
 

 

 

Integration of 
automated code 
analysis tools 

 
 

 

 

Víctor Morga Marchal 
 
Cybersecurity and privacy 
Data analysis 
 
Supervisor 
Joan Caparrós Ramírez 

Professor 
Andreu Pere Isern Deyà 

 
Submission Date 
01/2023   



 

Data analysis 09/2022 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This work is licensed under a Creative 
Commons Attribution-ShareAlike 4.0 
International License. 
 
  

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To all my friends and family, without  
them I would not be where I am now. 

 
 



 

i 

DATASHEET 
 

Title: 
Integration of automated code analysis 
tools 

Author: Víctor Morga Marchal 

Supervisor: Joan Caparrós Ramírez 

Professor: Andreu Pere Isern Deyà 

Submission date (mm/yyyy): 01/2023 

Degree: Cybersecurity and privacy 

Field: Data analysis 

Language: English 

Keywords: Automated,  code,  analysis 

Abstract 

This paper aims to research and explain how to improve the security of 
software products with the use of automated code analysis tools and their 
integration in the software development lifecycle in an efficient way.  

 

The automated code analysis tools are categorized in four groups: SAST, 
DAST, IAST and SCA. This paper explains each of these groups, give 
examples of current products and show in which deployment tiers are 
integrated. 

 

Once the technology is explained, a real software development environment is 
set up, consisting of a source code repository, a continuous integration / 
continuous delivery server and the automated code analysis tools. 

 

Finally, we integrate all the components to show how can any company or 
developer take advantage of these tools, making their final product more 
secure.  



1   

Index 

 
Figures ............................................................................................................... 3 

1. Introduction ................................................................................................. 5 

1.1. Context ..................................................................................................... 5 

1.2. Goals ........................................................................................................ 5 

1.3. Methodology ............................................................................................. 6 

1.4. Tasks ........................................................................................................ 6 

1.4.1. Research phase ................................................................................. 6 

1.4.2. Implementation phase ........................................................................ 8 

1.4.3. Optimization and conclusion phase ................................................... 8 

1.5. Planning ................................................................................................... 9 

1.6. State of art .............................................................................................. 11 

1.6.1. CI/CD servers .................................................................................. 11 

1.6.2. Source code repositories ................................................................. 11 

1.6.3. Automated analysis tools ................................................................. 11 

1.6.4. Integration ........................................................................................ 11 

1.7 Resources & cost .................................................................................... 12 

1.8. Risks ....................................................................................................... 12 

1.9. Social and ethic impact ........................................................................... 12 

2. Research phase ........................................................................................... 13 

2.1 Deployment tiers ..................................................................................... 13 

2.2. SAST ...................................................................................................... 13 

2.2.1 What is SAST and how it works. ....................................................... 13 

2.2.2. SAST solutions ................................................................................ 14 

2.2.3. SAST integration .............................................................................. 15 

2.3. DAST ...................................................................................................... 17 

2.3.1 What is DAST and how it works. ....................................................... 17 

2.3.2. DAST Solutions................................................................................ 17 

2.3.3. DAST Integration ............................................................................. 18 



2   

2.4. IAST ....................................................................................................... 19 

2.4.1 What is IAST and how it works. ........................................................ 19 

2.4.2. IAST Solutions ................................................................................. 21 

2.4.3. IAST Integration ............................................................................... 21 

2.5. SCA ........................................................................................................ 21 

2.5.1 What is SCA and how it works. ......................................................... 22 

2.5.2. SCA Solutions .................................................................................. 22 

2.5.3. SCA Integration................................................................................ 23 

2.6. Research conclusions ............................................................................ 23 

2.6.1. Topology in development tier ........................................................... 23 

2.6.2. Topology in integration tier ............................................................... 24 

2.6.2. Topology in preproduction and production tiers ............................... 24 

3. Implementation phase .................................................................................. 26 

3.1. Environment ........................................................................................... 26 

3.1.1. Technology ...................................................................................... 26 

3.2.1. Implementation in the development tier ........................................... 27 

3.2.2. Implementation in the integration tier ............................................... 29 

3.3 Testing the pipelines................................................................................ 42 

4. Conclusions .................................................................................................. 46 

5. Lessons learned ........................................................................................... 46 

6. Future work .................................................................................................. 47 

References ....................................................................................................... 48 

Annex ............................................................................................................... 51 

 

 
 

  



3   

Figures 

Figure 1 A diagnosis of security issues in Visual Studio Code. Source: HCL 

AppScan CodeSweep ...................................................................................... 16 

Figure 2 Jenkins’s Checkmarx plugin report after a build. Source: 

Checkmarx.com ............................................................................................... 16 

Figure 3 Acunetix DAST report. Source: https://www.softwaretestinghelp.com/

 ......................................................................................................................... 19 

Figure 4 Active IAST flow. Source: hdivsecurity.com ....................................... 20 

Figure 5 Passive IAST flow. Source: hdivsecurity.com .................................... 20 

Figure 6 Development tier topology .................................................................. 23 

Figure 7 Integration tier topology ...................................................................... 24 

Figure 8 Preproduction and production tier topology ........................................ 25 

Figure 9 HCL AppScan CodeSweep in VSCode Marketplace ......................... 27 

Figure 10 HCL AppScan CodeSweep avaliable rules ...................................... 28 

Figure 11 Vulnerabilities found by HCL AppScan CodeSweep ........................ 28 

Figure 12 Information about a vulnerability in HCL AppScan CodeSweep ....... 29 

Figure 13 Running Ngrok to expose the Jenkins instance ............................... 30 

Figure 14 Bitbucket branch restrictions ............................................................ 30 

Figure 15 Bitbucket webhook configuration ...................................................... 31 

Figure 16 Bitbucket OAuth consumer configuration ......................................... 31 

Figure 17 Jenkins plugins for Bitbucket ............................................................ 32 

Figure 18 Bitbucket Build Status Notifier Plugin configuration .......................... 32 

Figure 19 Download of SonarQube docker image ............................................ 32 

Figure 20 SonarQube webhook configuration .................................................. 33 

Figure 21 SonarQube Access token generation ............................................... 33 

Figure 22 SonarQube plugin for Jenkins .......................................................... 34 

Figure 23 SonarQube plugin configuration ....................................................... 34 

Figure 24 Quality Gates conditions .................................................................. 35 

Figure 25 Installation of Retire.js ...................................................................... 35 

Figure 26 Retire.js results ................................................................................ 35 

Figure 27 Multibranch pipeline item .................................................................. 36 

Figure 28 Bitbucket source configuration in Jenkins ........................................ 36 

Figure 29 Jenkins build configuration ............................................................... 37 



4   

Figure 30 Checkout stage in Jenkinsfile ........................................................... 37 

Figure 31 SAST stage in Jenkinsfile ................................................................. 37 

Figure 32 Quality gates stage in Jenkinsfile ..................................................... 38 

Figure 33 SCA stage in Jenkinsfile ................................................................... 38 

Figure 34 Post actions in Jenkinsfile ................................................................ 38 

Figure 35 Form to register on Contrast Community Edition.............................. 39 

Figure 36 Instructions to install Contrast agent ................................................ 39 

Figure 37 YAML configuration file for Contrast ................................................. 40 

Figure 38 Contrast IAST agent installation ....................................................... 40 

Figure 39 package.json file with the script to run the app with Contrast's agent

 ......................................................................................................................... 40 

Figure 40 Launching app with Contrast's script ................................................ 41 

Figure 41 OWASP ZAP docker image is pulled and executed. ........................ 41 

Figure 42 Command to run the OWASP ZAP scan. ......................................... 42 

Figure 43 Retrieving and saving the results from OWASP ZAP's scan ............ 42 

Figure 44 Build trigger in Bitbucket ................................................................... 43 

Figure 45 Jenkins job failed due to Quality Gates ............................................ 43 

Figure 46 Security issues in SonarQube .......................................................... 43 

Figure 47 Conditions passed for merging a branch .......................................... 44 

Figure 48 Successful build in Jenkins .............................................................. 44 

Figure 49 DAST results .................................................................................... 44 

Figure 50 Contrast IAST results ....................................................................... 45 

  



5   

1. Introduction 

 

1.1. Context 

 
The number of cyber attacks has increased over the last few years, causing data 
breaches and huge financial loss to companies (1). The attacks are performed by 
cyber criminals using a variety of techniques, they can target people through 
social engineering or exploit a vulnerability in the systems directly. These 
vulnerabilities occur due to many reasons: bad configurations, outdated 
components or unsecure code among others can open a door in our systems to 
an attacker.  
 
In order to produce software that is secure, companies need to implement 
security measures through all the software development lifecycle. One of these 
measures is the use of automated code analysis tools. These tools can be used 
through all the development phases to detect code that can be vulnerable.  
 
This paper aims to explain the technology that is used under this category, how 
it works and how it can be implemented in software development lifecycle.  With 
these tools we will be able to reduce the costs of security testing and find 
vulnerabilities and legal risks regarding third party components licenses before 
releasing the product to the public.  
 
The integration of these tools during the product development has other benefits: 
In DevSecOps, the implementation of security measures through all the 
development lifecycle instead of only in the final states is known as pushing left 
the application security. Pushing left allows us to find vulnerabilities in early 
stages of the development, which allow the developers to solve the problem 
instantly instead of doing a huge code refactoring during the late stages, thus 
saving time and money to the company. 
 
 
 

1.2. Goals 

 
As stated in the previous section, the goal of this project is to detect vulnerabilities 
and license issues as soon as possible in software development using automated 
code analysis tools, which will save time and money for the companies. In order 
to achieve this goal, we have three main objectives: 
 

● Enumerate and explain how the technology that is categorized under 
automated code analysis tools works and what benefits provide to the 
companies. These technologies are: SAST, DAST, IAST and SCA. 
 

● List and compare the pros and cons of some automated code analysis 
tools that are currently available in the market and can be implemented in 
a software company. 



6   

 
● How to integrate the automated code analysis tools in the software 

development lifecycle to enhance the security in each step. 
 
 

1.3. Methodology 

 
For this project we are going to follow an agile methodology. The project is going 
to be divided into three deliveries or sprints.  
 
In the first sprint we are going to research the different technologies that are 
categorized under automated code analysis tools (SAST, DAST, IAST and SCA). 
In this sprint we are going to explain what they are, what their purpose is, how 
they work, how they can be implemented in our development lifecycle and give 
some examples of current solutions that are available in the market. 
 
In the second sprint we are going to install a software development environment 
with the current CI/CD (continuous integration/continuous delivery) technologies, 
such as source code repositories, automated building tools and automated 
deployment tools. In this environment we are going to integrate the automated 
code analysis tools explained in the previous delivery. 
 
The third sprint will be used to optimize and finish the setup of the automated 
code analysis tools. After finishing the implementation, we will write the 
conclusions of this project and start elaborating the demo and the presentation 
for the defense 
 
 

1.4. Tasks 

 
This paper is going to be divided into three phases: Research, implementation 
and optimizations & conclusions. 
 

 

1.4.1. Research phase 
 

This phase will be used to study the different technologies that we are going to 
study, what they do, what their purpose is, how they work and how they are 
implemented. 
 
 
 
 
 
 
 



7   

1.4.1.1. Static application security testing (SAST) research 

 
SAST is used for the analysis of the code before it is compiled, also known as 
white box testing. The tasks in this chapters are: 
 

● Investigate what is SAST and how it works 
 

● Investigate current solutions that implement SAST and list their pros and 
cons 
 

● Investigate how we can integrate SAST in the development lifecycle 
 

1.4.1.2. Dynamic Application Security Testing (DAST) research 

 
In this section we will study how to test an application after it is compiled through 
simulated attacks. 
 

● Investigate what is DAST and how it works. 
 

● Investigate current solutions that implement DAST and list their pros and 
cons. 
 

● Investigate how we can integrate DAST in the development lifecycle. 
 

1.4.1.3. Interactive application security testing (IAST) research 

 
IAST tools test an application using software instrumentation: 
 

● Investigate what is IAST and how it works. 
 

● Investigate current solutions that implement IAST and list their pros and 
cons. 
 

● Investigate how we can integrate IAST in the development lifecycle. 
 

1.4.1.4. Software Composition Analysis (SCA) 

 
SCA is the technology that analyzes the dependencies in our project. The tasks 
are: 
 

● Investigate what is SCA and how it works. 
 

● Investigate current solutions that implement SCA and list their pros and 
cons. 
 

● Investigate how we can integrate SCA in the development lifecycle. 
 



8   

 

1.4.2. Implementation phase 
 
In this phase we will install and setup a CI/CD environment in which we will 
implement the studied tools of the previous phase: 
 

● Install and set up the CI/CD environment (source code repository, 
automated building tools, automated deployment tools,...). 
 

● Install and set up the chosen SAST tool. 
 

● Install and set up the chosen DAST tool. 
 

● Install and set up the chosen IAST tool. 
 

● Install and set up the chosen SCA tool. 
 

1.4.3. Optimization and conclusion phase 
 
In this phase we will optimize and finish the setup of the automated code analysis 
tools. After the whole integration is completed, we will write the conclusion of this 
project 
 

● Optimize and finish the setup of the SAST tool. 
 

● Optimize and finish the setup of the DAST tool. 
 

● Optimize and finish the setup of the IAST tool. 
 

● Optimize and finish the setup of the SCA tool. 
 

● Write conclusions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9   

1.5. Planning 

 
For this project we have dedicated the number of hours required for 12 ECTS. 
The planning for this project is explained by the following table and Gantt 
diagram. The weekends are included due to the student employment status, but 
the national holidays are excluded. 
 
 

Task Start date End date Hours  
1 Introduction 3/10/2022 11/10/2022 18 

1.1.  Planning 3/10/2022 11/10/2022 5.5 

1.2. Introduction 3/10/2022 11/10/2022 6 

1.3. State of art 3/10/2022 11/10/2022 6 

2. Research phase 12/10/2022 8/11/2022 70 

2.1. SAST research 12/10/2022 19/10/2022 17.5 

2.2. DAST research 19/10/2022 26/10/2022 17.5 

2.3. IAST research 26/10/2022 1/11/2022 17.5 

2.4. SCA research 1/11/2022 8/11/2022 17.5 

3. Implementation phase 9/11/2022 6/12/2022 92 

3.1. Implementation of CI/CD 
environment 

9/11/2022 23/11/2022 28 

2.1. SAST tool installation & setup 16/11/2022 30/11/2022 16 

2.2. DAST tool installation & setup 23/11/2022 6/12/2022 16 

2.3. IAST tool installation & setup 23/11/2022 6/12/2022 16 

2.4. SCA tool installation & setup 30/11/2022 6/12/2022 16 

4. Optimization and conclusion 
phase 

7/12/2022 10/01/2023 89 

4.1. Optimization of SAST tool 7/12/2022 3/01/2023 20 

4.2. Optimization of DAST tool 7/12/2022 3/01/2023 20 

4.3. Optimization of IAST tool 7/12/2022 3/01/2023 20 

4.4. Optimization of SAST tool 7/12/2022 3/01/2023 20 

4.5. Write conclusions 3/01/2023 10/01/2023 9 

5. Record video 11/01/2023 17/01/2023 15 

6. Create presentation 18/01/2023 22/01/2023 15 

7. Defend dissertation 23/01/2023 27/01/2023 1 

Total 300 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



10   

 
 
Gantt diagram: 
 

 Week 

Task 1 2 3 4 5 6 7 8 9 1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1 Planning and introduction                  

1.1.  Planning                  

1.2. Introduction                  

1.3. State of art                  

2. Research phase                  

2.1. SAST research                  

2.2. DAST research                  

2.3. IAST research                  

2.4 SCA research                  

3. Implementation phase                  

3.1.Implementation of CI/CD 
environment 

                 

3.2. SAST tool installation & setup                  

3.3. DAST tool installation & setup                  

3.4, IAST tool installation & setup                  

3.5. SCA tool installation & setup                  

4. Optimization and conclusion 
phase 

                 

4.1. Optimization of SAST tool                  

4.2. Optimization of DAST tool                  

4.3. Optimization of IAST tool                  

4.4. Optimization of SCA tool                  

4.5. Write conclusions                  

5. Record video                  

6. Create presentation                  

7. Defend dissertation                  

 
 



11   

1.6. State of art 

 
For this introduction, a research has been conducted to know what is the current 
situation of the integration of automated code analysis tools in companies. 
 

1.6.1. CI/CD servers 
 
Jenkins software is the most popular among tech companies regarding CI/CD 
servers. This is due that is reliable and open source, which allows companies to 
save money using a great tool. One of the main drawbacks is that it can be tricky 
to configure for beginners and the UI is not very user friendly, but once the user 
has learned how to use Jenkins, the tool allows developers to build complex 
pipelines. 
 

 1.6.2. Source code repositories 
 
There are three source code repositories among the most used by companies: 
Github (2), Gitlab (3) and Bitbucket (4). All of them can be hosted in the cloud or 
self-hosted. Github is the most used for opensource projects, Bitbucket provides 
more integration with other Atlassian products like Jira (5) and Gitlab is the 
cheapest of the set. They have similar functionalities, and the decision relies in 
which environment does the company use, what kind of project are they working 
on and the budget. 
 

1.6.3. Automated analysis tools 
 
The OWASP has recollected a good number of available tools that fall under this 
technology (6). The tools can be categorized in 4 groups: SAST, DAST, IAST and 
SCA. There are a lot of tools for each category, and they differ in programming 
languages supported, price and other features. We will explore more about those 
groups in the next chapter. 
 

1.6.4. Integration 
 
In order to make the most of the previous tools is necessary to integrate them so 
the process can be almost automatic. The idea is to create pipelines with Jenkins 
as the main CI/CD server and configure a code repository and the automated 
analysis tools to work together. 
 
There are plugins for Jenkins that allow the communications with the repositories 
mentioned above. For some automated analysis tools there are also plugin to 
communicate with Jenkins. Some of those tools can be executed as a standalone 
application, so they can be executed directly by Jenkins. 
 
An interesting use case of the integration is to check for vulnerabilities once a pull 
request is opened in the code repository. The server will trigger a build in Jenkins 
and the analysis tools will be executed. Once the scan is finished, if the tools find 
vulnerabilities in the code, they will notify the code repository server and the 



12   

merge pull request will be declined, thus preventing vulnerable code in our 
application. 
 

1.7 Resources & cost 

 
For this project we will study a variety of the tools that are available, but for the 
integration in the software development cycle we are going to use only those 
which are open source or free to use in order to reduce costs.  
 
 

Resource Cost 

PC 600€ 

Internet connection 30€/month 

 

1.8. Risks 

In this section we will study the risks that could affect the development of this 
study. 
 
Here are some of the problems that we might encounter during the development 
of this project: 
 

● Risk #1 - Scope too broad (High): We want to study 4 categories of 
automated code analysis in a period of 16 weeks. In order to fulfill the 
project, we have to narrow the samples of the solutions to study. 

 
● Risk #2 - Difficulties during the integrations (Medium): the integration 

of the products will require coding, which might produce errors. If these 
errors are not solved quickly the project can suffer a delay in the delivery. 
In those cases, we should focus on completing the main objective of the 
project, reaching for help from the supervisor or in forums if necessary. 
 

● Risk #3 - Steep learning curve (Medium): some technologies might have 
an initial difficulty of learning very challenging. In those cases, we should 
search for tutorials and guide steps that allow us to understand that 
technology. 
 

● Risk #4 – Illness (Low): the deadlines are very tight. If I get sick and I 
can’t work the final result is going to suffer a dropdown in quality and 
quantity. If that happens, we will have to reschedule the planning and 
prioritize the most important aspects of the project. 
 

 

1.9. Social and ethic impact 

 
For this project we have not observed any social or ethic impact.  



13   

2. Research phase 

 

2.1 Deployment tiers 

 
Before studying the different technologies, it is necessary to enumerate and 
explain the deployment tiers that are going to be referred to in the next sections. 
If we plan to integrate these tools in our software development lifecycle, we need 
to know in which deployment tiers we should integrate them. 
 
For this project we are going to split them into 4 tiers: 
 

1. Development: This tier includes the developer's local workstation and the 
secondary branches of the source code repository where the developer 
commits the changes without integrating them into the main branch.  

  
2. Integration: This tier covers the process when the developer opens a pull 

request, runs unit tests and the changes are merged into the main branch.  
 

3. Preproduction: In this tier we will mirror the final product, where the new 
features are tested in a real environment before releasing them to 
production. 

 
4. Production: In this tier is the final product that serves the clients. 

 
In order to automate this deployment process, we will use CI/CD tools, such as 
Jenkins. 
 

2.2. SAST 

 
In this chapter we will introduce Static Application Security Testing (SAST) 
technology, how it works, give some examples of current solutions and how they 
are integrated. 
 

2.2.1 What is SAST and how it works. 
 
Static Application Security Testing (from now on SAST) “is a set of technologies 
designed to analyze application source code, byte code and binaries for coding 
and design conditions that are indicative of security vulnerabilities.” (7). It is 
considered white-box testing, the source code is analyzed from the inside out and 
the application is not running.  
 
In order to test the source code, SAST tools have a set of predetermined and 
custom rules. The source code is checked against these rules and the analyzer 
will evaluate if the code complies with the rules (8). These sets of rules are based 
on regular expressions and are language dependent.  
 



14   

This technology is not 100% accurate, some of the results might be false 
positives. In the end it is up to the developer to check if the vulnerabilities are real 
or not. 
 
There are different types of analysis, each has its own purpose (9): 
 

● Configuration analysis: Check the configuration files to check that there is 
no bad configuration that may cause security vulnerabilities. 
 

● Semantic analysis: Examines syntax, identifiers and resolving types from 
code. It is also able to analyze code in its context in search of 
vulnerabilities. 
 

● Dataflow analysis: Analyze the data flow to see if the data is sanitized or it 
comes from insecure sources. 
 

● Control flow analysis: checks the order of the program operations to detect 
vulnerabilities in the sequences of orders. 
 

● Structural analysis: detects language-specific code malpractices, bad 
design, declaration and use of variables and functions, and hardcoded 
passwords and cryptographic issues. 

 
 

2.2.2. SAST solutions 
 
We can find a vast catalogue of tools that provide us with the benefit of static 
analysis. The Open Web Application Security Project (OWASP) has created a list 
of the most current known (6).  
 
In order to choose a tool, our criteria should contemplate the following: 
 

• The tool supports the programming language we use 

• Commercial or free license  

• How can it be integrated into the software development lifecycle 
 
We will take a look at some of them: 
 
HCL AppScan CodeSweep 

 
HCL AppScan CodeSweep (10) is a plugin for VSCode and IntelliJ IDE by HCL 
Technologies. It scans the code while the developer is working in search of 
vulnerabilities. 
 

• License: Open Source or Free 
 

• Languages supported: Java, .Net, Go, Python, Ruby, JS  PHP, Perl, 
COBOL, Apex. 
 

 



15   

CxSAST 
 
CxSAST (11) is the SAST solution by Checkmarx. It is commercialized as SaaS 
or on-premises. It has CI/CD integration plugins available. 
 

• License: Commercial  
 

• Languages supported: Javascript, Java, Apex, PHP, Python, Swift, Scala, 
Perl, Groovy, Ruby, C++, C#.NET, PL/SQL, VB.NET, ASP.NET, HTML 5, 
Go, and Kotlin 
 

 
 
SonarQube 

 
SonarQube (12) scans source code for Bugs, Vulnerabilities, and Code Smells. 
It has plugins to integrate it in CI/CD pipelines and a module to fail a build if the 
quality of the code is not good enough determined by a set of rules. 
 

• License: Open Source or Free / Commercial 
 

• Languages supported: Java, C#, JavaScript, TypeScript, CloudFormation, 
Terraform, Kotlin, Ruby, Go, Scala, Flex, Python, PHP, HTML, CSS, XML 
and VB.NET 

 
 

Fortify 
 
Fortify (13) is a SAST tool that supports more than 30 languages and frameworks. 
It has CI/CD integration plugins at its disposal. 

 

• License: Commercial 
 

• Languages supported: ABAP/BSP, ActionScript/MXML (Flex), APEX, 
ASP.NET, VB.NET, C\#, C/C++, Classic ASP  COBOL, ColdFusion CFML, 
Go, HTML, Java  JS/AJAX, JSP, Kotlin, Objective-C, PHP, PL/SQL, 
Python, Typescript, T-SQL, Ruby, Scala, Swift, VB.NET, Visual Basic 6, 
VBScript, XML 

 
 
 

2.2.3. SAST integration 
 
SAST can be integrated in the development, integration and preproduction tiers. 
 
In the development tier, SAST can be integrated as an extension for the IDE. 
These tools scan the code and inform the developer about potential issues while 
the developer is working. Some tools can be integrated in the IDE like HCL 
AppScan CodeSweep. 
 



16   

 
Figure 1 A diagnosis of security issues in Visual Studio Code. Source: HCL AppScan 

CodeSweep 

 
In the integration and preproduction tier, SAST can be automated in a CI/CD 
pipeline. For example, Checkmarx and Snyk have plugin that allow Jenkins to run 
a scan. This, added to the interoperability that Jenkins has with source code 
repositories like Stash, a scan can be executed after opening a pull request or 
while running a build for preproduction 
 

 
Figure 2 Jenkins’s Checkmarx plugin report after a build. Source: Checkmarx.com 

 
There is also the possibility to run a scan manually at any time, but we are focused 
on automating this process. 
 
 
 
 



17   

2.3. DAST 

 
In this chapter we will introduce Dynamic Application Security Testing (DAST) 
technology, how it works, give some examples of current solutions and how they 
are integrated. 
 
 

2.3.1 What is DAST and how it works. 
 
Dynamic Application Security Testing (from now on DAST) is “the process of 
analyzing an application to find vulnerabilities through simulated attacks. This 
type of approach evaluates the application from the “outside in” by attacking an 
application like a malicious user would.” (14). 
 
Unlike SAST, DAST is black-box testing. The tools don't know how the application 
works and cannot see the code. The tools use a set of tests that are language-
independent and mimic the attacks of malicious hackers to discover 
vulnerabilities in our software. These tests can be predefined or written by experts 
and are performed while our application is running. Then, the solution analyzes 
the responses from the server after malicious requests are performed. However, 
like SAST, it can also return false positives that the developer must go through to 
verify if the threat is real or not. 
 
But the main problem of using DAST solutions in a pipeline is that in order to test 
as many attacks as it can, it can take a huge amount of time. We will discuss how 
to integrate DAST in the next sections. 
  

2.3.2. DAST Solutions 
 
For DAST we can also find a lot of tools available in the market. There are 
updated lists of DAST tools that we can find on the internet (15). 
 
In this case, since DAST works as a black box, we don’t have to worry about the 
language we have implemented our application. Let see some examples: 
 
OWASP ZAP 
 
OWASP ZAP (16) is the OWASP DAST tool. It is a free and open source web 
scanner. It can be used both manually or automatically. It is supported by the 
community and have a lot of plugins available with different test suites for specific 
vulnerabilities. 
 

• License: Open source or free 
 
 
 
 
 
 



18   

Nikto 
 
Nikto (15) is a web server scanner that searches for over 6000 vulnerabilities, 
including configuration files. It detects version specific problems. 
 

• License: Open source or free 
 
Acunetix 
 
Acunetix (17) is a web scanner made by Invicti. It has a desktop and a cloud 
version. It crawls a website in order to find vulnerabilities. It also provides an 
inventory of the existing assests. 
 

• License: Commercial 
 
InsightAppSec 
 
InsightAppSec (18) was created by Rapid7, this web scanner tests for more than 
95 kinds of attacks, has a low false positive rate and cover the top 10 OWASP 
vulnerabilities. 
 

• License: Commercial 
 
 

2.3.3. DAST Integration 
 
Since DAST works on a running application, it can be integrated in the 
preproduction and production tiers. 
 
As we mentioned before, the main problem integrating DAST is the time it 
consumes. A thorough test can last 5-7 days (19). For a building CI/CD pipeline 
this is too much, so what companies do is create a separate job to run DAST on 
a weekly basis or before a release. 
 
The ideal scenario is that preproduction mirrors exactly what is already or is going 
to be in production, so DAST can be performed in preproduction and avoid 
unnecessary traffic in production. 
 



19   

 
Figure 3 Acunetix DAST report. Source: https://www.softwaretestinghelp.com/ 

 

2.4. IAST 

 
In this chapter we will introduce Interactive Application Security Testing (IAST) 
technology, how it works, give some examples of current solutions and how they 
are integrated. 
 

2.4.1 What is IAST and how it works. 
 
Interactive Application Security Testing (from now on IAST) is an “application 
security tool that focuses on the detection of security issues in the code of your 
applications. Designed to run in the application server as an agent, they provide 
real-time detection of security issues by analyzing the traffic and the execution 
flow of your applications” (20). 
 
 
IAST uses instrumentation, which means an agent injects functionality in the app 
code. This way, when a vulnerability or error is found, the exact line of code that 
produces it can be pinpointed. Like DAST, it is used on a running application. 
 
There are two types of IAST:  
 

• Active IAST (Partial IAST): active IAST (or partial IAST) combines a web 
scanner or inducer (such as DAST) and an agent or detector. The inducer 
attacks the application with a suit of tests and in case a vulnerability is 
found, the detector pinpoints the code where it happens. 

 



20   

 
Figure 4 Active IAST flow. Source: hdivsecurity.com 

 
 

• Passive IAST (Full IAST): Passive IAST (or full IAST) only uses the 
detector component as a runtime agent in the server. It uses all the traffic 
(regular users, quality testers, …) to find errors and vulnerabilities in the 
code.    

 

 
Figure 5 Passive IAST flow. Source: hdivsecurity.com 

 
Active IAST has some drawbacks. One of them is the time it takes to complete 
since it uses DAST to locate the vulnerabilities, and as we saw in the previous 
section that it can last days until it is finished. The other main drawback is that it 
will only analyze the code that is affected by DAST’s test suite, so the code that 
is not affected by DAST request could have potential vulnerabilities. 
 
 
 
 
 



21   

2.4.2. IAST Solutions 
 
There is not any open source solution for IAST. During the research only one 
product was found that have a free plan. Like SAST, IAST is language dependent. 
 
Acusensor 
 
Acusensor (21) is the IAST module for Acunetix. It supports Node.js, PHP, Java 
and ASP.NET. It provides a combination of DAST + IAST in one tool to make the 
integration between these tools easier.  
 
License: Commercial 
 
Contrast  
 
Contrast (22) is the only IAST tool that has a community edition that is free to 
use. While the commercial version supports more than 12 languages, the 
community edition only supports java, node.js and .NET. 
 

• License: Commercial/Freemium 
  
CxIAST 
 
CxIAST (23) is the IAST solution by Checkmarx. If used with the rest of 
Checkmarx products provides a great flow from integration tier to production tier with 
integration plugins for CI/CD.pipelines. 
 

• License: Commercial 
 
 

2.4.3. IAST Integration 
 
Like DAST, IAST works on a running application, so it can be integrated in the 
preproduction and production tiers. 
 
The best approach is to implement passive IAST in preproduction and production, 
so it will catch errors and vulnerabilities as soon as the developers start testing 
the application and will continue to do it when the final users interact with the 
application. 
 
If DAST tools are integrated, IAST will help to locate the code where the 
vulnerability is generated, so the best practice is to implement IAST before 
running the job that will execute DAST.   
 
 

2.5. SCA 

In this chapter we will introduce Software Composition Analysis (SCA) 
technology, how it works, give some examples of current solutions and how they 
are integrated. 



22   

 

2.5.1 What is SCA and how it works. 
 
Software composition analysis (from now on SCA) is “an automated process that 
identifies the open source software in a codebase. This analysis is performed to 
evaluate security, license compliance, and code quality.” (24)  
 
This technology analyzes manifest files, containers, source code and binaries 
among other resources to elaborate a Software bill of materials (SBOM) that is 
checked against public and private databases to get information about 
vulnerabilities and licenses. Depending on the analyzed resource, the tool will 
scan it accordingly: for manifest files will query the packet manager to extract the 
information, but for binaries and sources will calculate the hash of the resource 
or search the code for identifiers to match them against a database. 
 
 

2.5.2. SCA Solutions 
 
Like the other technologies, there are a lot of solutions available in the market. 
For these products we will look at their license, some of their features and how to 
integrate them in our pipeline. 
 
CxSCA 
 
CxSCA (25) is the SCA solution by Checkmarx. It can scan library files and 
package managers manifests. It also detects the licenses of third-party libraries 
and send alarms in case the licensing breaks the company policies. It has Jenkins 
plugins to integrate it in the CI/CD pipeline.   
 

• License: Commercial 
 
 
Retire.js 
 
Retire.js (26) is an open source solution for javascript SCA. It runs as a command 
line program and scans the library files to search vulnerabilities. It includes 
multiple output formats, including SBOM. It has a database with the most used 
libraries. It doesn’t have Jenkins plugins to integrate it.   
 

• License: Open source/free 
 
 
Mend SCA 
Mend SCA (27) is the SCA solution by Mend. It has a wide variety of libraries and 
supports multiple languages. One key feature is that it can automatically open a 
pull request to update the libraries that are outdated or have vulnerabilities. Like 
Checkmarx, it has licensing compliance and CI/CD plugin integration. 
 

• License: Commercial 
 



23   

 

2.5.3. SCA Integration 
 
SCA scans are used in the integration and preproduction tier. SCA tools 
integration is similar to SAST. These tools can run dependencies scans as a 
stand-alone, but they are usually integrated in the CI/CD using plugins. If the tool 
has also SAST capabilities, the plugin often let the user run both scans. (28) 
 

2.6. Research conclusions 

After investigating the technologies, we can decide which and how are we going 
to implement them in the software development lifecycle. 
 
We have decided to use tools that are open source or have a free planning, so 
every company or developer could implement the following environment in its 
software development lifecycle, regardless of their budget. 
 

2.6.1. Topology in development tier 
 
In this tier we decided to use HCL AppScan CodeSweep, a SAST tool that works 
as live code scanner. It is distributed as a plugin for code editors. When the 
developer is programming, the code editor triggers HCL AppScan CodeSweep 
scan. Then, it returns the security issues to the code editor that displays them to 
the developer.  
 
In our environment we are going to use Visual Studio Code (29),a lightweight 
code editor by Microsoft that has plenty of plugins at its disposal.  
 

 
Figure 6 Development tier topology 

 
 
 
 
 
 
 
 
 



24   

2.6.2. Topology in integration tier 
 
In the integration tier we are going to implement Sonarqube (12) and retire.js (26) 
in our environment.  
 
Sonarqube is a SAST tool that will scan the source code for vulnerabilities and 
will evaluate the code quality regarding maintainability, code repetition and unit 
tests coverage. The scan results are stored in the SonarQube server. 
 
Retire.js is a SCA tool that has a database (26) with known security issues of the 
most popular third-party libraries and analyzes the libraries of the project against 
that database. It will return the results in a JSON file.  
 
These tools are going to be implemented in a Jenkins (30) pipeline. Jenkins is an 
open source automation server for continuous integration and development. It is 
used to build, test and deploy applications. 
  
Also, we are going to use Bitbucket cloud (4), a cloud source code repository in 
which our sample application code is going to be stored.  
 
When a developer creates a pull request to merge a branch in the code 
repository, a build will be triggered in Jenkins. Jenkins will proceed to retrieve the 
code, build the project and run both tools. If the scans results are not good enough 
for our standards the job will fail, and the developer won’t be able to merge the 
branch until the job is successful. 
  
 

 
Figure 7 Integration tier topology 

 

 

2.6.2. Topology in preproduction and production tiers 
 
In these tiers we are going to use OWASP ZAP (16) and Contrast IAST (22). 
 
Contrast has a free planning for IAST. It can install an agent in a Java, Node.js 
or .NET application and inspect all the incoming traffic in search of vulnerabilities. 
The results can be consulted in Contrast server. 
 
OWASP ZAP is a DAST tool that contains tests for the most common 
vulnerabilities. It has different modes to be executed, but for our integration we 
are going to use the command line mode. 



25   

 
In our pipeline, Jenkins is going to execute OWASP ZAP against a running 
instance of a web application. This web application is already instrumentalized 
with Contrast IAST, so the request made by OWASP ZAP will be analyzed by 
IAST technology too. Finally, when DAST tests are finished, OWASP ZAP returns 
the results to Jenkins in a XML file. 
 
 

 
Figure 8 Preproduction and production tier topology 

  



26   

3. Implementation phase 

 

3.1. Environment 

 
In this section we will enumerate all the technologies that are going to be used to 
implement the different solutions to analyze our code. The environment is going 
to be implemented mostly in a local host, but the same configuration can be 
applied for a cloud architecture. 
 

3.1.1. Technology 
 
Here is a brief introduction of the software on which we will build the environment: 
 

• Ubuntu (31): Ubuntu is a Linux operating system. It is the OS in which all 
the applications are going to be executed. 

 

• JDK (32): The java development kit. It includes the tools to compile and 
run java code. It is necessary to run some tools (e.g., Jenkins) that we are 
going to use in the environment. 

 

• Node.js (33): Node.js is a javascript framework for creating web 
applications in a fast and easy way. We are going to use it to create a 
sample application that will be scanned by the different solutions in our 
continuous integration pipeline. 
 

• Docker (34): A containerization software that allows us to run containers, 
that is, standalone packages of software that include everything that is 
necessary to run an application. 

 

• Ngrok (35): It is a software that allows us to expose a local machine and 

port to the rest of the world through a custom domain in an easy way. We 

are going to use it to expose our Jenkins instance and make it accessible 

to Bitbucket cloud. 

 

• NPM (Node Package Manager) (36): NPM is a package manager for the 

JavaScript programming language. We are going to use it to download 

Retire.js. 

 

• jq (37): is a lightweight and flexible command-line JSON processor, very 

useful for working with JSON results. 

 
 
3.2. Implementation of the automated code analysis tools 
 
In this section we will implement the different solutions that will analyze our 
application through all the deployment tiers. All the solutions are open source or 



27   

have a free version of the product, so every company or developer could 
implement the following environment in its software development lifecycle, 
regardless of their budget. The only exception is Bitbucket cloud, which charges 
for teams that have more than 5 users. 
 

3.2.1. Implementation in the development tier 
 
In this tier we are going to implement HCL AppScan CodeSweep. This SAST tool 
scan the source code while the developers are programming. It is available as a 
plugin for Visual Studio Code and Intellij IDEA (38). 
 
In order to install it, we search it on the extensions tab in Visual Studio Code and 
click install. 
 

 
Figure 9 HCL AppScan CodeSweep in VSCode Marketplace 

 

 

Once the extension is installed, a new icon will appear on the left bar. If we click 

it, we will open the tool panels. On the left panel we can find a list of security rules 

categorized by programming languages/technologies. If we expand a category, 

we can find all the rules that are checked for a certain technology. We can learn 

more about the rules by clicking on the information icon next to the rule. This will 

open a panel on the right with related information about the rule. 

 

 



28   

 
Figure 10 HCL AppScan CodeSweep avaliable rules 

 
 
Now that the tool is installed, if the developer’s code has some vulnerabilities that 
are matched against the security rules, the problematic code will be underlined, 
and the problem will be shown in the “problems” tab and in the “security issues” 
panel. 
 

 
Figure 11 Vulnerabilities found by HCL AppScan CodeSweep 

 
If we inspect the issue, we will find more information on the right panel. There we 
can learn about what are the security problems, see examples, measures to fix 
them and related articles and references for further reading. 
 



29   

 
Figure 12 Information about a vulnerability in HCL AppScan CodeSweep 

 

3.2.2. Implementation in the integration tier 
 
In this section we are going to see how to integrate SAST and SCA tools in our 
environment. First, we have to set up the code repository and Jenkins, so we can 
install SonarQube and Retire.js later. 
 

3.2.2.1. Setting up Bitbucket Cloud and Jenkins 

 
In order to create the architecture explained in the previous section, it is 
necessary to configure Bitbucket Cloud and Jenkins so they can communicate 
with each other. 
 
Since Jenkins is running in localhost it is necessary to expose it to the internet so 
Bitbucket Cloud can reach it. We will use Ngrok for this purpose: with an account 
already created we only have to run the command ngrok http 8080 (the port 

in which the Jenkins instance is running). 



30   

 

 
Figure 13 Running Ngrok to expose the Jenkins instance 

 
Now that our Jenkins instance can be reached, let’s configure Bitbucket Cloud. 
In our project repository settings, first we will add restrictions to merge into the 
main branch. We navigate to “Branch restrictions”, select the development 
branch, and in “Merge settings” we activate the checkbox “Minimum number of 
successful builds for the last commit with no failed builds and no in progress 
builds” and set it to 1. This way only the branches that have a successful build 
can be merged into the main branch. 
 

 
Figure 14 Bitbucket branch restrictions 

 
Now we must create a webhook so it can communicate with our Jenkins instance. 
A webhook is an HTTP-based callback that expands the behavior of a web page 
and allows the interoperability of two web applications. In the repository setting 
we navigate to “webhooks”, introduce the URL of our Jenkins instance followed 
by /bitbucket-scmsource-hook/notify (this is due to the Jenkins plugin that we are 
going to use later), and activate the checkbox that triggers the webhook when a 
pull request is created or upgraded. With this configuration, when a pull request 
is created or updated, bitbucket will trigger a build in Jenkins. 
 



31   

 
Figure 15 Bitbucket webhook configuration 

 
The last step to configure Bitbucket is to create an OAuth consumer for Jenkins 
in the workspace settings. Enter a name, the URL of Jenkins and the permission 
to write the repository and save.  
 

 
Figure 16 Bitbucket OAuth consumer configuration 

  
 
Now let’s configure Jenkins. The first step is to install the necessary plugins to 
communicate with Bitbucket: 
 

• Bitbucket Branch Source Plugin (39): allows to use Bitbucket Cloud and 
Bitbucket Server as sources for multi-branch projects 

 

• Bitbucket Build Status Notifier Plugin (40):  is a Bitbucket build status 
notifier that can publish your build status to Bitbucket Cloud 

 



32   

 
Figure 17 Jenkins plugins for Bitbucket 

 
To finish the configuration, we have to navigate to “Configure System” and add 
the OAuth credentials in the Bitbucket Build Status Notifier Plugin Section. 
 

 
Figure 18 Bitbucket Build Status Notifier Plugin configuration 

 

3.2.2.2 Sonarqube set up 

 
For the Sonarqube integration we are going to use a Docker container as the 
server. This architecture can be used in a cloud environment like AWS EC2 (41) 
or Azure VMs (42).  
 
The first step is to download the official Docker image of Sonarqube. 
 

 
Figure 19 Download of SonarQube docker image 

 



33   

Then we launch the container with the command “sudo docker run -d --

name sonarqubeserver -p 9000:9000 sonarqube” 
 

Once the container is running, we can access SonarQube server UI at 
localhost:9000. First, we must create a webhook so SonarQube can 
communicate with Jenkins. We navigate to Administration > Configuration > 
Webhooks and fill the form with our Jenkins instance URL followed by 
/sonarqube-webhook/ (This is due to the Jenkins plugin that we are going to 
install later) 
 

 
Figure 20 SonarQube webhook configuration 

 
 
Now we have to create a token for Jenkins to access SonarQube. We navigate 
to My Account > Security and generate a new Token  
 

 
Figure 21 SonarQube Access token generation 

 
In Jenkins we have to install the SonarQube Scanner for Jenkins plugin (43) so 
it can work along SonarQube server. 
 



34   

 
Figure 22 SonarQube plugin for Jenkins 

 
 
Once the plugin is installed, we configure it in Manage Jenkins>Configure 
System. We enter the URL and the SonarQube token created in the previous 
steps 
 

 
Figure 23 SonarQube plugin configuration 

 
SonarQube has a module called Quality Gates (44). This module allows the 
developers to establish conditions to determine if a build fails or is successful 
depending on certain parameters. These parameters are unit tests coverage, 
percentage of duplicated lines, maintainability rating, reliability rating, security 
hotspots and overall security rating. With Quality Gates we can set a minimum 
standard for pull requests to be merged. 
 



35   

 
Figure 24 Quality Gates conditions 

 
 

3.2.2.3 Retire.js set up 

 
We are going to install Retire.js in the machine where Jenkins is installed (in our 
case is localhost). To do this, we can install it with NPM: 
 

 
Figure 25 Installation of Retire.js 

 
Retire.js can be executed from the terminal and it will search for vulnerabilities of 
third-party libraries in a specified directory. 
 

 
Figure 26 Retire.js results 

 



36   

In the previous example we run retire.js and formatted the JSON result with jq. 
We can see in the results that retire.js indicates which file has a vulnerability, the 
description of the security issue and its severity. 
 

3.2.2.4 Creating the Jenkins job 

 
Now that we have the tools configured correctly, we can create the Jenkins job. 
In Jenkins Dashboard, we select the option to create a Multibranch Pipeline 
object. 
 

 
Figure 27 Multibranch pipeline item 

 
Once created, we will configure it starting with the Branch sources. We will 
choose Bitbucket as the code repository, enter the credentials (OAuth consumer 
from the previous section), the owner of the repository and Jenkins will load all 
the repositories available. 
 

 
Figure 28 Bitbucket source configuration in Jenkins 

 
For build configuration we specify that we want to use a Jenkinsfile that is going 
to be located in the root of the project. A Jenkinsfile is a groovy file that contains 
the steps to build a pipeline in Jenkins. 
 



37   

 
Figure 29 Jenkins build configuration 

 
The Jenkinsfile is going to be divided into 4 stages. In the first stage (Checkout) 
we are going to inform Bitbucket cloud that a build is in process and retrieve the 
source code from the repository 
 

 
Figure 30 Checkout stage in Jenkinsfile 

 
In the second stage (SAST) we are going to use the SonarQube plugin to build 
our sample project and scan it with our SonarQube server instance. 
 

 
Figure 31 SAST stage in Jenkinsfile 

 



38   

 
After the scan is finished, in the third stage we call Quality Gates to check if the 
scan complies with our security standards, if not, the build will fail. 
 

 
Figure 32 Quality gates stage in Jenkinsfile 

 
In the fourth stage (SCA) we run retire.js and save the results in a JSON file. 
Since retire.js doesn’t have a module like Quality Gates, we use jq to extract the 
data from the results and set a security standard for the job to be successful. In 
this case, if retire.js finds a vulnerability which severity is high or critical the job 
will fail. 
 

 
Figure 33 SCA stage in Jenkinsfile 

 
Finally, the job saves the JSON file with the SCA results (SAST results are stored 
in SonarQube server) and notifies Bitbucket if the build has failed or not. 
 

 
Figure 34 Post actions in Jenkinsfile 

 



39   

3.2.3. Implementation in the preproduction and production tiers 

In this tier we are going to implement IAST and DAST technology. As we saw in 
the previous chapter, we are going to install Contrast IAST first, so when we run 
OWASP ZAP tests we can take advantage of those requests for IAST scan. 
 

3.2.3.1 Contrast IAST set up 

In this project we are going to use Contrast Community edition. First, we have to 
fill in a form on their website (45) to sign up:  
 

 
Figure 35 Form to register on Contrast Community Edition 

 
After we sign up, we have to install a Contrast agent in our server to 
instrumentalize our application. Since IAST is language dependent, we have to 
choose the language accordingly, which in our case is Node. 
 

 
Figure 36 Instructions to install Contrast agent 



40   

When the language is selected, we have to create a configuration file in our 
project so the agent can communicate with the server. The file is in YAML format, 
and it contains the credentials for the API. 
 

 
Figure 37 YAML configuration file for Contrast 

 
Now it is time to install the agent. For Node, we use npm to install the contrast 
agent with the command npm install @contrast/agent. 

 

 
Figure 38 Contrast IAST agent installation 

 
After the installation we can find the dependency in the project’s package.json. In 
that file we create a script to run our app with Contrast’s Agent using the 
command node -r @contrast/agent server.js. 

 

 
Figure 39 package.json file with the script to run the app with Contrast's agent 



41   

 
With the script done, now we just have to launch our app with the previous script 
using npm run contrast. 
 

 
Figure 40 Launching app with Contrast's script 

 

3.2.3.2. OWASP set up 

 
For OWASP ZAP we are going to use a docker image to run the tests. First, we 
create a pipeline in Jenkins with the following code. 
 
In the first stage we pull the image from Docker, start the container and create a 
working directory. 
 

 
Figure 41 OWASP ZAP docker image is pulled and executed. 

 
After that, we run a full scan against our target and create a report. Depending of 
the results, the command’s exit code can break the pipeline, so we have to use 
a try/catch block if we want to continue despite the results. 
 



42   

 
Figure 42 Command to run the OWASP ZAP scan. 

 
Once the scan is finished, we get retrieve the results from the container and 
archive the XML file in Jenkins. 

 
Figure 43 Retrieving and saving the results from OWASP ZAP's scan 

 

3.3 Testing the pipelines 

 
For testing the pipelines, a simple Node.js web app is going to be used. This app 
contains two vulnerabilities: a hardcoded password and a SQL injection (The 
code is in the annex). 
 
First, we are going to test the SAST and SCA scans in the integration tier. 
 



43   

To test the process, we are going to create a new branch from the main branch 
in the repository, modify a file and open a pull request. Once the pull request is 
opened, we can see that a Jenkins build has been triggered. 
 

 
Figure 44 Build trigger in Bitbucket 

 
If we inspect the Jenkins job, we find that it has failed because of Quality Gates 
 

 
Figure 45 Jenkins job failed due to Quality Gates 

 
This is because SonarQube had find two major security issues in our code (but 
the SQL injection wasn’t detected). 
 

 
Figure 46 Security issues in SonarQube 

 



44   

If we fix the issues and commit the changes, the code in the pull request will be 
updated and trigger the Jenkins job once again. This time the build will be 
successful, and the conditions to be able to merge the branch will be met. 
 

 
Figure 47 Conditions passed for merging a branch 

 
If we inspect the Jenkins Job will see that it was successful and the SCA scan 
results were saved. 
 

 
Figure 48 Successful build in Jenkins 

 
Now we are going to test DAST and IAST in preproduction and production tiers. 
With the Node application running with contrast agent, we execute the Jenkins 
job with Contrast’s agent. 
 
After the job is finished, we get the following report 
 

 
Figure 49 DAST results 



45   

 
The DAST results found vulnerabilities in our server configuration, but not in the 
code. Let’s check Contrast: 
 

 
Figure 50 Contrast IAST results 

 
We can see that Contrast IAST has detected the SQL injection vulnerability, but 
due that is a free plan it does not tell us where it is. 
  



46   

4. Conclusions 

We can improve the security of our applications using these technologies. With 
the correct set up it can save a lot of time and money to software development 
companies.  
 
However, the tools that are free or open source are not 100% reliable. The SQL 
injection was undetected until Contrast IAST detected the issue. 
 
For an independent developer or small company with limited budget these free 
tools can improve their security detecting issues that they are not aware. But for 
companies that can afford it, it is better to use commercial scanners. 
 
Commercials solutions can integrate SAST, DAST, IAST and SCA in the same 
solution, thus reporting the security issues in the same space instead of multiple 
files across the environment, which helps the security engineers to organize the 
information and save their time for other tasks. 
 
 

5. Lessons learned 

 
 
In this paper we learned about the automated code analysis tools and its 
categories.  
 
We learned that SAST can scan the source code of our application and find 
vulnerabilities using regular expressions. 
 
We learned that DAST uses a set of penetration tests to find vulnerabilities in a 
running application without knowing how our application works. 
 
We learned that IAST uses instrumentalization to monitor the application in real 
time and inform the developers in case of suspicious or problematic requests. 
 
We learned that SCA scans third party libraries for vulnerabilities and licensing 
compliance. 
 
We learned how to set up and configure a modern CI/CD environment and 
integrate the previous technologies to secure our product and automate the 
process. 
 
 
 



47   

6. Future work 

In this section we will explain how the current environment can be expanded to 
make the product more secure or automate work in order to reduce the workload 
of the developers, but due to the time limitation these features were out of scope. 
 
Create unit tests for code coverage 
 
We know that SonarQube has a module called Quality Gates that measures the 
quality of the code. If the code does not comply with our quality standards, the 
Jenkins job fails. 
 
One of the measures of Quality Gates was code coverage by unit tests. Unit tests 
are used to make sure that the pieces of our code do what they are intended to 
do. With SonarQube we can measure the percentage of code that is tested, this 
way we can be sure that the code is reliable. 
 
Update outdated third party libraries automatically 
 
With SCA technology we are aware of which library versions are vulnerable. 
Commercial solutions can open pull request in our code repository to update 
those libraries to newer versions where the vulnerability has been fixed.  
 
If our budget does not allow us to use commercial solutions, we could create our 
own bot that using the result from retire.js will search for the newer version of the 
vulnerable libraries. 
 
Automating DAST scans 
 
In the same way that we have automated SAST and SCA scans for each pull 
request that is opened for our main branch, the same can be done when a branch 
for a release is created. 
 
When we create a new branch for the latest version of our product, we can trigger 
a Jenkins job to run a DAST scan for the build with the newer code, thus 
leveraging the workload of the developers 
 
 
 
 
 
 
 
 
 
 
 
 
 



48   

References 

1. Forbes. “Alarming Cyber Statistics For Mid-Year 2022 That You Need To 

Know.” . [Website] 9/2022. 

https://www.forbes.com/sites/chuckbrooks/2022/06/03/alarming-cyber-statistics-

for-mid-year-2022-that-you-need-to-know/?sh=10c668347864. 

2. Github. [Website] 9/ 2022. https://github.com/. 

3. Gitlab. [Website] 9/2022. https://about.gitlab.com/. 

4. Bitbucket. [Website] 9/2022. https://bitbucket.org/. 

5. Atlassian. "Jira". [Website] https://www.atlassian.com/software/jira. 

6. OWASP. “Source Code Analysis Tools”. [Website] 10/2022. 

https://owasp.org/www-community/Source_Code_Analysis_Tools. 

7. Gartner."Static Application Security Testing (SAST)". [Website] 10/2022. 

https://www.gartner.com/en/information-technology/glossary/static-application-

security-testing-sast. 

8. Mend. "SAST – All About Static Application Security Testing". [Website] 

10/2022. https://www.mend.io/resources/blog/sast-static-application-security-

testing/. 

9. Snyk. "Static Application Security Testing (SAST)". [Website] 10/2022. 

https://snyk.io/learn/application-security/static-application-security-testing/. 

10. HCLSoftware."HCL AppScan CodeSweep". [Website] 10/2022. 

https://www.hcltechsw.com/appscan/codesweep. 

11. Checkmarx. "Checkmarx SAST". [Website] 10/2022. 

https://checkmarx.com/product/cxsast-source-code-scanning/. 

12. Sonar. "SonarQube". [Website] 10/2022. 

https://www.sonarsource.com/products/sonarqube/. 

13. CyberRes. "Fortify Static Code Analyzer". [Website] 10/2022. 

https://www.microfocus.com/es-es/cyberres/application-security/static-code-

analyzer. 

14. Microfocus."What is Dynamic Application Security Testing (DAST)?". 

[Website] 10/2022. https://www.microfocus.com/en-us/what-is/dast. 

15. Astra."15 Best Dynamic Application Security Testing(DAST) Software in 

2022". [Website] 10/2022. https://www.getastra.com/blog/security-audit/top-dast-

tools/. 



49   

16. OWASP. "OWASP ZAP". [Website] 10/2022. https://owasp.org/www-project-

zap/. 

17. Acunetix. [Website] 10/2022. https://www.acunetix.com/. 

18. Rapid7. "InsightAppSec". [Website] 10/2022. 

https://www.rapid7.com/products/insightappsec/. 

19. Noname Security "What is Dynamic Application Security Testing (DAST)?". 

[Website] https://nonamesecurity.com/learn-what-is-dast. 

20. Hdivsecurity "What is IAST? All About Interactive Application Security 

Testing". [Website] 10/2022. https://hdivsecurity.com/bornsecure/what-is-iast-

interactive-application-security-testing/. 

21. Acunetix. "Acusensor". [Website] 11/2022. 

https://www.acunetix.com/vulnerability-scanner/acusensor-technology/. 

22. Contrast. [Website] 10/2022. 

https://www.contrastsecurity.com/glossary/interactive-application-security-

testing. 

23. Checkmarx "CxIAST". [Website] 10/2022. 

https://checkmarx.com/product/cxiast-interactive-code-scanning/. 

24. Synopsys. "Software Composition Analysis". [Website] 10/2022. 

https://www.synopsys.com/glossary/what-is-software-composition-analysis.html. 

25. Checkmarx. "Checkmarx SCA". [Website] 10/2022. 

https://checkmarx.com/cxsca-open-source-scanning/. 

26. Github "retire.js". [Website] https://retirejs.github.io/retire.js/. 

27. Mend. "Mend SCA". [Website] 10/2022. https://www.mend.io/sca/. 

28. Jenkins. "Checkmarx plugin". [Website] 11/2022. 

https://www.jenkins.io/doc/pipeline/steps/checkmarx/ . 

29. Visual Studio Code. [Website] 11/2022. https://code.visualstudio.com/. 

30. Jenkins. [Website] 10/2022. https://www.jenkins.io/. 

31. Ubuntu. [Website] 11/2022. https://ubuntu.com/. 

32. Oracle. "Download Java". [Website] 11/2022. 

https://www.oracle.com/java/technologies/downloads/. 

33. Node.js. [Website] 11/2022. https://nodejs.org/. 

34. Docker. [Website] https://www.docker.com/. 

35. Ngrok. [Website] 11/2022. https://ngrok.com/. 

36. npm. [Website] https://www.npmjs.com/. 



50   

37. Github "jq". [Website] 11/2022. https://stedolan.github.io/jq/. 

38. JetBrain "Intellij IDEA". [Website] 11/2022. https://www.jetbrains.com/idea/. 

39. Github "bitbucket branch source plugin". [Website] 11/2022. 

https://github.com/jenkinsci/bitbucket-branch-source-plugin. 

40. github "bitbucket build status notifier plugin". [Website] 11/2022. 

https://github.com/jenkinsci/bitbucket-build-status-notifier-plugin. 

41. AWS "Amazon EC2". [Website] 11/2022. 

https://aws.amazon.com/ec2/?nc1=h_ls. 

42. Azure "Virtual Machines·. [Website] 11/2022. https://azure.microsoft.com/en-

us/products/virtual-machines/. 

43. Github. "SonarQube Scanner for Jenkins". [Website] 11/2022. 

https://github.com/jenkinsci/sonarqube-plugin. 

44. Sonarqube. "Quality Gates". [Website] 11/2022. 

https://docs.sonarqube.org/latest/user-guide/quality-gates/. 

45. Contrast Community Edition. [Website] 11/2022. 

https://www.contrastsecurity.com/contrast-community-edition. 

46. Cirt.net "Nikto". [Website] 10/2022. https://cirt.net/Nikto2. 

47. Apache Maven Project. [Website] 11/2022. https://maven.apache.org/. 

 

 
  



51   

Annex 

• Jenkinsfile for SAST/SCA integration: 
 
pipeline { 

  agent any 

  stages { 

    stage('Checkout') { 

      steps { 

        bitbucketStatusNotify(buildState: 'INPROGRESS') 

        checkout scm 

      } 

    } 

 

    stage('SAST') { 

      steps { 

        withSonarQubeEnv(installationName: 'sonarqube', credentialsId: 'SonarQubeToken') 

{ 

          sh 'mvn clean verify sonar:sonar -Dsonar.projectKey=SonarQube' 

        } 

      } 

    } 

 

    stage("Quality gate") { 

      steps { 

        waitForQualityGate abortPipeline: true 

      } 

    } 

 

    stage('SCA') { 

      steps { 

        script { 

          sh 'retire --outputformat json --exitwith 0 > SCAResults.json' 

          sca_results = sh( 

            script: ' cat SCAResults.json | jq \' .data[].results[].vulnerabilities[] |    

select(.severity == "high" or .severity == "critical")  \' ', 

            returnStdout: true 

          ) 

 

          if (sca_results != null && sca_results.trim() != '') { 

            error('SCA detected severe vulnerabilities') 

          } 

        } 

      } 

    } 

  } 

 

 

 

 

 



52   

  post { 

    always { 

      archiveArtifacts artifacts: 'SCAResults.json', onlyIfSuccessful: false 

    } 

 

    success { 

      bitbucketStatusNotify(buildState: 'SUCCESSFUL') 

    } 

 

    aborted { 

      bitbucketStatusNotify(buildState: 'FAILED') 

    } 

 

    failure { 

      bitbucketStatusNotify(buildState: 'FAILED') 

    } 

  } 

} 

 

• Sample Node.js code with vulnerabilities for tests: 
 
var express = require('express'); 
var mysql = require('mysql'); 
var app = express(); 
 
var con = mysql.createConnection({ 
    host: "localhost", 
    user: "root", 
    password: "root", 
    database: "restapi" 
}); 
 
var password = "mypassword" 
 
app.get('/', function(req, res) { 
    res.send('Hello World'); 
}) 
app.get('/hi', function(req, res) { 
    const user_id = req.query.id; 
    var sql = "SELECT * FROM users WHERE id=" + user_id; 
    con.query(sql, function(err, result) { 
        if (err) throw err; 
        res.send(result); 
    }); 
}) 
 
var server = app.listen(8081, function() { 
    var host = server.address().address 
    var port = server.address().port 
 
    console.log("Example app listening at http://%s:%s", host, port) 
}) 


