima at1 Asturias 335 311
arima at2 Asturias 461 434
Snaive Asturias 812 769

arima at1 Barcelona 432 365
arima at2 Barcelona 1217 1123
Snaive Barcelona 10297 9702

arima at1 Madrid 586 460
arima at2 Madrid 553 449
Snaive Madrid 3064 2634

arima at1 Málaga 245 194
arima at2 Málaga 220 176
Snaive Málaga 223 170

arima at1 Sevilla 224 157
arima at2 Sevilla 211 147
Snaive Sevilla 321 282

Table 4.14: Multivariate ARIMA: 14 days forecasts end of the 6th epidemiological period
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Model Province RMSE MAE

arima at1 Asturias 410 380
arima at2 Asturias 555 524
Snaive Asturias 980 920

arima at1 Barcelona 381 322
arima at2 Barcelona 1032 886
Snaive Barcelona 11601 10898

arima at1 Madrid 911 709
arima at2 Madrid 830 657
Snaive Madrid 4142 3530

arima at1 Málaga 227 170
arima at2 Málaga 201 153
Snaive Málaga 280 228

arima at1 Sevilla 211 155
arima at2 Sevilla 196 140
Snaive Sevilla 404 358

Table 4.15: Multivariate ARIMA: 21 days forecasts end of the 6th epidemiological period

Model Province RMSE MAE

arima at1 Asturias 623 581
arima at2 Asturias 749 715
Snaive Asturias 1359 1282

arima at1 Barcelona 598 482
arima at2 Barcelona 912 777
Snaive Barcelona 14803 13931

arima at1 Madrid 1478 1249
arima at2 Madrid 1762 1461
Snaive Madrid 6384 5635

arima at1 Málaga 246 182
arima at2 Málaga 219 161
Snaive Málaga 527 445

arima at1 Sevilla 207 154
arima at2 Sevilla 155 113
Snaive Sevilla 784 682

Table 4.16: Multivariate ARIMA: 57 days forecasts end of the 6th epidemiological period
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4.3 LSTM results

4.3.1 Univariate

Results for LSTM models using all the data available and a sequence of 90 days. These corre-

sponds to the study of the peak and deceleration of the 6th covid wave.

Asturias Barcelona Madrid Malaga Sevilla

MAE 1074 5228.7 4748.2 353.5 335.1

RMSE 1479.1 7609.8 6975.8 481.1 474

Table 4.17: Univariate LSTM model results with all the data

Results for LSTM models using data before the beginning of the 6th wave and a sequence

of 90 days. The aim of these models is to analyze if LSTM are able to identify the 6th wave

from the previous available data.

Asturias Barcelona Madrid Malaga Sevilla

MAE 208.7 1674.3 2521.6 197.7 329.2

RMSE 387 3525.8 5345.2 331.7 595.9

Table 4.18: Univariate LSTM model graphic 90 days results using data before the beginning of

the 6th wave

4.3.2 Multivariate

All the data:

Asturias Barcelona Madrid Malaga Sevilla

MAE 738.5 6872.2 4531.8 322.4 1622.4

RMSE 1169.8 11041.0 7047.1 508.6 1889.7

Table 4.19: Multivariate LSTM model results with all the data

Just before the 6th wave:
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Asturias Barcelona Madrid Malaga Sevilla

MAE 263.9 2657.6 2755.3 301.5 502.2

RMSE 465.3 4156.6 5897.2 408.5 535.4
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Figure 4.5: Univariate LSTM model graphic 90 days results with all the data



48 Results

Figure 4.6: Univariate LSTM model graphic 90 days results just before the 6th wave
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Figure 4.7: Multivariate LSTM model graphic 90 days results with all the data
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Figure 4.8: Multivariate LSTM model graphic 90 days results just before the 6th wave



Chapter 5

Conclusions

During the course of this project, the objectives set at the beginning have been met.

Firstly, a gathering and cleaning of information has been achieved by constructing a database

prepared for further analysis.

In second place, relevant information has been identified regarding the evolution of the pan-

demic in five Spanish provinces through visual analysis and the application of specific method-

ologies.

Lastly, through the creation of machine learning models, it has been identified that the

training of models considering meteorological data (average temperature) and mobility data,

returns slightly more accurate predictions in general. However, the small margin of improve-

ment obtained does not allow us to accept/generalise the assumption initially sought.

Of the machine learning models created, LSTM returns better results than ARIMA for

identifying future peaks of infection during the pandemic. However, none of the models return

reliable results, so it will be necessary to adjust the parameters of the models to improve the

training process.

In conclusion, with the help of machine learning models it is possible to identify periods

susceptible to a high level of contagion. However, their results have to be treated with caution

due to their lack of precision. A sufficiently detailed mobility analysis, such as that provided

by Google, should help to identify anomalous periods, although in the present analysis there

has been no substantial improvement in the models created.

5.1 Future work

The application of the models to predict future waves has been compromised due to the change

in policy towards Covid-19.

New measures for living with the virus have changed the situation. The treatment of covid
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as a common disease will result in an unprecedented increase in the level of infections, however,

thanks to the high level of vaccination many of the infections will not be counted due to the

lack of symptoms. Many others will be unsupported due to lack of testing and PCR and some

others will be camouflaged or confused with previous common diseases.

Therefore, a different approach to the problem will be necessary if we are to provide a tool

that allows professionals to anticipate periods that may lead to a collapse of the system. Future

studies are needed to adapt to the new situation.
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