
Distributed Resource Allocation for Contributory
Systems.

Xavier Vilajosana Guillen

Estudis d’ Informàtica Multimèdia i Telecomunicacions
Universitat Oberta de Catalunya

Thesis submitted for the Degree of Doctor of Philosophy in the
Universitat Oberta de Catalunya

· 2009 ·

2

Abstract

The thesis presents an approach to on demand capacity expansion in communities of
Internet users that aggregate their resources to achieve a common objective. Such commu-
nities are emerging as forms of organization taking advantage of an increasing broadband
access and computational capacity. Volunteer computing such as SETI@home, Collab-
orative Grids such as OurGrid and LaCOLLA, Ad-hoc and Peer-to-Peer Grids such as
P-Grid and the XGrid project from Apple, Open Grids such as the addressed by SORMA
and Grid4All and many other approaches of Grid Computing based on Virtual Organiza-
tions are the focus of our work. These systems are characterized by the purpose of their
participants, i.e. to achieve a common objective taking advantage of the aggregation of
other resources’. The cited systems, in contrast to high performance computing Grids, are
open to new participants which make their behaviour unpredictable and dynamic, usually
resources are connected and disconnected spontaneously. While the critical aspect of high
performance Grids are computational performance, stability and availability are the main
issues for the systems addressed in these work.

The thesis homogenizes the concepts of those paradigms under the term Contributory
System which is used along the thesis to refer to the systems where users provide their
resources to be used collectively to achieve a common objective. Resource expansion in
Contributory Systems is required so as to increase the limited capacities of ad-hoc collab-
orative groups under unexpected load surges, temporary resource requirements or other
policies defined by the objectives of the Virtual Organization that they constitute.

Four aspects are addressed through the dissertation, first it identifies the main proper-
ties and applications of Contributory Systems and motivates the need for infrastructures
to enable on-demand resource expansion. This goes in the direction of Utility Computing
trends which are main business lines for IT companies. Thus the thesis proposes the on
demand provision of idle resources from the extremes of the Internet, other Virtual Orga-
nizations or Resource Providers to those organizations that have resource needs. In this
work, resource allocation is handled by market models which provide efficient while simple
mechanisms to mediate the allocation of resources. This proposal enables new emerging
opportunities to Internet users to make their business on the Internet by selling their idle
resources. Besides, this brings the opportunity to small communities to grow and to bring
super-computing capacities to Internet end-users.

Second the thesis describes semantically Computational Resources so as to build a
common knowledge about the resources in the Internet. The semantic description enables
a common understanding of the nature of resources permitting the pooling and aggrega-
tion of distinct types of technologies while maintaining the same semantics. This makes
applications and resource management frameworks independent of the real nature of the
resources which we claim as a fundamental aspect to keep resource management indepen-
dent of the dynamics and evolution of technology in computational environments such
as in Contributory Systems. A semantic description permits the development of generic
specifications to provide bid and offer description in computational markets.

Third, an architecture for on-demand resource expansion in Contributory Systems is
presented, the architecture has been designed to provide the main functionalities to on-
demand provision of resources through markets to scenarios characterized by dynamism,
evolution and heterogeneity. The architecture provides the main market oriented func-
tionalities and enables dynamic and on-demand execution of market mechanisms.

Finally, an specific Grid-oriented market mechanism is presented. The approach is mo-
tivated due to the unsuitability of current auctions to allocate efficiently time-differentiated
resources (usually provided by many different resource providers) such as most of the re-
sources in a Contributory System.

The thesis builds a roadmap to achieve flexible and decentralized resource expansion
in communities where resources are shared by their participants by analysing the main
scenarios where it can be applied, providing the semantics and specification to enable
the description of user’s requirements, proposing a flexible and configurable architecture
to deal with on-demand resource expansion in Virtual Organisations and proposing an
specific mechanism adapted to trade computational resources.

2

In the confrontation between the stream and the rock, the stream always wins.
Not through strength, but by perseverance - . . .

H. Jackson Brown

3

4

To my grand mother, to my parents and to my brother Ignasi

for their unconditional support and love.

i

ii

Contents

Acknowledgments xiii

1 Introduction 1

1.1 Overview . 1

1.2 Resource Allocation . 6

1.3 Contributions . 12

1.4 Outline . 14

1.5 Publication Record . 15

2 Resource Management and Allocation 19

2.1 Sate of the art in Contributory Systems . 19

2.1.1 Collaborative Grids . 19

2.1.2 Internet Volunteer Grids . 22

2.2 Related work on Resource allocation frameworks 25

2.2.1 Auction markets for single type of resource 25

2.2.2 Auction markets for multiple types of resources 26

2.3 Related work on architecture of computational resource markets 31

2.4 Lessons Learnt . 34

3 Computational Resources 37

3.1 Introduction . 37

3.2 Resource Properties . 38

3.3 Matchmaking and description of resources 41

iii

3.4 Ontologies for resource description . 42

3.4.1 How ontologies meet our requirements? 42

3.4.2 Representation of traded resources 43

3.5 From semantics to a language . 48

3.6 A Formal Bidding Language . 49

3.7 Related Work on Bidding Languages . 49

3.8 A Tree Based Bidding Specification . 50

3.8.1 Leaf-Node Specification . 54

3.8.2 Implementation . 55

3.9 Workflow specification . 56

3.10 Support for multiple auction formats . 57

3.10.1 Bid decomposition . 58

3.10.2 Integration . 65

3.11 Evaluation . 65

3.12 Conclusions . 68

4 Architectural Approaches for Resource Allocation 71

4.1 Introduction . 71

4.2 Requirements . 73

4.3 Dynamic Market Deployment for Decentralized Resource Allocation 74

4.3.1 Scenario . 75

4.3.2 Architecture . 76

4.3.3 Trading process . 78

4.3.4 Accessing the resources . 80

4.4 Markets in DyMRA . 82

4.5 Configurable Auction Server . 83

4.5.1 Auction Server . 84

4.5.2 Architecture . 86

4.5.3 Workflow and Control . 88

4.5.4 K-DA Mechanism . 90

iv

4.5.5 Deployment, Configuration and Execution 91

4.6 Implementation . 92

4.7 Conclusions . 97

5 Multi Lane Double Auction 99

5.1 Introduction . 99

5.2 Requirements . 104

5.3 Objective . 106

5.4 The Multi-Lane Double Auction . 109

5.4.1 Preciseness vs Impreciseness . 110

5.4.2 MLDA structure and general operations 110

5.4.3 How does a double auction work? . 111

5.4.4 MLDA operations . 112

5.5 MLDA algorithm . 117

5.5.1 Bid Insertion . 117

5.5.2 Ask insertion . 118

5.5.3 Clearing . 121

5.6 Implementation and Experiments . 121

5.6.1 Experiment A: Economical Efficiency 123

5.6.2 Results Analysis . 129

5.6.3 Experiment A.2 Results . 131

5.6.4 Experiment A.3 Results . 134

5.6.5 Experiment B: Computational Efficiency 137

5.6.6 Experiment C: Scale Sensibility . 139

5.6.7 Experiment D: Price per time slot 141

5.6.8 Experiment D.1 Results . 144

5.6.9 Experiment D.2 Results . 146

5.7 Experiment E: Memory Usage . 149

5.7.1 Experiment E Results . 150

5.8 Conclusions . 152

v

6 Conclusions and Future Work 155

6.1 Conclusions . 155

6.2 Future Work . 158

vi

List of Figures

1.1 Utility Computing interest . 2

1.2 Grid Computing. 3

1.3 Contributory Systems: an example view. 5

1.4 Adam Smith’s invisible hand. 9

1.5 Supply and demand curves and equilibrium point. 11

1.6 Target scenario of the thesis. 13

2.1 Architecture of LaCOLLA. 21

3.1 Divisibility of resources. 40

3.2 The resources ontology . 47

3.3 Compact vs detailed representation of a bid. 51

3.4 Tree representation of the example bid. 53

3.5 Case 1.Exact preferences in quantity and time. 60

3.6 Case 2a. Exact preferences in quantity but not in time. 62

3.7 Case 2b. Exact preferences in quantity but not in time. 63

3.8 Case 3. Neither exact preference in quantity nor in time. 64

3.9 Evaluation results 1. 66

3.10 Evaluation results 2. 67

4.1 Interaction among components in the trading process. 80

4.2 Interaction amongst components in the access process. 81

4.3 CAS Architecture. 83

vii

4.4 Fractal component example . 84

4.5 Component diagram of the Configurable Auction Server. 86

4.6 State diagram of the market server. 88

4.7 State diagram of the single shot auction. 91

4.8 Sub-components of the Auction composite component. 93

4.9 Availability vs level of Dynamism. 96

4.10 Cumulative probability of availability levels for G1. 96

4.11 Cumulative probability of availability levels for G2. 97

5.1 Spectrum of Market formulations. 100

5.2 Auctions classified according to different properties. 103

5.3 Possible valuation functions of the job w. r. t. completion time. 107

5.4 Binomial distribution of bids for 4HDAN. 125

5.5 Binomial distribution for asks. 127

5.6 Compared average social welfare per lane 129

5.7 Number of matches per experiment and per lane 130

5.8 MLDA compared to 4HDA . 130

5.9 Compared average social welfare per lane 132

5.10 Average Social Welfare per experiment . 133

5.11 MLDA compared to 4HDA . 134

5.12 Average social welfare and matches per lane 135

5.13 Average price per time slot . 136

5.14 Social Welfare per lane . 136

5.15 Time of computation for experiment A.1 . 138

5.16 Time of computation for experiment A.2 . 138

5.17 Time of computation for experiment A.3 . 139

5.18 Compared average execution time for different number of time slots (lanes) 141

5.19 Binomial Distribution for asks in experiment D.2 144

5.20 Distribution of prices per lane and prices per time slot 145

5.21 Matches per lane and total number of matches 146

viii

5.22 Matches per lane . 147

5.23 Social Welfare per lane . 148

5.24 Price per time slot . 149

5.25 Memory usage during 500 experiments . 151

5.26 Compared memory usage . 152

ix

x

List of Tables

2.1 Summary of existing approaches . 35

3.1 Requirements for the WDP. 58

5.1 Experiment A.1 setting . 124

5.2 Experiment A.2 setting . 126

5.3 Experiment A.3 setting. 128

5.4 Experiment C.1 setting . 140

5.5 Experiment D.1 setting. 142

5.6 Experiment D.2 setting. 143

5.7 Experiment E.1 setting. 150

xi

xii

Acknowledgments

I am heartily indebted to my thesis advisor, Dr. Joan Manuel Marquès for guiding me in

the hard work of my thesis, for his innovative ideas, timely suggestions, feedbacks and un-

flinching support throughout my Ph.D candidature. I feel highly privileged to have worked

with him. I owe a great debt of gratitude for his patience, inspiration and friendship. He

opened the door to research and showed me the methodology of investigation and allowed

me to participate in some of the work he carried for his thesis. Together we worked in

LaCOLLA which allowed me to learn about peer-to-peer systems and from where most of

the ideas explored in this thesis born.

I also feel deeply indebted with Ruby Krishnaswamy. For me she had been my second

advisor. I would like to thank her patience, advice and experience, she trusted on me

and gave me the opportunity to collaborate with her. I have learnt from her experience,

wisdom and way of work which I really admire. She helped in the most difficult parts of

my thesis and motivated me to investigate deeply and systematically to understand the

nature of my problems. Also thanks for her valuable feedback, comments and answers.

I would also like to thank the people with whom I have received comments and advice

over the course of this thesis, especially to Leandro Navarro. I sincerely appreciate the

opportunity given by Leandro to participate in the Grid4All project as well as his recom-

mendations during my work. Thanks to Angel A. Juan, for the timely clarification of my

doubts and questions about statistics and maths.

xiii

My most grateful thanks to Internet Interdisciplinary Institute (IN3) that funded me

during the first years of my research and gave me the opportunity to arrive here. Also to

the Grid4All European project (IST-2006-034567), the Spanish government under projects

MCYT-TSI2005-08225-C07-05, TIN2007-68050-C03-01 and TIN2008-01288-TSI for par-

tially funding this research.

My thanks also to those who I collaborated with, first to Daniel Lázaro a college and

a friend who I shared some of the work over LaCOLLA and DyMRA. Also to Xavi León,

Rene Brunner, Daniel Stern, Josep Jorba and Pablo Chacin for all the things I learnt from

them. Also my hugest greetings to Santi Caballé to sit in front of me during the long trip

of the thesis. I just followed his tireless will of working.

I wish to thank to all my friends in IN3 and UOC where my research started and I

hope that they can follow my path. I won’t forget all those that walked together with

me, specially those that are always in my heart and know that this greeting is for their

unconditional friendship and love.

This thesis would never have been possible if it were not for the support of my family,

especially my father, Ignasi and my mother, Carme, they have brought me here. To my

grand mother also, she opened my interest to understand the nature of things, and also to

my brother, Ignasi for all the time over the bike. To all of them I dedicate this long race.

xiv

Chapter 1

Introduction

This chapter introduces the context of the research themes explored in this thesis. It starts

with the fundamental motivations behind decentralised and coordinated organisation of

distributed systems; including resource allocation and resource management systems. The

chapter thereafter provides discussion on the thesis outline and contributions. It ends with

a summary of the published materials that were partially or fully utilised for compiling

the thesis.

1.1 Overview

The last few years have seen the emergence of a new generation of business that operates

over the Internet. This new trend is Utility computing, i.e. - the aggregation of com-

putational resources such as computation and storage, as a metered service similar to a

traditional public utility (such as electricity, water, natural gas, or telephone network).

Many service providers and IT companies are moving their economies around the renting

of computational services, not physically, but as an utility.(see Figure 1.1)1 In 1961, John

1In April of 2007, In-Stat conducted a Web-based questionnaire that gathered data from 1003 respon-
dents who are knowledgeable about their organizations’ IT infrastructure. The survey gauges demand for
utility computing services for IP telephony, CPU, storage, and bandwidth capacity. Survey results show
that more than 50% of respondents from firms with over 1,000 employees either currently contract for
on-demand services or, if they do not currently do so, would be very interested in doing so within the next
year. For those who currently contract for on-demand computing services, saving money was cited most
often as the most important reason

1

Chapter 1: Introduction 2

McCarthy from MIT stated that these emerging opportunities will arrive:

“If computers of the kind I have advocated become the computers of the future, then

computing may someday be organized as a public utility just as the telephone system is

a public utility... The computer utility could become the basis of a new and important

industry.”

Figure 1.1: Adoption of, and interest in, on-demand or utility computing services is

strongest among the largest US firms. Image extracted from http://www.instat.com.

Nowadays IT companies such as SUN, IBM, Amazon, HP and Google are offering com-

putational resources and services for computation to third party enterprises. The access

they offer is still far from end users in the Internet, since accessing computational services

requires certain levels of expertise (i.e. main APIs are offered as standard web services

that are not easily accessed by Internet end users). Besides these services are mainly

used for computation purposes by research institutions, universities, and big companies

and there are not Internet end-user applications suitable or adapted to take advantage of

super-computing capacities. It is clear that the success of these business depends on its

introduction and the fact that the service becomes widely used.

3 1.1 Overview

Many trends aimed to gather distributed and dynamic resources and services and build

an infrastructure that hides the heterogeneity, distribution and scales over Internet. One of

this approaches is Grid Computing [36] (see Figure 1.2). In the Grid, resources are grouped

in federations under a common administrative domain, these federations are commonly

referred as Virtual Organizations (VO). A Virtual Organisation integrates services and

resources across distributed, heterogeneous, dynamic organisations to allow service and

resource sharing when cooperating on the realisation of a joint goal. Each of these organi-

sations is a management domain under the control of another management domain which

represents the Virtual Organisation. Thus a virtual organisation is primarily a manage-

ment domain that controls and coordinates the services and resources provided by others

management domains to achieve a common goal.

Figure 1.2: Grid Computing. Image from Grid Computation: the Fastest Supercomputer

in the World (Released November 2006) by Chao-Hsu Yao

The focus of this thesis is communities where their participants are willing to collab-

orate, mainly Internet end-users, contributing their own resources in favour of the VO.

In these systems, termed in this dissertation Contributory Systems, users provide their

Chapter 1: Introduction 4

own resources to be used collectively by any members of the VO. The thesis deals with

on-demand resource expansion and offering of resources in VOs that have limited capaci-

ties due to the limited amount of resources provided by their participants. Access to VO

resources is regulated by internal policies of the VO, enabling users to access to resources

when they are available. In this sense, during certain periods of time VOs may become

overloaded due to dynamism of their users or due to the over-consumption of services by

their participants [24]. The thesis aims to decouple the real capacities of the VO from the

perceived capacities by their participants. In that sense, VOs capacity can be expanded

by aggregating resources from third party providers (i.e other Internet users, Internet re-

source providers or other Virtual Organizations) that aim to obtain profit by offering their

idle resources

It is clear that new scenarios will be possible when the grouping of resources enables

the creation of VO by the user’s of Internet. NGOs, schools, universities, neighbour com-

munities, fan clubs, online gaming communities, etc. can take advantage of grouping and

contributing their resources to create ad-hoc communities. However, due to the nature

of the participants in the collaboration the amount of resources available would not be

unlimited and consequently, opportunities to expand the capacities of their groups can

contribute to the welfare of the Virtual Organization. The thesis deals with the main

mechanisms and tools needed to expand VO capacity through the use of markets. As

already stated the use of markets is merely for regulation purposes, that is, markets and

their laws provides efficient and simple tools to regulate and control the access to scarce

resources, giving the resources to those who value them most. This thesis will not address

neither payment nor currency issues, that is, we are unaware of whether real currencies

or virtual currencies are used, for us, they are tokens used to account and express user’s

willingness and utility. For simplicity, we do not also consider aspects related to open or

close economies, we just suppose that VOs have their amount of tokens that are used to

obtain resources from external providers.

The addressed scenario can be generalized as a set of VOs/projects/multiple schools

(for example schools around Europe) that gather their own resources to create environ-

5 1.1 Overview

ments where their participants can collaborate. The participants of this VOs contribute

their resources to the community or instead pay a fee to support the collaboration (see

Figure 1.3). During the collaboration activity, capacities of VO may be required to be ex-

panded. Accounting services within the VO will trigger automatically brokers to allocate

resources from external providers. Brokers will select markets to place their bids and al-

locate the required resources. Many other VOs may have excess of resources. Accounting

services then, will trigger seller agents to offer idle resources in a market. This scenario

depicts a complete marketplace where participants (VO internal agents) play the role of

sellers and buyers, building an overall economy.

Figure 1.3: Contributory Systems: an example view.

The problem addressed, generically can be defined as a resource management problem

in distributed computational environments. Resource management is an issue that has

already been studied extensively [1] but the thesis will concentrate on the management

and on-demand allocation of resources to VOs from external providers (VOs or Internet

users owning idle resources) through the use of auctions. Auctions have been used to

regulate the access to resources in a VO but, as far as we know, none effort has been done

to enable resource expansion through market institutions from external providers. The

Chapter 1: Introduction 6

use of auctions is motivated by the nature of Contributory Systems (i.e. dynamic and

characterized by evolution and heterogeneity) because auctions can adapt to evolution

while being simple mechanism able to provide efficient allocations.

The next section introduces the topic of research of this thesis, resource allocation,

that is one of the most important problems in distributed systems research. Section

1.3 enumerates the main contributions of this thesis while Section 1.4 describes how the

dissertation have been structured. Finally Section 1.5 presents the list of publications that

made this thesis possible.

1.2 Resource Allocation

Virtual organisations are coordinated groups of individuals and institutions that have

common interests and objectives. They share, on the basis of some policies, a set of re-

sources. Participating entities are self-interested but realize the potential benefits from

pooling resources. Members may be geographically distributed and can access to the re-

sources any time they are allowed. In this context, we envisage formation and the run-time

management of VOs targeting even small organisations. These structures should be able

to harness unused networked resources on demand and access computational resources as

any other service on the Internet. At creation the VOs should operate with the minimum

needed computing resources contributed by the member organisations. At run time re-

sources should be acquired on-demand from resource providers, thus enabling these virtual

organisations to perform computational tasks using leased resources. This will extend the

notion of utility computing to virtual organisations.

Logically, the organisation that we envisage is that the computational resources on the

network are partitioned across virtual organisations. Allocated resources belong to one

or other of the virtual organisations whose configuration adapts dynamically to change in

load. VOs allocate resources from resource markets when there is a need. This is similar to

recent approaches in resource management and provisioning that takes roots from utility

7 1.2 Resource Allocation

computing. Chase et al. [20] present Cluster-On-Demand (COD), a resource management

system that allocates servers from a common pool of clustered resources to multiple virtual

clusters. Each virtual cluster has independently configured software environments, name

spaces, user accounts, and networked storage volumes. Resources are allocated to virtual

clusters dynamically on-demand based on sharing policies and adaptive provisioning – the

node allotments to virtual clusters change according to competing demands and resource

availability.

Shirako [49], a successor of Cluster-On-Demand (COD) extends these principles to

resources on a wide-area network, through brokered leasing of resources. Resources are

contributed by autonomous sites – resource providers – are pooled and managed by lease

brokers. The clients of the leasing service are guest applications – each application is

managed by a Service manager that is responsible to negotiate the leases with the brokers

on behalf of the guest application.

These architectures show a ”two-level” management of resources: each virtual cluster

determines internally the mapping of its resources to its applications based on internal

objectives and policies. The choice of the internal scheduler and work load management

system depends on the type of applications. At the higher level, brokers arbitrate the allo-

cation of global resources to each of these virtual clusters. Virtual cluster respond to load

surges by leasing additional resources. It may also react to external resource contentions

by accepting reduced service levels and hence free resources.

In the scenario we propose, VOs adapt to changing conditions such as load surges

or failures by leasing additional resources. From whom may resources be leased or allo-

cated? Major firms in the computing industry such as IBM, HP, and SUN Microsystems

are focusing on agility and flexibility of computing resources and gearing their versions of

on-demand computing and IT outsourcing solutions. Utility providers i.e., operators such

as Amazon sell raw computing power at fixed prices. Such operators have invested on

resources such as cluster farms to furnish utility computing services. But, there are also a

Chapter 1: Introduction 8

large number of idling resources on the Internet. Could we use these resources to offer a

utility computing service? Incentives to contribute resources have been driven by public

good or collaborative advantage. This is manifested in test-beds such as Seti@HOME [47].

These cannot be generalized since the motivations of contributors are not amenable to gen-

eralized models of sharing; so what other incentives for these resource owners and how to

arbitrate their allocation? Can a market based approach provide incentives to resource

providers?

Economic theory proposed the use of markets and their laws to govern and provide

efficient allocation of resources. The MIT Dictionary of Modern Economics [70] defines

a market as a context in which the sale and purchase of goods and services take place.

The Dictionary of economics [77] suggests a definition by which market is a medium of

exchanges between buyers and sellers. A good is the economic abstraction for a thing that

imparts utility to its possessor or recipient. A market transaction takes place when all

parties perceive that their own utility will not decrease by their participation, relative to

not participating. We consider Tucker’s proposal [87], ”a market is a medium in which

autonomous agents exchange goods under the guidance of price in order to maximize their

own utility”.

Market based resource allocation systems rely on consumers to set a value on the re-

sources that they seek; market rules seek to provide an allocation that is optimal. The

fundamental principle is that resources are priced based on the aggregated supply and

demand. Consumers are endowed with a budget and seek a quantity of resource that

maximizes their internal utility, given the current market price. Trade occurs at a clearing

price that balances supply and demand - such allocations are also economically efficient

– no reallocation can make one better off without making another worse off. By Adam

Smith’s invisible hand [83], perfect competition achieves economic efficiency when in a

competitive market, in which buyers and sellers act independently and selfishly, chan-

nelling scarce resources in an economically efficient way to the users. The invisible hand

that guides buyers and sellers is the market price - at this price users buy until their

9 1.2 Resource Allocation

marginal benefit equals price. Pricing of resources becomes the regulatory mechanism to

address fluctuations in supply and demand. Price of resources evolve according to market

dynamics and indicates a high (high price) or low (low price) demand. This information

is used by agents to decide on using the resource or not. Economic market theory [23]

states that the prices converge to a stable equilibrium.

Figure 1.4: Adam Smith’s invisible hand. Image extracted form Institutional advisors web

page: http://www.institutionaladvisors.com

Buyya et al. [16] have formulated a set of questions whose answers help to decide if

an economy driven resource management system is warranted. We answer some of these

questions within the context of our work.

Who are the resource providers and the resource consumers? The major-

ity of the expected resource providers and consumers are domestic owners of computers.

Small enterprises and organizations may also provide resources, but more often consume

resources. Most of these are now connected to the Internet through broad-band access

networks. These consumers do not in general expect free resources, but low cost access

Chapter 1: Introduction 10

to resources. Such consumers seek to reduce their initial IT investment and also running

costs. They may be prepared to sacrifice on quality of service, nevertheless do demand an

acceptable level of consistency and dependability.

What motivates a provider to contribute their resource to the Grid? Not

all VOs search for extra-terrestrial intelligence! Resource owners will contribute resources

for a correct compensation. Compensations may be economical, improved QoS, reputa-

tion, extended rights or access to services offered by VOs. Generally we expect that most

members are more self-interested rather than altruist and expect some benefits in return

to the resources that they contribute.

How can users solve there problems within a minimum cost? In general,

users can reduce their costs by reducing their investment, both capital and operational

expenditure, by considering computational resources as a Utility. Users adjust to market

conditions; for example relax dead-lines if this enables them to acquire cheaper resources.

Is access cost the same for peak and off-peak hours? Accessorily what to

do when there are more requests than available resources? In the case of excess

demand, requests cannot be prioritized – how to give priorities in the Internet? However

costs are dissuasive. Basing prices on supply and demand will necessarily motivate ratio-

nal users to adjust their demand, thus reducing congestion.

How can resource owners maximize profit? They can maximize profit by con-

tributing resources to who value them most, that is, to who pay the most. Users create

and form VOs so as to reach a set of objectives. VOs execute applications and services

that allow the creators to achieve their goals. The principle issue is that of arbitration

when there is excess demand. Straightforward allocation policies are essentially based on

priorities perhaps subject to constraints on quota of utilisation. If self-interested partici-

pants are free to set their own priorities then they will each specify the maximum priority

since they do not have the incentive to do the contrary. Moreover this approach does not

11 1.2 Resource Allocation

provide incentives to owners to share their resources unless of course the each provider is

also a consumer.

Thus, at a higher level, when inter-VO resource management is addressed, market-

based resource management is expected to be the most satisfactory when participants are

dominantly self-interested. Resource providers or owners have incentives to share their

resources if they are adequately compensated. Pricing of resources establishes a common

scale of value across various resources and resources are allocated to those who value them

the most.

Figure 1.5: Supply and demand curves and equilibrium point. Image extracted from the

economic blog: http://enthusiasm.cozy.org/

Chapter 1: Introduction 12

1.3 Contributions

The major contributions of this thesis are the following:

1. The semantic analysis of computational resources and the subsequent design and

implementation of a formal bidding specification and language specially adapted

to computational resources. The presented bidding specification provides and ex-

pressive and Grid-oriented bidding language that can be used in different auction

institutions.

2. The design and the implementation of DyMRA2 - A reliable peer-to-peer based re-

source allocation framework that has been specially designed for Contributory Sys-

tems. DyMRA provides the main components to enable dynamic resource expansion

in Contributory Systems having been specially designed to cope with dynamism and

service availability.

3. The design and the implementation of CAS3 - A generic market mechanism holder

component that provides functionalities to support, manage and configure different

auction formats. CAS enables the cohabitation of auctions in a marketplace which

makes our approach one step further from current existing frameworks.

4. The design, the implementation and evaluation of MLDA4 - An auction mechanism

adapted to trade time-differentiated items that until now were traded in multiple

auction instances.
2Dynamic Market Deployment for Resource Allocation
3Configurable Auction Server
4Multi-Lane Double Auction

13 1.3 Contributions

Figure 1.6: Target scenario of the thesis. Overall scenario where different VO share/offer

their resources to be leased by others. Requirements are expressed through a well-defined

bidding specification while mediation and allocation is carried out through market mech-

anisms. Markets are configurable entities than run in the scope of a VO and expose their

functionalities through well defined APIs. Brokering services are used to access discover

markets and participate in them while the overall logic is transparent to the end-user.

Figure 1.6 presents the targeted scenario. Internal logic in Virtual Organizations will

automatically trigger resource allocation from external providers when internal resources

become scarce. The first contribution of the thesis proposes a bidding specification that

will be used to acquire/bid in markets. Both sellers and buyers will make use of the

bidding specification that will be especially designed for computational resources. Buyer

agents and seller agents will be autonomous entities running in the scope of a VO. Internal

policies and strategies will trigger them so as to obtain or offer resources from/to others.

Chapter 1: Introduction 14

Resources will be offered through markets that will run in a generic container exposed

by the selling VO (alternatively, other VOs can host the component). The container will

offer functionalities to be configured and to support different auction formats. Auctions

will be the main market mechanisms used to mediate the allocation of resources. The

last contribution of the thesis is an auction specially adapted to trade time-differentiated

resources as Grid resources are.

1.4 Outline

The material in this thesis is structured as follows:

• Chapter 2 discusses first the state of the art relevant to the work in this thesis.

The chapter characterizes the scenario where the work of this thesis is carried out. It

presents the related approaches of systems where resources are provided by their par-

ticipants to achieve a common objective. Subsequently, the state of the art of market

based resource allocation frameworks is presented. The section discusses issues not

already addressed in current existing approaches and motivates the contributions of

the thesis.

• Chapter 3 presents the first contribution of this thesis, namely it presents an ap-

proach for resource specification and description. It includes an analysis of com-

putational resources and a semantic description of their properties. The semantic

description provides the basis for a formal bidding specification that enables bid and

offer formulation for computational marketplaces. Finally, Chapter 3 presents the

implementation of the bidding language and compares it with related work.

• Chapter 4 proposes an architecture to manage resource expansion and offering in

environments where resources are provided by their participants, ad-hoc communities

and Open Grids, the second contribution of the thesis. The architecture is based in

the peer-to-peer paradigm and it has been specially designed for systems subject to

high levels of dynamism, heterogeneity and constant evolution. Resource allocation

is handled by market mechanisms (i.e. auctions). The architecture proposes a generic

15 1.5 Publication Record

auction component able to be configured and adapted to different type of mechanisms

in order to handle diversity of resources and diversity of demand. The chapter also

discusses the benefits of the cohabitation of multiple market mechanism in a Grid.

• Chapter 5 focuses in the most economics-based part of the thesis and presents an

approach to develop a market mechanism specially adapted to trade computational

resources. The chapter introduces the market mechanism spectrum and presents

the third contribution of the thesis. The chapter presents a novel auction that

extends current existing approaches by enabling the allocation of time-differentiated

resources by the same market instance. This type of auction is specially adapted

to computational environments such as the Grid where resources are leased rather

than acquired.

• Chpater 6 presents our conclusions, future directions and some open research ques-

tions.

1.5 Publication Record

Portions of work presented in this thesis have been partially or completely derived from

the following set of publications. Before each publication in brackets the percentage of our

contribution is presented. The percentage of contribution indicates the amount of work,

ownership and responsibility when doing the research related to the publication.

Chapter 3 is partially derived from the following publications.

1. (20%) Konstantinos Kotis, George A. Vouros, Alexandros Valarakos, Andreas Pa-

pasalouros, Xavier Vilajosana, Ruby Krishnaswamy, Nejla Amara-Hachmi , The

Grid4All ontology for the retrieval of traded resources in a market-oriented envi-

ronment. International Journal of Web and Grid Services (IJWGS) ISSN (Online):

1741-1114 - ISSN (Print): 1741-1106, (2009).

2. (90%) Vilajosana, X.; Marquès, J.; Krishnaswamy, R.; Juan, A. (2009): A Bidding

Specification for Grid Resources. Int. Journal of Grid and Utility Computing. ISSN:

Chapter 1: Introduction 16

1741-847X

3. (90%) Vilajosana, X.; Marquès, J.; Krishnaswamy, R.; Juan, A.; Amara, N.;

Navarro, L. (2008): Bidding support for computational resources. In Proceedings of

the Second International Conference on Complex, Intelligent and Software Intensive

Systems. Barcelona, Spain, March 4-7. p309 - 315.ISBN: 0-7695-3109-1.

4. (20%) Konstantinos Kotis, George A. Vouros, Alexandros Valarakos, Andreas Pa-

pasalouros, Xavier Vilajosana, Ruby Krishnaswamy, Nejla Amara-Hachmi. (2008)

The Grid4All ontology for the retrieval of traded resources in a market-oriented Grid.

In Proceedings of the Second International Conference on Complex, Intelligent and

Software Intensive Systems. Barcelona, Spain, March 4-7. ISBN: 0-7695-3109-1

Chapter 4 is partially derived from the following publications.

1. (40%) Nejla Amara-Hachmi, Xavier Vilajosana, Ruby Krishnaswamy, Leandro

Navarro-Moldes, Joan Manuel Marquès: Towards an Open Grid Marketplace Frame-

work for Resources Trade. Lecture Notes in Computer Sciences.OTM Conferences

(2) 2007: Vilamoura (Portugal).1322-1330.

2. (40%) Daniel Lázaro, Xavier Vilajosana, Joan Manuel Marquès: DyMRA: Dynamic

Market Deployment for Decentralized Resource Allocation. Lecture Notes in Com-

puter Sciences. OTM Workshops (1) 2007:Vilamoura (Portugal). 53-63.

3. (25%) Xavier León, Xavier Vilajosana, Rene Brunner, Ruby Krishnaswamy, Leandro

Navarro,Felix Freitag, Joan Manuel Marquès; Information and regulation in decen-

tralized marketplaces for P2P-Grids. In the Proceedings of Fourth Collaborative

P2P systems (COPS08) Workshop, Rome, Italy, June 23-25.

4. (60%) Vilajosana, X., Lázaro, D., Marquès, J., Juan, A. (2008): Towards decen-

tralized resource allocation for collaborative peer to peer learning environments. In

Proceedings of the Second International Conference on Complex, Intelligent and

Software Intensive Systems. Barcelona, Spain, March 4-7. p. 501-507. ISBN: 0-

7695-3109-1

17 1.5 Publication Record

5. (45%) Daniel Lázaro, Xavier Vilajosana, Joan Manuel Marquès, Angel A. Juan, A

Framework for Dynamic Resource Allocation in Decentralized Environments, Inter-

national Transactions on Systems Science and Applications Journal. ISSN 1751-

1461.

6. (75%) Vilajosana, X., Lázaro, D., Marquès, J.M., Juan, A. (2009). DyMRA: A

decentralized resource allocation framework for collaborative learning environments.

Book: Intelligent Collaborative e-Learning Systems and Applications. Series ”Stud-

ies in Computational Intelligence”. Berlin, Germany: Springer-Verlag. (To appear.)

7. (80%) Vilajosana, X., Krishnaswamy, R., Marquès, J.M. (2009). A Configurable

Auction Server for Resource Allocation in Grid. In Proceedings of the Third Interna-

tional Conference on Complex, Intelligent and Software Intensive Systems. Fukuoka,

Japan, 16-19 March 2009.

The scope of the research is motivated by the following publication:

1. (25%) Joan Manuel Marquès, Xavier Vilajosana, Thanasis Daradoumis, Leandro

Navarro: LaCOLLA: Middleware for Self-Sufficient Online Collaboration. IEEE

Internet Computing 11(2): 56-64 (2007).

2. (20%) Ruby Krishnaswamy, Leandro Navarro, René Brunner, Xavier León, Xavier

Vilajosana: Grid4All: Open Market Places for Democratic Grids. Lecture Notes in

Computer Sciences. GECON 2008: ISBN: 978-3-540-85484-5. 197-207

Chapter 1: Introduction 18

Chapter 2

Resource Management and

Allocation

2.1 Sate of the art in Contributory Systems

This section presents the state of the art of current existing systems where resources are

contributed by their participants. The section identifies a collection of existing systems

where the research carried out in this thesis can be applied. Thus, systems described below

constitute perfect examples of the scenarios that we are addressing in this dissertation.

2.1.1 Collaborative Grids

Collaborative Grids consists of several participants which agree to aggregate their re-

sources for a common goal. The OurGrid project [7] is a typical example of such systems.

It proposes mechanisms for research centres to put together their local Grids. A mech-

anism allows the local resource managers to construct a P2P network. These solutions

are attractive because utilization of computing power by scientists is usually not constant.

When scientists need an extra computing power, this setup allows them to access easily

their friend universities resources. In exchange, when their resources are idle, it can be

given or rented to others’ university. This requires a cooperation of the local VO, usually

19

Chapter 2: Resource Management and Allocation 20

at the resources managers’ level, and mechanisms to schedule several applications.

A similar approach has been proposed by the Condor team under the term “flock of

Condor” [14]. OurGrid has been in production since December 2004 and today aggregates

computing resources from about 180 nodes shared by 12 peers. The platform has been

limited to supporting bag-of-tasks. Local users have always the priority for their tasks

on their local resources, only the unused local resources are shared with other peers. Lo-

cal jobs kill remote jobs if needed. For promoting cooperation amongst peers and avoid

freeriders [2], OurGrid use a network of favours. Each peer maintains a matrix of the

computing time that it gets granted from other peers. Then, if a processor is requested

by more than one peer, it allocates it to the peer with the greatest favour. The favour

computation is protected against malicious peers that, for example, would reset its state

in order to gain more computing time. Other peers are discovered through a centralized

discovery system. The network is a free-to-join Grid, where remote peers are not trusted.

To address this issue, a sandbox mechanism is proposed (Sand-boxing Without A Name).

Several resource allocation policies have been experimented. The first one, Workqueue

with Replication (WQR), was simply sending a random task to the first free processor

found. In version 2.0 of OurGrid, a new scheduler tries to avoid communication cost by

introducing storage affinity. Tasks are sent to computing nodes that are closest to used

data. This algorithm tries to avoid the need for redundant information about tasks such

as expected completion time. The first algorithm was found to be still more efficient on

some cpu-intensive workloads.

LaCOLLA [56, 60] is a peer-to-peer grid optimized for collaborative interaction and

resource sharing. LaCOLLA middleware provides collaborative functionalities to let par-

ticipants in collaborative activities self-organize using only the resources that themselves

provide. By nature LaCOLLA can be considered a Contributory System based on decen-

tralized components with autonomous behaviour. It uses algorithms based on epidemic

propagation of information. When two sites communicate exchange their local information

as well as third party information received in previous interactions. Besides, LaCOLLA

21 2.1 Sate of the art in Contributory Systems

relies on optimistic replication techniques to ensure awareness and availability of the infor-

mation in a group in collaboration. Randomization is exploited as a technique to improve

failure resilience and scalability.

Figure 2.1: Architecture of LaCOLLA.

In LaCOLLA, participants provide the computational resources (storage and process-

ing) and applications that users need to carry out the groups activities. LaCOLLA man-

ages them in such a way that any resource owner can disconnect them at any time without

warning and without affecting the groups functionality. The middleware then guarantees,

despite intermittent node and network availability, that the system can self-organize with-

out requiring the participants to manually intervene. In the end, the collectivism exists if

the participants ensure the groups self-sufficiency by providing sufficient resources.

Chapter 2: Resource Management and Allocation 22

LaCOLLA has been designed to maintain group members’ freedom; members can de-

cide to disconnect resources from the group at any moment. While a resource is within

the group, however, the group is in charge of its administration and the group policies

apply. Resources provided to a group are used transparently that is, users don’t know

which resources they’re using to carry out an action. Thus, members carry out their

actions with group resources in line with group policies. Contributing resources for the

benefit of the group makes sense in environments in which participants share more than

just resources, values, or a common goal (for example, groups within a company, student

projects, research groups with researchers from different organizations, and non- govern-

mental organizations [NGOs]). The architecture of LaCOLLA can be seen in Figure 2.1.

LaCOLLA middleware is implemented in JAVA and available at [46]. Current implemen-

tation of LaCOLLA manages VO resources following group specific policies, however until

now LACOLLA is not able to expand VO capacity by allocating external resources, even

authors considered this as a future work.

2.1.2 Internet Volunteer Grids

Internet Volunteer Grids systems have been amongst the largest distributed systems in the

world. Projects such as SETI@Home or distributed.net are able to provide hundreds of

TFlops on dedicated application from hundred of thousands nodes. For over a decade, the

largest distributed computing platforms in the world have been Internet Volunteer Grids,

which use the idle computing power and free storage of a large set of networked (and often

shared) hosts to support large-scale applications. In this case of Grid, owners of resources

are end-user Internet volunteer who provide their personal computer for free. Internet

Volunteer Grids are an extremely attractive platform because there offer huge computa-

tional power at relatively low cost. Currently, many projects, such as SETI@home [47],

FOLDING@home [35], and EINSTEIN@home [4], use TeraFlops of computing power of

hundreds of thousands of desktop PCs to execute large, high-throughput applications from

a variety of scientific domains, including computational biology, astronomy, and physics.

23 2.1 Sate of the art in Contributory Systems

The Great Internet Mersenne Prime Search (GIMPS) [48] is one of the oldest compu-

tation using resources contributed by their users. Its started in 1996 and is still running.

Each client connects to a central server (PrimeNet) to get some jobs. Resources are divided

in 3 class based on the processor model and gets different type of tasks. The program only

uses few computational resources of the client and does very little communications with

the server (permanent connection is not required). The program checkpoints every half

hour.

Since 1997, Distributed.net [29] tries to solve cryptographic challenges. RC5 and sev-

eral DES challenges have been solved. The first version of SETI@Home [47] has been

released in may 1999. There was already 400 000 pre-registered volunteers. 200 000

clients registered the first week. Between July 2001 and July 2002, the platform computed

221.10 workunits at an average rate of 27.36 TeraFLOPS. The programs is doing some

treatments on a signal recorded by a radio-telescope and then search for particular artifi-

cially made signal in it. The original record is split in workunit both by time (107s long)

and by frequency (10 KHz).

The Electric Sheep screen-saver [30] “realizes the collective dream of sleeping comput-

ers”. It harnesses the power of idle computers (because they are running the screen-saver)

to render, using a genetic algorithm, the fractal animation displayed by itself. The compu-

tation uses the volunteers to decide which animation is beautiful and should be improved.

This system consists only of one application but, as the project web site claims, about

30000 unique IP addresses contact the server each day and 2Tb are transferred.

All these application projects share many common components. So, there was a need

for a platform that would provide all these components. Only the part that really does the

computation need to be changed for each project. One proposed platform is The Berkeley

Open Infrastructure for Network Computing (BOINC) [6] that is the biggest volunteer

computing platform. More than 900 000 users from nearly all countries participate with

more than 1 300 000 computers. More than 40 projects, not including private projects,

Chapter 2: Resource Management and Allocation 24

are available including the popular SETI@Home project.

Each client (computing node) is manually attached by the user to one or more projects

(servers). There is no central server and most of the scheduling is done by clients. The

server is made of several daemons. A daemon that takes care of the different states of the

workunit life cycle, replicates (redundancy) the workunit in several results (instances of

workunits). Each result is executed on a different client. Then, back to the server, each

result is checked by the validator before being stored in the project science database by

the assimilator. All communications are done using CGI programs on the project server,

so, only port 80 and client to server connections are needed. Each user is rewarded with

credits, or virtual currency, for the count of cycles used on its computer.

The POPCORN [76] is a platform for global distributed computing over the Internet.

It has been available from mid 1997 till mid 1998. Today, only the papers and documen-

tation are still available. This platform runs on the Java platform and tasks are executed

on workers as ”computelets”, a system similar to usual Java applets. Computelets need

only to be instantiated for a task to be distributed. Error and verification process is left

to the application level. The platform provides a debugging tool that shows the tree of

spawned computelets (for debugging concurrency issues). There is also a market system

that enables users to sell their CPU time. The currency works almost the same as BOINC

credits. Some applications have been tested on the platform (brute force breaking, genetic

algorithm...).

Bayanihan [80] is another platform for volunteer computing over the Internet. It is

written in Java and uses Hord, a package similar to Suns RMI for communications. Many

clients (applet started from a web browser or command line applications) connect to one

or more servers.

This section presented example applications and middleware approaches built following

the concept of contribution. These applications mainly propose to take advantage of idle

25 2.2 Related work on Resource allocation frameworks

resources on the extremes of Internet which we also consider a new opportunity to provide

resource sharing and expansion functionalities in Contributory Systems. Several lessons

have been learnt from the presented applications, the need for regulation to access resources

and to avoid freeriding and the enormous capacities that can be obtained from the nodes at

the extremes of the Internet. Besides, the work presented in this thesis addresses scenarios

characterized by groups of participants that provide their own resources to meet a common

objective. Collaborative Grids are a subset of Contributory Systems where the work of

this thesis can be applied. Volunteer Grids can also take advantage of the work proposed

in this dissertation since Volunteer Grid capacity can be expanded by means of allocation

of resources from external providers.

2.2 Related work on Resource allocation frameworks

The term market mechanism is encountered in connection with problems of distributed

resource allocation. In the context of markets it refers to a structure of economic orga-

nization that helps to shape outcomes. Intuitively [68] a mechanism solves a problem by

assuring that the required allocation occurs when agents choose their strategies to maxi-

mize their own utility. A mechanism also needs to ensure that the agent reported utilities

are compatible with the algorithm implementing the mechanism. Economic mechanisms

propose a procedure by which a set of resources may be distributed amongst the different

participants and a scheme for pricing of the traded resources. The allocation is constrained

by the preferences of the participants expressed in monetary terms. This sections gathers

the most significant auction based resource allocation frameworks found in the literature.

2.2.1 Auction markets for single type of resource

SPAWN [89] was designed to tap in unused and wasted cycles in networked servers. Each

participating server runs an auction process to trade the CPU time in fixed time-slices.

Spawn uses a sealed bid second-price auction, known as the Vickrey auction. Vickrey

auction is incentive compatibility, i.e. the best strategy that the bidders may practise is

to reveal their true valuations. This system is not generalized to multiple resources and

Chapter 2: Resource Management and Allocation 26

multiple resource units - considering time-slices as a resource unit; this implies an auction

for each time-slice.

Placek et. al. [73] present a trading platform for storage services. The platform im-

plements a centralized storage exchange that implements a double-auction; the exchange

accepts sealed offers from providers and consumers and periodically allocates trades by

employing an algorithm that maximises surplus, that is, the difference between the con-

sumer’s price and the seller’s cost. Double auctions are adapted to trading of a single

type of homogeneous resources. These have the benefit of reducing communication costs

(single bids), and with suitable pricing policies are also incentive compatible.

2.2.2 Auction markets for multiple types of resources

Combinatorial auction model has received a lot of attention in recent years; to address

trading multiple resource types in bundles; this has two implications: (i) prices are ex-

pressed for bundles and (ii) a bundle if allocated should be completely satisfied.

Chun et. al. [21] present a resource discovery and allocation system where users may

express preferences using a bidding language supporting XOR bids, at most one of the

preferences is to be allocated. Multiple resources may be requested to a central auction

server that clears periodically. Resource requests are for fixed durations of times and

users may specify the time ranges. A greedy algorithm clears the combinatorial auction.

This algorithm privileges execution time over efficiency of allocation - bids are ordered by

decreasing values where the value is obtained by dividing the bid price by the product of

total number of resources and the duration of request.

Schwind et. al. [82] present an iterative combinatorial auction that maximizes seller

revenues. Bids are presented as a two-dimensional matrix; one dimension represents the

time in fixed time slots and the other dimension the resources (CPU, Disk, and network).

The auction server executes periodically and invites bids from the participants. Shadow

27 2.2 Related work on Resource allocation frameworks

prices are calculated for individual items (resource) and the buyers are requested to it-

erate on their bids based on the current estimation of prices. The clearing algorithm is

implemented as a linear program optimizing the revenue. Prices are calculated using the

approach presented within [55] - prices are the dual solution to the primal Linear Pro-

gramming Problem (LP).

Schnizler and Neumann [81] present a multi-attribute combinatorial auction that max-

imizes the surplus - the difference between the buyer’s price and seller’s cost. Resources

are traded in fixed time-slots and buyers send XOR bids specifying the quality and the

number of time-slots within a specified time range. The Vickrey pricing policy is applied

to provide incentive compatibility. Simulation results show that the allocation problem is

computationally demanding but feasible in the case where the number of participants and

bids are reasonably small.

Bellagio [9] is a market-based resource allocation system for federated distributed com-

puting infrastructures. Users specify interest on resources in the form of combinatorial

auction bids. Thereafter, a centralised auctioneer allocates resources and decides payments

for users. The Bellagio architecture consists of resource discovery and resource market.

For resource discovery of heterogeneous resources, Bellagio uses SWORD [3]. For resource

market, Bellagio uses a centralised auction system, in which users express resource pref-

erences using a bidding language, and a periodic auction allocates resources to users. A

bid for resource includes sets of resources desired, processing duration, and the amount of

virtual currency which a user is willing to spend. The centralised auctioneer clears the bid

every hour. The resource exchange in the current system is done through virtual currency.

Virtual currency is the amount of credit a site has, which is directly determined by the

sites overall resource contribution to the federated system. Bellagio employs Share [22]

for resource allocation in order to support a combinatorial auction for heterogeneous re-

sources. Share uses the threshold rule to determine payments. Once the payment amount

of each winning bid has been determined by the threshold rule, the winning bidders receive

resource capabilities after charging the appropriate amount.

Chapter 2: Resource Management and Allocation 28

Even though the above approaches indicate the computational complexity of combina-

torial auctions, they nevertheless are important demonstrators. Combinatorial auctions

are important mechanisms for Grid resource markets since typically Grid applications need

to allocate resources in bundles.

Proportional sharing markets for divisible resources

Market based proportional sharing models are one of the most popular approach in

problem-solving environments. Basically this approach consists of allocating to users a

percentage of the resource that is proportional to the amount of the bid submitted by the

user. This may be considered as a fair model of allocation and is typically employed in

cooperative environments employed in systems where resources are considered as divisible.

Tycoon [34] is a system designed for time-sharing networked nodes such as in Planet-

Lab; an environment where users of resources are also providers of resources. Resource

nodes execute an auction process to which users may send their bids. Tycoon implements

a proportional sharing [51] auction where each user is attributed a capacity proportional

to its bid. Users are price-anticipating in that the ratio that they receive is a proportion

of their bid over the sum of all bids for a given resource – users may anticipate the effect

of their bids on the clearing price. Each user has a utility function; a weighted sum of the

resource fraction that it receives from each node. Users bid to those nodes that maximize

their utility. This system is intrinsically decentralized as the maximization of utility is

done locally at each user. This system is appropriate for divisible usage of CPU, an as-

sumption that may not be acceptable to a wide range of applications.

Decentralized markets for single type of resources

Peer-to-peer auctioning has emerged as a new computing paradigm to decentralize auc-

tion processes. Many systems address the decentralized auctioning issue for different rea-

29 2.2 Related work on Resource allocation frameworks

sons like those of scalability, fault-tolerance, redundancy, load distribution and autonomy,

amongst others. With respect to scalability issues, most of the existing systems make use

of a DHT structured overlay [17,40,75,84].

PeerMart [43] distributes brokering in an auction based allocation mechanism. Auc-

tioneers rather than being a single broker are formed by a set of peers which synchronize

to clear a double auction market. Consumers and providers are distributed in the Pastry

overlay network [17]. Broker sets are formed by some nodes in the overlay. The double

auction they implement clears continuously. For each allocation, brokers synchronize their

information in order to determine who the winners are and to avoid malicious peers. Syn-

chronization is carried out through broadcasting the lowest selling requests, the highest

buying bid and any matching bid to the rest of the brokers in the broker set. Decisions are

taken by a simple majority. Broker set peers maintain a distributed shared state through

broadcasting information and decisions are taken when all peers in the broker set have all

the information.

Tamai et.al. [86] make use of CAN [75] to build a market architecture. They propose to

distribute peers in different sub-regions and assign a responsible broker for each of them.

Sell requests and buying bids are sent to any known broker and they are forwarded until

they reach the responsible broker for the offer. If the broker has a buying bid (sell requests)

that matches the received sell request (buying bid) the allocation is made. However, if a

buying bid and a sell request are received by different brokers respectively, they cannot

be matched. To solve that problem, Tamai et.al. propose to replicate buying bids and

sell requests in multiple brokers. The replication introduces more communication amongst

peers. When a replica matches a sell request with a buying bid it has to verify that the

original bid (request) has not been matched by sending a message to the original replica.

Once a buying bid and a sell request are matched, a replica deletion message has to be

sent to all replicas.

As proof of this concept in the paper of Despotovic et.al. [28], a simple approach is

Chapter 2: Resource Management and Allocation 30

presented. The paper presents a mechanism for pricing and clearing continuous double

auctions in a peer-to-peer system. The main feature is that consumers and providers

broadcast bids for resources. Every buyer has the incentive to trade with the announcer

of the lowest sell request that the buyer observed. Similarly, any seller would want to trade

with the announcer of the highest observed bid. Prices in each trading operation are set

to the average price between the bid and the sell request. Since peers do not have a global

view of all the trading operations that occur in the system (when a trading operation is

made between a buyer and a seller, we cannot assume that they will communicate their

price to the rest of the bidders), prices are updated when a peer observes a bid or request

from another peer. Clearly, the solution is not scalable and there are no guarantees that

the information reaches all the peers. However, the mechanism can be useful for market

implementations that do not require optimality and efficiency.

Esteva et.al. [32] make use of a ring topology to distribute one side (English, Vickrey,

and Dutch) auction processes amongst a set of brokers (called interagents). Interagents are

mediators amongst buyers and the auctioneer and are responsible for receiving bids and

clearing the auction. The clearing algorithm is based on the leader election algorithm [59].

In short, the algorithm is based on finding the bidder with the highest bid, which will be

the leader. The aim of introducing interagents is to reduce centralization and the work of

the auctioneer. However the authors do not indicate where interagents are executed and

if they can be sellers or buyers participating in the auction. The authors point out that

interagents have to be robust and introduce security measures against malicious peers.

However, they do not introduce any security measure.

Atzmony and Peleg [8] propose a set of algorithms for clearing English auctions in a

distributed manner. They assume an underlying communication network represented by

a complete n-vertex graph. Vertices represent the nodes in the network and every two

vertices are connected with an edge that represents a bidirectional connection. Auctions

are hosted by a subset of nodes in the graph. In the paper, they formally present a set of

algorithms to clear an English auction in a distributed manner. The algorithm requires

31 2.3 Related work on architecture of computational resource markets

a static set of participants that join the auction before it starts. They also propose some

enhancements to allow dynamic participants. Each auction is executed in several rounds

until only one bidder remains. At the end of each round, new bidders are allowed to join

the auction. Their asymptotic approach only finishes if no more bidders join the auction

and all bidders except one resign. Although they formally verify the algorithm, the paper

does not present any results on the performance and communication costs of the algorithm

in a real network.

Several conclusions can be derived from those systems. Distribution of auction pro-

cesses is a costly. Decentralized auctions usually map one item to one responsible broker.

In some other approaches, auction decentralization can be compared to a distributed

sorting problems and solved according to that. The nature of auctions require complete

information (i.e. the total set of bids is required) in order to determine the winner set

and consequently decentralization can only come when multiple items are traded assigning

different responsible brokers for each item. As will be seen in Chapter 4, in our work decen-

tralization will be attained by short-lived market instances since we consider co-allocation

and substitute allocation important aspects that need to be attained.

2.3 Related work on architecture of computational re-

source markets

Most relevant architectures to the work carried out in this thesis are the GRACE [16],

OCEAN [69] and CATNETS [18,33] projects. GRACE is one of the first systems to pro-

pose a comprehensive architecture to promote the Economy-based Grid. It has established

some requisites for any economy-based Grid system, such as publishing and discovering of

Grid entities, resource pricing schemes, economic models and negotiation protocols, etc.

OCEAN presents an open software infrastructure to automate trading of heterogeneous

computing resources on the Internet. In contrast to GRACE, this infrastructure aims

a completely decentralized architecture facilitated by a peer-to-peer search protocol that

can quickly find suitable matches among large number of providers and consumers. The

Chapter 2: Resource Management and Allocation 32

multi-layered OCEAN infrastructure is architected to be portable over various cluster and

Grid infrastructures. CATNETS has a middleware architecture that purports to provide

economic and market based resource management systems.

CATNETS is a completely decentralized architecture where bilateral negotiations are

conducted between providers and consumers. It aims to remove the shortcoming of cen-

tralized co-ordination by allowing peers to continue to obtain services even if there are

failures and withdrawal. The layered software architecture of CATNETS isolates economic

agents from the underlying Application Layer Network by providing support for pluggable

mechanisms and strategies. The decentralized peer-to-peer architectures of OCEAN and

CATNETS based on bilateral negotiations make bundled allocation a complex process.

Often Grid applications mandate multiple types of resource.

The GRACE architecture is more adapted to Grid systems formed of a small number

of nodes - where each node represents a large clustered system. OCEAN lacks support for

the implementation of multiple auction mechanisms, and in fact does not address this need.

Sharp [38] is a framework for secure distributed resource management. Participant sites

can trade their resources with peering partners or contribute them to a peer federation

according to the local site sharing policies. SHARP framework relies on the bartering econ-

omy as the basis to exchange resources between resource domains. A cryptographically

signed object called Resource Tickets (RTs) is issued by each participating site. These

RTs are exchanged between the participating sites for facilitating coordinated resource

management. In Sharp framework, every participating site is completely autonomous and

holds all the rights over the local resources. Sharp framework considers collection of logi-

cal sites or domains, each running local schedulers for physical resources (e.g. processors,

memory, storage, network links, sensors) under its control. The fundamental resource

management software entities in Sharp include site authority, service manager and agents.

These entities connect to each other based on a peer-to-peer network model. The resources

at each site are managed by a site authority, which maintains the hard state. The site

33 2.3 Related work on architecture of computational resource markets

authority accepts the resource claims presented by remote sites in the system. Resource

agents mediate between site authorities and resource consumers (service managers). A

resource is allocated to the service manager at a SHARP site using the two-phase ne-

gotiation process. Initially, a service manager obtains a resource claim in the form of a

ticket from an agent. In the second phase, the service manager presents the ticket to the

appropriate site authority to redeem it. The authority may reject the ticket or it may

honour the request by issuing a lease for any subset of resources or terms specified in the

ticket. A lease is hard claim over concrete resources, and is guaranteed valid for its term

unless a failure occurs.

Systems such as PeerMart [43], described earlier in this document, implement dis-

tributed auctions by associating a broker for each resource/service type. Brokers are im-

plemented as peer-sets on a structured P2P overlay. In PeerMart segmentation of markets

puts the onus on the clients to choose between equivalent resources. PeerMart auctions

are neither generic nor configurable and authors do not address these issue.

GridBus [15] uses non-coordinated brokers to match tasks to resources. Matchings are

provided by a single mechanism that allocates asks to bids based on some QoS specifica-

tions. This mechanism is not optimal but configurable and constitutes a first approach to

enabling adaptability. The system is organized as a federation of resource nodes managed

by a set of co-operating brokers. Brokers of each node either locally accept a submitted job

or forward it to the cheapest remote node. The assumption of co-operation is in general

not warranted.

Recently, the project SORMA [66] which deals with methods and tools for efficient

resource allocation, through a self-organizing resource management system, using market-

driven models supported by extensions to Grid infrastructures which is a parallel approach

to the work carried out in this thesis.

Chapter 2: Resource Management and Allocation 34

2.4 Lessons Learnt

Table 2.1 presents a summary of the most important architectural approaches to resource

allocation in large scale computational platforms. The table presents how negotiation is

carried out in those systems, being market-based approaches the most used mechanisms to

manage resource allocations. In this thesis auctions will be used as mechanisms to allocate

resources because they have demonstrated that can provide efficient allocations by only

requiring user’s to express their utility as a single value (i.e. price). The table also presents

how negotiation is structured, that is, either by single responsible components or instead

by decentralized services. It is clear that decentralization improves failure resilience and

scalability which is one important aspect to be considered when designing large scale

systems. In contrast to all presented approaches, the thesis proposes to make use of on-

demand created markets in order to provide this functionality when needed. Contributory

systems are characterized by dynamism and evolution which require on the one hand to

do not overload the system with unnecessary services and on the other hand to adapt

mechanisms to the currently required/offered resources. How matchings are provided is

an important aspect that is dealt in different ways by the presented approaches. Central

marketplaces or distributed brokers implementing an auction are the main models used.

Besides some of those systems point out the need to support multiple cohabiting market

institutions. Our thesis proposes the cohabitation of multiple market mechanisms held by

a common configurable framework.

.

35 2.4 Lessons Learnt

Negotiation Matching Multiple Markets

OCEAN Central Marketplace Search algorithm Not addressed

CATNETS Bilateral negotiation Exchanges Demonstrate the need

GRACE Central Marketplace Multiple market mecha-

nisms

Demonstrate the need

SHARP Coordinated resource

sharing

Token-based exchanges Not addressed

SORMA Central marketplace Multiple market mecha-

nisms (Auctions)

Demonstrate the need

PeeMart Distributed brokers Market Mechanism

(Double Auction)

Not addressed

GRIDBUS Distributed brokers QoS based scheduling Demonstrate the need

Table 2.1: Summary of existing approaches and their approach to resource allocation

The important lesson learnt from these architectures is the requirement for open APIs

and layered software architecture. An open market place for Contributory Systems needs

to address both in terms of development and run-time co-habitation of multiple market

mechanisms. Even though CATNETS, SORMA and GRACE demonstrate the need to

provide support for multiple market mechanisms, the aspect of inter-operability of agents

in the face of multiple market negotiation protocols is not addressed. The increasing

spectrum of Collaborative and Volunteer computing applications moving computation to

the extremes of Internet, make inter-VO resource allocation a promising opportunity to

democratize access to computational resources. New utility computing oriented infrastruc-

tures will appear and resource management will constitute the key point for its feasibility.

The architectures presented in this chapter, even decentralized, still do not provide flexi-

bility and configurability to support dynamic and evolving environments such as the ones

characterized by Contributory Systems. One consequence of open market places and not

addressed until now, is the need to provide support for both designers of market protocols

and for participants at the market place. This will be realized through flexible and config-

Chapter 2: Resource Management and Allocation 36

urable architectures and semantic description of resources. We have taken the approach

to define the markets in a structured way; this is a requirement to match mechanisms to

application scenarios and to provide methodologies and tools to designers of market ne-

gotiation protocols. Next chapter presents the first important contribution of this thesis.

A semantic description of resources and a generic and well defined bidding specification

are presented as a tools to enable flexible and adaptable bidding when multiple types of

markets co-habitate.

Chapter 3

Computational Resources

3.1 Introduction

This chapter aims to study in deep the properties of the resources in computational envi-

ronments such as an Open Grids and a Contributory System. In the context of this thesis,

a comprehensive understanding of the nature of computational resources is of relevance

and fundamental to develop matchmaking and bidding specification languages. The na-

ture of computational resources in such a distributed and dynamic environment has to be

understood so as to facilitate its description. Description of resources is also fundamental

in environments where users need to describe their requirements in order to fulfil their

objectives. Open Grids are characterized by the dynamism and heterogeneity of their

resources, users and applications. Such heterogeneity, constitutes a trade off for any speci-

fication language since it has to enable precise description of resources but also be flexibile

in order to be extended when the nature of resources evolve. This chapter describes the

main properties of Grid resources, the described properties can be considered inherent to

resources but those properties that derive from the resource allocation process are also

pointed out.

In this chapter we present a semantic approach to resource description, bid and offer

configuration in a scenario where the allocation of resources is guided by market mech-

37

Chapter 3: Computational Resources 38

anisms like auctions. In this context, semantics are used to build a common base of

knowledge that is used by buyers and sellers in the computational marketplace so as to

enable the matchmaking of resources. Thus, an ontology based approach is presented to

relate and describe the main concepts regarding resources in a computational environment.

Besides, the chapter presents an bidding specification language that has specially designed

for economical based resource allocation systems. The language has been specified taking

in consideration the concepts defined by the ontology. An implementation is also provided

as an XML schema [27]. The key objective of the bidding specification is to become a

generic language that can be used by any market mechanism. To fulfil that requirement,

a set of tools have been developed in order to isolate the specification of the bid/ask to

the specific market implementation.

Next section introduces the main properties that the thesis addresses regarding com-

putational resources. Section 3.3 motivates the use of semantics to build a common base

of knowledge so that bidders bids and sellers asks can be matched. Section 3.4 presents

the main concepts of the developed ontology. Section 3.5 introduces the need for a com-

mon bidding specification based on the previous section. In section 3.6 the motivation for

a formal bidding language is presented, section 3.7 presents the related work on bidding

specification and languages and outlines the main advantages of our approach. Next sec-

tion, presents the design and implementation aspects of the language. Section 3.9 improves

the bidding specification by introducing concepts to relate bids. Section 3.10 presents a

set of tools to decompose bids making them suitable for any auction format, section 3.11

evaluates the decomposition tools introduced in the previous section and finally section

3.12 concludes the chapter with an outlook to future work.

3.2 Resource Properties

This section aims to identify the main properties of Grid resources for a correct bidding

language design.

1. Divisibility and Shareability: Grid resources are mainly continuous resources

39 3.2 Resource Properties

and are typically discretised in some dimension by dividing it into a set of indivisible

units. Processing capacity may be traded by dividing in time-units where each time-

unit is traded to a single consumer, or multiple consumers may be allowed to share

the capacity; the latter is more often the case of network bandwidth where different

flows are multiplexed, but with guarantees of requested bandwidth being satisfied

over a period of time. Hence division of continuous resources may occur both in time

and space. In this context, the consumers (buyers) and providers (sellers) should be

able to configure their offers and bids in a way that best suits them.

2. Single Items or Multiple Items: A single item refers to a resource that is traded

as one atomic item. However the notion of what an ’item’ is should be configurable

at the market. One seller may want to trade bundles of 4 CPUs for 4 hours, as one

indivisible set and another 2 CPUs. Secondly the notion of ’composite’ resources

are relevant in Grid settings: in a simple case, it does not make sense to trade CPU

and volatile memory as separate resources and in more complex cases, providers (or

aggregating resellers), may want to sell units of composite resources. For example,

aggregated processing, storage capacities, bundled with a set of applications and

middleware.

Chapter 3: Computational Resources 40

Figure 3.1: Divisibility of resources.

3. Single Unit or Multiple Unit: Markets may trade in single or multiple units of

an item. In the case of resource markets, it is more often the case where multiple

units of anonymous and indistinguishable items are traded, such as multiple units

of CPUs for multiple time-slots. Bidding support needs to provide a flexible and

compact way to represent the quantity preferences for both buyers and sellers.

4. Time Factor: Grid resources are leased. Consumers may have constraints on when

the resources are needed and the duration of allocation; similarly providers may

trade their resources only for specific times. Hence the bid (and offer) must be able

41 3.3 Matchmaking and description of resources

to specify the time ranges within which resources are required and their duration. A

typical bid that needs to be supported is that of a consumer that requires two CPUs

satisfying attribute description = CPU > 1 GHz, mem > 1GB, disk > 20GB for

10 time slots between 10:00 and 18:00 assuming that time-slots are defined to be of

30 minutes. Within single item auctions, the time-slot may also be considered as

the item.

5. Pricing: Linear pricing sets the same price for each item of resource; bundle pricing

sets the price for the entire bundle. Bundle pricing increases the complexity since

allocation must choose those bundles that maximize the objective function.

3.3 Matchmaking and description of resources

Trading resources based on the demand/supply of users is the main driver in the competi-

tive, economic market model: In the context of a Contributory Systems environment, VOs

willing to offer their resources are in competition with other VOs, and, of course, computa-

tional resource owners are in competition with Grid service providers: In a market-oriented

environment computational resources and services are made available through markets ini-

tiated either by resource providers, participants of the VO with idle resources, resource

consumers or third party entities (usually brokering agents within the VO). Markets are

initiated by means of resource orders that peers issue in a distributed manner. Such an

order can be either the request of a consumer, or an offer of a provider. Adopting such

a distributed market model, resource consumers and providers negotiate over resources

using auctions that run in markets. Given the distributed nature of market creation and

management, in order for an auction to take place, and thus resources to be allocated

to peers, markets must be understood by potential participants. Next section presents

an ontology (see description below) that represents types of resources being offered and

requested by peers, offers and requests that can be made by peers, types of markets where

orders are placed, as well as market related properties.

Chapter 3: Computational Resources 42

3.4 Ontologies for resource description

Computational resources are heterogeneous and geographically distributed with varying

availability and variety of usage for diverse users at different times. In order to enable

trade of these resources (computational resources, storage resources) between providers

and consumers, they need to be modelled using a formalism that allows their semantic

description, for their publishing, storing, and discovery. A semantic description is required

so as to provide flexibility to any descriptive language because described entities would

be related by their constituting properties. Besides, the required resource description

should support and ensure a common understanding (about resources availability, loca-

tion, performance, economic characteristics, etc.) among the trade participants as well as

the different services (such as resource advertising, retrieving, etc.) contributing to their

interoperability.

To enable participants in a trading to share a semantic description of grid resources via

a formal language an ontology-based approach seems to be suitable. An ontology [42] is a

formal explicit description of concepts in a domain of discourse (concepts), properties of

each concept describing various features and attributes of the concept (roles or properties),

and restrictions on slots (role restrictions). Ontology is used in order to:

• Share common understanding of the structure of information among people or soft-

ware agents.

• Enable reuse of domain knowledge.

• Make domain assumptions explicit.

• Separate domain knowledge from the operational knowledge.

• Analyse domain knowledge.

3.4.1 How ontologies meet our requirements?

The presented resources ontology aims at the description at an abstract level- of the traded

resources (physical resources, computational resources, etc.). This ontology has to sketch

43 3.4 Ontologies for resource description

out the principal classes and properties of the traded grid resources.

Resources are traded by applying economic models: They are traded as goods, in mar-

kets, based on the supply and demand law. An explicit and commonly agreed formal

description of resources and their exchange (trading) among information consumers and

resource providers is needed in highly distributed and heterogeneous Grid environments.

This shared description should support and ensure a common understanding (com-

munication of knowledge about resources availability and needs) of members (resource

consumers and providers) within a market.

3.4.2 Representation of traded resources

As already pointed, the representation concerns a) the types and characteristics of the

resources, b) properties/constraints related to the specific offers and requests, c) properties

of the markets to which the specific orders are placed.

Resources

The proposed ontology represents knowledge about the different types of resources avail-

able in a Ad-hoc Grid computing environment (also in a Grid environment). A resource

in the context of Grid computing may be defined as any passive entity required for im-

plementing functionality. Resources are entities that are offered by resource providers or

requested by resource consumers, and that are traded in e-markets initiated by consumers,

providers and third- parties. In addition to resources, applications or services may also be

needed to become available through markets: However we do not deal with services and

applications in this dissertation.

In the proposed approach we mainly deal with the representation of computational

and storage resources, since these are widely accepted as a first-priority when addressing

Grid resource markets. Resources, such as computational and storage resources are dealt

at a logical rather than at a physical level. This choice is driven by the fact that ordinary

Chapter 3: Computational Resources 44

Internet users are less concerned about the specific hardware properties of a resource and

more about the service rendered by the resource. Taking the example of hard (persis-

tent) storage, the technology used to implement the persistent storage (whether be Flash,

magnetic disks) and the controller technology (whether be SCSI, IDE) is irrelevant to the

user, since this is hidden by software which virtualises the underlying technologies and

provides a common higher level user interface to store and retrieve storage. The user is

nevertheless concerned about the quality, quantity, and performance of the hard disk (such

as throughput, error rates) which are commonly-agreed and widely-known metrics.

More specifically, the following holds for the representation of resources:

• Any Resource has a specific Identifier that is related to a specific Service via which

it is exposed to any (human or software) Agent.

• A Hardware Resource has a capacity property specifying its capacity with respect

to a specific unit of measurement.

• A resource is hosted by a Machine. A machine can host one or more resources, given

that they are all Atomic resources (they are not Composite or Aggregated resources,

as defined in the paragraphs that follow). Composite or aggregated resources can be

located in more than one machine.

• Resources are also described with respect to their location, depending on the location

of the machines they reside on.

• Resources have specific QoS properties, each property being measured by its corre-

sponding unit of measurement.

The distinction between aggregated and composite resources aims to distinguish be-

tween heterogeneous and homogeneous sets (bundles) of resources:

• A Composite Resource is a resource that comprises at least two heterogeneous re-

sources (e.g. a Compute Node comprises a CPU and a Hard Disk).

• An Aggregated Resource is a resource that comprises at least two homogeneous

resources (e.g. a Cluster comprises more than one Compute Nodes).

45 3.4 Ontologies for resource description

As already mentioned, currently we distinguish between two main types of resources:

computational and storage resources.

• A Computational Resource is a Composite Resource that comprises at least one

CPU, a volatile memory and an operating system. A Computational Resource can

reside on at least one machine (we can have two CPUs in different machines).

• A Storage Resource can be a Hard Disk or any other type of permanent storage.

A Storage Resource resides on a single machine. In case of representing a bundle

of Storage Resources, we introduce the class Storage Aggregated Resource. Differ-

ent Storage Resources that comprise a Storage Aggregated Resource may reside on

different machines.

However, not all the resources are tradable: For instance, one may not trade a CPU

or a Hard Disk, as such. Tradable resources include Compute Nodes and Clusters.

• A Compute Node is a type of Composite Resource that comprises exactly one Com-

putational Resource and any number of Storage Resources.

• A Cluster is an Aggregated Resource comprising a set of Compute Nodes.

Orders and Offers

As already mentioned, consumers and providers specify their needs for the trading of re-

sources by placing market orders: These are either consumers requests or providers offers.

A Request describes the resource needs of a consumer (quantity of requested resources

and time intervals of their allocation) and the price she is willing to pay for those resources

within a specific Market. An Offer specifies the exact resources (quantity of offered re-

sources) that a provider trades in specific time intervals and price: This is in contrast

to the specification of requested resources, where the consumers may request a class of

resources. Offers specify the exact individuals that providers sell.

Chapter 3: Computational Resources 46

In a Grid market, multiple, alternative orders of the same type (offers or requests) may

be connected using an XOR (exclusive OR) connective.

Bundle orders allow consumers and providers to indicate their needs for composite

resources. Although in several systems it could be adequate to use bundles of heteroge-

neous resources (i.e. Composite Resources) from different providers, this approach could

not be useful in terms of QoS. Thus in the proposed approach, a single bundle unit is

represented by a Compute Node entity as an atomic unit of resource allocation through

markets. A more complex bundle can specify a set of Compute Nodes satisfying certain

qualities, which are further explained below.

When consumers and providers have to allocate resources within a period of time,

their correspondent orders (requests/offers) need to allow the specification of time inter-

vals delimited by the order-end-time and the order-start-time specifications. Doing so,

consumers (providers, respectively) may specify a time range within which resources have

to be allocated. In addition, they may need to allocate resources for some time slots

(whose size is being explicitly specified) within this time interval. For the consumers, in

most of the situations, may be indifferent when the allocation takes place: They may only

require acquiring the resources before the given deadline.

Furthermore, the specification of offers and requests must provide flexibility to ex-

pressing conditions of trade. For example, a consumer may need to specify whether the

allocated resources come from the same provider or from different providers. Generally,

in case that a bundle of resources has to be allocated, the minimum or maximum number

of providers may be specified, together with the agent(s) by whom a particular order has

been issued (property ordered by). Also, the initial price of a traded resource (for offers

this is the minimum price and for requests this is the maximum price) is specified by the

property price-of-resource.

A snapshot of the taxonomy of the developed ontology can be seen at figure 3.2.

The ontology has been developed following a collaborative approach to the engineering of

47 3.4 Ontologies for resource description

ontologies [53].

Figure 3.2: The resources ontology

Chapter 3: Computational Resources 48

3.5 From semantics to a language

The semantic approach presented in the previous sections will be used along the rest of

the chapter as a semantic basis for the bid and offer specification. The specification is

motivated by the need to enable flexible bid and offer configuration in dynamic environ-

ments such as Contributory Systems. Concepts defined in the ontology will directly be

mapped to concepts in the bid and offer specification language introduced next. As already

stated, Grids are environments characterized by the heterogeneity and diversity of their

resources, applications, applications behaviours, dynamics and scale where not a single

auction is able to efficiently deal with such issues. Thus, recent research [5,15,66] propose

the cohabitation of multiple market mechanisms to mediate resource allocation in Grids.

In this chapter we deal with flexible bidding and offer configuration for open resource

marketplaces where multiple market mechanisms cohabit. In those environments buyer

agents need to be able to describe their preferences for resources that possibly are being

sold by different auction types. Furthermore, seller agents need to set their initial offers

to be traded by specific market mechanisms. On the one hand a desirable property for

bidding specification is that of a common bid/offer specification language that facilitates

bid/offer description independently of the market mechanism used to allocate the item.

On the other hand, the bidding specification may facilitate the winner determination prob-

lem resolution by providing an efficient organization of information.

Combinatorial auctions are efficient mechanism devised for the allocation of bundled

items that only require an efficient data structure to represent user’s preferences. In

contrast, single item auctions such as English or Double auctions; require specific item

descriptions since they are only able to trade in multiple units of one specific item. Given

a common bidding specification either for combinatorial auctions and single item auctions,

we recognize the need for a set of bidding support tools that facilitate the bidder task when

dealing with multiple market institutions.

49 3.6 A Formal Bidding Language

3.6 A Formal Bidding Language

The objective of our work is to develop a complete bidding specification that is supported

by any type of auction, that is, allow bidders to formulate bids able to be submitted to

any auction instance. The bidding specification should provide semantics to let bidders

formulate their preferences for Grid resources. Buyers and sellers preferences can be com-

plex requiring combinations of items subject to time and quantity preferences and other

requirements for full or partial satisfaction. All this requirements can also be constrained

by different clauses such as timing or workflow relations amongst sub-bids.

In the following section the descriptive language is presented, the language allows to

express bidder preferences for Grid resources independently of the type of auction. Later

in section 3.10.1 some tools to automatically adapt a bid to different types of market are

introduced.

3.7 Related Work on Bidding Languages

Bidding languages have focused on the compact specifications of bidder’s preferences in

mainly combinatorial auctions. This is also due to the fact that the optimization problem

(to generate the matching and winning bids) is NP-Complete and hence heuristics are

required to reduce the length of the problem by providing means to express compactly the

preferences. ”Logical Bidding Languages” rely on standard logical operators to represent

user’s preferences [67, 78]. OR bidding languages allow bidders to define non-overlapping

bids for a set of resources but not for substitute preferences. In these languages, bidders

may face a budget exposure problem1. XOR languages, allow bidders to express substi-

tute preferences but all bids from a bidder are mutually exclusive. When a bidder wants

any combination of items, he must explicitly bid on each combination, so the process is

not scalable since it requires the expression of an exponential number of combinations
1From an economic perspective, the exposure problem can lead to inefficient assignments in two different

ways. First, a bidder who decides to bid aggressively may acquire unwanted items. Second, a bidder who
decides not to take the risk may fail to acquire items for which it actually has the highest valued use. In
each case, the assignment is inefficient because items are not put to their best use.

Chapter 3: Computational Resources 50

for even a small number of items. OR* languages provide more expressiveness by means

of ”phantom variables” however such languages may not be clear to bidders on how to

express their requirements [39].

Hoos et al. [45] presents the LGB language that allows the combination of goods with

AND, OR and XOR operators. They also extended the language adding the clause k-of

that allows bidders to express willingness for some k items within a subset. LGB provides

complete expressiveness to bidders but requires the construction of entire trees to bidders

that may not know how to express their requirements. As far as we know the most recent

work on bidding languages is TBBL, a tree based bidding language for combinatorial ex-

changes [19]. TBBL allows double sided exchanges, that is, not only provides semantics for

the allocation of goods but also for the re-allocation. TBBL has been designed to be con-

cise and structured. It allows for specification of both bids and asks in a single structure,

and allows agents to specify upper and lower bounds on their values for trades. TBBL also

provides a compact way of representing bids in the tree. As our understanding, TBBL

trees will not be portable within different market structures. That is, given a formulated

bid, it requires a pre-process to adapt bidder’s preferences to specific market requirements.

The ClassAd language [74] can be considered a precursor of our work, their authors set

the need for generic and configurable bidding specification so as to enable the description

of heterogeneous resources in the Grid. ClassAd provides semantics to flexibly specify

resource requirements for both sellers and buyers, enabling also the specification of con-

straints. However, ClassAD is not a structured language based on logical operators. This

fact, does not constitute a limitation but makes the language less appropriate to express

complex bids.

3.8 A Tree Based Bidding Specification

Our envisioned bidding specification language represents bids in form of a tree where

internal nodes contain logical operators (OR, AND or XOR) and leaf-nodes contain spec-

51 3.8 A Tree Based Bidding Specification

ification of bidder’s requirements. The root node is always a XOR constraint and internal

nodes may contain any of those logical operators.

The use of logical operators is relevant for the bidding language because enables users’

to express complex requirements and the elicitation of different preference. XOR con-

straint allows bidders to express substitute preferences over resources. For example a

bidder may want access to either one CPU of 2GHZ during an hour or access to two CPUs

of 2GHz for half an hour each one. By means of OR operators bidders indicate their

willingness to accept partial satisfaction whilst AND operators indicate their requirement

for complete satisfaction. One key aspect of our bidding specification is that bids can be

expressed in a compact manner or in a complete manner. Figure 3.3 shows the same bids

expressed in both manners.

Figure 3.3: Compact vs detailed representation of a bid.

Chapter 3: Computational Resources 52

Code 1 Definition of a resource.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:include schemaLocation="./TradedItem.xsd"/>

<xs:complexType name="SimpleResourceType">

<xs:sequence>

<xs:element ref="TradedItem"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AggregateResourceType">

<xs:sequence>

<xs:element name="SimpleResource"

type="SimpleResourceType"/>

<xs:element name="quantity"

type="xs:nonNegativeInteger"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="CompositeResourceType">

<xs:sequence maxOccurs="unbounded">

<xs:element name="AggregateResource"

type="AggregateResourceType"/>

</xs:sequence>

</xs:complexType>

<xs:element name="Resources">

<xs:complexType>

<xs:choice>

<xs:element name="CompositeResource"

type="CompositeResourceType"/>

<xs:element name="AggregateResource"

type="AggregateResourceType"/>

<xs:element name="SimpleResource"

type="SimpleResourceType"/>

</xs:choice>

</xs:complexType>

</xs:element>

</xs:schema>

53 3.8 A Tree Based Bidding Specification

Figure 3.4: Tree representation of the example bid.

Chapter 3: Computational Resources 54

3.8.1 Leaf-Node Specification

Leaf-nodes are used to capture the resource specification. One requirement of the bidding

specification is that of support to both seller’s preferences and user’s preferences, that is,

the same specification would be used to formulate bids and asks. A leaf node is composed

of four different items.

Resources: Three notions for resource specification have been introduced following the

semantic approach provided by the ontology, i.e. composite resources, aggregate

resources and simple resources. A simple resource represents one unit of a type

of resource, termed item. An aggregate resource represents multiple units of sim-

ple resources whilst a composite resource represents a bundle of different resource

types. These concepts provide flexibility to the market initiators so that they can

easily decide which the product that they will offer in the market is. Furthermore,

aggregated resources may be conjunctive, that is, the traded item is an atomic ag-

gregation of multiple units of a basic resource that may be allocated entirely. In

contrast disjunctive aggregated resources only require a subset to be allocated. This

differentiation addresses the AND and OR notions introduced before as well. For ex-

ample, a compute node is a composite resource (CPU + Storage) and four compute

nodes are described as a conjunctive or disjunctive aggregated resource depending

on the type of satisfaction required. A code sniped of the resource specification can

be seen in Code 1 Figure. A simple resource may be either storage or CPU each one

characterized by its properties which can be seen in Code 2 Figure.

Lease: A lease is defined by the start time, the end time, the number of required slots

within the time interval and the size of the time slot. Note that leases may be precise

in the sense that the bidder requires the same number of slots as the interval has.

However, the lease may be imprecise, requiring a minor number of slots than the

time interval has.

Price: Price is defined by the amount of some currency that the user is willing to pay for

the resource description and the specified lease time.

55 3.8 A Tree Based Bidding Specification

Constraints: In addition, bidders may add some constraints to the bid like some impre-

cise quantity requirements. In our bidding specification ”at least” and ”at most”

clauses are allowed so as to enable bidders to imprecisely specify upper or lower

bounds in their requirements. Next section discusses other workflow related con-

straints.

Code 2 Definition of an item.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="TradedItem">

<xs:complexType>
<xs:choice>

<xs:element ref="ResourceID"/>
<xs:element ref="ResourceType"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="ResourceID" type="xs:nonNegativeInteger"/>
<xs:element name="ResourceType">

<xs:complexType>
<xs:choice>

<xs:group ref="Storage"/>
<xs:group ref="CPU"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:group name="Storage">

<xs:sequence>
<xs:element ref="Size"/>
<xs:element ref="Throughput"/>

</xs:sequence>
</xs:group>
...
<xs:group name="CPU">

<xs:sequence>
<xs:element ref="Memory"/>
<xs:element ref="ClockSpeed"/>
<xs:element ref="FLOPS"/>

</xs:sequence>
</xs:group>
<xs:element name="Memory">

<xs:complexType>
...

</xs:complexType>
</xs:element>

...
</xs:schema>

3.8.2 Implementation

The bidding language is specified as an XML encoded schema that represents the resources

required(offered) by buyers(sellers) and the preferences. A bid can be looked upon as a

tree where the non-leaf nodes represent operators such as AND, XOR, OR, and the leaf

nodes specify the exact item (resource) description. An item specified at the leaf node

Chapter 3: Computational Resources 56

should correspond to a resource item traded at the market or as mentioned before be an

imprecise item description.

In the XML schema we refer to the non-leaf nodes as NonPrimitiveBids and the leaf

nodes as PrimitiveBids. The leaf node includes attributes to indicate the desired quantity

of the item, the leasing attributes (start time, end time, duration of time slot, and number

of required time slots (for imprecise bids)) and the price. The item may be either a simple

resource, a composite resource, or an aggregated resource. Each resource is of one type

(CPU, Storage,...) that encapsulates the main attributes of that type of resource. Non-

primitive nodes represent the relation between its children nodes, i.e., XOR, AND, OR.

Figure 2 and Code 3 present a example bid for one of two configurations of resources to

be used for a specified period of time (3 hours from 12:00 to 15:00). The example bid

expresses that the buyer requires one of the following: one CPU of 400 FLOPS, 2 CPUs

of 300 FLOPS, or one CPU of 600 FLOPS.

Code 3 Textual representation of an example bid

B=(B1 XOR B2)

B1=(B3 AND B4)

B2=(B3 AND B5)

B3: 1CPU(1GB, 1GHZ, 400FLOPS) FROM 12:00

TO 15:00 FOR 1 TIMESLOT WHERE A

TIMESLOT = 1HOUR. I will pay 15.

B4: 2CPU(1GB,2GHZ,300FLOPS); STORAGE(20GB)

FROM 12:00 TO 15:00 FOR 1 TIMESLOT

WHERE A TIMESLOT = 1HOUR. I will pay 20.

B5: 1CPU(2GB, 2GHZ, 600FLOPS); 2 STORAGE(10GB)

FROM 12:00 TO 15:00 FOR 1 TIMESLOT

WHERE A TIMESLOT = 1HOUR. I will pay 30.

3.9 Workflow specification

In some situations a bidder may want to express relations within its bid requirements.

In our schema we defined a set of relations amongst bids to allow such type of workflow

57 3.10 Support for multiple auction formats

specification. Six clauses have been defined:

R <enables> X this clause is used to specify the willingness to get X only if R can be

obtained. However does not ensure that getting R, X will be obtained. In any case,

the allocation of R is independent of getting X.

R <not after> X Used to specify precedence in time of some requirements. Time

ranges from R and X should overlap but this constraint will ensure that R will

be allocated before X. However if X is allocated and not R, the clause does no affect.

R <not before> X Contrarily to the previous case, used to express precedence of X to

R.

R <only if> X In this case, R will be allocated only if X is allocated. This clause only

has effect when R is allocated requiring to wait to know the allocation of X.

<at Least> Q of T in R, MAX A quantity Q of an attribute T of a resource R is

at least required. This sets a lower bound for that attribute. The constraint also

requires to specify a maximum quantity.

<at Most> Q from T in R A quantity Q of an attribute T of a resource R is at most

required, This sets an upper bound for that attribute. At most indicates partial

satisfaction and can also be expressed as an OR collection of requirements.

3.10 Support for multiple auction formats

Generally bidding languages have been developed to support one type of auction, that

is, they organize bids in data structures that facilitate the WDP (Winner Determination

Problem) resolution for a specific auction setting. One of our intentions was to provide

multi-auction bidding support able to hold up multiple types of auctions (from single

sided auctions to combinatorial auctions). However, this does not of course imply that

every market should support the complete bidding specification but only a subset of the

language. For example, a market employing an auction mechanism that cannot guarantee

complete allocation of a request will not accept AND operators in the bid tree.

Chapter 3: Computational Resources 58

Combinatorial Double Auction Iterative

Item Bundle and single Single Single

Units Multiple Single* Single

Time Multiple Single* Single*

Table 3.1: Requirements for the WDP.

Table 1 presents the characteristics of the items able to be traded by different auction

mechanisms. Some auction models, in particular combinatorial auction models resolved

using mixed or integer programming techniques allow specifications of constraints. Thus

bidders can issue requests such as requiring bundles of items for 2 continuous hours of com-

putational capacity between 12:00 and 19:00. Such requests may nevertheless be imprecise

in other auction formats like iterative auctions and DA that neither allow the trading of

multiple time slots as individual units nor imprecision in bid time ranges. They contrarily,

require selling items as a whole and for precise periods. Thus, multiple time slots need to

be allocated by multiple auctions.

Therefore, the bidding specification presented in section 5 can be directly used to rep-

resent bids for combinatorial auctions because the WDP is able to handle imprecise bids.

In contrast, DA and iterative auctions require multi-item bids to be pre-processed into

single item bids as defined by the auction setting.

3.10.1 Bid decomposition

In the later section the need for pre-processing multi-item bids into single-item bids has

been identified. Pre-processing may be looked upon as an internal process that returns

semantically equivalent bids but able to be handled by a specific allocation mechanism.

There is the need to point out that a given market (instance) regulates the operators

that may be present at non-leaf nodes. For example, a market employing an auction that
1*The clearing process requires items to be single

59 3.10 Support for multiple auction formats

cannot guarantee the complete allocation of the request will not accept the AND operator.

The following example will be used to illustrate the different possibilities of decompo-

sition:

Let’s consider an auction that is trading one CPU of 400 FLOPS for the time range

compressed within 9:00 and 19:00 where each time slot is 1 hour of duration.

The bids that users are able to formulate are of the following types:

1. Exact preference in quantity and time: A bid B3 requires one CPU of 400

FLOPS for 3 hours from 12:00 to 15:00, that is, the bidder is asking for a precise

time range. Case 1 of figure 3.5a shows the compact bid representation, that is the

way user formulates the bid. Note that for this example bid partial satisfaction is

required (OR constraint). Case 2, presents the same case when complete satisfaction

is required (AND constraint). Figure 3.5b represents the same bid but showing it

fully pre-processed. Figures will present either compact and full decomposition trees

except for the cases where the size of the full decomposition prevents from a clear

understanding.

Chapter 3: Computational Resources 60

(a) Compact representation

(b) Detailed representation

Figure 3.5: Exact preferences in quantity and time.

2. Exact preference in quantity but not in time:

(a) Require time to be consecutive: A bid B4 requires one CPU of 400

FLOPS for 3 consecutive hours within 11:00 and 16:00. This case re-

quires the formulation of one XOR bid with (number of available slots −

61 3.10 Support for multiple auction formats

number of required slots + 1) AND (OR for the case of partial satisfaction

bids) sibling bids each one with 3 precise leaf nodes. Case 1 of Figure 3.6a

shows the bid formulated by the bidder for the case when partial satisfaction

is required. Case 2, presents the same case when full satisfaction is required.

Figure 3.6b presents the tree completely pre-processed for the case of partial

satisfaction.

(b) Do not require time to be consecutive: A bid B5 requires one CPU of

400 FLOPS for 3 any hours within 11:00 and 16:00. This case requires to pre-

process the bid into a tree with κ = Cmn leaf nodes. Due to its size a figure

is not provided, however the case is very similar to the one presented in figure

3.6. Indeed, the compact representation is the same as the figure 3.6a.

Chapter 3: Computational Resources 62

(a) Compact representation

(b) Detailed representation (only for the partial satisfaction case)

Figure 3.6: Exact preferences in quantity but not in time constrained to be consecu-

tive

63 3.10 Support for multiple auction formats

Figure 3.7: Exact preferences in quantity but not in time. Time is not constrained

to be consecutive.

3. Neither exact preference in quantity nor in time:

(a) Require time to be consecutive:

i. By excess: A bid B6 requires one CPU of 400 FLOPS at least for 2

consecutive hours within 11:00 and 16:00. In this case, the auction provides

complete satisfaction (the auction only accept AND operators), otherwise

does not make sense the mandatory ’at least’. The decomposition needs to

generate a bid tree of XOR(root node) and AND due to impreciseness in

time (multiple possibilities). The maximum bound on number of time-slots

must be set by bidder. Due to the size of the decomposition, the figure 3.7

only show the decomposition of non-leaf nodes whereas leaf nodes are kept

in a compact representation. For the example, the bids are decomposed

into precise bids for 2 time slots, 3 time slots and 4 time slots (bound set

by the bidder). The complete decomposition (including leaf nodes) would

be similar to the decomposition showed in figure 3.6b.

Chapter 3: Computational Resources 64

Figure 3.8: Neither exact preference in quantity nor in time. Each leaf node is split

in: (number of available slots − number of required slots + 1) bids.

ii. By default: A bid B7 requires one CPU of 400 FLOPS at most for 2

consecutive hours within 11:00 and 16:00. This case is simpler and similar

to the case illustrated in Case 1 of figure 3.5. Notice that the require-

ment ’at most’ indicates partial satisfaction which is expressed with an OR

constraint.

(b) Do not require time to be consecutive:

i. By excess: A bid B7 requires one CPU of 400 FLOPS for at least 2 any

hours within 11:00 and 16:00. The case is similar to the one illustrated at

figure 3.8. Though, the number of leaf nodes increases, in fact, the possible

combinations are κ = Cmn where m represents the number of requested

time slots and n represents the total number of available time slots. The

decomposition problem here requires to generate an exponential number of

bids, however the bidding language allows bidders to represent their specific

willingness for dis-contiguous time slots by means of AND operators and

not only expressing an ”at least” condition.

ii. By default: A bid B8 requires one CPU of 400 FLOPS for at most 2 any

hours within 11:00 and 16:00. This case needs to generate again κ = Cmn

65 3.11 Evaluation

leaf nodes. The tree will be represented as XOR node in the root, κ
n OR

nodes as siblings where each sibling has m leaf nodes. The case however,

should be simplified by the bidder requiring specific time slots constrained

by the OR operator.

3.10.2 Integration

The bid decomposition utilities have been developed as a BidManagement component

developed using the Fractal component model with Java language mapping that offers a

set of functionalities to decompose bids. The component approach facilitates the integra-

tion with any auction platform. Composition can be done by static specification through

the ADL (Architecture Description Language) that describes the system composition and

binding of sub-components. Alternatively, standard interfaces like Web Services can be

used by any other component to access the offered set of functionalities.

The decomposition functionality requires two parameters, the bid formulated by the

bidder using our bidding language and the description what an item is for an specific

auction setting. The output for the process is a bid tree semantically identical as the one

formulated by the bidder but following the structure required by the auction setting.

3.11 Evaluation

We aimed to evaluate the time required for the bidding support tools to decompose bids.

The cost of decomposition will be directly related to the size of bids and the required com-

binations of time slots. Our experiments were conducted in a 3Ghz pentium IV processor

with 512Mb of memory.

The aim of the evaluation was to determine whether the proposed bidding language

and the decomposition tools could be used in Grid marketplaces without introducing to

much overhead. It is clear that the amount of time taken to decompose complex bids

must not exceed the time that an auction takes to clear. While for scheduled auctions this

Chapter 3: Computational Resources 66

does not seem an important problem since they have their well defined phases (i.e. the

bidding phase is scheduled before the clearing phase) and consequently the time taken to

decompose bids can be considered by the administrator of the system. Continuous auc-

tions must not be hindered by the effects of bid decomposition. In that sense, we consider

that the entire process must not take times over the order of seconds.

In the experiment we generated a test XOR bid for one item requiring different number

of time slots. Namely we generated 24 different bids each one requiring a different amount

of time slots, from one to twenty four. We measured the time taken to decompose the bid

into an equivalent bid suitable for an auction selling different items. The auctions chosen

offered items for 24h but at different time slot granularity. That is, one auction offers any

time slot from 0h to 23h where the time slot has 1 hour of duration while another offers

any time slot from 0h to 23h where the time slot is of 3 hours of duration. Thus, we used

different time slot granularities as can be seen in figure 3.9.

Figure 3.9: Time taken to decompose imprecise bids into precise bids. Each line represents

a different bid requiring a different time slot granularity.

In figure 3.9, we can look at the line that represents those bids suitable for auctions

that offer items in slots of 1h. X-axis indicate the number of slots required by the bid,

while Y-axis shows the time in milliseconds taken for the computation. As it can be seen,

bids for either one, two or three time slots are decomposed with a time near zero. A bid

67 3.11 Evaluation

requiring 9 time slots which is expressed for example as 12:00 to 21:00 is decomposed in

9 bids of one 1h time slot each one in nearly 50ms. As expected we can see that as the

number of slots increases the time taken to decompose bids also increases.

Other lines show the cases when bids have to be decomposed in other than one hour-

sized time slots. For example the line that represents those bids that will be submitted

into markets that offer items of eight hours time slot granularity. In this case, decomposing

a bids for 16 time slots into two bids for 8 time slots each one will take approximately 50ms.

As the size of the time slot increases the time for computation is reduced since the

number of possible combinations is also reduced.

Figure 3.10: Time required to decompose bids requiring an interval of time. Each line

represents a different bid requiring a different time slot granularity.

Figure 3.10 shows the time taken to decompose imprecise bids into precise bids. Four

different types of imprecise bids were generated. Each one is defined for a time range

requiring at least a half, a third, a fourth or a fifth part of the required time range re-

spectively. That is, a bid within a time range compressed between 10:00 and 20:00 that

requires at least a half of the time slots will require at least 5 time slots. X-axis indicates

the interval for which the bid was submitted, the bid from the example above will have

an interval of 10 time slots.

Chapter 3: Computational Resources 68

As it can be seen in the figure 3.10, the wider the time range the greater the time

required to decompose bids. Besides, the higher the portion of the time range required

the higher the cost of computation. This seems to be incoherent with what decomposition

is doing since as smaller proportion within a time range more possible combinations ex-

ists. However each combination is of small size. This behaviour is attributed as the way

decomposition have been programmed. Particularly, the cost of calculation of all possible

combinations is not the relevant part but the creation of precise nodes. Possible combina-

tions are built by constructing a tree of pointers to the generated nodes avoiding to create

multiple copies of them. Thus, as more required nodes, higher is the cost to process them.

Other types of decomposition such as those that decompose bids in units can be com-

pared to the results of figure 3.9.

3.12 Conclusions

The chapter characterized Grid resources with the aim to provide a bidding language

able to be supported by multiple auctions without any modification. The contributions of

our presented work are twofold: Firstly, an expressive Grid oriented bidding specification

language developed as an XML schema. Secondly a set of functionalities that provide au-

tomatic bid pre-processing for the adaptation of bidders imprecise preferences to different

types of auction settings. The chapter presented an evaluation of these tools which intro-

duce a cost that does not take more than hundreds of milliseconds in the worst case. The

bidding language and support tools have been successfully used at the Grid4All project

for the resource allocation framework. We have learned several things from this work.

First, Grid resources are heterogeneous in nature which requires any bidding language to

be flexible and extensible. Second, bidding specification can be complemented with a set

of support tools to enable generalization of the language while keeping its precision and

flexibility. Support tools can be offered, like many others, as a replicated service of the

Grid. Thus, bidders may not be required to have a knowledge of the mechanism they

are using to obtain resources. The presented work improved current existing languages

69 3.12 Conclusions

by enabling transparent support for different auction formats while keeping a structured

representation of the information.

Chapter 3: Computational Resources 70

Chapter 4

Architectural Approaches for

Resource Allocation

4.1 Introduction

VOs are autonomous entities that are created to support services used by a community; a

key objective addressed is how to expand the computational capacity and attach comput-

ing resources when needed. Utility providers practice posted-price mechanisms, but this

does not address fluctuations in supply and demand. QoS based mechanisms are complex

to implement and require the consideration of multiple variables to become efficient in-

creasing the complexity of the system. In contrast, dynamic pricing market mechanisms

are able to adjust supply to demand through a single variable, i.e. price. In a possible

scenario, consumers, in that case virtual organisations, have requirements to execute jobs

or make use of certain quantity of resources. Providers, either commercial entities, Vir-

tual Organizations or individuals on the Internet specify times when their resources are

available. Market-place operators will use auction-based mechanisms to allocate jobs to

resources.

Economic models are widely used to allocate resources, but which model or mecha-

71

Chapter 4: Architectural Approaches for Resource Allocation 72

nism is the most appropriate for a particular situation is not clear. In open environments

applications may have diverse demand functions and resources are heterogeneous. Elastic

applications such as video transcoders adjust to variable resource quantities. These may

be satisfied through mechanisms such as k-double auctions. Data mining applications

may need both computational and storage resources; acquiring one without the other is

not acceptable. They have complementarity that may be handled only by combinatorial

auctions. Some applications may also be able to make trade-off in different dimensions,

for example sacrifice memory for CPU or vice-versa. This requires auction formats that

interact with trading agents and progressively elicit preferences and in particular for sub-

stitute resources.

Closed and controlled Grid environments may be best supported by centralized and

persistent markets that clear and compute the optimal allocations either continuously or

as scheduled events. Open environments such as Contributory Systems need to handle

spontaneous creation of markets on-demand, where the creators (could be buyers, sellers,

mediating brokers) choose market models and structures that best suit their needs. Vir-

tual organizations running real-time applications that (de)allocate resources on-demand,

through for example, continuous monitoring of load, may require a market structure that

clears continuously. Applications that plan their resource needs may best be satisfied by

markets that schedule their clearing. Network sensitive virtual organisations may have

preferences to maintain locality in resource allocation. A natural way is to start a market

that restricts the participating sellers to those whose resources satisfy proximity con-

straints.

This chapter addresses the main aspects to be considered for the design of an archi-

tecture to mediate the resource allocation in Contributory Systems. A set of properties

have been identified that have to be considered when designing such an architecture. Sec-

ond, the chapter proposes a peer-to-peer architecture to handle allocation of resources

amongst Virtual Organizations attaining the identified properties. Specific resource al-

location will be managed by auctions. Auction mechanisms will be handled by generic

73 4.2 Requirements

components that offer the main functionalities to support different auction institutions.

Support for multiple market mechanisms is required so as to support diversity of supply

and demand which is one of the main characteristics of Contributory Systems. In those

systems, Virtual Organizations with different aims may want to expand their capacities

through bidding on markets, as they are different organizations with different purposes,

their needs are not the same so they won’t require neither the same type of resources nor

the same type of allocation. As a result, a single market mechanism may not be useful

but several different market institutions may be required. This fact motivates the built of

a generic auction container able to be configured and deployed according to initiator needs.

4.2 Requirements

Based on the motivation presented in the introduction of this Chapter, a set of require-

ments for a configurable resource allocation framework are derived. Some requirements

are addressed by architectural choices while others by technological choices. This require-

ments have been identified taking into account the main characteristics of the addressed

scenario. As a remainder, Contributory Systems are heterogeneous and dynamic systems

where resources are provided by their participants in favour of the community. Hetero-

geneity and dynamism require flexibility and configurability of the system so as to support

the wide range of possibilities. Derived from that, the following set of requirements have

been identified:

• Generic Infrastructure: Applications in Grid are heterogeneous, a single market

mechanism will not provide efficient allocations for every possible scenario. A generic

framework will set the basis to support multiple market mechanisms. It can be

obtained by means of a structured design, separation of concerns and generic APIs.

• Scalability: The framework should not limit the scalability of the system. Decen-

tralization and distribution should be considered basis for the design.

• Dynamicity: Due to the nature of Grid, ever running and ever changing, the

Chapter 4: Architectural Approaches for Resource Allocation 74

framework should allow dynamic deployment and configuration.

• Open architecture: Grids are continuous evolving systems. An open architecture

that can be extended and upgraded is mandatory for a long-living market place.

• Standardization and Interoperability: The use of flexible standards and inter-

operable interfaces to facilitate interaction with external infrastructure services is

also required.

• Decentralization and self-organization: In case of connections, disconnections

and failures, the system should keep functioning (it shouldn’t have a single point of

failure) and should reorganize without requiring any external intervention, getting

to a consistent state as soon as the available resources and VO stability allow it.

• Individual autonomy: The VO’s members should be free to decide which ac-

tions to carry out, what resources and services to provide, and when to connect or

disconnect.

• Market availability: Market services should always be available (if needed) as long

as there are enough resources to execute them in the VO.

• Location transparency: Market services don’t have to worry about other market

service’s location. The system resolves them transparently, and services access each

other using a location-independent identifier.

4.3 Dynamic Market Deployment for Decentralized

Resource Allocation

In this section we present DyMRA1, a decentralized resource allocation system based on

markets that allows inter-VO resource allocation. DyMRA is specially designed for dy-

namic and peer-to-peer environments, where the autonomy of participants to disconnect

resources at any time and its decentralized nature requires the capacity to dynamically
1Dynamic Market Deployment for Decentralized Resource Allocation

75 4.3 Dynamic Market Deployment for Decentralized Resource Allocation

reallocate resources and services that manage the overall system.

DyMRA markets are created at will and run as services within the VO. The choice of a

decentralized markets approach in the form of many local ad hoc markets is motivated by

the need to deal with dynamic communities and scalability issues that would be limited

by a centralized approach.

4.3.1 Scenario

The scenario presents three different VOs A, B and C that provide general purpose func-

tionalities such as a file sharing services and communication services to their members.

VO A is an online gaming community where few members contribute regularly their com-

putational resources to the community; instead members pay a subscription fee to obtain

the services. B is a scientific community and its purpose is the sharing of knowledge and

technical documents amongst its members; generally its members contribute with their

resources to the community. Finally, VO C is a photo sharing community where members

usually contribute with their resources.

This work focuses on the allocation of resources provided by Virtual Organizations to

other Virtual Organizations and fits perfectly in this scenario. It is assumed that VOs

provide management logic to control the resources within the community.

External allocations may be needed due to spontaneous load surges or when resources

cannot be provided by the VO. At a time, the VO A may require more resources than

available to match the required quality of service. A VO monitoring service will trigger

the buyer service (termed Prospector) to allocate the needed resources. The Prospector

searches for markets that trade in the required resources and places a bid on them. Mar-

kets are services exposed by VOs that aim to trade in some of their resources. Seller agents

(from B or C VOs for example) are triggered to sell resources when the monitoring service

determines a surplus of resources within the VO according to some VO policies. Sellers

create or place a bid on Markets depending on the suitability of the Market to trade in

Chapter 4: Architectural Approaches for Resource Allocation 76

their resources. When a DyMRA component fails or is disconnected due to the inherent

dynamism of VO members (i.e. someone switches off her computer) automatically and

transparently to participants the service is reallocated to another suitable node within

the VO. After the market clears and winning Seller services and Prospector services are

notified, the resources are added to the Pool of external resources of the buying community.

DyMRA addresses this kind of scenarios by providing services to automatically allo-

cate external resources into a VO. The main contributions of DyMRA are twofold; first,

the components of DyMRA are deployed as services inside a VO and can, hence, be real-

located when its current location fails or disconnects, keeping the functionality available.

The functionalities provided by DyMRA have been specially designed to enable the inter-

VO resource allocation. That is, accounting services to monitor the amount of resources

available and used within the VO, seller services to offer idle resources to third party

VOs, buyer agent services to strategically bid in markets so as to obtain resources. Pool

services to aggregate resources in a VO and many other required aspects related to the

management and allocation of resources to attain the desired objective. Second, DyMRA

proposes to distribute markets amongst virtual organizations, that is, enabling each VOs

either to create a market as a service executed within the resources of the VO or to use an

existing market running in the domain of another VO. Markets will be created on demand

and following different strategies depending on the objectives of the VO. In this thesis

strategies of buyer agents and seller agents have been considered out of the scope of the

research due to the extension of the topic by itself, however it has been considered a next

step and future work. On demand market creation places places our approach in a design

space between a decentralized and a centralized architecture, which responds better to the

dynamism of the targeted environment.

4.3.2 Architecture

The architecture of DyMRA consists of a series of components which are in charge of the

trading process. These components are:

77 4.3 Dynamic Market Deployment for Decentralized Resource Allocation

• Prospector: when external resources are needed, it is in charge of finding a suitable

market and obtaining the desired resources.

• Seller: it is in charge of offering the aggregated surplus resources of the VO in a

suitable market.

• Pool service: it controls the access of the VO members to the external resources

acquired by the VO, acting as a mediator.

• Sale Handler: it controls the external access to a set of resources sold to another

VO, acting as a mediator.

• Accounting service: it monitors the resources available in a VO. Following a policy

determined by the VO, it starts the acquisition of external resources or the cession

of own resources to other VOs when convenient.

• Market: it mediates the trading of resources between VOs.

• Market Directory: Contains an index of existing markets and their locations.

The system is built upon a middleware called LaCOLLA [61] which allows a small

group of computers connected through Internet to participate in collaborative activities

and sharing their resources (i.e. provides virtualisation of resources), while tolerating high

levels of dynamism. This middleware also allows the deployment of services within a VO

(or group) [56]. When a service is deployed, the system guarantees that it will always

be available, placing it in a suitable location chosen among the resources of the VO, and

re-instantiating it in case of failure.

The components of DyMRA are deployed as services inside a VO (except the Market

Directory), and can, hence, be reallocated when its current location fails or disconnects,

keeping the functionality available. The communication between VOs is done through

markets, which are also services, existing in a specific VO. To access a market, it must be

discovered through the Market Directory (MD). Markets contact the MD to publish their

location and characteristics, and the MD keeps them as a soft state. In case a market

Chapter 4: Architectural Approaches for Resource Allocation 78

ceases to exist, the MD will delete the information about it after its time-to-live (TTL)

expires. If a market is reallocated, it will inform the MD of its new location. Markets are

services running over LaCOLLA middleware so LaCOLLA acts as an overlay independent

of the physical nodes forming the VO. Churn - the continuous process of node arrival and

departure - may cause continuous reallocations of the services and make the system to

work inefficiently. To cope with that problem, services and its state are replicated through

the functionalities provided by the underlying overlay, i.e. LaCOLLA, keeping only one

replica active in order to reduce the amount of resources required to keep the market run-

ning. Once a market fails or disconnects another replica restores the state from LaCOLLA

repositories and becomes the active market.

The MD is not part of a VO, but an external service which is known and can be

accessed by all groups. Its implementation is out of the scope of this work, but there

are many possibilities. It could be a centralized index, but it could also be implemented

in a decentralized way if each VO deployed a ”MD node” service, and each one of these

services act as a node of a DHT, thus distributing the information stored among the VOs.

Anyway, this doesn’t affect the design of our architecture.

To help understand the functionality of each of the components presented and the

overall behavior of the system, we will explain in detail how the trade of resources is done

at the buyer VO and at the seller VO (shown at fig. 4.1), and how the posterior access

to the traded resources is managed (fig. 4.2).

4.3.3 Trading process

Buying resources

1a. The Accounting service detects that the resources of a certain type (e.g. storage)

available in the VO are below a certain threshold defined by the VO policy. Ac-

cording to a given policy, it determines the resources needed and other factors such

as the price that should be paid for them2. With this information, it contacts the
2The strategy taken to decide the price to bid for is out of the scope of our work, however is an

79 4.3 Dynamic Market Deployment for Decentralized Resource Allocation

Prospector and asks it to acquire such resources.

2a. The Prospector looks for a suitable market according to the requirements from the

accounting service in the Market Directory.

3a. The Market Directory sends the Prospector a list of markets which suit the specified

needs.

4a. The Prospector chooses one of the markets of the list. In case that there is no suitable

market, it proceeds to the creation of a new one. Once it has the adequate market

located, the Prospector sends its bid. A generic bid describes the type of resource to

bid for, the price per unit offered and the number of units required amongst others.

Selling resources

1b. The Accounting service detects that the resources of a certain type (e.g. storage)

available in the VO are above a certain threshold defined by the VO policy. According

to a given policy, it determines that these resources can be leased to another group,

and fixes the price that should be paid for them. With this information, it contacts

the Seller and asks it to sell the surplus resources.

2b. The Seller looks for a suitable market in the Market Directory.

3b. The Market Directory sends the Seller a list of markets which suit the specified needs.

4b. The Seller chooses one of the markets of the list. In case that there is no suitable

market, it proceeds to the creation of a new one. Once it has the adequate market

located, the Seller sends its offer.

Agreement

5. The market makes an agreement between the buyer and the seller. A scheduled double

auction is used to match winning bids and offers. The winners are selected by

calculating the price where supply balances demand and matching the highest buy

bids above the price with the lowest sell offers below the price. After this, it notifies

the sale to both the Prospector and the Seller.

important aspect that will have important effects to the behaviour of the system. This work is considered
a future line of research.

Chapter 4: Architectural Approaches for Resource Allocation 80

Figure 4.1: Interaction among components in the trading process.

6. The Seller starts a Sale Handler, which is deployed in its VO. This Sale Handler keeps

the information about the leasing conditions, and mediates the use of the resources

according to these conditions.

7. The Prospector informs the Pool service of its group about the resources bought and

the agreement conditions, as well as the location of the Seller of the resources.

When a Prospector or a Seller finds that there is no market available that suits its needs,

it proceeds to the creation of a new one. As stated before, the market is implemented

as a service. Hence, the component (Prospector or Seller) creates a new service in its

VO, which is a market with the desired characteristics. This market registers itself in the

Market Directory, and therefore can be accessed by buyers or sellers from outside the VO.

4.3.4 Accessing the resources

1. Whenever a client needs to use a resource, the system checks the VO policies to deter-

mine whether it must depend only on local resources or should use external resources.

In the case that external resources can be used, the client request is redirected to

81 4.3 Dynamic Market Deployment for Decentralized Resource Allocation

Figure 4.2: Interaction amongst components in the access process.

the Accounting service.

2. The Accounting service checks the resources currently available to the VO. Following

the VO’s policy, it determines what resources the client must use, whether these are

internal or external. In the former case, it tells the client which resource to use.

Otherwise, it tells him to contact the Pool service.

3. The client contacts the Pool service, as if it was a local resource.

4. The Pool service chooses which of the external resources available to the VO should

be used, and contacts its corresponding Seller. It sends the id of the sale it wants to

use.

5. The Seller tells the Pool service the location of the Sale Handler that manages the

specific agreement.

6. The Pool service contacts the Sale Handler, according to the conditions of the agree-

ment, which may include, for example, symmetric key cryptography. It basically

resends the request of the client.

7. The Sale Handler checks that the request of the Pool service does not violate the

conditions of the agreement. After this, it uses the resources of the VO to fulfil the

request of the Pool service.

Chapter 4: Architectural Approaches for Resource Allocation 82

As stated before, the services can change their locations due to failures or disconnec-

tions. This is not a problem inside a VO, as the system guarantees that clients, as well as

other services, can contact any active service. To access external resources, though, the

Pool must contact the Seller of another VO, whose location might have changed from the

moment when the agreement was made. This can be solved in more than one way. A so-

lution would be to use the Market Directory to store also the location of the Seller of each

VO. This information would be maintained in a soft state, just like the one about markets,

with the Sellers explicitly publishing their locations in the Directory. The Pool could then

contact the MD to get the current location of the Seller, in case it cannot reach it in its

previous location. This would solve the problem, but implies relying in an external entity

(even though, as seen before, the MD can be implemented cooperatively by the VOs). A

solution that only depends on the two VOs that need to communicate would be that both

the Pool and the Seller keep the location of those Sellers and Pools, respectively, they have

a deal with. In case one of these services is reallocated, it would notify all its ”business

partners” about its new location. Although it would be less probable, contact can still

be lost if both Pool and Seller are reallocated at the same time. To further diminish this

probability, these services could be replicated inside the VO. In the worst case, if all the

replicas of both services fail together and the Pool of one VO can’t contact the Seller of

the other VO, the deal is broken, and both VOs will have to go back to the market.

4.4 Markets in DyMRA

Until now the main protocols and components used to mediate the inter-VO resource al-

location have been presented. One of those components is the market. The market is a

component that implements certain algorithms and functionalities to enable bidding, win-

ner determination and settlement of agreements. Many of the current approaches such as

PeerMart, Tycoon, Bellagio, etc. implement a single market mechanism (i.e a continuous

double auction or a combinatorial auction) that make the approach restrictive in respect

to the kind of allocations it can provide. That is, participants can only obtain the type of

allocations that those specific markets can clear. For example a continuous double auction

83 4.5 Configurable Auction Server

can only provide partial satisfaction of user requirements. i.e. even the user requires an

specific set of resources such as a certain quantity of storage and a certain quantity of

FLOPS the double auction won’t ensure to obtain both at the same time.

For that reason a generic market component have been designed for DyMRA. The

market component has been termed Configurable Auction Server (CAS) that provides a

set of functionalities to control and configure the lifecycle of the market. The following

sections present the main aspects of design and implementation of CAS.

4.5 Configurable Auction Server

Previous sections depicted the architecture of DyMRA, a resource allocation framework

that provides functionalities to VO to access distributed markets through well defined

protocols. In this section we focus on the core of the market server. That is, the component

that holds the auction mechanism and provides specific properties to mange the lifecycle

of the auction.

Figure 4.3: CAS Architecture.

Chapter 4: Architectural Approaches for Resource Allocation 84

4.5.1 Auction Server

We describe the Fractal [12] based Configurable Auction Server (CAS). An auction is a

process that implements rules that govern registration, trading, determination of winners

and prices. Based on established taxonomies [85], we propose an abstract approach to

define components encapsulating such rules. Components can be combined to design

markets that implement the rules governing a specific auction structure. A coherent set of

components implementing a specific mechanism is described using the Fractal Architecture

Description Language (see Figure 4.4 for a fractal component example).

Figure 4.4: Fractal component example. Image from the ObjectWeb open source middle-

ware at http://jotm.objectweb.org/jironde.htm.

This approach addresses:

• Configurability and administration: Market initiators can configure markets follow-

ing their requirements, both at deployment and at run-time. Structural configura-

bility such as addition/removal of components and modifying component intercon-

nections and behavioural configurability such as attribute value setting and lifecylce

85 4.5 Configurable Auction Server

modification is facilitated by Fractal.

• Reuse and extensions: Component based approach address re-usability and exten-

sibility. The Configurable Auction Server facilitates rapid prototyping of complete

new auction mechanisms or specific rules in an implemented mechanism. It separates

generic system functionalities from trading specific functionalities.

• Deployment: Operating market-places with on-demand creation of auctions require

powerful deployment mechanisms. The Architecture Description Language (ADL)

and deployment tools from Fractal reduce the administration complexity (installa-

tion, configuration, tuning).

Chapter 4: Architectural Approaches for Resource Allocation 86

Figure 4.5: Component diagram of the Configurable Auction Server.

4.5.2 Architecture

The Configurable Auction Server (CAS) relies on the basic middleware services described

in previous sections to provide abstractions and hide the heterogeneity and distribution

of the underlying fabric [57,60] (DyMRA and LaCOLLA in our implementation). It pro-

vides the market specific functionalities that enable the execution of auction mechanisms

and the management and configuration of the lifecycle of the market. The CAS is, as

state before, deployed as a service over LaCOLLA middleware and acts as a component

of DyMRA.

87 4.5 Configurable Auction Server

In CAS, each component has a specified role within the framework (the market compo-

nent), that is, corresponds to a market specific functionality such as the pricing algorithm

or a generic system service such as authorization. The overall architecture is captured as a

consistent combination of a subset of these basic independent components. It is obtained

by assembling different components and binding their interfaces.

As can be seen in figure 4.5 the main components of the CAS are:

Market Server is the main container of auction and market functionalities. It governs

the lifecycle of the market.

Auction Component is a composite component that implements the auction process

and is composed of:

• The Bid Management that encapsulates bidding rules. Incoming bids are vali-

dated for conformance and either stored in waiting for clearance or dispatched

to the clearing component. This composite offers interfaces that allow pre-

processing of incoming bids to match the specific trading conditions of the

market.

• Winner Determination component clears the auction. It is triggered by the

Auction activity controller and matches the bids and offers stored by the Bid

Management component.

• Pricing Component provides encapsulation for any specific pricing policy and

determines final transaction prices.

• Auction Control component manages the lifecycle and maintains the state of

the Auction component. It manages its functional sub-components and handles

events.

TradeInfo Component encapsulates description of traded items and is configured at

creation time. It’s query interface informs participants of what is traded. Initiators

configure the items to be traded at the market. The TradingIf is bound to this

component in order to provide functionalities to query the resources offered by the

market.

Chapter 4: Architectural Approaches for Resource Allocation 88

Registration Manager register authorized users.

Feedback Component interfaces allow participants to listen to market events such as

current prices, termination, start of new round and final agreements.

Agreement Manager handles agreements and mediates the settlement phase.

Components are assembled to form markets. Specific rules e.g. a new pricing policy

can be added to the platform by specializing the relevant component without perturbing

the rest of the architecture.

Figure 4.6: State diagram of the market server.

4.5.3 Workflow and Control

The independent components need to be controlled and orchestrated during the life-time of

the auction. Auction activities are in general triggered by events such as timers and method

calls. The CAS is designed as an asynchronous event-based framework to co-ordinate the

89 4.5 Configurable Auction Server

activity of the participating components. Components are organized in a tree-like hierar-

chy with a manager associated at each node in the hierarchy. The auction server has a set

of global states inherited by all its sub-components and each sub-component may have its

private sub-states. Managers at each level trigger transition from states and implement

synchronization points.

We have identified two generic workflows to support a wide range of auction mecha-

nisms. The single shot market workflow and the iterative market workflow. The choice

has been taken after an analysis of market mechanisms such as English Auctions, Vick-

rey Auctions, Dutch Auctions, Double Auctions and Combinatorial Auctions. For those

institutions single shot and iterative forms exist. Single shot markets are those that after

a bidding phase the market clears and the auction terminates. In iterative markets in

contrast, bids can be re-submitted after a clearing following certain rules. Termination is

triggered by different rules. Single shot market workflow implements the states depicted

in figure 4.7. As can be seen, the market can only move to closing state after the clearing

has been done. Iterative markets in contrast can start a new bidding phase after the

clearing ends. Workflows can be added programmatically as managers implementing the

main APIs provided by the CAS.

Functional behaviour

CAS has two type of components: passive and active. Primitive components are typically

passive, they mainly respond to method invocations. Active components have their own

thread and active composite components control the lifecycle of their children. Such man-

agers also maintain timers for their sub-components. Timers are configured by auction

initiators as part of the initialization phase. At the root-level, the CAS is managed by

the MarketServer component (see figure 4.5), that controls the Auction composite, the

RegistrationManager, the AgreementManager, the TradeInfo component and the Feed-

backManager. The AuctionManager, i.e. the controller of the Auction composite manage

the states of its sub-components. State transitions for the Auction component can be seen

in figure 4.7 either when timers expire or when controlled components end some action.

Chapter 4: Architectural Approaches for Resource Allocation 90

Passive components are controlled by their parent manager and implement the methods

of the management interface.

4.5.4 K-DA Mechanism

The K-pricing based double auction is a simple yet powerful mechanism to trade multiple

units of single items; an item could be CPU or Storage. This section describes how the

implementation of this mechanism fits into the previously described architecture and the

specific extensions to this well known mechanism to trade time-differentiated resources

that will be presented in the following chapter. As it will be seen, the k-DA mechanism

is extended to lease computational resources at distinct times in units called time-slots.

It provides tools to decompose bids with imprecise time-specifications and adjusts the

demand across the different time-slots. Besides, we developed one algorithm3 to clear

multi-unit k-double auctions when bidders formulate substitute bids and complementary

bids. Bids will be organized in lanes, where each lane is responsible for one type of item.

In our case, the time-slot number distinguishes one item from another. For each lane, the

clearing algorithm will determine the winners for that lane. The main issues to be tackled

are:

• Order of clearance of lanes. Lane ordering is irrelevant in the case where there are

no substitutes, i.e., every user precisely specifies the required time-slot. XOR Bids

with substitute time-slots create dependencies between lanes. In this case the order

of clearing of lanes affects the overall efficiency.

• Remove constraint on co-location of lanes. Executing lanes on more than one phys-

ical machine may improve overall performance, i.e., reduce clearing time.
3Multi-Lane Double Auction (MLDA)

91 4.5 Configurable Auction Server

Figure 4.7: State diagram of the single shot auction.

4.5.5 Deployment, Configuration and Execution

The CAS is designed using Fractal and its architecture is described using the Architec-

ture Description Language. The ADL describes the architecture, i.e., the set of concrete

components and the binding between the components. Using ADL, we decouple the func-

tional program development from management tasks such as deployment and life-cycle

management. Besides, Fractal [12] enables dynamic binding and deployment of compo-

nents through lifecycle and binding controllers that can be accessed through the InitiatorIf

API offered by the CAS. Therefore, CAS can be configured statically by means of a set of

ADL configuration files but it also can be dynamically configured at runtime.

In the CAS several Fractal controllers were used in the design: The Attribute con-

troller is used for configuration of the market components, the Life-cycle controller to

hierarchically start/stop components, the Content controller to add/remove content to

Chapter 4: Architectural Approaches for Resource Allocation 92

the sub-components and the Binding controller to dynamically bind components.

ADLs are specified at programming time and are used to deploy market instances.

Run-time tools parse the declarative description of the architecture, deploy the applica-

tion components and establish their bindings. Components may be co-located on one

machine or distributed on multiple nodes without requiring modifications on the applica-

tion logic. Components interact as if they were local to each other even they are running

in different nodes. This functionality is transparently provided by Fractal. Dynamic bind-

ing of components also enable self-management; the auction server can be reconfigured

on events such as failures, increase in load. For instance, new lanes can be dynamically

instantiated based on monitoring of current load, where load is measured in number of

bids and asks.

Once deployed, the InitiatorInterface API is used to configure at run-time; timers, partic-

ipation constraints, bidding constraints and the traded items.

4.6 Implementation

This section describes the Java implementation of DyMRA and their market holders CAS.

The implemented prototype of the proposed architecture is composed of the Prospector,

Seller, Pool, SaleHandler and the Market components. They have been implemented as

deployable services over the LaCOLLA middleware. The Market itself have also been

developed as a composite Fractal component that exposes a generic API that allow dif-

ferent mechanisms to be implemented. The Market held two market mechanisms, namely

it implemented two variants of the double auction [10] protocol which enables buyers and

sellers to submit bids for multiple units of a single resource (i.e storage capacity, cpu ca-

pacity and applications).

The first variant was the k-DA mechanism which provides a specific implementation

of the BidCatalog component. In our case we developed an engine based on the four

heap algorithm described in [90]. This algorithm have been chosen because is one of the

93 4.6 Implementation

most used algorithm for the allocation of resources in computational environments. For

example, Tycoon [52], PeerMart [44] and the JASA framework [71] make use of it. The

FourHeapLaneEngine uses four heap data structures to maintain the winning bids and

winning asks respectively. The second variant is the Multi-Lane Double Auction that will

be presented in the next Chapter. In the MLDA the received bids are processed and

organized in multiple lanes, each corresponding to disjoint sets of time-slots. Each lane of

the MultiLaneBidCatalog is an auction engine.

Figure 4.8: Sub-components of the Auction composite component.

The MarketDirectory has been implemented as a centralized index, but, as mentioned

above, it can be easily substituted with a decentralized approach [17,41]. For our testing

purposes, the market directory stores pairs of < key, value > where the key identifies the

type of traded resource and the value refers to the identifier of the market where it is

traded in.

Chapter 4: Architectural Approaches for Resource Allocation 94

The objective of our test is to validate the trading process described above. One of

the main objectives of our proposal is to provide good availability in environments of high

dynamism and churn. Hence, availability has been the main focus of our tests. In the

context of our evaluation availability refers to the fact that when a buyer or a seller aims

to place a bid in a market, the market is active and can accept the bid. We want to prove

that markets can be reallocate transparently in the presence of failures and the realloca-

tion process can be considered to be transparent.

We expected reallocation times of the order of milliseconds depending on the avail-

able broadband. The time for reallocation depends merely on a set of messages exchange

amongst several components of the underlying middleware and the time taken for the

service to recover the state.

To corroborate our hypothesis we executed a process which periodically tried to buy

resources, and another that tried to sell resources. The necessary services (Prospector,

Pool, Seller) where active inside the VO, while there was a MarketDirectory available in

a static location. Markets, though, according to our proposal, are created on demand.

When a Prospector or a Seller wants to access a Market, but there isn’t any available, it

proceeds to create and activate one. When this happens, it is counted in our tests as a

failed attempt. For simplicity, Markets have been assigned a limited lifespan, after which

they resolve the auction and send the results to the clients. This implies that, periodically,

a Prospector or a Seller will have to create a Market, thus decreasing the perceived avail-

ability. Markets could also be permanently active, which would increase the availability

of the system. There is, though, a trade off between the obtained availability and the

resources spent to keep the market active.

The LaCOLLA middleware offers the ability to simulate users’ activity and system

dynamism (connections, disconnections, failures) in order to conduct tests and validate

its functioning. We measured the availability of markets in function of the levels of dy-

namism of the system. Specifically, we evaluated two different levels of dynamism. In

95 4.6 Implementation

the less dynamic (from now on, called G1) each component had a probability of failure

per iteration of 0,0005 which corresponds to 1,8 failures per hour, and a probability of

ordered disconnection of 0,0025 that corresponds to 9 disconnections per hour. In the

more dynamic of the two (G2), the probability of failure per iteration was 0,005 (9 failures

per hour), while the probability of disconnection was 0,008 (28,8 disconnections per hour).

Tests lasted 500 iterations. This parameters were chosen according to the experiments re-

alized in LaCOLLA [60] to validate their functioning. In LaCOLLA different groups were

characterized and the system validated according to the behaviour of different groups of

participants. DyMRA have been designed to expand group capacity through the allocation

of resources provided by other groups. These groups are formed of user’s collaborating to

achieve a common objective as in the case of LaCOLLA and consequently we considered

that they can be characterized according to the experiments in LaCOLLA.

The data we analyse is the number of bids that arrive to the market, in relation to

the number of bids issued by the group because this metric represents the times that the

market have been available. This depends exclusively of the mechanisms of our system,

in contrast to the number of matches, which depends on supply and demand. Note once

again that this number decreases because markets have a limited lifespan and are created

on demand, which results in a failed access when a market must be created. That doesn’t

mean that, in a real situation, the bid cannot be issued, only that it will have a bigger

delay.

Fig. 4.9 shows the availability (percentage of successfully issued bids) obtained in 20

executions, for both G1 and G2. We see that, as expected, the availability is higher in

G1, decreasing in G2 because of the higher level of dynamism.

Figures 4.10 and 4.11 show the cumulative distribution function for both G1 and

G2. For G1, 50% of the executions obtain an availability of 70% or higher, which must be

considered noting that markets are activated on demand, and we count it as unavailable

when activation is needed. For G2, availability is low because of the high level of dynamism.

Chapter 4: Architectural Approaches for Resource Allocation 96

Figure 4.9: Availability vs level of Dynamism.

Figure 4.10: Cumulative probability of availability levels for G1.

97 4.7 Conclusions

Figure 4.11: Cumulative probability of availability levels for G2.

4.7 Conclusions

The chapter presented an architectural approach to decentralized resource allocation in

Contributory Systems. DyMRA, a peer-to-peer based architecture has been proposed as a

brokering infrastructure to negotiate for external resources. Prospector and Seller agents

act as autonomic components that decide based on VO policies to acquire resources in

external markets. Both Seller and Prospector have the ability to create markets when no

markets for an specific resource exists. VO resources are pooled and controlled by the

Pool Service component and internally accounted by the VO Accounting Service. Seller

components are in charge of VO’s idle resources, Sale Handlers control and monitor the

external access to resources acting as mediators components. The market component

has been developed as a separate and configurable component following the separation of

concerns paradigm. Market components have been divided by functionality and generic

aspects have been separated from market specific aspects. A Fractal-based component

approach have been used to provide flexible and easy component assembling which provides

non-functional properties such as modularity, configurability and decentralization. The

architecture presented in this chapter aimed to address the properties of Contributory

Chapter 4: Architectural Approaches for Resource Allocation 98

Systems, characterized by dynamism and evolution which makes monolithic approaches

infeasible. Genereicity, re-usability, flexible deployment and configuration as well as high

levels of autonomism and self-reallocation constitute the main contributions of DyMRA

and CAS. These properties have been addressed so as to obtain an architecture suited for

distributed and dynamic environments such as Contributory Systems. This work helped

us to understand the nature of ad-hoc infrastructures for collaborative computing in either

of its variants. It is expected that some of the concepts depicted in this section such as

autonomous and transparent reallocation of markets, on-demand creation of markets to

address decentralization and genereicity and re-usability of components will be taken in

consideration in the next generation of Utility Computing infrastructures that will bring

unlimited computational capacity to the edges of Internet as it is aimed in the Grid4All

European project [25] where part of this work is being carried out.

Chapter 5

Multi Lane Double Auction

5.1 Introduction

Previous chapters of this thesis presented our efforts to build a decentralized resource allo-

cation framework adapted to dynamic environments such as Open Grids and Contributory

Systems. The introduction of the thesis has characterized these scenarios and presented

the main issues that resource allocation frameworks need to deal with. In this chapter

we focus on the most economic part of the thesis and presents our approach to develop a

market mechanism specially adapted to trade computational resources.

The motivation for that approach is to facilitate the allocation of time-differentiated

resources in computational environments. Grid resources are always accessed during lim-

ited periods of time that means that their allocation is always through leases. Current

existing auctions do not provide support to allocate time-differentitated resources consid-

ering them differentiated items. In this section an introduction to the market mechanism

spectrum is presented so as to orientate readers and to position our contribution.

Market mechanisms have been extensively studied and there are multiple approaches

used in the context of the allocation of computational resources. Market mechanisms are

processes for determining trade prices, i.e. how bids and asks can be exchanged in the

99

Chapter 5: Multi Lane Double Auction 100

market to determine a trade. Market mechanisms are at the centre of market-based allo-

cation framework. The choice of market mechanisms can significantly affect the market

efficiency, the complexity (in terms of both participating and implementation) and the

way in which resources can be scheduled in Grid computing environments.

Figure 5.1: Spectrum of Market formulations.

Figure 5.1 presents a spectrum of the main market models that exist. The commodity

market model is based around centralized information and strives to generate a price that

ensures the equilibrium of supply and demand. The same, or similar, resources are traded

identically in a commodity market. A consumer does not purchase a specific resource, but

rather takes one of many equivalents. At the other end of the spectrum, the single-sided

auction is more dynamic and flexible, as negotiation can be done for every individual

resource, but at the expense of efficiency. Resources are allocated on an individual basis

and single-sided auctions are easy to implement and straightforward to participate in.

Different market formulations in the spectrum will be discussed.

Single-sided auctions are the traditional and most cited forms of auction: an institution

with an explicit set of rules determines resource allocation and prices on the basis of bids

101 5.1 Introduction

from the market participants [63].

As its name suggests, a single-sided auction is a mechanism for one-to-many price

negotiation, i.e. the competition comes only from one side (either consumers or providers).

William Vickrey established the basic taxonomy of single-sided auctions based upon the

order in which prices are quoted and the manner in which bids are tendered. He established

four major types of single-sided auction [88], as described below.

• English auction, also known as an open ascending price auction. This type of auction

is arguably the most common form of auction in use today. Participants bid openly

against one another, with each subsequent bid higher than the previous bid [63].

An auctioneer may announce prices, bidders may call out their bids themselves (or

have a proxy call out a bid on their behalf). In some cases a maximum bid might

be left with the auctioneer, who may bid on behalf of the bidder according to the

bidder’s instructions. The auction ends when no participant is willing to bid further,

at which point the highest bidder pays their bid. Alternatively, if the seller has set

a minimum sale price in advance (the ’reserve’ price) and the final bid does not

reach that price the item remains unsold. Sometimes the auctioneer sets a minimum

amount by which the next bid must exceed the current highest bid, termed price

increment rule. The most significant distinguishing factor of this auction type is

that the current highest bid is always available to potential bidders. A computerized

English auction normally specifies a hard deadline for implementation reasons. The

main problem with the English auction is the winners curse a bidding race amongst

bidders results in the bidder who wins the auction being the bidder who has most

likely over-valued the resource.

• Dutch auction also known as an open descending price auction [54]. In the tradi-

tional Dutch auction the auctioneer begins with a high asking price which is lowered

until some participant is willing to accept the auctioneer’s price [62]. The winning

participant pays the last announced price. The Dutch auction is named for its best

known example, the Dutch tulip auctions. (”Dutch auction” is also sometimes used

Chapter 5: Multi Lane Double Auction 102

to describe online auctions where several identical goods are sold simultaneously to

an equal number of high bidders.) In addition to cut flower sales in the Netherlands,

Dutch auctions have also been used for perishable commodities such as fish and

tobacco [62]. In practice, however, the Dutch auction is not widely used.

• Sealed first-price auction, also known as a first-price sealed-bid auction (FPSB). In

this type of auction all bidders simultaneously submit sealed bids so that no bidder

knows the bid of any other participant. The highest bidder pays the price they

submitted. [54,62] This type of auction is distinct from the English auction, in that

bidders can only submit one bid each. Furthermore, as bidders cannot see the bids of

other participants they cannot adjust their own bids accordingly. Sealed first-price

auctions are commonly used in tendering, particularly for government contracts and

auctions for mining leases.

• Vickrey auction, also known as a sealed-bid second-price auction [54].This is identical

to the sealed first-price auction except that the winning bidder pays the second

highest bid rather than their own. This is very similar to the proxy bidding system

used by eBay, [31] where the winner pays the second highest bid plus a bidding

increment (e.g., 10%) [54]. Although extremely important in auction theory, in

practice Vickrey auctions are rarely used [62]. The most important problem with

Vickrey auction is bid shading, that is, placing a bid which is below the bidder’s

actual value for the item. Such a strategy risks losing the auction, but has the

possibility of winning at a low price.

Double-sided auctions allow many-to-many price negotiation. In a double-sided auc-

tion, both buyers and sellers can submit bids and asks for standardized units of well-defined

commodities and securities [37]. The main institutions to be considered are:

• Single item double auctions are auctions that simultaneously mediate among multiple

buyers and multiple sellers There exist two main institutions for double auctions. (i)

The clearing house or call auction, which clears periodically and (ii) the continuous

double auction (CDA). The CDA matches buyers and sellers continuously as bids

arrive. For homogeneous items, a simple CDA implementation may maintain a queue

103 5.1 Introduction

of bids sorted in increasing order of price and a queue of offers in decreasing order

of price. If an incoming bid is greater than the head of the offer queue it is matched

to that offer, or otherwise inserted in the bid queue. There are different strategies

to set the price for that match. The k-double auction uses a parameter k(0, 1) that

determines how trades are priced. In that case the transaction price is set at :

price = k × bidPrice+ (1− k)× askPrice (5.1)

The Mth and (M+1)st double auction computes the Mth and (M+1)st prices where

M is the number of sell bids. Such prices may be computed by sorting the bids in de-

scending order and identifying the Mth and (M+1)st elements in the list. The prices

between Mth and (M+1)st bids inclusively represent the range of prices for which

supply balances demand. Vickrey [88] demonstrates that the M+1 double auction

is incentive compatible for buyers and M double auction is incentive compatible for

sellers.

Figure 5.2: Auctions classified according to different properties.

Chapter 5: Multi Lane Double Auction 104

• Combinatorial auction [65, 79, 91] is an auction where bidders can bid (sell) entire

bundles, that is, combinations of items of goods. This has the advantage of eliminat-

ing the risk of a bidder of not being able to obtain complementary (sum of valuations

of items is less than the valuation of the entire bundle) items. Market participants

express their preferences as bundles of resources that need to be matched. CA is

computationally complex. Formally the combinatorial auction problem can be ex-

pressed as a special variant of the weighted set packing problem (WSPP) [26]. The

winner determination problem is to label bids as winning or losing so as to maximize

the auctioneer’s revenue (under the constraint that each item can be allocated to at

most one bidder). This NP-complete problem can be solved with dynamic program-

ming techniques that are time intensive. With restrictions on the combinations of

bids, winners can be determined in polynomial time this gives rise to economic inef-

ficiencies since bidders may not be able bid on their preferred combinations. Search

algorithms have been investigated to find revenue maximizing allocations these use

bid ordering heuristics, such as ordering bids by their contribution to revenue. A

typical bid ordering criteria is the average price per good.

5.2 Requirements

As discussed in previous chapters, our objective is to enable on-demand delivery of re-

sources to virtual organizations as they where simple utilities. Implementation of resource

market places in open environments must take into account major non-functional require-

ments described below.

Scale: considering a population in the scale of millions of users sharing their resources

across the Internet either on a for-profit or a non-profit basis becomes a challenge

in handling the complexity that derives from the quantity of resources, users and

numbers of concurrent actions (for example requests for resources).

Heterogeneity: Open systems consist of a diverse range of resources (for example differ-

ent processor architectures, speeds, middleware etc.), diverse range of applications

and application demand functions (such as elastic demand for resources, real-time),

105 5.2 Requirements

diverse usage patterns, resource owner behaviours (for example may decide to trade

resources at different times), and consumer endowments.

Dynamicity: Ad-hoc Grids and Contributory systems shall support the on-the-fly cre-

ation of highly dynamic virtual organizations where participants and resources can

join and leave at will. The lifetime of a Grid service or collaboration might range

from a few hours (e.g. an e-learning interactive session) to several years (e.g. twinned

schools cooperating on an educational project). The central issue in resource allo-

cation is the nature of resources itself which has been discussed in Chapter 3.

The auction spectrum gives us the map of current existing mechanisms that can be

used to allocate resources in Grid. However, we wonder about whether a single market

mechanism can be sufficient to deal with the set of requirements raised from our objective.

It seems reasonable to assume that Contributory systems require multiple market mech-

anisms cohabiting so as to handle heterogeneity, dynamics and constant evolution. It is

clear that in such environments buyer agents do not require the same type of resources

and resource providers do not offer the same type of resources.

Even in the case that multiple market mechanisms are supported, we wonder about the

suitability of current auctions to allocate efficiently time-differentiated resources (usually

provided by many different resource providers) such as most of the resources in a Grid, for

example Combinatorial Auctions enable the trade of time-differentiated resources but at

a high computational cost. Other simpler auctions does not enable multi-item trading but

only one type of item can be handled. Straightforward approaches may require multiple

instances of single item auctions to manage time-differentiated resources.

Chapter 5: Multi Lane Double Auction 106

5.3 Objective

As a part of our work we aimed to develop a double auction institution that can be used

to allocate time-differentiated resources. The main reason to develop a time-differentiated

item auction is that, until now, time-differentiated resources were either traded by compu-

tationally costly mechanisms such as Combinatorial Auctions or by multiple instances of

single-item Double Auctions. We envisage that by developing a time-differentiated item

auction we can improve the obtained social welfare regardless of multiple instances of sin-

gle item double auctions in the presence of substitute preferences. Besides, computational

efficiency can be improved in respect to multiple instances of single item double auctions

because the overhead of maintaining multiple instances can be reduced.

As a result of the research presented in this chapter, the Multi-Lane Double Auction

(MLDA) has been developed. The MLDA can be set in between the computationally hard

approach of the Combinatorial Auction and the restrictive approach of the Double Auction.

The following example will be used to illustrate the need for the MLDA:

Lets consider a buyer willing to allocate computational capacity for a certain time.

Imagine that the computation he aims to do requires at least certain capacity to end in

an strict deadline. However, the utility of the buyer increases as early the application

finishes (see Figure 5.3). Thus, the buyer has some interest on obtaining more resources

than the strictly needed in order to finish his computation sooner. In a computational

environment with multiple mechanisms cohabiting the bidder can split his bid in two parts.

One strict part will require the minimum quantity of resources so that the computation

can be finished within the strict deadline. This bid will be submitted to a combinatorial

auction that provides complete allocations. Once upon the buyer obtains such quantity of

resources, he can formulate another bid with imprecise requirements, this means that the

buyer wants more computational resources but he doesn’t care when within the deadline.

Any resource that can be obtained will improve his utility. In this case, the buyer has

107 5.3 Objective

to formulate a bid for several units of computational capacity between the start of the

computation and the strict deadline. The bid does not require complete satisfaction and

allocation obtained will improve the utility of the buyer.

Figure 5.3: Possible valuation functions of the job w. r. t. completion time.

In a previous chapter, a bidding specification has been presented. The bidding speci-

fication was specially designed to formulate bids for computational resources in an envi-

ronment characterized by multiple market mechanisms cohabiting. One of the main tools

provided as a complement to the bidding specification enables bids to be decomposed into

time-differentiated bids following a given pattern. The decomposition turns out to be

useful when bidders have imprecise requirements for certain time-slots. For example, a

bid B1 described as follow:

B1=item=1GHz CPU, qtt=2, start time=9:00, end time=14:00 where time-slot is of

1h, partial satisfaction is allowed

B1 requires at most 2 CPUs of 1GHz for one time-slot each one between 9:00 and

14:00. Given that requirement, the utility perceived by the bidder obtaining any CPU of

1GHz between 9:00 and 14:00 can be considered the same. Thus, the bidder is indifferent

of any of the time slots he receives. Amongst multiple possible decompositions, the bid

Chapter 5: Multi Lane Double Auction 108

can be expressed as an OR bid for the same resource but for any of its different time-slots

of certain granularity.

Using the current double auction approach, this bid can only be placed into a double

auction selling CPUs of 1GHz between 9:00 and 14:00 as a whole, so that , the bid will be

considered for 2 allocations of 1GHz CPU between 9:00 and 14:00 that obviously is not

what the bidder requires. Besides, if the bid wants to be placed into a double auction sell-

ing items as units of one time slot, the bid requires some pre-process in order to transform

it into an explicit formulation such as:

B1’= (B2 OR B3) XOR (B3 OR B4) XOR (B4 OR B5) XOR (B5 OR B6)

where:

B2=item=1GHz CPU, qtt=1, start time=9:00, end time=10:00 where time-slot is of 1h,

partial satisfaction is allowed

B3=item=1GHz CPU, qtt=1, start time=10:00, end time=11:00 where time-slot is of 1h,

partial satisfaction is allowed

B4=item=1GHz CPU, qtt=1, start time=11:00, end time=12:00 where time-slot is of 1h,

partial satisfaction is allowed

B5=item=1GHz CPU, qtt=1, start time=12:00, end time=13:00 where time-slot is of 1h,

partial satisfaction is allowed

B6=item=1GHz CPU, qtt=1, start time=13:00, end time=14:00 where time-slot is of 1h,

partial satisfaction is allowed

Given the bid B1’, an auction mechanism able to support XOR bids for multiple time

slots is required. Current double auction approaches will require multiple instances of an

auction to deal with B1’. As state before, multiple instances require a higher levels of

management and coordination and introduce an administration and computation over-

head in the environment making the approach more inefficient and costly. To cope with

that problem, we propose to extend the current double auction mechanism so that it can

109 5.4 The Multi-Lane Double Auction

deal with multiple items at the same instance.

In contrast, bids for precise items can simply be formulated as:

B7=item=1GHz CPU, qtt=1, start time=9:00, end time=10:00 where time-slot is of 1h,

partial satisfaction is allowed

Given that brief remainder to the way bids are formulated and its decomposition when

bidders are imprecise on their requirements, we can introduce the MLDA structure and

algorithm.

5.4 The Multi-Lane Double Auction

This section describes the data structures and methods of the multi-lane double auction.

The idea behind this approach is to split the item that is offered into its time-differentiated

units. For example if the item is offered in multiple time slots, and the time slot size is of

one hour, the auction will be split in as many lanes as time slots are offered. This approach

can also be taken by other metrics out of time slots. For example, for storage capacity, the

available space can be sold in units of a fixed size (e.g., 100 Mb), creating as many lanes as

units are offered. In the remaining of the discussion we will illustrate all the examples con-

sidering the case for time-slots, however, any other case can directly be mapped to this one.

A lane represents an item as it would be sold in any single item double auction. Bids

and asks will be introduced into lanes corresponding to the item they are representing.

The number of lanes in an auction will be obtained once the auction is configured. At

initial offer setting, the traded item will describe the time range for which the item is of-

fered. The time range will be split in as many time slots as the time range divided by the

time slot granularity indicates. The number of time slots obtained will directly determine

the number of lanes for that auction. For example, given an offer description to create a

double auction such that:

S1=item=1GHz CPU, start time=9:00, end time=14:00 where time-slot is of 1h

Chapter 5: Multi Lane Double Auction 110

Five lanes can be created each one representing one time slot. As a generalization, the

number of lanes can be obtained by:

L = E − S/U (5.2)

where S is an offer such that S = R,Q, S,E, U and where:

R is the resource description.

Q is the quantity of the resource.

S represents the start time.

E represents the end time.

U represents the unit size.

5.4.1 Preciseness vs Impreciseness

By precise bids we understand those bids that are specific for one time slot and do not

express any substitutable preference. Contrarily, imprecise bids are those that can be

introduced in more than one lane because the bidder has substitute preferences for any of

the items in its bid. Current double auctions does not deal with impreciseness requiring

bidders to formulate precise bids. Impreciseness enhances the flexibility of the market

place and facilitates bidding and preference elicitation since buyer agents do not need to

specify precisely the overall set of possible substitutes he will accept.

5.4.2 MLDA structure and general operations

The auction can be constructed as set of lanes where each lane contains the data structures

used to maintain bids an asks.

The main operations offered by the multi-lane double auction are:

• Insert/Remove Bid When a new bid is received, and the auction system verifies

that it satisfies whatever bidding rules exist, it must be inserted into the auctions

bid data structures for its corresponding lane. Similarly, when a bid is withdrawn,

111 5.4 The Multi-Lane Double Auction

it must be removed from the data structures. Inserted bids can be precise which

means that can only be inserted in a specific lane. Imprecise bids are those that can

be placed in more than one lane.

• Compute Quote The auction will generate price quote information for a lane .

• Clear At designated times, the auction will compute exchanges between the buyers

and sellers, notify the participants, and remove the winning bids from the data

structures.

5.4.3 How does a double auction work?

Double auctions determine the winners set amongst multiple buyers and sellers, each

offering to buy or sell a single items, to clear the auction, the M th and (M + 1)st prices

are computed, where M is the number of sell bids. We assume that a total order can

be imposed on all the bids. This is commonly accomplished using price as the principal

priority measure, and using bid quantity or bid placement time to break ties. Conceptually,

finding the M th and (M + 1)st bids is simply a matter of sorting the bids in descending

order, and identifying the M th and (M + 1)st items in the list. The prices between the M

th and (M + 1)st bids (inclusively) represent the range of prices for which supply balances

demand. At prices in the range, the number of buyers willing to buy at that price equals

the number of sellers willing to sell, with the caveat that when M th= (M + 1)st, one side

or the other may have some participants who lose on tie-breaking criteria. It is important

to note that this process of identifying the equilibrium price range works regardless of the

relative position of the buyers and sellers in the list.

The k-double auction computes a clearing price that is a ratio of the two boundary prices.

Specifically, if pM is the M th-price, and pM +1 is the (M + 1)st-price, the k-double

auction will set:

p = k × (pM + 1) + (1k)× pM

s.t.0 ≤ k ≤ 1

Chapter 5: Multi Lane Double Auction 112

Furthermore, the M th and (M + 1)st prices delineate the set of currently winning bids,

which we refer to as the transaction set. Again, modulo ties at the boundaries, buyers at

or above the M th-price would purchase an item if the auction cleared, and sellers at or

below the (M + 1)st price would sell an item. It follows that the M th-price and (M +

1)st-price constitute exactly the information that is typically provided to participants in

the form of price quotes. The M th-price is the ask quote and informs a potential buyer of

the minimum that she would have to offer to be certain to enter the current transaction

set. Symmetrically, the bid quote, equal to the (M + 1)st-price, informs a potential seller

the maximum that he would be able to offer to become a current winner.

The procedure can be extended to multi-unit, partially satisfiable bids simply by treating

each unit offered as a separate bid. In this case, M is the number of units offered for sale,

and N is the total number of units in all bids. The M th-price ((M + 1)st-price) is set by

the price on the M th ((M + 1)st) highest unit.

5.4.4 MLDA operations

The MLDA algorithms have been developed following the same idea as the general double

auction mechanism presented in the previous section. Bids and asks are organized in lanes,

and for each lane a the general double auction data structures are maintained.

Precisely, for each lane the MLDA keeps four structures to maintain bids sorted and

another one global structure to buffer imprecise bids. In the literature many different

data structures can be found for such an aim: Heaps, Internal Path Trees, AVL or sorted

lists can be used, however, for the description of our algorithm we will consider the use of

sorted lists due to they keep concepts simple and the used data structure does not affect

the general functional behaviour of the algorithm.

As indicated, each lane is represented by four sorted lists to store winning bids (Bin)

, winning asks (Sin), losing bids (Bout) and losing asks (Sout). Bin is sorted in ascend-

ing order so that the lowest winning bid is the head of the list while Bout is sorted in

descending order to keep in the head of the list the highest losing bid. Sin is sorted in

113 5.4 The Multi-Lane Double Auction

descending order, keeping in the head the highest winning ask and Sout is sorted in an

ascending order to keep the lowest losing bid in its head.

By construction the MLDA keeps the Social Welfare maximum. This is the invariant

of the insertion algorithms and is a key point for the economical efficiency of the MLDA.

The algorithm does not differentiate between precise or imprecise bids, for it a bid

can be placed in one, two, three or more lanes, so the choice to where the bid will be

placed will be guided by the possible lanes where the bid can be inserted. One important

detail to consider and fundamental issue to be solved by our algorithms concerns to how

impreciseness is handled. Note that if only precise bids are inserted in the MLDA, it

behaves as a set of independent auctions since no bids are suitable to win in more than

one lane. So, the simplest case for a MLDA occurs when all bids are precise. In this case

lanes can be cleared independently because none bid in a lane can displace a bid in another

lane. Contrarily, when there are imprecise bids that can be inserted in more than one lane

the efficiency obtained by the auction will be directly affected by the placement of the

imprecise bids. Thus, when an imprecise bid B’ is placed in a lane, the bid B’ may prevent

a precise bid B” from winning in that lane. In order to avoid any possible inefficiency, an

imprecise bid may win only in the lane where the social welfare is maximized.

Bid Insertion

When a bid B is inserted in a MLDA, the list of possible lanes L where the bid can be

placed is given. B can only affect the social welfare of any of the lanes in L. Many different

situations can happen:

• B can displace a winning bid in any of the lanes in L

• B can make a current losing ask in any of the lanes in L be promoted.

• B cannot win in any of the lanes in L.

The condition to be maintained is that the Social Welfare is kept maximum, so the

choice of any of those situations is given by the condition that maximizes the current

Chapter 5: Multi Lane Double Auction 114

social welfare. So the question now is how to calculate the social welfare without having

to compute it for every lane. In our algorithms we keep pointers to the current Lowest

Losing Ask (LLA), the Lowest Winning Bid(LWB) and the Highest Losing Bid(HLB).

Pointers are update each time a bid or ask are inserted.

Using that pointers we can easily find the lane where the social welfare is maximized

by inserting B. If a bid has to be displaced and substituted by B, the bid to be displaced

will be the Lowest Winning Bid, because we want to maximize the welfare and the LWB

is the worst bid that can be displaced. A displaced Bid, instead of being inserted in the

losers list directly is kept in a buffer that we call PendingLosingBids queue. Contrarily,

when the situation that maximizes the social welfare is the one that corresponds to a

promotion of a losing ask, the best choice will be the Lowest Losing Ask because there

aren’t another ask that if promoted the social welfare can be improved. The pointer to the

Highest Losing Bid is used to determine whether B can be discarded directly and inserted

to the PendingLosingBids queue.

As long as bids arrive, and there are no asks, they are directly inserted in the Pendin-

gLosingBids queue. This queue acts as a buffer and maintains bids sorted in a descending

order. As we will see later the ask insertion will take advantage of this queue.

Ask insertion

We considered that asks cannot be imprecise because it does not make sense for a seller to

offer imprecise time-specified resources. A seller will always indicate the specific resource

that is selling including its specific time slot.

The ask insertion algorithm also has to maintain the invariant, that is, keep the social

welfare maximum at each ask insertion. When an asks S is inserted in a lane several things

need to be checked. If S is higher than the current Lowest Losing Bid, there is nothing to

do, S has to be inserted in the Sout list in its lane.

115 5.4 The Multi-Lane Double Auction

In any other situation S has a chance to be a winner. To make S win a currently losing

bid B that can be placed in L has to be found in order to be promoted as winning bid in L

and matched with S. Due to our invariant, the selected bid has to be such bid that keeps

the social welfare maximum. This condition holds when the selected bid is the highest

losing bid that can be placed at L. The HLB that can be placed at L can be found either

in the PendingLosingBids queue or in the Bout list in a lane. The algorithms selects the

highest out of the possible. Even in that situation another condition has to be checked. It

can happen that a current winning ask S’ in a lane L’ is higher than S and in L’ there is a

winning bid B’ that can be moved to L. In this case, the social welfare would be improved

by displacing B’ to L and removing S’ from the Sin in L’. To determine the best choice the

following condition is checked: whenever B−S <= B′−S′+B−S it is better to promote

the highest losing bid that can be inserted at L. Otherwise, it is better to displace B’ from

L’ to L and remove S’ from the Sin in L’. Finally in the case that there are no suitable

bids to be inserted/displaced at L, S is directly inserted in Sout in L.

PendingLosingBids queue

The PendingLosingBids queue is a data structure that keeps bids organized by lanes. For

each lane a decreasing sorted list is kept. Whenever a bid is inserted in the pending queue,

a pointer to the bid is inserted at each lane where the bid can be placed. It offers func-

tionalities to get the maximum bid out of a set of lanes.

As introduced before, the PendingLosingBids queue is used to keep bids that at inser-

tion time are not able to win or have been discarded. As asks arrives bids are removed

from PendingLosingBids queue. Whenever no more asks arrive, bids are kept in the queue

and considered to be losing bids.

MLDA clear and quotes

The clearing operation is simple and straightforward. Clearing can be done, sequentially

or in parallel because dependencies amongst lanes have been removed at insertion time.

Thus, the clearing process matches highest bids with lowest asks by just traversing Sin

Chapter 5: Multi Lane Double Auction 116

and Bin.

Price quotes are offered by every lane and are also easy to find, the lowest winning bid

is the Bid quote and is given by the head of Bin that also corresponds to the Mth price as

stated by the literature. (M+1)st price corresponds to the ask quote and is given by the

head of Sin.

117 5.5 MLDA algorithm

5.5 MLDA algorithm

5.5.1 Bid Insertion

Data: A Bid Bnew and Planes the list of lanes where Bnew can be inserted
Result: A bid is inserted in its corresponding lane or in the pending queue
begin

LWBordered ← List of the LWB ordered increasing
LLAordered ← List of the LLA ordered increasing
HLBordered ← List of the HLB ordered decreasing
initialize (LWBmin,LLAmin,HLBmax)
if LWBordered is ∅ ∧ LLAordered is ∅ ∧ HLBordered is ∅ then

insertPendingSortedLosingBids (bnew)
return

if LLAordered is ∅ ∧ Bnew ≥ HLBmax then

if Bnew > LWBmin then
displaceLWB (Bnew, LWBmin)

else
insertPendingSortedLosingBids (Bnew)

else if ¬ LLAordered is ∅ ∧ Bnew ≥ HLBmax then

if LLAmin ≥ Bnew ≥ LWBmin then
displaceLWB (Bnew, LWBmin)

else if LLAmin ≥ LWBmin ≥ Bnew then
insertPendingSortedLosingBids (Bnew)

else if LWBmin ≥ Bnew ≥ LLAmin then
promoteLLA (Bnew, LLAmin)

else if LWBmin ≥ LLAmin ≥ Bnew then
insertPendingSortedLosingBids (Bnew)

else if Bnew ≥ LLAmin ≥ LWBmin then
displaceLWB (Bnew, LWBmin)

else if Bnew ≥ LWBmin ≥ LLAmin then
promoteLLA (Bnew, LLAmin)

else
return

else if ¬LLAordered is ∅ ∧ Bnew ≤ HLBmax then
insertPendingSortedLosingBids (Bnew)

else if LLAordered is ∅ ∧ Bnew ≤ HLBmax then
insertPendingSortedLosingBids (Bnew)

else
return

end

Algorithm 1: Bid Insertion algorithm

Chapter 5: Multi Lane Double Auction 118

Data: A Bid Bnew and Bid LLAmin
Result: LLAmin is promoted to Sin and matched with Bnew
begin

k ← LLAmin.lane
removeSout (LLAmin,k)
insertBin (Bnew,k)
insertSin (LLAmin,k)

end

Algorithm 2: PromoteLLA function.

Data: A Bid Bnew and Bid LWBmin
Result: LWB is displaced to pendingSortedLosingBids queu and Bnew inserted as

a winner
begin

k ← LWBmin.lane
insertBin (Bnew,k)
removeBin (LWBmin,k)
insertPendingSortedLosingBids (LWBmin)

end

Algorithm 3: DisplaceLWB function.

5.5.2 Ask insertion

Data: Snew the ask to be inserted in L the target lane.
Result: Inserts and ask.
begin

if LLA (l) is ∅∨ Snew < LLA (l) then
checkIfCanBePromoted (Snew, L)

else if Snew ≥ LLA (l) then
insertSout (Snew,L)

else
return

end

end

Algorithm 4: Ask insertion algorithm.

119 5.5 MLDA algorithm

Data: Snew the ask to be inserted in L the target lane.
Result: Looks for a bid suitable to be paired with the ask to be inserted.
begin

HWAOrdered ← List of the HWA ordered decreasing
HWAOrderedSub ← is a sublist of HWAOrdered, such that all of its asks are bigger
than Snew(Lj)
HLBOrdered ← the list of highest loosing bids in all lanes and order it by decreasing
values
PendingBidsQueue ← Global queue containing all bids currently losing and pending to
be inserted, sorted descending for each lane
HLBmax ← HLBOrdered.head
HWAmax ← HWAOrderedSub.head
pendingMax ← PendingBidsQueue.head(L)
if HLBmax is ∅∧ pendingMax is ∅ then

if HWAOrderedSub is ∅ then
insertSout (Snew,L)

else
changeHWAmax (Snew, HWAmax, L)

end
return

end
if HLBmax is ∅∨ HLBOrdered is ∅ then

HLBmax ← pendingMax
else if ¬ HLBmax is ∅∧ HLBmax < pendingMax then

HLBmax ← pendingMax
end
if Snew ≤ HLBmax ∧ HWAOrderedSub is ∅ then

if HLBmax is in a Lane then
promoteHLB (Snew, HLBmax, L)

else
promoteHLBFromPending (Snew, HLBmax, L)

end

else if Snew ≥ HLBmax ∧¬ HWAOrderedSub is ∅ then
if Snew > HWAmax then

insertSout (Snew,L)
else

changeHWAmax (Snew, HWAmax, L)
end

else if Snew < HLBmax ∧¬ HWAOrderedSub is ∅ then
if promoteOrDisplace (HWAmax, Snew, HLBmax) then

if HLBmax is in a Lane then
promoteHLB (Snew, HLBmax, L)

else
promoteHLBFromPending (Snew, HLBmax, L)

end

else if ¬ promoteOrDisplace (HWAmax, Snew, HLBmax) then
if HLBmax is in a Lane then

changeHWAmax (Snew, HLBmax, L)
else

promoteHLBFromPending (Snew, HLBmax, L)
end

else if Snew > HLBmax ∧¬ HWAOrderedSub is ∅ then
insertSout (Snew,L)

end

end

Algorithm 5: check bid promotion function

Chapter 5: Multi Lane Double Auction 120

Data: an ask Snew an ask HWAmax and the Lane L
Result: HWAmax is removed from winning and the bid matched with it moved to

L. Snew is also inserted as winning and HWAmax is re-inserted
begin

t ← HWAmax.lane;
HWB ← getHWBthatCanBeMovedToL (L,t);
removeSin (HWAmax,t);
removeBin (HWB,t); insertBin (HWB,L);
insertSin (Snew,L);
insertAsk (HWAmax);

end

Algorithm 6: changeHWAmax function

Data: Ask Snew, Bid Bmax, Lane L
Result: A bid Bmax is promoted from the PendingBidsQueue. Snew is inserted as

winner in L.
begin

if negHWA(L) is ∅∧ Bmax< HWA(L) vee Bmax < Snew then

if HWA(L) > Snew then
HWA ← HWA(L);
insertSin (Snew,L);
removeSin (HWA,t);
insertSout (HWA,L);

else
insertSout (Snew,L);

end

else
removeBid (PendingBidsQueue, bmax);
insertBin (Bmax,L);
insertSin (Snew,L);

end

end

Algorithm 7: promoteHLBFromPending function

121 5.6 Implementation and Experiments

Data: Ask Snew, Bid HLBmax, Lane L
Result: A currently losing bid HLBmax is promoted from the losing set. Snew is

inserted as winner in L. HLBmax is also inserted in L as winner.
begin

if HLBmax<Snew then
insertSout (Snew,L);

else
t ← HLBmax.lane;
removeBout (HLBmax,t);
insertBin (HLBmax,L);
insertSin (Snew,L);

end

end

Algorithm 8: promoteHLB function

5.5.3 Clearing

Data: Lanes a Map of lists representing the Multi-Lane catalog of bids
Result: Returns a Map of lists. Each lists contains the pairs of matched bids and

asks.
begin

Map κ ← ∅
for l ∈ Lanes do

α← emptyset

α← getMatchings (l)
put (κ,α)

end

return κ
end

Algorithm 9: Clear algorithm.

5.6 Implementation and Experiments

MLDA has been implemented and a set of experiments have been carried out. The aim of

the experiments was twofold: first validate that MLDA provides optimal1 efficiency and

second compare its computational efficiency with multiple instances of single item double

auctions. To carry out the experiments a set of data sets have been generated. Several
1There is no other allocation that improves the obtained social welfare.

Chapter 5: Multi Lane Double Auction 122

distribution functions have been used to generate random data. The distribution functions

used were derived from several experiments found in the literature [64, 71, 72]. Uniform

distribution of ask prices are motivated by the assumption that costs of resources are also

uniformly distributed. Bid prices have been generated using different distribution func-

tions, Normal distribution and Uniform distribution. Furthermore, bids and asks where

also distributed across time slots following different distribution functions. Distributing

bids and asks acroos different time slots using different distribution functions enabled us

to experiment the effects of non-uniform supply/demand accross time slot. Every experi-

ment describes the reason for the distribution function used and the aim of the intended

evaluation.

Along the experiments we aimed to find the worst case of MLDA so as to determine

the upper-bound of computation time. MLDA has been implemented as a set of sorted

lists for each lane. Namely there are four sorted lists keeping respectively winning bids,

losing bids, winning asks and losing asks. Besides, for each lane eight pointers are kept.

The bid pointers point to the highest losing bid (HLB), highest winning bid(HWB), lowest

winning bid (LWB) and lowest losing bid (LLB). The ask pointers keep the lowest losing

ask (LLA), the highest losing ask (HLA), the lowest winning ask(LWA) and the highest

winning ask (HWA). Bid insertion keeps three sorted lists of pointers (i.e. LWB, LWA,

HLB) so as to facilitate the selection of the lane where the incoming bid should be in-

serted. Ask insertion keeps two lists of pointers (i.e. HWA and HLB). The algorithm also

keeps a PendingLosingBids queue that buffers the bids that currently cannot be inserted

but may be possibly inserted in a future. The buffer is structured as a set of lanes where

for each candidate lane a bid can be inserted, a pointer in the corresponding lane of the

PendingLosingBids queue is inserted. Displacing bids amongst lanes is a matter of moving

pointers which is a non-costly operation. Lists are kept sorted, so the selection of candi-

date bids to be moved is also a constant cost operation. Due to the implementation of

MLDA the most costly operation is to insert a bid into the PendingLosingBids queue since

for each bid a pointer to the lanes where the bid is candidate to be placed is created and

introduced in a sorted manner into the queue. Consequently our hypothesis is to consider

123 5.6 Implementation and Experiments

that the worst case would be the one that maximizes the number of bids inserted in the

PendingLosingBids queue. After some experimentation to validate our hypothesis, the

worst case has been determined by the scenario characterized by the insertion of all bids

first and subsequently all asks. By inserting first all bids without having introduced any

ask, all bids are placed in the PendingLosingBids queue. As asks arrive bids are moved

from the PendingLosingBids queue to their corresponding lanes. It can be thought that

other bid placement strategies such as placing bids and asks alternatively and by increas-

ing order of bid prices and decreasing order of ask prices will lead to worst computation

times. However, this case makes that only the set of losing bids are inserted in the Pend-

ingLosingBids queue leading to a better computation time.

As a result of this hypothesis the experiments will be conducted using the worst case

scenario for MLDA. That is, all bids will be inserted first and subsequently all asks will

be introduced in the auction.

5.6.1 Experiment A: Economical Efficiency

The experiment aimed to evaluate the economical efficiency obtained by the MLDA. Eco-

nomical efficiency has been defined as the social welfare that the mechanism provides given

a certain input. Social welfare have been computed as:

SW =
∑

(Bids)−
∑

(Asks)

Experiment A Setting

In order to evaluate the economical efficiency of the MLDA we aimed to compare with an-

other well-known double auction, the k-Double Auction (k-DA). The k-DA implementation

from the JASA framework [71, 72] have been taken to compare with our implementation

of the MLDA. The JASA k-DA was based on the 4Heap Algorithm implementation pre-

sented by Bao et. al [11]. Experiments where conducted in a dual core T9500, 2.5GHz

with 4Gb of Memory.

Chapter 5: Multi Lane Double Auction 124

Experiment A description

We carried 3 different experiments described in the following tables:

Experiment A.1

Attribute MLDA 4HDARR 4HDAU 4HDAN

Repetitions 100 100 100 100

Lanes 4 4 instances 4 instances 4 instances

Bids 1000 (all in-

serted at the

MLDA in-

stance)

1000 (dis-

tributed round

robin at lanes)

1000 (Uniformly

distributed at

lanes)

1000 (Following

a Binomial PDF

with n=3 and

p=0,4)

Asks 600 (Uniformly

distributed

amongst lanes)

600 (Uniformly

distributed

amongst lanes)

600 (Uniformly

distributed

amongst lanes)

600 (Uniformly

distributed

amongst lanes)

Table 5.1: Experiment A.1 setting

Table 5.1 summarizes our first set of experiments with MLDA. The experiment con-

sisted in the generation of a set of 1000 bids and 600 asks2. Several auction instances where

created, one MLDA auction instance for four lanes, and three sets of four 4HeapDou-

bleAuction instances from JASA framework [71, 72]. Each set was referred as 4HDARR,

4HDAU, 4HDAN respectively.
2The amount of bids and asks has been determined after several experimentation with different quan-

tities of bids and asks, starting from 10 bids and 5 asks to 3000 bids and 1500 asks. 1000 bids and 600
asks have been considered a significative amount to evaluate MLDA. Of course, the choice have also been
corroborated by other related work. Phelps thesis experiments with bid and asks sets of 30 to 1000 units.
Mill and Dabrowski present different experiments using between 250 and 5500 processor requirements. In
their homogeneous experiment, buyers required 500 processors and sellers offered 500 processors.

125 5.6 Implementation and Experiments

Figure 5.4: Binomial distribution of bids for 4HDAN.

The experiment marked all bids for all lanes (imprecise bids) of the MLDA so as to

indicate that bids where for substitutable items. Afterwards all asks where inserted uni-

formly distributed amongst lanes. Time of computation was measured. Computation time

for all the experiments measured the time taken to initialize the instance of the auction,

the time taken to insert all bids and all asks and finally the time to clear the auction.

Furthermore, social welfare, and number of matches where computed at the finalization

of the experiment.

For the case of 4HDARR, 4HDAU and 4HDAN, the same experiment was carried out.

For 4HDARR, bids where inserted in a round robin fashion at each lane instead of being

described as substitutable for all lanes as in the case of MLDA. This means that Bid 1 was

placed in 4Heap Auction instance representing lane one, Bid 2 was placed in the 4Heap

Chapter 5: Multi Lane Double Auction 126

Auction instance representing lane 2, Bid 3 in the auction representing the 3rd and so

on... Asks were inserted following a uniform distribution amongst lanes. The experiment

measured the time taken to compute the initialization of the four instances of the 4Hea-

pAuction as well as the time taken to insert bids and asks and clear the auction. 4HDAU

and 4HDAN behaved accordingly but with the difference that bids where inserted follow-

ing a uniform distribution and a binomial distribution (see Figure 5.4) respectively.

For the four experiments the same set of bids and asks where used in order to avoid

divergences due to randomization. Experiments were repeated 100 times re-generating

bids and asks at each experiment.

Experiment A.2

Attribute MLDA 4HDARR 4HDAU 4HDAN

Repetitions 100 100 100 100

Lanes 4 4 instances 4 instances 4 instances

Bids 1000 (all in-

serted at the

MLDA in-

stance)

1000 (dis-

tributed round

robin at lanes)

1000 (Uniformly

distributed at

lanes)

1000 (Following

a Binomial PDF

with n=3 and

p=0,4)

Asks 600 (Following

a Binomial PDF

with n=3 and

p=0,24)

600 (Following

a Binomial PDF

with n=3 and

p=0,24)

600 (Following

a Binomial PDF

with n=3 and

p=0,24)

600 (Following

a Binomial PDF

with n=3 and

p=0,24)

Table 5.2: Experiment A.2 setting

Table 5.2 presents the setting for the second experiment. Experiment A.2 set the

distribution of asks following a Binomial PDF with n=3 (the number of lanes (0 to 3))

and p=0.24 to centre it near to lane 1 (see Figure 5.5). Binomial distribution was used

since we wanted to evaluate a distribution of asks where not all lanes had the same

probability but some of them were preferred amongst others. Binomial distribution can

127 5.6 Implementation and Experiments

be characterized as follow:

Pr(K = k) =
(
n

k

)
pk(1− p)n−k

fork = 0, 1, 2, ..., n

s.t.

(
n

k

)
=

n!
k!(n− k)!

Figure 5.5: Binomial distribution for asks.

Chapter 5: Multi Lane Double Auction 128

Experiment A.3

Attribute MLDA 4HDARR 4HDAU 4HDAN

Repetitions 100 100 100 100

Lanes 4 4 instances 4 instances 4 instances

Bids 1000 (organized

in subsets of

lanes follow-

ing a uniform

distribution)

1000 (dis-

tributed round

robin at lanes)

1000 (Uniformly

distributed at

lanes)

1000 (Following

a Binomial PDF

with n=3 and

p=0,4)

Asks 600 (Following

a Binomial PDF

with n=3 and

p=0,24)

600 (Following

a Binomial PDF

with n=3 and

p=0,24)

600 (Following

a Binomial PDF

with n=3 and

p=0,24)

600 (Following

a Binomial PDF

with n=3 and

p=0,24)

Table 5.3: Experiment A.3 setting.

Table 5.3summarizes the setting for the third set of experiments. In A.3 we changed the

placement of bids in MLDA. In previous tests we assumed that bids in MLDA where for all

lanes (i.e., imprecise bids for all lanes), so a bid could be placed in any of the lanes of the

auction. In this example we wanted to restrict this fact and placements of bids was gener-

ated following a uniform distribution amongst all possible combinations of lanes. For A.3

we generated 10 different groups of consecutive lanes, namely 1,2,3,4,12,23,34,123,234,1234

and bids where placed following a uniform distribution in one of this groups. The idea

behind this test was to evaluate the efficiency obtained when some bids are restricted to

some lanes and consequently MLDA is restricted when chosing the placement of bids.

129 5.6 Implementation and Experiments

5.6.2 Results Analysis

Experiment A.1 Results

Experiment A.1 aimed to evaluate the Social Welfare obtained by MLDA in the setting

described above. By construction MLDA keeps social welfare optimal3 so the expected

results were that it achieves the best social welfare amongst other auctions. As can be

seen in figure 5.6 the average social welfare amongst the 500 experiments at each lane is

the higher for MLDA. 4HDARR and 4HDAU achieve close to MLDA social welfare since

bids and asks are distribute proportionally at each lane. However, the benefit of MLDA is

that bids are always placed in the best option when 4HDARR and 4HDAU are restricted

to place bids in one specific lane. 4HDAN achieves a worst social welfare due to unbalance

of distribution between bids and asks.

Figure 5.6: Compared average social welfare per lane. Y-axis indicates Social Welfare.

The same expected results when considering number of matches were encountered. As

can be seen in Figure 5.7 MLDA achieved the higher number of matches, either per-lane

and total. For the 4HDAN, we can see that the lane with highest probability achieves a
3see Section 5.4.4 for the description of the algorithm.

Chapter 5: Multi Lane Double Auction 130

highest number of matches, but it still obtains the worst results.

(a) Matches per experiment (b) Matches per lane

Figure 5.7: Number of matches per experiment and per lane. Y-axis indicates number of

matches.

Figure 5.8: MLDA compared to 4HDA. Y-axis indicates improvement in %.

Figure 5.8 compares MLDA with 4HDA. The Figure presents the gain in % of MLDA

when compared to 4HDARR,4HDAU and 4HDAN. The compared metrics have been eco-

nomical efficiency, i.e improvement of the obtained social welfare and number of matches

131 5.6 Implementation and Experiments

provided. MLDA is slighly a 0,5% better than 4HDARR and 4HDAU when asks are dis-

tributed following a uniform distribution amongst lanes. In this cases, the improvement

obtained by MLDA is not very significant due to the distribution of bids in 4HDARR and

4HDAU which place bids almost uniformly across lanes. As asks and bids were placed

following the same type of distribution, the number of matches per lane in 4HDARR and

4HDAU are close to the allocation obtained by MLDA. However, 4HDAN behaves poorly

due to the distribution of bids being MLDA at least a 8% better that 4HDAN. This of

course can be attributed to the unbalance between the distribution of asks and bids that

let lanes 1 and 4 with a less number of bids which reduces the overall welfare and number

of allocations. In this Figure it can also be seen a direct relation between the economic

efficiency and the number of allocations. It can be deduced that the gain in efficiency is

directly proportional to the gain in number of allocations.

5.6.3 Experiment A.2 Results

Likewise Experiment A.1, A.2 experiment aimed to confirm that the MLDA achieves the

best Social Welfare when compared to multiple auction instances. This second experiment

distributed asks following a binomial distribution as described before. The reason for such

distribution is to see the effects of heterogeneous supply and demand distribution amongst

lanes.

Chapter 5: Multi Lane Double Auction 132

Figure 5.9: Compared average social welfare per lane. Y-axis indicates Social Welfare.

Figure 5.9 show that lanes 1 and 2 achieved higher social welfare compared to 3 and

4, this of course is due to the distribution of asks. Compared results show that MLDA

gets the higher social welfare for lanes 1, 2 and 4 while 4HDAN achieves better social

welfare at lane 3. Regarding average social welfare amongst lanes (see Figure 5.10) MLDA

achieves the better social welfare followed by 4HDAN. 4HDAU and 4HDARR achieve worst

social welfare due to the binomial distribution of asks and their almost equiproportional

distribution of bids.

133 5.6 Implementation and Experiments

Figure 5.10: Average Social Welfare per experiment. Y-axis indicates Social Welfare.

Finally, Figure 5.11 shows the gain in efficiency(in terms of social welfare) in % when

comparing MLDA with other auctions. MLDA compared with 4HDARR shows that

MLDA is 11% more efficient than 4HDARR, 8% more efficient than 4HDAU and even

1% more efficient than 4HDAN when playing in its optimal situation.

Chapter 5: Multi Lane Double Auction 134

Figure 5.11: MLDA compared to 4HDA. Y-axis indicates improvement in %.

5.6.4 Experiment A.3 Results

As expected, MLDA achieved a better behaviour than other instances. Figure 5.12 shows

the average social welfare and the average number of matches per lane obtained by the four

auctions. It is clear that there are some bids in MLDA that were restricted to certain time

slot (lane), however there are a certain quantity that has no restrictions and consequently

can be placed in such a manner that social welfare is maximized. This flexibility is what

makes MLDA obtain better results in terms of economical efficiency in respect to other

auctions where bids are placed following a certain distribution. So, the worst case for

MLDA would be the one where bids can be only placed in one lane. This would result in

a behaviour very similar to the behaviour shown by 4HDARR,4HDAU,4HDAN depending

on the distribution of bids inserted in MLDA. So we conclude that economically MLDA

will behave in the worst case as 4HDA.

135 5.6 Implementation and Experiments

Figure 5.12: Average social welfare and matches per lane. Y-axis indicates Social Welfare.

Figure 5.13 presents the price per time slot. MLDA calculates a higher price per time

slot than others due to a higher social welfare

Chapter 5: Multi Lane Double Auction 136

Figure 5.13: Average price per time slot. Y-axis indicates price.

Figure 5.14: Social Welfare per lane. Y-axis indicates Social Welfare.

137 5.6 Implementation and Experiments

5.6.5 Experiment B: Computational Efficiency

Experiment B aimed to evaluate computational efficiency of MLDA. Experiments A.1,

A.2 and A.3 have been used to obtain experimental data concerning the computational

efficiency of the different auctions.

Time of computation in milliseconds have been used to determine the computation ef-

ficiency of the auction. For each experiment, the same operations were measured. MLDA

was measured once data has been generated. Measurements started at MLDA instance

creation and subsequent bid insertion. After insertion of asks and clearing the measure-

ments ended. 4HDA (in any of their variants), where also measured after data generation.

Namely, instance creation, bid and ask insertion and subsequent clearing where measured.

Results show that 4HDA settings take almost four times more time to finish the com-

putation. We attribute the extra time to initialize different instances as well as its man-

agement. Besides we observe that when bids in MLDA are for a restricted set of lanes the

time of computation is reduced due to a diminutions of the space of search of the MLDA

algorithm (i.e. as more bids restricted to one lane, less number of bid searches in other

lanes, besides, as less number of bids for all lanes, less times searches are for the overall

search space). In addition, we want to point out the effects of the PendingLosingBids

queue that keeps losing bids in it instead of inserting them into the Bout structures at

each lane. This also shortens the time of computation for MLDA.

Figure 5.15 shows the time taken to carry experiment A.1. It shows that MLDA

is almost 4 times better than other 4HDA being the 4HDAN the worst case produced

apparently by a higher number of bids in one instance in respect to others that produces

a higher number of bid displacements.

Chapter 5: Multi Lane Double Auction 138

Figure 5.15: Time of computation for experiment A.1. Y-axis indicates time of computa-

tion in milliseconds.

Figure 5.16 shows similar results when asks are inserted following a binomial distribu-

tion.

Figure 5.16: Time of computation for experiment A.2. Y-axis indicates time of computa-

tion in milliseconds.

Finally Figure 5.17 shows similar results for the three 4HDA auctions while MLDA

139 5.6 Implementation and Experiments

behaves nearly ten times faster.

Figure 5.17: Time of computation for experiment A.3. Y-axis indicates time of computa-

tion in milliseconds.

5.6.6 Experiment C: Scale Sensibility

The test aimed to analyse the scalability in number of lanes of the MLDA. It is supposed

to obtain a linear increment of computation time as the number of lanes increases linearly.

Besides, we aimed to prove that the relation between the performance of MLDA and

multiple instances of 4HDA are maintained.

The experiment has been defined as follow:

Chapter 5: Multi Lane Double Auction 140

Experiment C.1

Attribute MLDA 4HDARR 4HDAU 4HDAN

Repetitions 100 100 100 100

Lanes 1, 5, 10, 15, 20,

24 lanes

1, 5, 10, 15, 20,

24 instances

1, 5, 10, 15, 20,

24 instances

1, 5, 10, 15, 20,

24 instances

Bids 1000 1000 (dis-

tributed round

robin at lanes)

1000 (Uniformly

distributed at

lanes)

10000 (Follow-

ing a Binomial

PDF with n=3

and p=0,24)

Asks 600 (Following a

Uniform distri-

bution)

600 (Following a

Uniform distri-

bution)

600 (Following a

Uniform distri-

bution)

600 (Following a

Uniform distri-

bution)

Table 5.4: Experiment C.1 setting

The results obtained can be seen in Figure 5.18, it can be seen that our expectations

were meet. MLDA keeps being 2 to 3 times faster as multiple auction instances of 4HDA.

We measured the scalability of MLDA in comparison with others. One of the measures

taken is the time increment between different number of lanes for each experiments. In

average, MLDA increases the time of computation at around 250 ms being almost the

same in other 4HDA experiments. We conclude that there is a linear increment of time

as the number of lanes increases.

141 5.6 Implementation and Experiments

Figure 5.18: Compared average execution time for different number of time slots (lanes).

Y-axis indicates time of execution in milliseconds.

5.6.7 Experiment D: Price per time slot

Until now, all experiments did not considered the effects of bid prices in the final re-

sult of the auction. In this experiment we want to measure some of the effects of price

distribution in the allocation provided by the auction as well as the price per time slot.

Previous experiments distributed bids following different distribution functions amongst

lanes, however prices were generated following a uniform distribution for both sellers and

buyers. It is not clear right now, what is a correct distribution for bid prices in a market.

It is not reasonable to assume that prices for bidders are distributed uniformly but more

probably bid prices can follow a Normal distribution or even a Pareto distribution for a

specific lane. Contrarily for asks, it seems reasonable to assume that their prices follow a

uniform distribution due to that costs can be assumed to be homogeneously distributed.

Chapter 5: Multi Lane Double Auction 142

Experiment D.1

Attribute MLDA 4HDARR 4HDAU 4HDAN

Repetitions 100 100 100 100

Lanes 4 lanes 4 instances 4 instances 4 instances

Bids 1000 for all lanes

with prices dis-

tributed in a

N(0.5,02)

1000 distributed

round robin at

lanes and prices

distributed in a

N(0.5,02)

1000 Uniformly

distributed at

lanes and prices

distributed in a

N(0.5,02)

10000 Following

a Binomial

PDF with n=3

and p=0,24

and prices dis-

tributed in a

N(0.5,02)

Asks 600 (Following a

Uniform distri-

bution)

600 (Following a

Uniform distri-

bution)

600 (Following a

Uniform distri-

bution)

600 (Following a

Uniform distri-

bution)

Table 5.5: Experiment D.1 setting.

Experiment D.1 aims to evaluate the final price per time slot obtained by MLDA and

4HDA and verify that the results obtained by MLDA remain optimal. Besides, it is aimed

to analyze the consequences of optimality4 to the price per time slot. A priori it is not

clear that the mechanisms that achieves best social welfare will achieve higher prices per

time slot.

Besides, prices per lane cannot be assumed to be uniformly distributed but they should

follow a long tailed distribution such as a left shifted Normal distribution or a Pareto distri-

bution. The reason for that is that almost all bidders want their resources to be allocated

as soon as possible, so as near the time higher their willingness to pay for the resource.

For that reason the experiment will place bids with higher prices close to the first offered

time slot. Thus, the willingness of buyers to pay more to obtain earlier resources will be
4in social welfare terms

143 5.6 Implementation and Experiments

simulated. In this experiment prices will be determined following the k-pricing rule that

computes a non-discriminatory price for all matches in the lane. The k value has been set

to 0,5 to distribute welfare in an equitable way amongst buyers and sellers. Prices have

been computed as:

p = k × (pM + 1) + (1k)× pM

s.t.0 ≤ k ≤ 1

where the pMth price and pM+1st price are the price quotes for the lane. Experiment

D.2 will discuss some of the results obtained by the experiment described in the following

table:

Experiment D.2

Attribute MLDA

Repetitions 100

Lanes 4 lanes

Bids 500 for lanes 1 and 2 with prices distributed in a N(0.65,0.2) and

500 for lanes 3 and 4 with prices distributed in a N(0.5,0.2)

Asks 600 (Following a Binomial PDF with n=3 and p=0.54 distribution

amongst lanes)

Table 5.6: Experiment D.2 setting.

Chapter 5: Multi Lane Double Auction 144

Figure 5.19: Binomial Distribution for asks in experiment D.2.

5.6.8 Experiment D.1 Results

As described in Table 5.5, the experiment set a Normal distribution of ask prices cen-

tered at 0.5 and with a standard deviation of 0.2, this makes prices appear normally

distributed between 0 and 1. It seems more reasonable to assume that prices in a mar-

ket are distributed following a non-homogeneous distribution where a high percentage of

bidders express similar valuations for the time slot rather than a uniform distribution of

prices between 0 and 1 as in previous experiments. Figure 5.20 shows the distribution

of the average prices per time slot (per lane) achieved by MLDA and other experiments

with 4HDA. In that configuration, asks have been distributed uniformly across lanes and

this is important to understand the results obtained. MLDA, achieves almost a constant

price per time slot at around 0,57 due to the capacity of MLDA to place bids in the lane

where the social welfare is maximized and because of the uniform distribution of asks

145 5.6 Implementation and Experiments

that makes that the best configuration consists on distributing homogeneously bids across

lanes. 4HDARR and 4HDAU achieve similar results as MLDA with slight more variations

due to their incapacity to adapt the demand to the offer in an optimal manner. Their

prices per time slot are around 0.57 and 0.55. Worst results are obtained by 4HDAN due

to the way bids are distributed. Lane 1 achieved a price per time slot very low due to the

low demand received in that time slot. Contrarily Lane 3 obtained a high price per time

slot (0,7) that can be attributed to the higher demand for that time slot. We conclude that

there is a direct relation between the demand for a time slot and the final price achieved

in that Lane when offer is fixed.

Figure 5.20: Distribution of prices per lane and prices per time slot. Y-axis indicates

price.

On the right side of Figure 5.20 the average prices per time-slot paid by every trans-

action can be seen. 4HDAN achieves higher prices due to a lower number of matches.

However, 4HDAN achieves the worst Social Welfare which confirms that higher prices per

time slot does not indicate better mechanism efficiency, in fact higher prices are a result of

supply and demand balance for each lane. Figure 5.21 shows the number of matches per

lane obtained by the fourth experiments. As already stated, MLDA achieves the higher

number of matches while 4HDAN the worst due to the distribution of bids and asks.

Chapter 5: Multi Lane Double Auction 146

Figure 5.21: Matches per lane and total number of matches. Y-axis indicates number of

matches.

5.6.9 Experiment D.2 Results

As described in Table 5.6 the experiment aimed to price more the first two time slots

(lanes) to simulate the willingness of buyers to allocate resources as soon as possible.

Prices for lanes 1 and 2 have been generated following a Normal distribution with a mean

of 0.65 and a standard deviation of 0.2. Prices for lanes 3 and 4 have been calculated

using a Normal distribution with mean of 0.5 and standard deviation of 0.2. Asks where

distributed non-uniformly across lanes (following a binomial distribution with n=3 and

p=0,54), establishing a major number of asks for lanes 2 and 3.

147 5.6 Implementation and Experiments

Figure 5.22: Matches per lane. Y-axis indicates number of matches.

Figure 5.22 shows the number of matches per lane obtained by the MLDA. Lane 3 is

the lane that obtains more matches due to the distribution of asks. Lane two obtains a

less amount of matches even prices are higher due to a less quantity of asks in that lane.

Chapter 5: Multi Lane Double Auction 148

Figure 5.23: Social Welfare per lane. Y-axis indicates social welfare.

Figure 5.23 shows the distribution of the social welfare generated by MLDA amongst

lanes. Asks distribution guide the number of matches per lane being the most significant

factor for the final allocation provided by MLDA. Finally the effects of higher prices in

lanes 1 and 2 can be seen in Figure 5.24. Lane 2 even having a higher number of matches,

which would mean less price per time slot, achieves a similar price per time slot as lane

one that achieves the maximum due to a short offer and higher bid prices.

149 5.7 Experiment E: Memory Usage

Figure 5.24: Price per time slot. Y-axis indicates price.

It can be concluded that ask distribution constraints the type of allocation provided

by MLDA since asks can only win in the lane for where they have been submitted. It can

also be pointed out that as higher the bid price, higher the number of matches when asks

have uniform prices.

5.7 Experiment E: Memory Usage

Experiment E aimed to evaluate the memory consumption of MLDA when compared to

any of the 4HDA implementations used so far. The experiment aims to analyse overall

amount of memory used during the process of bids and asks insertions. It is clear that

the amount of memory used will depend on the size of the data structures used in the

implementation. For this experiments is not important the total amount of memory used

by both instances but the relation between the amount of memory used. What it is

important to know is whether MLDA uses less, more or the same amount of memory than

4HDA as well as the ratio of the difference. Table 5.7 summarizes the experiment setting

Chapter 5: Multi Lane Double Auction 150

that consisted in 500 iterations of an experiment that inserted 1000 bids and 600 asks to

an instance of every one of the evaluated auctions.

Experiment E.1

Attribute MLDA 4HDA

Repetitions 500 500

Lanes 4 lanes 4 instances

Bids 1000 for all lanes 1000 round robin amongst lanes

Asks 600 (Following a Uniform distri-

bution amongst lanes)

600 (Following a Uniform distri-

bution amongst lanes)

Table 5.7: Experiment E.1 setting.

Memory usage has been measured during the insertion of bids and asks. Measures were

taken just before instantiating the auction and just after finishing the insertion of the last

bid and ask. The system garbage collector have been called before the first measurement

and just after the last measurement. The amount of memory used has been calculated as

a difference between the initial amount of memory and the final amount of memory.

5.7.1 Experiment E Results

Results of the 500 experiments can be seen in Figure 5.25. MLDA spends nearly 3 times

more memory than 4HDA in almost all experiments. Slight variations of memory usage

at each experiment can be attributed to the runtime. This variations are more significant

at 4HDA since four instances of auction objects are maintained. However, the general line

is well defined and the relation is almost constant. Figure 5.26 shows the ratio between

MLDA and 4HDA. MLDA uses in average 3,23 times more memory than 4HDA which is

attributed to the PendingLosingBids queue that maintains for each bid a pointer to the

lanes where a bid can be placed, and to the sorted lists used to maintain the different

quotes across lanes.

151 5.7 Experiment E: Memory Usage

Figure 5.25: Memory usage during 500 experiments. Y-axis indicates the amount of

memory used in bytes.

MLDA achieves better computational performances as demonstrated in previous ex-

periments at expenses of using more memory. MLDA improves in computational efficiency

two to three times to any 4HDA while it used 3 more times of memory. However, MLDA

provides the benefit of dealing with substitute preferences that any other 4HDA can deal

with.

Chapter 5: Multi Lane Double Auction 152

Figure 5.26: Compared memory usage between MLDA and 4HDA. Y-axis indicates the

relation of the amount of memory required.

5.8 Conclusions

The chapter presented MLDA a novel variant of the well known Double Auction adapted

to trade time-differentiated resources. The chapter motivated the utility of the auction as

well as it set the context to be applied. MLDA is the final step in the research carried out

in this thesis and constitutes an important contribution to build scalable and Grid oriented

resource marketplaces. The chapter presented the data structures used to design MLDA

as well as the main operations and algorithms that constitute the core of the auction.

In order to evaluate the mechanism, an extensive set of experiments have been carried

out. MLDA, due to its design, achieves optimal allocations in terms of Social Welfare.

The evaluation compared MLDA with another well known implementation of the Double

Auction. We tested MLDA and compared results with different configurations of the

other mechanism. Results shown a better behaviour of MLDA in all situations due to the

153 5.8 Conclusions

properties of the auction (i.e. invariant maximum social welfare). Besides, MLDA has

been compared with several double auction instances running at a time. This experiment

showed us the computational performance (i.e. time taken to execute) of MLDA when

compared to a set of auctions potentially providing the same allocation. MLDA showed

two to three times more computational efficiency, that is MLDA is two to three times

faster than multiple instances of single item double auctions. As a drawback, MLDA

requires three times more memory than the other double auctions used in the evaluation

due to the extra data structures used by MLDA to buffer not matched bids and the sorted

lists to keep quotes per lane. Finally, MLDA showed to be a good candidate auction to

trade time-differentiated resources especially under the presence of substitute preferences.

Besides MLDA can be considered a light-weight alternative to Combinatorial Auctions

(CAs) being able to provide efficient allocations without dealing with computational costs

of CAs. Next step on evaluation will compare MLDA with an instance of a Combinatorial

Auction.

Chapter 5: Multi Lane Double Auction 154

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Utility computing has shown to be a promising field of investment where large compa-

nies are developing their business models. Until now, distributed-computation and mas-

sive storage have been mainly used by reduced communities such as scientists, chemical

companies, IT companies and research centres and universities. This thesis envisaged

the gathering and provision of distributed-computing capacities to Internet users. Ad-

hoc communities and small organizations are being created through the use of emerging

paradigms such as the peer-to-peer. Massive computation can be attained by the ag-

gregation of computational capacities from the extremes of Internet, taking advantage of

idle resources and increasing broadband access. The thesis dealt with some of the main

issues related to resource allocation in environments characterized by small communities

that share the resources of their participants and require mechanism to increase their

capacities under demand. This scenarios where characterized and referred as Contribu-

tory Systems. While internal Virtual Organization (VO) resources, mainly contributed

by their participants, are managed by VO policies and scheduling services, external re-

sources are traded in markets. The thesis aimed to study three main aspects related to

the on-demand expansion of Virtual Organization resources. First, the description and

specification of the traded resources using a generic and flexible language that can support

155

Chapter 6: Conclusions and Future Work 156

evolution and heterogeneity. Second a peer-to-peer based architecture to manage, expand

and share resources belonging to a VO. And third, an auction specially designed to trade

time-differentiated resources as computational resources are. The economical approach

taken in this thesis is motivated by the fact that resource allocation, when resources are

scarce, need to be optimal in the sense that resource should be given to these that need

them more. Many different approaches can be taken, but economics have shown that price

can be used as a metric to express the QoS requirements, and consequently the utility ob-

tained by a resource can be expressed through a price. Price will be used to determine to

who resources have to be allocated obtaining then optimal behaviour.

The thesis dealt with semantics of Grid resources identifying their generic properties.

A semantic approach aimed to characterize resources so as to build a common knowledge

to make resource description independent of specific resources and technological evolution.

Besides, a flexible and generic bidding specification have been proposed. The specifica-

tion aimed to be a tool to express bidders preferences indifferently of the type of markets

and scenario. It has been outlined the need of market co-habitation as means to generic

resource allocation in scenarios characterized by diversity, heterogeneity, evolution and

dynamism. The proposed specification has been used in the Grid4All European project

as the bidding language used by buyer and seller agents. Besides, the resource description

have been used to develop the Grid4All ontology, used by the Semantical Information

Services that enables discovery of markets.

Next, the thesis proposed an architectural approach to decentralized resource allocation

in Contributory Systems. DyMRA, a peer-to-peer based architecture has been proposed

as a brokering infrastructure to negotiate for external resources. DyMRA was designed as

a set of autonomous components and protocols to provide the functionality of on-demand

expansion of resources in Virtual Organizations. DyMRA proposed the use of market

mechanisms to mediate the allocation of resources. DyMRA has not been bound to an

specific type of market but contrarily it relied in standard APIs and functionalities so as

to support multiple co-habitating mechanism. DyMRA is currently implemented as an

157 6.1 Conclusions

extension of LaCOLLA middleware available at http:// www.lacolla.uoc.edu/lacolla.

Markets where held by CAS, a configurable auction server architecture specially de-

signed to support multiple market mechanisms. CAS has been designed as a set of con-

figurable components following the separation of concerns paradigm. In CAS generic

functionalities have been separated from specific market implementations providing a set

of configurable components and binding functionalities that permit on-demand and dy-

namic market configuration and deployment. CAS offered well defined APIs to enable

market mechanism developers to easily implement specific market mechanisms. DyMRA

and CAS where bound together and constitute a totally decentralized approach to ex-

ternal resource provision and expansion in Virtual Organization. Besides CAS has been

integrated in the Grid Marketplace (GRIMP) component of the Grid4All project and we

are currently working in its evaluation.

Finally, an specific market mechanism have been designed. The approach has been

motivated because the unsuitability of current auctions to allocate efficiently time-

differentiated resources (usually provided by many different resource providers) such as

most of the resources in a Grid. Even Combinatorial Auctions enable the trade of time-

differentiated resources, they have a high computational cost. Simpler auctions do not

enable multi-item trading but only one type of item is allocated. Straightforward ap-

proaches require multiple instances of single item auctions to manage time-differentiated

resources. To cope with that issue the Multi-Lane Double Auction was proposed (MLDA).

A MLDA is a double auction specially adapted to trade time-differentiated resources.

Time-differentiated resources have been organized in lanes and bidders submit their bids

for substitute time-slots letting the auction to calculate optimal allocations. MLDA has

been compared with multiple instances of single item double auctions and several improve-

ments were shown. On the one hand, MLDA achieved better economical efficiency than

double auction in the presence of substitute or not precise bids. By design MLDA placed

bids in the lane where the social welfare was maximized. On the other hand, in terms of

computational efficiency, the tests carried out showed that MLDA ran two to three times

Chapter 6: Conclusions and Future Work 158

faster than multiple instances of single item double auctions. That improvement was at-

tributed to the costs of maintaining different instances running instead of a single one used

by MLDA. As CAS, MLDA is one of the mechanisms implemented in the Grid4All project.

A concluding remark of the overall work carried out in this thesis is that of requirement

for open APIs and layered software architectures. Dynamics and scale are important issues

to be tackled by decentralization and flexibility. In the overall work of the thesis a set of

requirements have always been considered, Ad-Hoc Grids and Contributory Systems are

dynamic environments by nature, where multiple types of resources, services are exposed.

Users and applications have varying resource needs and strategies. To provide function-

alities to mediate the allocation of resources, we considered that specific implementations

were not useful but instead generic components were required. Generic components should

provide tools and functionalities to be adapted and configured to the addressed scenar-

ios. To clearly understand the scenario and its requirements a clear comprehension of

the properties of the resources is needed as well. The objective of this work had been to

stablish the basis for long term architectures that can be implanted in the next generation

of Internet.

6.2 Future Work

Future directions include work on strategy of auctions. Application requirements have

to be translated to jobs and subsequently to a bid formulation. Bid formulation have to

take into account the real available resources. Application requirements can be mapped

to different configurations and bidding agents need to find configurations that maximize

user’s utility within certain budget constraints. Bidding strategies are also fundamental

for a correct behaviour of markets. Bidding agents need to act based on their own strategy,

that is, placing bids at certain times, deciding the price to bid based on the utility they

expect and selecting the more appropriate type of auction to bid in.

Other interesting aspects that will be studied are the construction of an overall eco-

159 6.2 Future Work

nomic architecture, integrating some of the existing work on decentralized market infor-

mation services [13], accounting and banking services [58] and reputation schemes [50] to

provide a fully decentralized economic framework for resource allocation in Ad-hoc Grids.

Other open issues related to semantics are the description of markets and their prop-

erties and the provision of languages to describe running markets and their protocols. On

the one hand, market semantics can be used to build a component repository of market

implementations and a language to retrieve and instantiate specific market mechanisms.

This will enhance the flexibility of resource allocation frameworks providing tools to ini-

tiate any market implementation at will. For example, eBay [31] and other trading sites

can also be interested in such type of repositories enabling market initiators to select

amongst a large set of auction implementations. Besides, market developers can upgrade

the functionalities of trading sites by providing new market implementations.

Chapter 6: Conclusions and Future Work 160

Bibliography

[1] A taxonomy and survey of grid resource management systems for distributed com-

puting. Softw. Pract. Exper., 32(2):135–164, 2002.

[2] Eytan Adar and Bernardo A. Huberman. Free riding on gnutella. First Monday,

September 2000.

[3] Jeannie Albrecht, David Patterson, and Amin Vahdat. Distributed resource discovery

on planetlab with sword. In In WORLDS - First Workshop on Real, Large Distributed

Systems, 2004.

[4] Bruce Allen. Einstein@home. http://einstein.phys.uwm.edu/.

[5] Nejla Amara-Hachmi, Xavier Vilajosana, Ruby Krishnaswamy, Leandro Navarro-

Moldes, and Joan Manuel Marquès. Towards an open grid marketplace framework

for resources trade. In OTM Conferences (2), pages 1322–1330, 2007.

[6] D. P. Anderson. Boinc: A system for public-resource computing and storage. In

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing,

pages 4–10. IEEE computer society, 2004.

[7] Nazareno Andrade, Walfredo Cirne, Francisco Brasileiro, and Paulo Roisenberg. Our-

grid: An approach to easily assemble grids with equitable resource sharing. In Pro-

ceedings of the 9th Workshop on Job Scheduling Strategies for Parallel Processing,

Seattle, WA, USA, June 2003.

161

BIBLIOGRAPHY 162

[8] Yedidia Atzmony and David Peleg. Distributed algorithms for english auctions. In

DISC ’00: Proceedings of the 14th International Conference on Distributed Comput-

ing, pages 74–88, London, UK, 2000. Springer-Verlag.

[9] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resource allocation in federated

distributed computing infrastructures, 2004.

[10] Shengli Bao and Peter R. Wurman. A comparison of two algorithms for multi-unit

k-double auctions. In ICEC ’03: Proceedings of the 5th international conference on

Electronic commerce, pages 47–52, New York, NY, USA, 2003. ACM Press.

[11] Shengli Bao and Peter R. Wurman. A comparison of two algorithms for multi-unit

k-double auctions. In ICEC ’03: Proceedings of the 5th international conference on

Electronic commerce, pages 47–52, New York, NY, USA, 2003. ACM.

[12] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-

Bernard Stefani. The fractal component model and its support in java: Experiences

with auto-adaptive and reconfigurable systems. Softw. Pract. Exper., 36(11-12):1257–

1284, 2006.

[13] René Brunner, Isaac Chao, Pablo Chacin, Felix Freitag, Leandro Navarro, Oscar

Ardaiz, Liviu Joita, and Omer F. Rana. Assessing a distributed market infrastructure

for economics-based service selection. In OTM Conferences (2), pages 1403–1416,

2007.

[14] Ali Raza Butt, Rongmei Zhang, and Y. Charlie Hu. A self-organizing flock of condors.

In SC, page 42. ACM, 2003.

[15] R. Buyya and S. Venugopal. The gridbus toolkit for service oriented grid and utility

computing: An overview and status report, 2004.

[16] Rajkumar Buyya, David Abramson, and Jonathan Giddy. An economy driven re-

source management architecture for global computational power grids. In Hamid R.

Arabnia, editor, PDPTA. CSREA Press, 2000.

163 BIBLIOGRAPHY

[17] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron. One

ring to rule them all: service discovery and binding in structured peer-to-peer overlay

networks. In EW10: Proceedings of the 10th workshop on ACM SIGOPS European

workshop: beyond the PC, pages 140–145, New York, NY, USA, 2002. ACM Press.

[18] Catnets Consortium. Deliverable d3.1: Implementation of additional services for the

economic enhanced platforms in grid/p2p platform: Preparation of the concepts and

mechanisms for implementation (gmm), 2005.

[19] Ruggiero Cavallo, David C. Parkes, Adam I. Juda, Adam Kirsch, Alex Kulesza,

Sébastien Lahaie, Benjamin Lubin, Loizos Michael, and Jeffrey Shneidman. Tbbl:

A tree-based bidding language for iterative combinatorial exchanges. In Multidisci-

plinary Workshop on Advances in Preference Handling (IJCAI), 2005.

[20] Jeffrey S. Chase, David E. Irwin, Laura E. Grit, Justin D. Moore, and Sara E. Spren-

kle. Dynamic virtual clusters in a grid site manager. In HPDC ’03: Proceedings of

the 12th IEEE International Symposium on High Performance Distributed Comput-

ing, page 90, Washington, DC, USA, 2003. IEEE Computer Society.

[21] Brent N. Chun, Chaki Ng, Jeannie Albrecht, David C. Parkes, and Amin Vahdat.

Computational resource exchanges for distributed resource allocation.

[22] Brent N. Chun, Chaki Ng, Jeannie Albrecht, David C. Parkes, and Amin Vahdat.

Computational resource exchanges for distributed resource allocation. Technical re-

port, 2004.

[23] Scott H. Clearwater, editor. Market-based control: a paradigm for distributed resource

allocation. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1996.

[24] research & Development Information Service Community. The Future Network and

Services Draft. Technical report, An information space for European Research and

Development (R&D) and exploitation of European R&D results, 2007.

[25] Grid4All Consortium. Grid4all european project. http://grid4all.eu/.

BIBLIOGRAPHY 164

[26] Sven de Vries and Rakesh V. Vohra. Combinatorial auctions: A survey. INFORMS

Journal on Computing, 15(3):284–309, 2003.

[27] Stefan Decker, Sergey Melnik, Frank van Harmelen, Dieter Fensel, Michel C. A. Klein,

Jeen Broekstra, Michael Erdmann, and Ian Horrocks. The semantic web: The roles

of xml and rdf. IEEE Internet Computing, 4(5):63–74, 2000.

[28] Zoran Despotovic, Jean-Claude Usunier, and Karl Aberer. Towards peer-to-peer

double auctioning. In HICSS ’04: Proceedings of the Proceedings of the 37th Annual

Hawaii International Conference on System Sciences (HICSS’04) - Track 9, page

90289.1, Washington, DC, USA, 2004. IEEE Computer Society.

[29] distributed.net. urlhttp://www.distributed.net/.

[30] Scott Draves. The Electric Sheep and their Dreams in High Fidelity. pages 7–9, New

York, 2006. ACM Press.

[31] eBay. ebay web site. http://www.ebay.com/.

[32] Marc Esteva and Julian A. Padget. Auctions without auctioneers: Distributed auction

protocols. In Agent Mediated Electronic Commerce (IJCAI Workshop), pages 220–

238, 1999.

[33] T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, and F. Freitag. Decentralized re-

source allocation in application layer networks. In Proceedings of the 3rd International

Symposium on Cluster Computing and the Grid (CCGrid 2003, pages 645–650, 2003.

[34] Michal Feldman, Kevin Lai, and Li Zhang. A price-anticipating resource allocation

mechanism for distributed shared clusters. CoRR, abs/cs/0502019, 2005.

[35] Folding. Folding@home distributed computing. http://folding.stanford.edu/.

[36] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling

scalable virtual organizations. Int. J. High Perform. Comput. Appl., 15(3):200–222,

2001.

165 BIBLIOGRAPHY

[37] Daniel Friedman. The double auction market institution: A survey. In Daniel

Friedman and John Rust, editors, The Double Auction Market, pages 3–25. Addison-

Wesley, 1993.

[38] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat. Sharp:

An architecture for secure resource peering. In In Proceedings of the 19th ACM

Symposium on Operating Systems Principles, pages 133–148, 2003.

[39] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. Taming the computational

complexity of combinatorial auctions: Optimal and approximate approaches. In Pro-

ceedings of the Sixteenth International Joint Conference on Artificial Intelligence,

pages 548–553. Morgan Kaufmann Publishers Inc., 1999.

[40] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD

dissertation, KTH—Royal Institute of Technology, Stockholm, Sweden, October 2006.

[41] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD

dissertation, KTH—Royal Institute of Technology, Stockholm, Sweden, December

2006.

[42] Thomas R. Gruber. A translation approach to portable ontology specifications, 1993.

[43] D. Haussheer and B. Stiller. Decentralized auction-based pricing with peermart. In

Integrated Network Management, pages 381–394. IEEE, 2005.

[44] D. Haussheer and B. Stiller. Decentralized auction-based pricing with peermart. In

Integrated Network Management, pages 381–394. IEEE, 2005.

[45] Holger H. Hoos and Craig Boutilier. Solving combinatorial auctions using stochastic

local search. In AAAI/IAAI, pages 22–29, 2000.

[46] http://lacolla.uoc.edu/lacolla/.

[47] http://setiathome.berkeley.edu/.

[48] http://www.mersenne.org/prime.htm.

BIBLIOGRAPHY 166

[49] David Irwin, Jeffrey Chase, Laura Grit, Aydan Yumerefendi, David Becker, and Ken-

neth G. Yocum. Sharing networked resources with brokered leases. In USENIX

Annual Technical Conference, pages 199–212.

[50] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-molina. The eigentrust

algorithm for reputation management in p2p networks. In In Proceedings of the

Twelfth International World Wide Web Conference, pages 640–651. ACM Press, 2003.

[51] F. Kelly. Charging and rate control for elastic traffic, 1997.

[52] Bernardo A. Huberman Kevin Lai and Leslie Fine. Tycoon: A Distributed Market-

based Resource Allocation System. Technical Report arXiv:cs.DC/0404013, HP Labs,

Palo Alto, CA, USA, April 2004.

[53] Konstantinos Kotis and A. Vouros. Human-centered ontology engineering: The hcome

methodology. Knowl. Inf. Syst., 10(1):109–131, 2006.

[54] Vijay Krishna. Auction Theory. Academic Press, 2002.

[55] Anthony M. Kwasnica, John O. Ledyard, Dave Porter, and Christine DeMartini. A

new and improved design for multiobject iterative auctions. Manage. Sci., 51(3):419–

434, 2005.

[56] Daniel Lázaro, Joan Manuel Marquès, and Josep Jorba. Decentralized service de-

ployment for collaborative environments. In Proceedings of the 1st International

Conference on Complex, Intelligent and Software-Intensive Systems, CISIS’07, pages

229–234, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[57] Daniel Lázaro, Xavier Vilajosana, and Joan Manuel Marquès. Dymra: Dynamic

market deployment for decentralized resource allocation. In OTM Workshops (1),

pages 53–63, 2007.

[58] Xavier León. Currency Management System: a Distributed Banking Service for the

Grid. Technical Report UPC-DAC-RR-XCSD-2007-6, Universitat Polit

‘ecnica de Catalunya, Barcelona, Spain, July 2007.

167 BIBLIOGRAPHY

[59] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1996.

[60] Joan Manuel Marquès, Xavier Vilajosana, Thanasis Daradoumis, and Leandro

Navarro. Lacolla: Middleware for self-sufficient online collaboration. IEEE Inter-

net Computing, 11(2):56–64, 2007.

[61] Joan Manuel Marquès, Xavier Vilajosana, Thanasis Daradoumis, and Leandro

Navarro. Lacolla: Middleware for self-sufficient online collaboration. IEEE Inter-

net Computing, 11(2):56–64, 2007.

[62] R. Preston McAfee and John McMillan. Auctions and bidding. Journal of Economic

Literature, 25(2):699–738, 1987.

[63] R. Preston McAfee and John McMillan. Auctions with entry. Economics Letters,

23(4):343–347, 1987.

[64] Kevin L. Mills and Christopher Dabrowski. Can economics-based resource allocation

prove effective in a computation marketplace? Journal of Grid Computing, 6:291–311,

Sept 2008.

[65] Muralidhar V. Narumanchi and José M. Vidal. Algorithms for distributed winner

determination in combinatorial auctions. In Agent-Mediated Electronic Commerce

VII, 2005.

[66] Dirk Neumann, Jochen Stößer, Arun Anandasivam, and Nikolay Borissov. Sorma

- building an open grid market for grid resource allocation. In Jörn Altmann and

Daniel Veit, editors, GECON, volume 4685 of Lecture Notes in Computer Science,

pages 194–200. Springer, 2007.

[67] Noam Nisan. Bidding and allocation in combinatorial auctions. In ACM Conference

on Electronic Commerce, pages 1–12, 2000.

[68] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic

Behavior, 35:166–196, 2001. 613.

BIBLIOGRAPHY 168

[69] P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. Frank, and C. Chokkareddy. Ocean:

The open computation exchange and arbitration network, a market approach to meta

computing, 2003.

[70] David W. Pearce. The MIT dictionary of modern economics. MIT Press, 1986.

[71] Steve Phelps. Web site for JASA (Java Auction Simulator API), 2006. http://www.

csc.liv.ac.uk/~sphelps/jasa/ (accessed February 23, 2006).

[72] Steve Phelps. Evolutionary Mechanism Design. Ph. D thesis, University of Liverpool

(U.K.), 2007.

[73] Martin Placek and Rajkumar Buyya. Storage exchange: A global trading platform

for storage services. In Euro-Par, pages 425–436, 2006.

[74] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource manage-

ment for high throughput computing. In HPDC ’98: Proceedings of the 7th IEEE

International Symposium on High Performance Distributed Computing, page 140,

Washington, DC, USA, 1998. IEEE Computer Society.

[75] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.

A scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001

conference on Applications, technologies, architectures, and protocols for computer

communications, pages 161–172, New York, NY, USA, 2001. ACM.

[76] Ori Regev and Noam Nisan. The popcorn market—an online market for compu-

tational resources. In ICE ’98: Proceedings of the first international conference on

Information and computation economies, pages 148–157, New York, NY, USA, 1998.

ACM.

[77] Donald Rutherford. Dictionary of economics. Routledge, 1992.

[78] Tuomas Sandholm. An algorithm for winner determination in combinatorial auctions.

Artificial Intelligence, 135(1-2):1–54, February 2002.

169 BIBLIOGRAPHY

[79] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. Winner deter-

mination in combinatorial auction generalizations. In AAMAS, pages 69–76. ACM,

2002.

[80] Luis F. G. Sarmenta. Bayanihan: Web-based volunteer computing using java. In

In Second International Conference on World-Wide Computing and its Applications,

pages 444–461, 1998.

[81] Björn Schnizler. Mace: A multi-attribute combinatorial exchange. In Nick Jennings,

Gregory Kersten, Axel Ockenfels, and Christof Weinhardt, editors, Negotiation and

Market Engineering, number 06461 in Dagstuhl Seminar Proceedings. Internationales

Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-

many, 2007. <http://drops.dagstuhl.de/opus/volltexte/2007/1009> [date of citation:

2007-01-01].

[82] Michael Schwind, Oleg Gujo, and Tim Stockheim. Dynamic resource prices in a

combinatorial grid system. In CEC-EEE ’06: Proceedings of the The 8th IEEE In-

ternational Conference on E-Commerce Technology and The 3rd IEEE International

Conference on Enterprise Computing, E-Commerce, and E-Services, page 49, Wash-

ington, DC, USA, 2006. IEEE Computer Society.

[83] Adam Smith. An Inquiry into the Nature and Causes of the Wealth of Na-

tions. Number smith1776 in History of Economic Thought Books. McMaster

University Archive for the History of Economic Thought, 1776. available at

http://ideas.repec.org/b/hay/hetboo/smith1776.html.

[84] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable Peer-To-Peer lookup service for internet applications. In Proceed-

ings of the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

[85] Michael Strbel and Christof Weinhardt. The montreal taxonomy for electronic nego-

tiations. In Group Decision and Negotiation, volume 12, pages 143–164, Washington,

DC, USA, 2003. Springer Netherlands.

BIBLIOGRAPHY 170

[86] M. Tamai, N. Shibata, K. Yasumoto, and M. Ito. Distributed market broker archi-

tecture for resource aggregation in grid computing environments. In CCGRID ’05:

Proceedings of the Fifth IEEE International Symposium on Cluster Computing and

the Grid (CCGrid’05) - Volume 1, pages 534–541, Washington, DC, USA, 2005. IEEE

Computer Society.

[87] Paul Tucker. Market mechanisms in a programmed system, 1998.

[88] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal of

Finance, 16:8–37, 1961.

[89] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. Kephart, and

Scott Stornetta. Spawn: A distributed computational economy. IEEE Transactions

on Software Engineering, 18(2):103–117, 1992.

[90] Peter R. Wurman, William E. Walsh, and Michael P. Wellman. Flexible double

auctions for electionic commerce: theory and implementation. Decis. Support Syst.,

24(1):17–27, 1998.

[91] Edo Zurel and Noam Nisan. An efficient approximate allocation algorithm for com-

binatorial auctions. In ACM Conference on Electronic Commerce, pages 125–136.

ACM, 2001.

