

Proyecto de investigación básica o aplicada PEC3 —

Tercera Prueba de evaluación continua

Apellidos: FERNANDEZ FRANCO
Nombre: LETICIA

 Para dudas y aclaraciones sobre el enunciado, debéis dirigiros al consultor

responsable de vuestra aula.

 Hay que entregar la solución en un fichero OpenDocument o PDF

utilizando una de las plantillas entregadas conjuntamente con este

enunciado. Adjuntad el fichero a un mensaje dirigido al espacio de
evaluación del aula virtual.

 El fichero debe tener la extensión .odt (OpenDocument) o .pdf (PDF)

según el formato en que hagáis la entrega.

 La fecha límite de entrega es el 19 de junio (a las 24 horas).

Respuestas

A survey and comparison of anonymous communication systems: anonymity

and security.

Author: Leticia Fernández Franco

Tutors: Joan Manuel Marquès Puig and Helena Rifà Pous

Universitat Oberta de Catalunya (UOC)

Date: June 2012

ABSTRACT

Anonymous systems have received considerable attention since their starts. First were the low-latency anonymous communication

systems which provide a decent degree of anonymity, most of them robust against attacks, but they have a scalability issue, they are

not capable of keeping the same strength and performance once the network grows considerably. This is the reason why distributed

systems have become so popular in the last ten years, because they are able to provide scalability. They appear to solve the

scalability problem but unfortunately, distributed systems have shown by many researchers to be difficult to protect agains t security

attacks, endangering the communication anonymity. In this survey an overview of the notorious communication systems has been

presented and their security and anonymity studies. These systems have been categorized in four categories: low-latency anonymous

communication, systems for unobservability, censorship-resistant systems and peer-to-peer communications.

1. INTRODUCTION

 In recent years, investigators have been searching for the

perfect secure communication system capable of providing

the user with anonymity, that allows them to exercise their

right to freedom of speech, and being strong enough to resist

attacks from adversaries. In order to find it, different

schemes have been created, analysed and improved. The

most important ones have been studied and will be explained

in this document.

 Some of the robust anonymous systems like Tor have the

problem of scalability due to their client-server architecture.

That is the reason why distributed systems have been studied

thoroughly in the last years. They are more scalable but, on

the other hand, they are more likely to suffer from attacks,

especially in the lookup process due to its importance to find

nodes. Because of these issues, several investigations have

focused in finding solutions to each one of the known

attacks, some with more fortune than others.

 The rest of the paper is organized as follows: In Section 2,

the terminology in anonymous systems will be briefly

described. In section 3, the most notorious attacks against

anonymous communications will be defined and

categorized. Section 4 is the main category, where the

different anonymous communications have been analysed

and classified. This category separates the schemes in four

subsections which are: low-latency anonymous system with

client-server architecture, systems for unobservability,

censorship-resistant systems and peer-to-peer anonymous

communications. The P2P schemes will be subcategorize in

structured peer-to-peer topologies, distributed scalable

lookups, secure lookups and peer-to-peer anonymity

systems. The aspects that will be studied are: scalability,

anonymity, security and censorship-resistant. Also, a

security analysis of the literature will be exposed. Finally in

Section 5, a comparison of the systems will be presented.

2. TERMINOLOGY IN ANONYMOUS

SYSTEMS

 This section explains some preliminary concepts of

anonymity that will be used in the following sections to

measure the degree of anonymity of the systems and

schemes.

Anonymity and Pseudonymity

 Anonymity must allow a subject to use a service or

application without revealing its identity. Edman and Yener

[24] state that the goal of an anonymous system is to provide

unlinkability between received messages and their senders,

and sent messages and their recipients so that when

adversaries are observing the network, they can solely see

the senders and recipients but cannot see who is

communicating with whom.

 Mutual anonymity is achieved when both subjects who

exchange messages in an anonymous system are capable or

remain anonymous.

 Pseudonymity is the process where pseudonyms are used

as a subject identifier. Its main goal would be to allow users

to run services or access resources without having to reveal

their own identity.

Unobservability and Unlinkability

 While unobservability is the property whereby a subject

can use a resource without an adversary having the

opportunity to determine what it is being used; unlinkability

hides the relationship between the sender and the receiver in

a communication, so that the attacker is not capable of

relating one with the other or with the information

transmitted.

Censorship Resistance

 Censorship resistance networks are those whose task it is

to prevent third parties from denying the users access to a

particular resource or file [75]. This is an important aspect

due to anonymous communication systems being able to

provide the groundwork for censorship resistance, for people

who live in countries whose oppressive regimes control their

citizens’ movements on the Internet.

3. ATTACKS ON P2P NETWORKS

 This section introduces a brief summary of the most

common attacks in peer-to-peer network. A brief summary

of them is needed in order to know the type of adversaries

that these communications have to be prepared to deal with

and their behaviour.

3.1 Denial of service

 The Denial of Service or DoS attack, previously studied

in [28][76][41], occurs when malicious nodes send excessive

amounts of requests or duplicate packets intended for their

peers to exhaust the resources of a target host. This host

therefore will not be able to provide any service.

Unfortunately it is a common attack but very difficult to

prevent in P2P systems due to the large number of

anonymous peers that form the system. Because of that, a

malicious node can easily launch a DoS or Distributed DoS

attack to the target server or client. A Distributed DoS or

DDoS attack follows the concepts of a normal DoS attack

but in this case, the adversary exploits a large number of

distributed hosts to launch attacks to the target [76].

Wang [76] identifies two of the main DoS (DDoS) that peer-

to-peer networks are vulnerable to:

TCP Syn Flooding attack

 The attacker uses a forged IP address to send a SYN

request to the target host. When the victim receives this

request, it then replies with a SYN-ACK message and waits

for the ACK message to finish the handshake. This message

will not arrive because the attacker’s IP is false; instead,

he/she sends an extremely large amount of SYN messages to

the target, exhausting the victim’s resources and not

allowing it to perform correctly.

Query Flooding Attack

 This attack occurs in the application layer and it uses the

fact that the queried node must broadcast the queries to all

its neighbours in order to obtain the desired files. The

malicious node then will create as many queries as possible

to flood the network.

3.2.2 Sybil attack

 The Sybil attack must be one of the most studied attacks

in the literature [8][18][23][24][28][40][76]. In P2P

networks, nodes join and quit the systems all the time, so it

is not complicated for an adversary to introduce a large

number of corrupted participants (Sybils) into the system

[8]. These Sybils are controlled by the adversary, which can

use them to gain control over the target objects. The attacker

can choose the closest nodeID to all replica keys for a

particular target object, hence controlling all replica roots.

Then the attacker could delete, corrupt or deny access to the

object.

 Levine et al. [40] determined that half of the published

papers either suggest certification as the problem solver or

simply state the problem without giving a solution. They

also placed all the approaches to prevent or deal with the

Sybil attack into eleven groups: Trusted Certification,

Resource Testing, No solution, Recurring cost and fees,

trusted devices, Reputation Systems, Auditing and Cash

economies.

3.2.3 Poisoning the network

 This attack [41][76] consists of the adversary injecting

false information into the system to break its integrity. The

poisoning attacks can be divided into:

Index poisoning attack.

 Here the adversary inserts fake records into the index

server pointing to a target IP and port number. When other

peers search for a resource, they will get false location

information from a poisoned index server. Then those peers

establish a TCP connection to the target that implies that

these peers cannot get services from the victim node because

the fooled nodes have occupied the allowed connections, or

even worse, a DDoS attack can be launched.

Routing table poisoning attack

 It targets DHT systems. The malicious attackers add the

victim’s IP addresses into the routing tables of a set of peers

as their neighbours. Then the attackers send messages to the

different peers with the victim IP address making the peers

believe that the victim node is their neighbour. Therefore

these peers could forward packages to the victim node. If we

were talking about one peer, it would not affect the victim

peer too much but this attack could reach thousands or

millions of peers sending packages to the victim, which

would cause the victim peer to crash.

3.2.4 Eclipse

 The Eclipse attack [67][76] is a general attack in overlay

networks. In this attack, an adversary controls a large

amount of the neighbours of a trusted node, due to

provoking malicious behaviour where adversaries attempt to

inject fake nodes into other’s routing tables. Since a node

maintains just a handful of contacts in its routing table, if a

significant fraction of these contacts is corrupted, such a

node becomes isolated from the overlay. Consequently,

incoming and/or outgoing requests related with the eclipsed

node can be freely manipulated by the fraction of its

malicious neighbours. Eclipse attack is still very effective

because the adversary can easily support neighbours to fit in

the top rows [67].

3.2.5 Traffic Analysis attack

 These attacks focus on trying to obtain as much network

traffic information as possible, such as message lengths and

packet arrival. Some of the most important attacks will be

explained in the next subsections:

Website fingerprinting

 This attack exploits the structure of websites. The

adversary wants to learn URLs of websites that are requested

over an encrypted tunnel by the victim. The attacker gets this

information by observing the network and when the victim

visits a website, he/she receives packets in response to their

query. Then the attacker analyses this metadata (packages

length and quantity) and uses it to build a fingerprint of what

the website’s response looks like when it is fetched via an

encrypted connection [24]

Timing attacks

 These types of attacks are based on the fact that during

the exchange of data (traffic), the time and duration of the

communication can be registered. This information is

examined to determine detailed data of the data flow, both

identities of the communicating parts and location. An

attacker with minimum knowledge would be able to follow

the typical communication patterns. The adversary will then

use this information to link inputs and outputs based on their

patterns of packet inter-arrival times [13].

Predecessor attacks

 The predecessor attacks are a real threat to the systems’

anonymity. They look at repeated connections suspected to

be to (from) the same correspondent and look at

intersections of predecessor nodes to see which occurs most

often. The attacker then tracks an identifiable stream of

communications over a number of rounds (path

reformation). In each round, the attacker simply logs any

node that sends a message that is part of the tracked stream.

The attack does not always require analysis of the timing or

size of packets (although that can speed up the attack), but

instead exploits the process of path initialization [81]. It has

been proved to be effective to learn the communication’s

initiator in systems like Crowds [61] and onion routing [72].

Disclosure attacks

 These attacks allow an observer to learn the

correspondents of each user and, in the long run, de-

anonymize their messages. A user, Alice, repeatedly sends

messages to one of m different communication partners in

each mix round. A passive adversary observes the messages

entering and exiting the mix and wants to identify with

whom the user is corresponding. When the attacker has

observed m mutually disjoint a set of recipients containing

Alice’s m communication partners, he/she starts refining the

data by observing new recipients and intersects with the

previously observed and so on until the recipient is reduced

to a single element.

3.2.6 Range Estimation Attack

 It is an attack where a passive adversary, even though a

lookup key is hidden, is still able to narrow the range of

possibilities of a lookup target down to a small number of

nodes, by analysing the locations of observed queries [78].

4. ANONYMOUS COMMUNICATION

SYSTEMS

In this section, many systems and mechanisms are analysed.

The main criteria for the selection of these particular

schemes have been because either they introduce novel

mechanisms that pursuit the anonymity or security of some

kind; they are an important background in the design of

other systems and/or their important because of its highly

use. The anonymous communication systems can be divided

in two main groups: low-latency and peer-to-peer

communications. The schemes within these two categories

have been carefully arranged in different groups depending

on their main characteristics and in chronological order

within each one of them.

 The first system that needs to be described is the Chaum’s

mixes network [9], because although it is a high-latency

anonymous communication system, and these systems are

not part of this research, it was considered essential to

briefly summarize it due to many systems have been

influenced by it and some of its techniques are still used as a

building block in newer systems like Onion Routing [72] or

Tarzan [27].

Chaum’s mix network

 Chaum’s mix network [9] was introduced in 1981 to

enable unobservable communication between users of the

Internet and it has become the basic building block of the

nowadays high-latency anonymous communication systems.

The communication is kept anonymous by using public key

cryptography. The message between a sender and a receiver

gets encrypted with the recipient address and the message

itself and gets sent through a series of mix nodes. Each mix

node is a processor that accepts a number of messages as

input, changes their appearance and timing using some

cryptographic transformation, and outputs a randomly

permuted list of function evaluations of the input items,

without revealing the relationship between input and output

elements.

 In order to relay a message through this chain of mixes, a

client needs to learn their network addresses and public

keys. This information is managed by centralized servers

that are responsible to provide it for all the mixes. One of the

issues of using centralized servers is that they become a

main focus for adversaries. Hence, the security relies on this

lists not being manipulated by an adversary that could

attempt to exclude all honest nodes from the network or

even launch a fingerprinting attack, substituting their public

key and therefore being able to impersonate them [12].

Even though, mixes can be used to prevent traffic analysis –

a user encrypts the message with a key for a mix nodeID,

encrypts the result with the key from mix nodeID − 1 and so

on with the remaining keys, the next mixes receives a certain

number of these messages, which they decrypt, randomly

reorder and send to the next mix node in the routes-; Having

to encrypt and decrypt the whole message becomes difficult

for the mixes on the path to determine the encrypted

message, on the other hand if they knew the content of the

message, the anonymity would be compromised.

4.1 LOW-LATENCY ANONYMOUS

COMMUNICATION

Low-latency anonymous network systems were considered

secure against timing attacks when the threat model does not

include a global adversary. Unfortunately, these systems, as

mentioned above, have the scalability problem due to their

client-server topology.

The systems that are studied in this sub-section are: Pipenet

[15], Onion Routing [30], Crowds [61], Oceanstore [], Tor

and PIR-Tor [52].

PIPENET

Pipenet [15] was presented by Dai as an anonymity system

for low-latency traffic. Its design was based on Chaum’s mix

network [9] and its main goal was security up to the point of

paranoia, because if the system detected any oddity that

could be interpreted as an attacker, the entire network would

shut itself down. Pipenet’s theoretical architecture would

provide protection against traffic analysis based on a

distributed system of anonymizing packet forwarders.

PipeNet would build anonymous channels for low-latency,

bi-directional communication, using layered encryption

similar to Chaum’s design. The process starts with the user

selecting a random sequence of servers in the network. Then,

as in the Chaum’s mix network, the client set up a multiply

encrypted tunnel by establishing a symmetric key with the

first hop, tunnelling through that encrypted connection and

establishing another key with the second hop, and so on. The

design expects one packet sent over each link between

network nodes during a time unit. If a packet is not received

by a node over any one of its links, it does not forward any

packets for that time unit, forcing all communications in the

entire network to cease by simply not sending a message for

one or more time units [24]. Unfortunally, if a node fails it

would be misinterpreted and treated as an anonymity threat.

This is the reason why Pipenet was never publicly deployed;

it is impractical for real networks like the internet.

Its connections carry constant traffic, making it resistant to

timing signature attacks, and disruptions to any connections

are propagated throughout the network.

Onion Routing

Onion Routing [30] is a distributed overlay network design

to anonymize TCP-based communications. It was the first

Pipenet-like system to be widely deployed. This scheme

provides an anonymous socket connection through the mixes

[62], which applications such as Web browsing or instant

messaging use to preserve their anonymity.

Clients choose a path in the network and build a circuit, in

which each node or Onion Routing (OR) in the path only

knows about its predecessor and successor node, but no

other node in the circuit. This favours the unlinkability

between initiator and final node [72]. The messages in onion

routing are multiply encrypted with symmetric keys.

The initiator generates two symmetric keys: a forward key

and a backward key for each OR on its path; and forward

and backward cryptographic functions which correspond

with these keys. These two pairs of function-key will be in

charge of encrypting and decrypting the message along the

path. When a node receives the message, it will decrypt the

outer encryption layer with their own symmetric key,

obtaining the pair function-key and the next node in the

path. Then the node will encrypt the message using the new

key and will forward the message to the next node. This

process is repeated until the message arrives to its

destination. Once the circuit is completed, the reply traffic

will be sent encrypted in the opposite manner: each router

encrypts and forwards the result of its predecessor onion

router.

Onion Routing can tolerate the inclusion of attackers in the

anonymous path. This is because the information that they

could detect would be limited, since the next hops are

encrypted, to the previous and next nodes identities. It also

preserves the unlinkability in the communication.

Nevertheless, this system does not offer a mechanism to

prevent timing attacks in case of a dishonest node owns the

first and last nodes of a chain [12] and also, in absence of

large amounts of cover traffic, patterns of traffic are present,

which would allow the adversary to follow the stream in the

network. Neither has been proved to be able to keep the

privacy in cases of a local adversary that is observing a

target node’s activities. The privacy degree depends on the

number of compromised routers vs. total number of

participants in the network [30].

Crowds

This system was designed by Reiter and Rubin [61] for

anonymous Web browsing. The goal was to hide the

information about the user or the information they retrieved

from web servers. The idea is to hide one’s action within the

action of many others. The users in the system are

represented by processes called jondos (nodes). An

administrative process, blender, is responsible for assigning

the jondos to a crowd of other jondos and for informing

them of other members of the crowd [24]. Their task is to

randomize the path from the initiator to the Web Server.

To execute web transactions in this model, a user first joins a

crowd of other users. In order to do that, a node contacts a

central server and receives a list of participants. The user’s

initial request to a web server is first passed to a random

node of the crowd. That node tosses a biased coin and

decides to either submit the request directly to the end server

or forward it to another randomly chosen member. In the

latter case the next member independently chooses to

forward or submit the request. The messages are forwarded

to the final destination with probability pf= ½. Finally, the

request is submitted to the server by a random member, thus

preventing the end server from identifying its true initiator.

The reply to the request is sent using reverse path using the

route established as the request was being forwarded through

the crowd. Reiter and Rubin first analysed the probability

that the initiator was correctly identified. They proposed the

notion of probable innocence as happening whenever the

true initiator is identified with a probability less than ½.

In other words, this system operates by placing users into

large groups (crowds) that collectively issue requests on

behalf of their members. This way the web server knows to

which crowd belongs the request but is not able to learn

which member from the crowd it has originated from. Not

even other crowds involved in the request know it. This way

the anonymity is preserved.

 The key feature that enables the anonymity in crowds is

that upon receiving a message from a crowd member, we do

not know whether this is the initiator of the message, or an

intermediary who is just forwarding it. We can, however,

compute the probability that each member in the crowd is

the initiator of the message and quantify anonymity [17] as

the entropy of this probability distribution. Crowds can also

prevent a webserver from learning any potentially

identifying information about the user including its IP

address or domain name.

 In [17], Danezis et al. show that the passing algorithm in

crowds is optimal and thus all attempts to improve upon

crowds are bound to fail. It shows that Crowds’ paths

lengths, and associated latency, is also optimal in providing

anonymity within its system constraints. To provide better

guarantees, more robust source routing is required to limit

the adversary from learning the remaining time-to-live of

intercepted messages. This advantage would be provided

through cryptography, which would turn crowds closer to a

mix-network scheme [9]. They also introduced D-Crowds, a

TTL based scheme that can be adapted to accommodate any

path length distribution, while learning the minimal amount

of info. It supports any path length distribution, while

leaking the least possible info, and quantifying the optimal

attacks against it.

Oceanstore

Oceanstore [39] is a global-scale, highly available storage

utility system that allows users to access nomadic data in a

uniform global scenario after they have paid the providers

certain fees that guarantee access to persistent storage. The

service providers in turn use utility model to form agreement

and resource sharing. Oceanstore finds the closest cached

replica that satisfies the closest distance metric. Its servers

use Tapestry to store and locate objects, facilitating clients to

locate quickly and retrieve nearby file blocks by their ID,

despite server and network failures.

 The data stored mechanisms use primarily untrusted

servers with encryption to offer high availability and

prevention of DoS type of attack. Persistent objects are

uniquely identified by a Global ID (GUID), which is the

secure hash of the owner’s key and a human readable name.

This scheme allows servers to verify and object’s owner

efficiently and facilitates access checks and resource

accounting; GUIDs are located by either a non-deterministic

but fast algorithm called Attenuated Bloom Filters or a

slower deterministic algorithm (modified plaxton trees [57]).

Each message sent through tapestry is addressed with a

GUID rather than an IP address; tapestry routes the message

to a physical host containing a resource with that GUID.

Tapestry is a locality aware if there are several resources

with the same GUID, it locates (with high probability) one

that is among the closest to the message source.

 Oceanstore uses ACL for restricting write access to data,

while read access is available with the keys. Updates are

achieved using the Byzantine agreement protocol between

the primary replica and the secondary. For high

performance, Oceanstore also provides self-monitoring

introspection mechanisms for data migration based on

access platform. This is also used to detect cluster and

improve routing performance.

 Two important aspects differentiate its design goal: first,

the ability to be constructed from unstructured infrastructure

and, second, the aggressive promiscuous catching. While in

an unstructured infrastructure any server can crash without

warning, information can be leaked to third parties or be

compromised; aggressive promiscuous catching provide a

faster access and robustness to network partitions. Although

it complicates data coherence and location, it provides

greater flexibility to optimize locality and trades off

consistency for availability. It also helps to reduce network

congestion by localizing access traffic. Promiscuous

catching requires redundancy and cryptography techniques

to ensure the integrity and authenticity of the data.

 Oceanstore API employs a byzantine-fault tolerant

commit protocol to provide strong consistency across

replicas. A version-based archival storage system provides

durability. Oceanstore store each version of a data object in a

permanent read-only form, which is encoded with an erasure

code and spread over hundreds or thousands of servers. A

small subset of the encoded fragments are sufficient to

reconstruct the achieved object; only global-scale disaster

could disable enough machines to destroy the archive object.

The oceanstore instrospection layer adapts the systems to

improve performance and fault-tolerance. Internal event

monitors collect and analyse information such as usage

patterns, network activity and resource availability.

Oceanstore can then adapt to regional outages and DoS

attacks, pro-actively migrate data towards areas of use and

maintain sufficiently high levels of data redundancy.

Tor

Dingledine et al. [22] introduced Tor, a circuit-based low-

latency anonymous communication system, as the second-

generation onion routing. Its design’s goals have focused on

preventing attackers from linking communication partners,

or from linking multiple communications to or from a single

user.

 Tor relies on onion routing [72] and on a distributed

overlay network to anonymize TCP-based applications. Its

network’s architecture is formed by a list of relays (network

consensus) that clients can download from directory servers.

Each relay runs as a normal user-level process without any

special privileges and clients can also download detailed

information about them. The network consensus is signed by

trusted directory authorities to prevent these from

manipulating its content. Tor has improved and modified the

Onion Routing design in terms of efficiency, deployability

and security. Some of the advancement in security includes

circuit creation, changes in the proxy and data integrity

verification.

 Tor uses an incremental path building design to create the

circuit, where the initiator negotiates session keys with the

next hop. This makes it more reliable and, in case of a node

failure, a new node can be added to the path. To improve

efficiency and anonymity, Tor multiplexes multiple TCP

streams from the same source on a single circuit; limit the

linkability by not multiplexing new streams in circuit that

hold older –than-10-minutes streams; and avoid delays by

having created circuits pre-emptively in the background

[44]. In order to preserve the integrity of the user’s paths,

Tor must prevent adversaries from adding too many servers

to the network. To control/manage the size of the network,

Tor relies on a small set of well-known directory servers to

decide which nodes can join. This brings a downside and it

is that building anonymous paths turns into a bottleneck

performance due to the relationship between the large

number of users operating the system and a much lower

number of servers.

 Tor also presents a data integrity verification system

before the node leaves the network to ensure that the

message remains intact and is pointing to the right direction.

It also integrates, a mechanism for responder anonymity via

a location-protected server, allowing clients to negotiate

rendezvous points to connect with them. Tor also proposes

to use location-hidden services via rendezvous points. One

of the major vulnerabilities for a hidden service in Tor is the

server’s selection of the first and last node in the

communication path [62]

 Despite these improvements, some issues with Tor

architecture have been found [49]: Attackers find the central

directory authorities an achievable target, scalability

problems appear when the number of user increases -

Adding more servers is an expensive option and churn will

cause a bandwidth overhead-. Tor does not offer security

against passive global observers which makes it fragile

against possible routing and connection recovery. However,

it offers security services through being highly usable and

cheap to operate.

 In addition, the centralized nature of Tor’s design and its

low relay/client ratio might allow an attacker to take over an

important fraction of the relays in the system, especially

since it only needs to maintain control over much fewer

nodes than it would if it was a peer-to-peer infrastructure.

Also, the reported relay/client ratio of 1/500 can severely

limit the bandwidth available for tunnels [46].

 In [6][22], Tor is exposed to DoS attacks by situating an

adversary at the beginning or end of the tunnel, observing its

traffic for a while and matching with wherever a colluding

node is the first or last router. If there is a match, the tunnel

is compromised; If not, the attacker will kill the tunnel by

ceasing to forward all the traffic addresses to that tunnel. Tor

is also weak against selective DoS attacks.

 Bauer et al. [3] introduced a low resource end-to-end

traffic analysis that exploits the fact that the system uses a

preferential routing algorithm that attempts to optimize the

performance. Therefore, if in addition to this, false resource

claims are reported to the Centralized Authorities and this

bogus information is propagated through the network, the

attack is able to compromise Tor due to it having no

mechanisms to verify fake resource claims.

PIR-Tor

This client-server architecture was introduced by Mittal et al.

[52] to address the scalability problem in anonymous

communication systems, Tor in particular. They proposed

that the clients use Private Information Retrieval (PIR)

techniques to obtain only a few relays instead of the entire

database, as most of the peer-to-peer systems approaches, to

overcome the scalability issue and to prevent the leak of

information about the clients’ choice of relays in suspicious

directory servers, and therefore being able to defend itself

against passive attacks and preserve the clients’ anonymity.

It follows the same circuit building process as in Tor.

 The authors suggested two different solutions based on

PIR. These architectures are Computational PIR –CPIR- and

Information-Theoretic PIR –ITPIR-. The CPIR is a single-

server scheme that uses the current directory servers for the

distribution of the network information. Due to PIR, when

Tor clients download a small block of descriptors from an

untrusted directory server, this directory server does not

learn which block has been downloaded by the Tor client.

To avoid high overhead, it is advised to the clients to send

fewer queries and reuse descriptors in subsequent time

intervals. The second solution is ITPIR, which is multi-

server and this solution relies on the client's guards being the

trusted entry points to the Tor network, to fetch the

descriptors for a circuit. It shows that is acceptable to follow

Tor’s rhythm that is a query per client every 10 minutes

[52].

 Both solutions have in common that a Tor client only

downloads a small set of descriptors. Thereby, PIR ensures

that only the client knows which descriptor has been

downloaded. The authors prove how both solutions scale

sufficiently to overcome the Tor's scalability problem

[49][50]. However, PIR-Tor maintains the same security

level as Tor.

 PIR-Tor is scalable and robust against attacks like route

fingerprint. Even though the directory queries are

identifiable by an adversary, PIR protects the system against

them and preserving the unlinkability between the relays

retrieved from the database and the client. However, the

leaked information could be used to relate connections from

the same user and building behavioural profiles [56]. Also,

if the first and last nodes are dishonest, an attacker would be

able to discover the client by launching a traffic

confirmation attack. Additionally, PIR-Tor has not been able

yet to mitigate the typical issues in a centralized scheme like

basic trust or DoS attacks.

4.2 SYSTEMS FOR UNOBSERVABILITY

As it was explained in section 2, when a system provides

unobservability, it is capable of hiding all the parts involved

in the communication – sender, receiver and message- from

adversaries that are monitoring the system. The systems in

this subsection are: p
5
 [69] and Herbivore [29].

p
5
: Peer-to-Peer Personal Privacy Protocol

p
5
 protocol was introduced by Sherwood et al. [69] for

anonymous communications over the Internet. Its logical

broadcast hierarchy is a binary tree constructed using the

public keys where different levels of hierarchy provide

different levels of anonymity, at the cost of communication

bandwidth and reliability. Even though this structure favours

the scalability of the network, it reduces its efficiency. The

nodes communicate by broadcasting their messages over the

overlay, providing both client and server anonymity.

 p
5
 provides the individual participants a trade-off

between degree of anonymity and communication efficiency,

which can be used to scalably implement large anonymous

groups, by letting them choose whether to join groups higher

or lower in the broadcast hierarchy depending on if they

desire more anonymity or better performance, respectively

[24]. Because of this, users must select a level of anonymity

and communication efficiency based on their expected

performance. Each node of the tree is represented by a bit

string of a specific length to denote its level and group.

Users are then mapped to a node and a group.

 The channel of the root of the binary tree is composed of

the entire overlay. The channel of the left successor of the

root is the left sub-tree of the overlay and the root, and so

forth. So when a user wants to join the system, he/she needs

to locate the root of the channel that they want to join and

then, descends the rest of the tree structure uniformly at

random and finally join as a leaf of the tree.

 To send a message, a user first encrypts the message with

the receiver’s public key and then broadcasts the ciphertext

to one of the broadcast groups the sender has joined. The

node will send the message to the root of the channel it

belongs to and then routed it up to the root of the entire

overlay. Next, it will get distributed downwards the tree

structure to the root of the channel and then broadcast

through the transitive closure of its successors. If the

receiver is not in one of the sender’s broadcast groups, the

message can be anonymously broadcasted across other

groups in the binary tree.

 p
5
 relies on public key cryptography, which is slow and

costly. It also assumes an out-of-band method for obtaining

public keys, such as a trusted third party, a directory server,

or even an anonymous public key server in the p5 system.

This method would allow a user to get the public key of

some entity while preserving their anonymity. In addition, p
5

uses cover traffic to make statistical analysis by a passive

adversary infeasible.

 p
5
 also utilizes a noise mechanism, which enables peers

within a group to send packets at a fixed rate for concealing

the initiator’s ID. As a result, an adversary observing the

network is unable to discern when a user is sending an actual

message. The noise traffic is sent to a group chosen

uniformly at random. Due to the constant rate of traffic from

each user and broadcast nature of the system, p
5
 users may

have to drop traffic they do not have the resources to handle.

Since groups higher up in the broadcast hierarchy receive the

most traffic, those channels may experience the highest loss

rates [24].

Herbivore

Herbivore [29] is a peer-to-peer scalable anonymous

communication system formed by a round protocol, which

works at the lower level that controls how bits are sent

among the participant nodes, and a global topology control

algorithm that divides the network into smaller anonymizing

cliques. Nodes within each clique are logically arranged in a

star topology so nodes will communicate using a central

node. Each user in the clique has a shared key with every

other member of the clique. At a higher level, cliques are

arranged in a ring topology, allowing inter-clique

communication. A structured overlay is used to route

messages between cliques, where an eavesdropper can

observe communication between them, but in unable to tell

which member of each clique is communicating. When a

new node wants to join the network, it is assigned to one

clique. Herbivore guarantees that each clique will have at

least k nodes, being k a predetermined constant that

describes the degree of anonymity offered by the system

[62]. Herbivore controls the size of each clique, in a way that

if it becomes too large, it gets divided into smaller cliques

and if it is too small, it will get merged with another small

clique.

 Herbivore uses computational puzzles in order to prevent

nodes from joining arbitrary cliques. Unfortunately, due to

that a clique can have up to 128 nodes; an attacker

controlling a small fraction of the nodes in the network has a

reasonable chance of having a dishonest node in any given

clique. Therefore, he/she will be in a position of launching a

Sybil or a DoS attack (or both) stopping the clique from

transmitting or receiving packets. Nodes will move to new

cliques if they cannot transmit, but then they will be exposed

to intersection attacks [24][62].

 Herbivore presents an anonymous slot-reservation

protocol for collision avoidance. As detailed in [24], when a

node wants to transmit data, first it will have to reserve

bandwidth on the channel for one round. In order to reserve

a slot, it needs to pick a random number i ∈ [1, m] and then

generate an m-bit reservation vector r with ri = 1 and the rest

filled with zeros. The rest of the nodes that do not want to

transmit will set an all-zero reservation vector. Then, all

nodes will broadcast anonymously and at the same time their

reservation vector to the group. The reservation vectors will

be filtered by a XOR function – only letting pass the

resulting m-bit vector having a 1 in each position in which

some node wants to transmit. Then the node will send the

message during that phase of the round. During each

transmission slot in a given round, each node locally

computes the XOR of the message it wants to send and the

pairwise keys it shares with all other clique members. The

central node then computes the XOR of its own local value

and those sent by the other clique members, and then

broadcasts the result. This star topology approach requires

2(k − 1) bits to transmit one anonymous message bit.

4.3 CENSORSHIP-RESISTANCE SYSTEMS

Censorship-resistance can be defined as the combination of

privacy, unlinkability, and robustness. Privacy means that

nobody intercepting a message should be able to learn the

contents of the message; unlinkability means that nobody

should be able to determine whether two people are

communicating to each other beyond the fact that they are

each communicating with someone; and robustness, nobody

should prevent two people from communicating with one

another if they both wish to do so.

 The systems described in this section fulfil these

characteristics. They are: Freenet [13], Free Haven [21],

Endsuleit and Mie’s system [26] and Achord [33].

Freenet

Freenet [13] is an adaptive loosely structured decentralized

peer-to-peer file system based on anonymity, without a

Central Authority (CA), where users can publish, replicate

and retrieve data anonymously. In order to preserve

anonymity, it uses probabilistic routing, a variant of mixes in

a redundant tree-based structure, where each peer maintains

a local data store and a dynamic routing table, containing

addresses of other nodes and data keys that they are holding.

These keys might be key Keyword Singed Key (KSK),

Signed Subspace Key (SSK) or Content Hash Key (CHK),

and they are obtained through a hash function based on a

160-bit SHA-1 cryptographic function.

 When a user sends a query, this query may be locally

processed, or in case of failure, routed to the

lexicographically closest matching node in its routing table.

Because Freenet’s nodes are encrypted and routed through

other nodes, it is really difficult to determine who is

requesting the information and what its content is.

 To join the network, new nodes need to discover the

address of at least one existing node in the system and then

send data insert messages. To insert a new file in the

network, the node first must calculate a binary key for the

file, and then send a data insert message to itself. Then any

node that receives the insert message checks its own storage

to see whether the key is already taken. In case of collusions,

the user tries again using a different key. If the key is not

found, the node lookups the nearest key in its routing table

and forwards the insert message to the corresponding node

that propagates through the nodes until the hops-to-live limit

is reached. If there is no key collision, a success message is

propagated back to the original sender.

Free Haven

Free Haven [21] is an anonymous publishing system made

up of a number of servers –servnets-, which agree to share

and provide documents for anyone. The identities of these

servnets are publicly known. All communications are made

over an external Mix-based communication layer. When a

publisher wants to publish a file, it breaks it into a number of

parts using Rabin’s information dispersal algorithm [59] and

sends each part to a different servnet. When a reader wants

to download a file, it must first find the hash of the file it is

searching for and send this to a servnet. The servnet

broadcast the request to the other servnets, which then sends

the pieces of the file to the reader.

 In this system, every node is equal to each other and

transactions are carried out in a symmetric and balanced

manner. Free Haven provides anonymous communications

by using onion routing (OR) and sending queries through it

to prevent attackers from tracing routes. Also, users and

servers have pseudonyms to hide and protect them from

adversaries. Reputations are assigned to each pseudonym

and are tracked automatically. Nodes communicate by

forwarding messages randomly amongst each other using

different pseudonyms at each hop making it difficult for

adversaries to determine a message’s origin or destination.

 Free Haven trades-off efficiency and convenience for

anonymity, persistence, flexibility and accountability. The

persistence of data published is based on duration instead of

popularity, to prevent popular files from pushing out other

files, restricting the damage that an attacker could create by

censoring information. Free Haven was designed to resist

censorship and to provide strong persistence; that is why the

authors considered all possible attacks that could threat the

system in its implementation.

Endsuleit and Mie’s censorship-resistant system

Endsuleit and Mie [26] use the secure lookup scheme of

Castro et al. [8] in a censorship-resistant publishing system.

In this scheme, files are represented by sets of keywords.

 A file is published by encrypting it with a key derived

from its keywords and splitting it into two fragments, both

of which are needed to reconstruct it. The fragments are

signed with the publisher’s private key, which allows the

publisher to update or delete the file, and are stored in a

distributed hash table at independent locations that are

derived from the keywords. Readers only need to know the

keywords to retrieve, reconstruct and decrypt the file;

however, unless a reader has the publisher’s public key there

is no way to tell whether a corrupt node has modified the

file.

 The deterministic placement of data in distributed hash

tables may be useful for censorship-resistance if it prevents

corrupt nodes from making themselves responsible for

storing particular files.

 Endsuleit and Mie’s results [26] show that the system

offers protection of nodes, client and file’s owners against

legal prosecution, and therefore, it makes this system

censorship-resistant. Also, reduces the chances of an

adversary to launch a DoS attack because the authentication

mechanism used on the file fragments does not allow

generating several identities on one computer.

 Moreover, to prevent the certificate authority from linking

users to their files or nodes, signatures of publisher and node

identifiers are blinded. Unfortunately this violates the

requirement of Castro et al. that nodes should not be able to

choose their own identifiers.

 There has not been any recent work or improvements to

this scheme.

Achord

Hazel and Wiley [33] introduced Achord, an anonymous

improved version of the Chord lookup to use in censorship

resistant peer-to-peer publishing systems. In order to provide

censorship, each node has a limited knowledge of the

system. The authors explained that in order to make this

lookup mechanism suitable in this environment it must be

capable of locating the data in a scalable manner while

maintaining the following set of properties in the system

[33]: The first two properties state that it must be possible to

insert/retrieve information into/from the system without

revealing the identity of the inserter/recipient, so an attacker

will not be able to censor that information. The third

property says that “it must be difficult to introduce a new

node to the network”. Since nodes contain files, deleting

them is not viable because it would be a way of censoring

the contained documents. The last property states that “It

must be difficult to identify the node which is responsible for

storing a given document”, for the same reason as before,

deleting a node is not a viable option.

 Achord’s lookup mechanism is equal to Chord in

performance and correctness, but it has been modified so

that the node identification information is suppressed as the

successor nodes are located [1]. Also, Achord defines some

constraints for finger requests on Chord. A node cannot send

a finger request to every node.

 Achord’s key lookup use an operation called

connect_to_successor. When the successor of a node is

contacted during the request, the value –unlike Chord that is

the nodeID- is send back along the recursive search path to

the originator of the request. Also, to insert a value into the

system, a node performs a connect_to_successor operation

to establish a tunnelled connection to the node which would

be responsible for the key, and send the value along the

connection path.

 Tunnelling offers some degree of anonymity to the

requesters and inserters, due to a node which receives a

given request cannot determine if the immediate requester is

sending the request from a node even further away from the

key or not. In a similar way, the identity of the node

responsible for storing a given key is protected. Achords

attempt to disguise the identities of inserters and requesters

might not be as effective as Freenet’s [33]. This is due to

that in Achord, a node receiving a request will have an idea

of what the distance between the key and the requester’s

node ID is. Clearly, this raises an issue because this

knowledge could be used to estimate the probability that the

requester in fact originated the request. Even though, this

scheme offers anonymity, the authors state that it could be

vulnerable to correlation attacks. Achord cannot protect

anonymity against a global passive adversary either.

4.4 PEER-TO-PEER COMMUNICATION

Peer-to-peer networks are composed of connections between

anonymous nodes creating an Internet overlay. These

networks can be unstructured, they use central servers to

coordinate the communication between nodes, or structured,

where nodes can communicate between each other and

scalability and performance are controlled by the topology.

 This section is divided into four categories: structured

peer-to-peer topologies, scalable lookups, secure lookups

and anonymity systems.

DISTRIBUTED SYSTEMS

 In order to understand these systems behaviour, first an

overview a distributed hash table is due:

 A Distributed Hash Table (DHT) is a distributed system

that supports a distributed lookup protocol that powerfully

locates the node that stores a particular data item. Each node

in a DHT has a unique identifier nodeID and the data

identifiers from the same spaceID are called keys. The

overlay assigns the ownership of a set of keys to a single

unique live node. If a node owns a key then the node is said

to be the root of that key. Data location is based on

associating a key with each data item, and storing the

key/data item pair at the node to which the key maps. Every

peer has the IP address of logN peers in its finger table. DHT

provides two basic operations, each incurring O(Log N)

messages:

 put (k, data): stores a key k and its associated data in the

DHT.

 get (k): retrieves the data associated with k in the DHT.

 To route queries efficiently, every node maintains a

routing table with multiple entries of the form nodeID, IP

address and port. Queries can proceed recursively or

iteratively. In a recursive lookup, the lookup initiator

contacts one of its fingers (routing tables), and that finger

recursively passes the query to another one of its fingers. In

an iterative lookup, the initiator contacts each intermediate

node directly. Different overlays networks operate in

different ways.

 DHT routing has two main security problems [73]:

 Security in the query: When a node starts the lookup,

there is a high probability that that query will pass

through a malicious node. Besides, once the result of a

query has been returned, there is no way to determine

whether it is correct or not.

 Attacks on routing: They occur when adversaries try to

claim some portions of the spaceID.

These issues make the probability of success, when routing

between two honest nodes, become approximately O((1-f)

logN) only, where f represents the fraction of malicious

nodes in the system.

4.4.1 STRUCTURED PEER-TO-PEER TOPOLOGIES

- SCALABLE AND FAULT TOLERANCE SYSTEMS

These systems are the base for most of the newer systems

and/or mechanisms. They count with different fault

mechanisms to detect errors and attacks but unfortunately

they do not preserve anonymity.

 Chord

Chord [70] is a scalable lookup in distributed peer-to-peer

systems protocol responsible for assigning keys to the active

nodes in the system. This system is formed by 2
n
 nodes,

where they can be active or not. Chord follows a circular

figure with an ID space of size N that is where the nodes are

situated. Both the identifiers and the keys are situated in the

same ring. The messages are forwarded only in a clockwise

direction in the ID space.

 Chord uses a distributed algorithm based on the hash

function SHA-1 called consistent hashing to assign the keys

to the peers. This algorithm is designed to allow nodes to

join and leave the network with the minimal disruption and

the hash function produces an m-bit identifier for the nodes

and keys. Each node n keeps a routing table up to m entries,

called a Finger Table (FT). A FT holds Chord and peer

identifiers (plus port number). The successor nodes contain

finger tables, where in their ith entry of node n will contain

the address of successor ((n+2
i-1

) mod 2
m

) in the clockwise

direction. The node identifier (NodeID) is chosen by hashing

the node’s IP address and the keyID is produced by hashing

the data key. The keyID k is assigned to the first node whose

nodeID is the same or follows k in the ID space. This peer is

known as successor node. When k connects to the network,

its successor node will transfer the keys that were for it.

When a node abandons the network, it transfers the keys that

its successor was in charge of. This hashing protects the

system against adversaries.

 The lookup process comes as a natural result of how the

spaceID is partitioned. Both the insertion and querying of

items depend on finding the successor of an ID. Any node

looking for the key k will not need more that M hops
2
, a

node will discover the node at which k is stored. In general,

under normal conditions a lookup takes O(log2(N)) hops.

 If a node fails in Chord, it will lead to the loss of items

and will cause the ring to break and therefore some IDs will

not be found. Also, if after a short period of time a node

does not respond, the nodes update both their successor’s

and predecessor’s pointers and transfer the responsibility of

the keyID of the failed node to the rest of the nodes [71]. To

deal with these problems, if a node detects that its neighbour

has disappeared, the node will replace it with the next node

in the list and all the items stored in the failed node will be

replicated in the node that follows it in the list or successor

node. The only way to lose an item is when both the node

which contain it and its successor node fail simultaneously.

 This decentralized scheme tends to balance the system

load, because each peer receives more or less the same

number of keys, and there would be minimal movements

when peers join or leave the system/network. The expected

number of routing hops in Chord is ½ log2N.

 The main emphasis in Chord’s design is robustness and

correctness, achieved by using simple algorithms with

provable properties even under concurrent joins and failures.

 In [55] O’Donnell and Vaikuntanathan analysed how

much information Chord leaks. They proved that a passive

observer can only view those requests that are routed

through itself, being incapable of eavesdropping on other

links. They also conclude that, even though anonymity is not

its design goal, Chord is capable of providing a high degree

of anonymity against passive attackers in its recursive

version, unlikely in its iterative version that it offers no

anonymity at all. Larger successor lists also increase the

anonymity set size of nodes close to data keys, an important

consideration.

Pastry

Pastry [64] is a self-organising decentralized, structured

overlay network that uses Plaxton-like prefix routing [57]

and in where each peer routes clients and interacts with local

instances of one or more applications. Its main goal is to

route objects efficiently on the network. The nodes and the

data items have unique 128-bit IDs, which go from 0 to 2
128

-

1, and they are distributed in a circular space. The nodesID

are obtained using hashing in the IP numbers and Public

Keys. Pastry organizes the ID space based on numeric

closeness of IDs, and therefore, the nodes with adjacent ID

numbers could be further in the physical space [25].

 Each node maintains three tables [64]: Routing table,

leaf set and neighbourhood set. The routing table contains

log2
b
N rows with 2

b
 columns, N being the total number of

nodes in the system. The entries in row i refer to a node

whose ID shares the present node ID only in the first i digits.

In that way, in the first row, the node’s routing table contain

ID nodes which have a different first digit (base 2
b
). The

second row of an ID node n contains 2
b
-1 nodes that share

the first of their digits but differ in the second one. The third

one contains nodes that share the first and second digit but

differ in the third one and so on. Hence, the node in the

routing table with the smallest network delay will be

included in the routing table. The leaf set contains a list with

L/2 predecessors and L/2 successors. The node keeps a

register of the m closest nodes following a different metric

from the ID space, for example, network delay [25]. Finally,

the neighbourhood set maintains information about nodes

that are close together in terms of network locality.

 The routing in Pastry follows the next steps: when a

message is given with its key, the node first checks its leaf

set. If there is a node whose ID is closest to the key, the

message is forwarded directly to the node. Otherwise, the

node checks the routing table and the message is forwarded

to a node that shares a common prefix with the key by at

least one more digit. If no appropriate node exists in either

the routing table or neighbourhood set, then the current node

or its immediate neighbour is the message’s final

destination. The number of routing steps in Pastry is at the

order of O(logN).

 When a node wants to join the network, it needs to know

another node that is already on the system. It generates an ID

and sends it to this known node. The request will be routed

to the node with the node whose ID is numerically closest to

the new node ID. All the nodes found on the route to the

destination have to send their state tables to the new node. It

will initialize its own tables and inform the nodes of its

presence.

 As a fault detection mechanism, Pastry uses keep-alive

messages between neighbours’ nodes to check that they are

alive. If a node has not been in touch with its neighbours for

a while, it is supposed failed and all the members in its leaf

set will be notified and their leaf sets will be updated. To

replace a failed peer in the leaf set of its neighbour, its

neighbours in the nodeID space contact the live peer with

the largest index on the side of the failed peer, and request

its leaf table.

 Tapestry

Tapestry [82] is a structured peer-to-peer overlay routing

infrastructure, in which nodes are assigned unique IDs and

messages are routed incrementally through the overlay

according to each node ID. Tapestry uses two secondary

pointers in each neighbour map entry to allow routing in the

presence of node failures. Objects to be stored in Tapestry

are mapped to a node and to look them up request messages

are routed on the system to the node, where the object is

mapped.

 The lookup and routing mechanisms of Tapestry is

similar to Plaxton [57], which are based on matching the

suffix in NodeID. Routing maps are organized into levels

where each of them contains entries that point to a set of

peers closest in distance that match the suffix for that level.

Also, each peer holds a list of pointers to peers referred to as

neighbours. In Tapestry, neighbouring nodes in the

namespace are not aware of each other. Tapestry stores the

location of all data object replicas to increase semantic

flexibility and allowing the application level to choose from

a set of data object replicas based on some selection criteria,

such as date. Each data object includes an optional

application-specific metric in addition to a distance metric

[42].

 When a node’s routing table does not have an entry for a

node that matches a key’s nth digit, the message is forwarded

to the node with the next higher value in the nth digit,

modulo 2
b
, found in the routing table. This procedure, called

surrogate routing, maps keys to a unique live node if the

node routing tables are consistent.

 The goal of tapestry is the ability to detect and recover

from failures like neighbour map corruption or link failure.

It can detect failures quickly and recover routing state when

they are repaired. To detect server and link failures, Tapestry

uses TCP timeouts. Also, to ensure the reachability of the

message source, nodes send to their neighbours UDP

periodic heartbeat packets. By checking the ID of each

delivered message, faulty and corrupted neighbour tables

can be quickly detected. In order to operate under failure,

every entry in the neighbour map maintains two backup

neighbours beside the primary one. As well, Tapestry’s

replica function produces a set of random keys, yielding a

set of replica roots at random points in the ID space. The

expected number of routing hops in Tapestry is log2
b
N.

 When a node detects that a node is unreachable, it marks

the neighbourhood as unreachable instead of removing the

pointer. It maintains a reasonable second change period,

during which the message is still routed to the failed node. If

the failure cannot be repaired in this period, the failed

neighbour is removed from the map.

 CAN: Content Addressable Network

CAN [60] is a scalable, fault-tolerant and completely self-

organizing distributed infrastructure that provides hash

table-like functionality on Internet-like scale. The key space

of the CAN is a d-dimensional Cartesian coordinate space,

where each node has an identifier that is mapped to a point P

in the key space and is responsible for its zone -rectangular

portion of the key space that contains P-.

 CAN routes messages in a d-dimensional space, where

each node maintains a routing table with O(d) entries and

any node can be reached in (d/4)(N
1/d

) routing hops on

average. The entries in a node’s routing table refer to its

neighbours in the d-dimensional space. Nodes can route

messages using only information about neighbouring nodes

and their zones.Basic requests for keys like insert, lookup

and delete are routed by the intermediate nodes that contain

the key to zones using a greedy routing algorithm. Hereby,

CAN nodes only have to maintain a small amount of states

that are independent of the numbers of nodes in the system,

which make CAN scalable. CAN’s replica function

produces random keys for storing replicas at diverse

locations. CAN’s routing table does not grow regardless of

size changes in the network.

In case of failure, CAN’s intermediate nodes will still be

able to build a path for the request to be routed. The lookup

is achieved by using the straight line path through the

Cartesian space from source to destination [25].

 When a node wants to leave the system, it hands over its

zone and the associated key-value pair database to one of its

neighbours. Then depending on whether the zone of one of

its neighbours can be merged with the leaving node’s zone

or not, the new single zone will be created, or the zone will

be handed to the neighbour with the smallest zone, making

this node handle the two zones. When a node fails, a “take

over algorithm” is put into practice but the pair key-value is

lost.

 One of the problems in CAN is that neighbour nodes may

be geographically distant.

 In CAN nodes are able to join/leave the system

dynamically and without restriction, changing their managed

zones each time. This makes the system unstable and weak

against attacks like DDoS, due to an adversary being able to

control different zones and corrupt the target node isolating

it or bringing it down.

 Viceroy

Viceroy [43], DHT-based overlay peer-to-peer network

designed to handle the discovery and location of data and

resources in a dynamic butterfly technique. It also allows

nodes to contact any server in the network to locate any

stored resource by name. Like Chord [70], Viceroy uses

consistent hashing to distribute data and keep it balanced

across the servers, making the network strong against churn.

Viceroy organizes ID space as a circle of length one - and

forms a butterfly-shaped neighbouring overlay nodes into

log2(N) levels numbered from 1 to log2(N), where N is the

total number of nodes in the system-. Level l node’s two

edges are connected to peers at level l+1. A down-right edge

is added to a long-ranged contact at level l+1 at a distance

about 1/(2
l
) away, and a down-left edge is added at a close

distance on the ring to the level l+1. The up edge to a nearby

peer at level l–1 is included if l > 1. Then, level-ring links

are added to the next and previous peers of the same level l

[43].

 Each node (apart from nodes at level one) has an “up”

pointer and every node apart from the nodes at the last level

two “down” pointers (one short and one long). Those three

pointers are called the butterfly pointers. All nodes also have

pointers to successor and predecessor pointers on the same

level for short distances. This makes a total of 7 outgoing

pointers per each node.

 To lookup an item x in Viceroy, first a node n follows its

up pointer until it reaches level 1. Then, it starts moving

down the levels of the tree using the down links. In each

hop, the node should traverse a pointer that does not exceed

the target x. In the worst case, all the levels can be traversed

up and down. This recursively continues until a node is

reached with no down links, and it is in the vicinity of the

target node. The expected lookup path length is O(logN)

[25].

 To join the network, a node looks up its successors, fixes

the ring pointers and takes the required items from s. After

that it selects a level based on the estimation of the number

of nodes. It finds, by a combination of lookups and stepping

on the ring, the rest of the pointers (successor, predecessor at

the selected level, up and down pointers). When a peer

leaves the overlay network, for reliability and fault

resiliency, it hands over its key pairs to a successor from the

ring pointers and notifies other peers to find a replacement.

Additionally, the stored items are transferred to the

successor.

 Koorde

Koorde [35] is a distributed system based on Chord [70] and

De Bruijn graphs [20] which keeps a constant number of

edges to maintain a low overhead. As in Chord, a Koorde

node and a key have identifiers that are uniformly distributed

in a 2
d
 identifier space. A key k is stored at its successor, the

first node whose ID follows k in the identifier space. The last

node is 2
d
-1 and is followed by node 0. To insert a De Bruijn

graph on the ring, each node needs to know about its

successor on the ring and its first De Bruijn node. A De

Bruijn graph maintains two pointers to each node in the

graph, because of each nodeID is represented as a set of

binary digits, each node is connected to nodes with

identifiers 2m and 2m + 1, m being a decimal value of the

node’s ID. By succession shifting of bits, lookup time of

logN can be maintained.

 To look up a key k, Koorde’s routing algorithm must find

k’s successor by going through De Bruijn graph. This graph

of base n values and m bits of resolution will have a node

identified by each possible combination of the n-m bits.

Koorde exploits this ordered connectivity to reduce the state

of each node in a network. Apart from the smaller routing

tables, the rest of the protocol follows Chord.

 One of the reasons why Koorde stands out is because it

reaches a lookup performance logkN, with a low number of

links, k=2; and it can also lookup with

 hops per

request, when there are logN neighbours per node. However

in order to be scalable, the maximum size of the network

must be pre-determined so the key space can be configured.

What it is more, Koorde requires a highly ordered and

rigorously maintained organization, which has high

maintenance costs.

 Koorde uses Chord’s stabilization protocol for

maintenance and, in order to be fault tolerant, it is needed to

keep an out-degree less than logN nodes so the nodes do not

lose their contacts easily. The load balancing depends on the

uniform distribution. However, the load of message passing

on each node is an issue. In De Bruijn graph, some nodes

will have more traffic than others by a factor of θlogN of the

average traffic load.

 Datta, Girdzijauskas et al. [19] argued that Koorde

makes unrealistic, simplifying assumptions of uniform key

distribution, showing that for an arbitrary key distribution,

De Brujin graph fails to meet the dual goals of load

balancing and search efficiency.

 Kademlia

Kademlia [45] is a peer-to-peer information system that

incorporates attributes from both Pastry and Chord and,

seeks to improve efficiency and knowledge sharing. It uses

the symmetric properties of bitwise XOR operations to

determine the distance to a target node. Kademlia creates

partitions of the ID space where the NodesID are leaves of a

binary tree. In there, each node position is determined by the

shortest unique prefix of their ID, and divides the binary tree

in a series of minor binary trees that do not contain the

nodeID and keep at least a contact in each of the subtrees.

Per each subtree in the ID space k contacts are kept instead

of just one. A group of no more than k contact in a subtree is

called k-bucket, which is where Kademlia nodes keep lists of

the known nodes sorted by time last seen-least-recently-seen

node at the head, most-recently seen at the tail. The

parameter k indicates the maximum number of entries one

bucket can store. Kademlia algorithm [2] is based on

distance of nodes and key-values pairs. Each node has a

nodeID. A SHA-1 algorithm is used to build a 160-bit key

from the node ID for each node. Keys follow the same

process. Each node knows more about the nearest nodes than

the further ones.

 The lookup in Kademlia is concurrent and iterative.

When a node is looking for an ID, it checks to which subtree

belongs the ID and forwards the query to α nodes selected

randomly from the subtree’s k-bucket. Each node returns a

minor subtree or closer to the ID k-bucket. From the return

k-bucket the same process will be done and so on until the

node ID is found. Lookup will end in O(logN) hops. To

insert, a query is first sent to a few neighbours of the

initiating node and then travels to the node which is the

nearest node to the hash of the key-value pair. If a node goes

down, another will take the responsibility of that region of

the hash table space.

 Kademlia uses parallel, asynchronous queries to avoid

timeout delays from failed nodes. It also uses 128-bit routing

table to speed up the search and maintains a separate list for

each bit. Every list belongs to a specific distance from

current node. As a result of this efficient method, each

search iteration in a network with 2
n
 nodes will take at most

n steps to complete [25][42].

 When a node wants to join the system, it is inserted into

its appropriate k-bucket and then a lookup for its own

nodeID starts, while gaining information about other nodes

that form the system. Finally, node n refreshes all its k-

buckets and inserts itself into other nodes’ k-buckets at the

same time. If another node detects the new node and some of

the keys in his database are closer to the new node than to

itself, to provide consistency, the node replicates these keys

to the new node. The more popular a key is, the more often

it is stored at different nodes and the faster it can be found. If

a node did not perform lookup in the range of one of its

bucket within an hour, it picks a random ID in the bucket

range and performs a search for that ID.

4.4.2 DISTRIBUTED SCALABLE LOOKUPS

When a system owns a scalable lookup, potentially it will be

able to increase its size, allowing a higher number of users to

join the network. With a larger network, and due to the peer-

to-peer nature where nodes do not know each other, it will

be common to find that more adversaries are trying to access

the system if they are not in already. The problem of these

adversaries is that, whether they are passive or active, they

will try to create vulnerabilities in the system and, if they

can, bring it down.

 Skipnet

SkipNet [32] is a randomized structure based on SkipList,

which is a sorted linked list where some nodes have pointers

that skip over varying numbers of list elements in the

increasing sort order, and therefore reducing the search time

of a node in the list. Skipnet applies this idea to a ring

structure, where data are node names – nameID- and nodes

maintain supplementary pointers in the circle identifiers

space. The nameID scheme allows the key to be stored

locally or within a confined administrative domain – path

locality-. To provide path locality, the linked list is changed

to a doubly-linked ring and restricts the lookups in the DHT

only to domains that contain the required key. All SkipNet

nodes store 2logN pointers where N denotes the number of

nodes in the P2P. All pointers of a node constitute its routing

table.

 SkipNet supports constrained load balance. This is

implemented by dividing the file name into two parts: a

prefix and a suffix. While the prefix specifies the domain

where load balance should occur, the suffix is hashed

uniformly to the peers in that domain.

 The routing efficiency is O(logN) with high probability

where N is the number of peers in the P2P. SkipNet

generates a random binary bit vector for each peer. These

random bit vectors are used to determine the random ring

memberships of peers. A ring at level i consists of all peers

whose random vectors have the same i-bit prefix. Each level

skips over 2
h
 nodes.

 In Skipnet, a file is stored in the node whose nameID is

closest to the file name. To provide content locality, the

node name is used as the prefix of the file name.

 Searching for a file in Skipnet can be done either by

nameID or numericID. To search for a file by nameID, the

query visits nodes whose nameIDs share a non-decreasing

prefix of the target file name. On the other hand, in a search

by NumericID, the querying node starts the search from the

lowest level or Level 0. There, the lookup stops at the node

whose numericID matches the first bit in the target

NumericID. Then, it continues in the Level 1 ring until a

node whose numericID matches the first two bits, and so on

until the longest prefix is found at level H. Finally the

process finishes when the numerically closest node to the

numericID is found.

 When a node leaves, Skipnet will continue to route

correctly as long as the bottom level ring is maintained, then

the upper-level rings will be repaired lazily. Each node

maintains a leaf-set that points to additional nodes along the

bottom ring which allows the partitions to remerge.

 Bamboo

Bamboo [63] is a distributed algorithm based on the routing

logic of Pastry [64], although the management of the overlay

structure is different in order to be more scalable in dynamic

environments. Its structure is formed by two sets of

neighbour information at each node: leafset - comprised of

successors and predecessors numerically closest in the key

space - and routing table.

 When doing a query, the predeccessor is forwarded until

a node which has the key in its leafset to ensure correct

lookup is reached. To improve the lookup performance, a

routing table is used, which is populated with nodes that

share a common prefix.

 Bamboo performs lookups in OlogN hops, while the leaf

set allows forward process in the case that the routing table

is incomplete. Moreover, the leaf set adds a great deal of

static resilience to the geometry; Gummadi et al show that

with a leaf set of 16 nodes, even after a random 30% of the

links are broken there are still connected paths between all

node pairs in a network of 65536 nodes. This resilience is

important in handling failures in general and churn in

particular, and was the reason Pastry geometry was chosen

for use in bamboo. Bamboo performs lookup recursively.

 Bamboo has two recovery methods to a node failure:

Reactive recovery and periodic recovery. In the reactive

recovery, when the neighbours of a node fail, it will

broadcast its updated routing and leafsets to all of its k - 1

neighbours. This action may cause network overload in

situations when all the nodes detect the failure at the same

time and send their tables to each other, or when a node has

not really failed but the keep-alive messages were delayed.

On the other hand, in the periodic recover, a node is sharing

periodically its leafset with each of the members of that set,

independently of whether the node detects changes in its leaf

set or not.

 It has been proved that under low churn, reactive

recovery is very efficient, as messages are only sent in

response to actual changes, while periodic recovery is

wasteful. As churn rates increase, reactive recovery becomes

more expensive due to an increase on its leaf set size. On the

other hand, periodic recovery aggregates all changes in each

period into a single message, resulting in periods of no

churn; reactive recovery uses less than half of the bandwidth

of periodic recovery. In contrast, under churn its bandwidth

use jumps dramatically. As results for reactive recovery are

poor, Bamboo focuses on periodic recovery.

As a simple local optimization [46], a source node contacts

another node in its routing table at level l and asks it for its

level l neighbours to find out whether these other nodes have

lower latency than some of the source node’s existing

neighbours. The same process is followed for the search key

prefix. The results are compared and the source node’s tables

are updated if any closer nodes are found. The inverse

neighbours protocol begins with sampling the node’s

neighbours at level l, only keeping the k nearest nodes from

that set. Then, level l is decremented by one and another

sample is performed on the remaining k nodes. This process

continues until l < 0, with consideration paid at each step to

possible new neighbours [63].

 Bamboo supports two types of timeout calculations:

TCP-style and virtual coordinates. The TCP-style timeout

calculation scheme allows nodes to have a rough idea of

expected base timeouts for issuing searches to different

portions of the network. On the other hand, the virtual

coordinate timeouts assign to each node a coordinate in a

virtual metric space such that the latency between two nodes

is represented as a line between them in the virtual

coordinate space. Bamboo uses the virtual coordinate system

found in Chord, called Vivaldi [77], which maintains an

exponentially weighted average of past round trip times

between nodes, and uses that to create reasonable timeout

values.

Westermann et al’ lookup

Westermann et al. [80] presented a scalable node lookup

system based on Kademlia [45] for anonymity networks. All

the servers have a unique nodeID and only those who

provide anonymization service are members in the DHT.

The users use a small set of servers which they trust to

perform node lookups. Additionally, the results are not

immediately used to build a connection to prevent timing

correlations. Clients are not registered as members and to

execute a query, users maintain encrypted connections to a

few semi-trusted servers it knows and then send the results

to these servers. They then execute the queries and send the

results back to the user. This procedure aims to harden

fingerprinting attacks [24].

 In this design, the nodeID is the SHA-1 hash of the DHT

public key of the node. Using cryptography limits the

attacker’s ability to freely choose its position in the DHT,

preventing him/her from placing the same descriptor various

times under different IDs and hideding him from updating

the DHT with erroneous descriptors for already existing

honest nodes. The private key used for signing the

descriptors is also used for signing the server certificate

which is used during the establishment of an encrypted

connection to the anonymizing node. This ensures a one-to-

one mapping between a descriptor and the corresponding

server certificate. By verifying this certificate with the public

key of the descriptor, the client can check if the server is the

one referenced within the descriptor.

 Eclipse attack is a threat, so it is fingerprinting. It does

not protect against DoS or Sybil. In [56], Panchenko et al.

showed that this approach does not provide enough security

in big networks as an attacker can significantly bias the node

selection.

4.4.3 DISTRIBUTED SECURE LOOKUPS

Unlike the systems in the previous section, networks with a

secure lookup are robust against attacks. They introduce

mechanisms that prevent attacks by hiding information

during the lookup process. Some of the most known

mechanisms will be explained below:

 Castro et al’s secure lookup

Castro et al. [8] proposed a strong DHT system that relies on

redundant lookups, which floods the message along multiple

paths. Each key is replicated among several replica nodes.

The initiator performs multiple redundant lookups towards

all the replicas. The lookup result would be successful as

long as there are no malicious nodes in at least one of the

redundant lookup paths.

 The authors acknowledged the Eclipse attack as a threat

in overlay networks. As a defensive measure, they propose

the use of Constrained Routing Tables (CRT), where they

impose strong structural constraints on the neighbour set.

Even though an idealized CRT ensures that the expected

fraction of malicious nodes in the neighbour set of correct

nodes would be equal to the total fraction of malicious nodes

in the network, the cost would be astronomical. They also

introduced a set of mechanisms to counter the attacks against

lookups and proposed the following techniques: Secure node

identifier assignment -A trusted authority issues a certificate

to each node and is responsible for assigning the node

identifier with a public key-, Secure routing table

maintenance -It creates a parallel, constraint routing table

where each slot can only have a single possible node- and

finally, Secure lookups -This property is divided into two

stages. First, a routing failure test is applied to the sent

message. If it fails, redundant routing is used and all the

messages are forwarded according to the CRT. Even though

these three techniques used together permit the lookup to

return the closest node to the randomly chosen identifier,

many extra messages are generated by the secure lookup

mechanism when the routing failure test in unsuccessful.

Unfortunately, the increment of messages every time this

happens can alert malicious nodes that a lookup is being

performed, losing its privacy and therefore its anonymity.

Another limitation of this scheme is that the redundant

lookups tend to converge to a smaller number of nodes close

to the target, and one malicious node in this set could infect

many redundant lookups [74].

 Mittal et al. [49] put Castro et al’s lookup into test,

where they detected that a small fraction of 5%

compromised nodes can detect the lookup initiator more of

the 60% of the time. Furthermore, when the fraction of

compromised nodes is increased to 10%, the lookup initiator

is revealed 90% of the time. This shows how, even though

this scheme’s mechanisms are secure against active attacks,

the lookup process loses its anonymity and can be observed

by malicious nodes, exposing not only the lookup process

but also all the anonymous communications that are built on

top of it.

 This scheme’s security is examined in [74] against

attacks such as Eclipse or Sybil. To defend against a Sybil

attack, Castro et al’s lookup proposed the use of a

Certification Authority (CA), assuming that this can be

trusted by all the nodes in the system and that it is capable of

detecting Sybil attackers accurately. A CA would always be

a target for attackers, so using it offline should reduce the

chances of being attacked. However, centralized

management of identities carries with it the problem of

certificate revocation when identities are no longer valid for

any reason, including online detection of a Sybil attack. On

the other hand, as an Eclipse defence, Castro et al proposed

the use of the Secure routing table maintenance to exploit

the potentially vulnerable information, where its entries can

be verified by a routing failure test and they are not taking

into account network proximity. The authors did not test

these aspects so a few years later Condie et al. [14] showed

that attacks will progressively poison the optimized routing

table, because after a while most of the routing would have

had used it, which will cause an increase in the overhead in

the table.

S/Kademlia

S/Kademlia [4] is a secure key-based routing protocol based

on Kademlia [45]. Baumgart and Mies [4] propose several

improvements in order to make Kademlia more robust

against attacks. This scheme introduces a novel proposal of

using crypto-puzzles to avoid collusion of malicious peers

by restricting the nodeID generation, making

computationally expensive to generate valid nodeIDs.

However, the adversary is free to generate valid IDs offline

without any time bounds before actually joining and

subverting the network. S/Kademlia also has refined two of

Kademlia’s mechanisms that include extending the routing

table with a sibling list –sibling broadcast- to secure the

protocol against storage attacks; and the use of multiple

disjoint paths for node lookups to defend against routing

attacks. S/Kademlia included this latter as an extension for

Kademlia’s lookup algorithm. This should increase the

lookup success ratio in a system with presence of dishonest

nodes. The initiator will begin the lookup by taking the k

closest nodes to the destination key from his local routing

table and distributes them into d independent lookup buckets

[4]. Then, the node continues with d parallel lookups similar

to the traditional Kademlia’s lookup. All these lookups are

independent and to provide really disjoint paths, each node

will be used only once during the lookup process.

 Baumgart and Mies only tested S/Kademlia in a network

of 10000 nodes, although the results were promising, where

in a system with 20% of malicious nodes the lookups using

disjoint paths were 99% successful. Also the network

topology can its diameter modified in order to adjust to the

level of security in different scenarios.

 Halo

Kapadia and Triandopoulos proposed Halo [36], a secure

lookup scheme which provides a method for performing

redundant routing over a Chord-based DHT to locate a

target. These redundant searches are performed towards

knuckles – nodes that have fingers pointing to the target.

 Halo provides robust lookups over an unmodified

distributed hash table by looking up nodes that are likely to

have direct links to the target node due to the structure of the

overlay. Unlike simple parallel lookups, these lookups are

unlikely to converge on the same set of potentially corrupt

nodes until the last hop.

 Halo was tested on a network of 10000 nodes, where it

shows that it is able to tolerate up to 12% of colluding

nodes, with a minimal of 1% of failed searches. Opposite the

50–60% failure in Chord for the same system. The authors

also stated that when using Halo recursively, the tolerance of

colluding nodes increases to 22% with 1% of sabotaged

searches athwart Chord’s 70-80% [36].

 In [58], it indicates how Halo is able to defend against

path construction attacks – adversaries drop or mis-route

path setup messages to other adversaries- by providing

redundancy mechanisms in the overlay and also using a

random symmetric key. However, tt is subject to Mittal and

Borisov’s information leak attack [49].

4.4.4 PEER-TO-PEER ANONYMITY SYSTEMS

In this section, there have been included systems that are

used over a P2P topology. Hence, there will be two

subsections that contain: random paths in unstructured

topologies and random lookups in structured topologies.

4.4.4.1 RANDOM PATHS IN UNSTRUCTURED

TOPOLOGIES

These systems connect nodes relays into an unstructured

topology and construct circuits along paths in it as a method

for scalability. They also introduce mechanisms that

randomize these actions in order to hide relays, users and

messages from adversaries.

 Tarzan

Tarzan [27] is a decentralized anonymous peer to peer

network based on the IP protocol. Each node in the system

has a set of neighbours –mimics- that are based on the IP

address of this node, this way, nodes with IP addresses from

the same subnet are grouped together. They are responsible

for exchanging continuous dummy messages at a symmetric

rate to cover traffic that is being exchanged.

 The anonymous circuit construction in Tarzan commences

with an initiator choosing the first hop randomly from their

set of mimics. Then the second hop will be selected from the

set of mimics chosen by the first hop, and so on. In each

hop, symmetric keys are generated and encrypted with

public keys of the servers in the circuit, in a similar way to

onion routing [72]. These keys are used to send data over the

circuit. All the users in the network relay traffic for other

users, like in Crowds [61].

 Since the initiator of a circuit is also exchanging mimic

traffic with other nodes, someone watching the node has a

greater difficulty identifying it as the source of a particular

circuit. Also, the first hop in a circuit does not know whether

the traffic it is receiving is cover traffic or application traffic

[24] and therefore, the network would be stronger against

traffic analysis attacks.

 Tarzan introduced the peer-to-peer gossip protocol that

allows clients to learn about other servers in the network by

sharing the information about them. This way, when a node

initializes, it will select a random neighbouring node that it

already knows about and will ask it for all the other servers

the neighbour knows about. In the same way, the requested

node can then select another random node from the newly

learned set of servers and repeat the process.

 Due to the communication on Tarzan being carried out

over links between mimics, each node needs a global view

of the system in order to verify that the paths that are being

built correctly and to keep the information updated in the

gossip protocol. This causes that Tarzan gets limited to a

network size of 10000 nodes or less.

 Due to the peer to peer nature of the network, if a

malicious node is contacted by the gossip mechanism, it

would be in a position of launching an attack. Tarzan

provides anonymity against malicious nodes and global

eavesdroppers.

Rumor Riding

Han and Liu [31] introduced Rumor Riding (RR), a light

weight mutual anonymity protocol for decentralized peer-to-

peer systems. It uses a random walk scheme as the building

block of the protocol. It allows messages to be sent via

multiple anonymous paths without considering path

construction.

 Rumor Riding uses the AES algorithm to encrypt

messages with a 128-bit size key. When an initiator wants

to start an anonymous query, it generates the query content

and a public key K. Then it encrypts that query message with

the symmetric key into a cipher text and sends them both to

different neighbourhoods. They follow different random

walks –rumors- in the system. When the key-cipher text pair

meet in a node, this node is capable of recovering the

original query message. For this node to determine if the

pair of key-cipher rumors matches, RR utilizes a Cyclid

Redundancy Check (CRC) function to attach a CRC value.

When the node decrypts both messages, it can compare

results, being able to know if the message has been

successfully recovered. Once this node has checked that the

message is correct, it respond the query. In order to do so, it

encrypts the plain text of the response message with the

initiator public key K. Then, it encrypts, using AES

algorithm, the cypher text and its key and split them into two

response rumors, which will get an ID assigned, IDrK and

IDrC for the key and the message, respectively. Finally, the

initiator will send a confirmation message to the responder

using the responder’s public key. Following the same

process, the message is splitted in two and sent following

different paths.

 There is a storage overhead concern raised by the need of

each node to cache a number of received rumors before they

are matched.

Also, RR does not sustain much storage overhead to

individual peers, which is an issue since this aspect is highly

related to the speed of query generation [29].

 Rumor Riding is susceptible to timing attacks, since the

adversary deduces the correlation between the timing of

packets. RR is not subject to a predecessor attack, due to the

sowers of an initiator or responder being randomly

distributed over the system and not unique, the attacker will

not be able to identify any of the parts. Even though RR is

less vulnerable to traffic analysis attack than other

anonymous systems, adversaries can easily discover the

initiator identity by using reverse path [31].

 Agyaat

In [66], Singh et al. introduced Agyaat, a decentralized peer-

to-peer system, which promotes a generic non-cryptographic

solution for mutual anonymity for both sender and receiver.

When a node in a structured system wants to join Agyaat, it

needs to join one or more unstructured clouds because

messages in this scheme are addressed to clouds instead of

nodes.

 The routing begins when a sender’s cloud initiates a

random walk to hide the identity of the initiator. Then, the

message is forwarded through the structured overlay to the

rendezvous node of the recipient’s cloud, which broadcasts

the message through the cloud, secreting the identity of the

recipient. To balance load among cloud members, Agyaat

uses multiple structured overlays with independent key

spaces; a given cloud may have a different rendezvous node

in each overlay.

 Agyaat offers three alternative resource discovery

approaches: semantic groups, centralized directory service,

and dynamic services. In the first case, nodes that host

semantically similar resources are grouped into a cloud.

Then, some sort of resource and provider privacies can be

provided at the expense of resource flooding-based

discovery. The second approach is a centralized directory

service, which improves the discovery of the resources. Also

dynamic services can be employed for this purpose. Then, a

resource is mapped to a cloud and the index is stored at a

central server or at the coordinator peers of the clouds in a

distributed manner. However, Agyaat does not describe the

anonymous construction of this index and it does not

analytically quantify its effectiveness.

4.4.4.2 RANDOM LOOKUPS IN STRUCTURED

TOPOLOGIES

The systems defined in this sub-section use DHT secure

lookups in order to find a random node in the system. The

most important anonymous systems and lookup mechanisms

have been studied and they are:

AP3: Anonymous Peer-to-Peer Protocol

AP3 [47] is an anonymous protocol built on top of Pastry

[64], which is responsible for handling the membership

overlay. Its design is similar to Crowds [61] with paths

being formed by performing a stochastic expected-length

random walk. The stochastic nature of AP3 makes it difficult

for a rogue node to decide whether its preceding hop is the

initiator or simply a relay in the path; however, for low-

latency communication, timing attacks may make this

decision simpler.

 AP3 offers three different services to the node that are:

Anonymous Message Delivery, it is sent one particular

message to a node through a random path in the network;

Anonymous Channels: allow a persistent tie between a node

and an ID while maintaining the nodes anonymity in the

network; and Secure Anonymous Pseudonyms: allow a node

to have a persistent id within the network which is

authenticated through public key encryption.

 To deliver anonymous messages, like Crowds, AP3 trusts

on a network of peers to forward messages while hiding the

originator. In fact, an intermediate node does not know if the

node that it received a message from is the originator or just

another forwarding node. Therefore, the only node that

knows the initial node’s identity is the one that handed the

message.

 To send an anonymous message, first, the anonymous

request object is created comprised of the message and

address of the recipient, without revealing any information

about the originator’s identity. Then, the request is forward

to a node selected by drawing a random key. When the

request is received, AP3 toss a coin to decide whether to

forward it to the destination node or to another intermediated

one, following a forward probability mechanism (pf) to

provide a random path through the network that gets built

from a variable number of random hops. The path length

follows a geometric distribution, with the expected length

being

 [49].

 AP3 allows users to have pseudonyms. Each user is able

to generate as many public and private key pairs as

necessary without a Public Key Infrastructure (PKI),

creating anonymous pseudonyms that cannot be linked to

each other. The owner of a pseudonym establishes an

anonymous channel and must also periodically refresh the

anonymous channel associated with the pseudonym just in

case the nodes along the channel have died. Messages

targeted at pseudonyms are encrypted with their public key,

so the user who owns the pseudonym is the only able to

access the contents of the messages.

 In [49] Mittal and Borisov presented two attacks that

they used to analyse AP3. The results showed that the limit

on the number of attackers that AP3 can handle while

providing probable innocence is only 8% in the typical case,

while the theoretical limit with increased path lengths is

10%. This is in contrast to the conventional analysis, which

puts these figures at 33% and 50% respectively. These

results prove that the lookup used in AP3 reveals a lot of

information about the lookup initiator, making the user

vulnerable to passive information leak attacks; and therefore,

the anonymity in the path construction can be compromised.

Cashmere

Cashmere [83] is a recursive DHT based network overlay on

top of Pastry DHT. It uses mix relay groups over single node

mixes to improve system reliability. A node has k-bit signed

nodeID. The nodes are divided in groups with m-bit IDs,

where k is equal or greater than m. The groupID serves as a

prefix of the nodes. A node participates in a group if the ID

of the group is a prefix of its ID. Every group has assigned

public/private keys and the group members receive them.

The nodes obtain also the public keys from the other groups.

Messages in the overlay are routed using group-IDs. The

first found node that has this group-ID as a prefix is

responsible for forwarding the message to all other members

in this group. The forwarding of messages is done through n

groups. The sender encrypts separately the path and the

message in layers using the public keys of the groups. Thus

the same path can be used multiple times. A group in the

path decrypts the path message with its private key and finds

out the next group in the path and the symmetric key to

decrypt the outer layer of the message.

Cashmere uses end-to-end acknowledgments to detect

failures and malicious nodes: if the source receives no

acknowledgments, it can use timeouts to guide

retransmission. Return messages are sent by including an

encrypted return path, along with the symmetric keys

necessary to encrypt the responder’s payload, in the

initiator’s first payload [73].

 Borisov et al [6] analysed Cashmere by using a passive

adversary and dishonest nodes to observe the system

behaviour and to measure its anonymity. It was witnessed

how even in this unwished scenario, if at least one honest

node acts as the relays group root for every relay until the

destination, the connection remains reliable. However, since

any node in the group can decrypt the current layer of the

message, the connection can be insecure in cases where

there is a malicious node in each relay group. Luckily, since

the destination is not revealed in the message, the final node

would also have to be malicious to compromise the sender

anonymity.

 When an adversary controls any of the relay group roots,

it would be in a position to launch a DoS attack, dropping

any connection that goes through them. Because of that, in

order to keep the anonymity either every relay root and the

destination node are honest or the whole path is

compromised. Zhuang et al [83] did not consider DoS a

security concern while designing Cashmere.

 In 2009, Tran et al. [73] tested Cashmere anonymity; they

showed that in a system with 64,000 nodes an adversary that

controls 20% of the nodes can completely compromise 42%

of the circuits, whereas the analysis in [83] suggested that

90% of malicious nodes are required for effective traffic

analysis.

Salsa

Salsa [53] is an anonymous communication system designed

to overcome the scalability problems in traditional mix

systems, and to perform robust and reliable lookups. Salsa is

based on a Chord-like DHT that maps nodes to a point in a

spaceID corresponding to the hash of their IP address. This

spaceID is divided into groups following a binary tree

structure where each node knows the rest of the nodes in its

group -local contacts- and some random nodes in different

groups -global contacts-. Salsa’s design was made to resist

attacks on its DHT functionality by using verifiable IDs,

bounds checking and redundant lookup.

 In the lookup process, the initiator must reach its global

contact in the sub-tree as the destination ID to continue the

lookup. The lookup proceeds in a recursive manner until the

destination identifier is in the same subgroup as the

intermediate requesting node; if so, this node returns the IP

address and public key of the closest node to the target ID.

 The Salsa binary tree architecture is designed to ensure

that redundant paths have very few common nodes between

them, and therefore not becoming a target for attackers. In

this redundant lookup, the initiator uses some local contacts

to execute lookups for a random key. Then when the closest

value to the key was returned, a bound checking is

performed. If the bound check fails, the key is rejected and

the process to find a new random key will be repeated.

 Salsa, aiming to keep robust against attacks, has

incorporated circuit-building into the redundant lookups. In

this way, the process will start with the initiator choosing r

random IDs and redundantly looking up the corresponding

nodes. Each of the first set of nodes will launch a simple

lookup for r nodes. Finally, a circuit is built to each of the

nodes in the second group through one of the nodes in the

first group. The same simple lookup process is repeated for

the second set of nodes for a final node that will be added to

the circuit.

 Nambiar and Wright [53] introduced an attack against

Salsa that proves how the system will be compromised if

there is at least one malicious node in each stage of the

tunnel or even if the first and the last forwarding nodes are

compromised.

 Mittal [48] analysed the security of Salsa. The results to

his tests show that Salsa is robust to node churn and to a

number of messages due to lookups. The use of bounds

checking decrease the lookup failure a 85%, where this

mechanism is able to eliminate a large percentage of biased

results – only a 1.3% of malicious results are capable of

fooling the bound checking procedure.

 In [6][73], it is clear that the redundancy in Salsa's path

building mechanism functions well against active attacks but

it provides more opportunities for passive attacks. What is

more, Salsa starts losing privacy in scenarios where the

fraction of the malicious nodes reaches the value 0.12 (f >

0.12). Borisov et al. [49] conclude that a DoS attack in Salsa

reduces the anonymity considerably because only fully

honest or fully compromised paths will survive. |Also it has

been showed in [49][73] that Salsa does not perform

anonymous lookups and can compromise the anonymity of

its users.

ShadowWalker

ShadowWalker [50] is an anonymous communication

system based on a random walk over redundant structured

topologies. The authors introduce shadows nodes whose

tasks are: to verify if the routing table from a given node is

correct and certify it as correct. It tries to avoid information

leaks [51] by using these certificates to check the different

stages of a random walk. These walks are always performed

over a secure Chord-like. Shadows are the neighbour nodes

that vouch for responses to lookups and try to stop

adversaries from obtaining them. They provide digital

signatures on routing tables whose task is to perform random

walks and maintain DHT routing.

 A node’s shadows are chosen verifiably at random,

making it unlikely that an attacker controls a node and all its

shadows; a mechanism for preventing Sybil attacks [23] is

assumed. As with the DHT, each node must periodically run

a stabilisation protocol to find its correct neighbours; the

addition of shadow nodes makes this more expensive.

 ShadowWalker uses a secure lookup protocol specially

designed for redundant structured topologies. This process

starts when a node n want to find an identifier ID. Then,

being m the closest node to the ID in the finger table, n will

query m for its finger p, which is the closest preceding node

for ID. Now, n knows all the shadows of m so it is able to

check that the information is correct. This process will be

repeated iteratively until ID is found. As long as one of m

shadows is honest, n will learn the true identity of p. The

lookup will be successful if at least there is one honest node

in each step of the lookup. This secure lookup is based on

the assumption that adversaries will never obtain a corrupted

neighbourhood.

 In Singh et al’s eclipse attack [67], the attacker poisons

the routing tables by returning dishonest instead of the

honest ones as a reply to the lookup query. This attack

would affect ShadowWalker because each step of the lookup

depends on the previous step to provide the correct shadows

for the node currently being queried.

 A single intermediate node cannot launch a route capture

attacks because its info is verified by the shadows. However,

if these nodes and all its shadows are compromised, they can

launch this attack by returning colluding malicious nodes as

next hops or by modifying the public keys of the remaining

nodes to emulate them. This means that if an intermediary

node and its shadows are dishonest, the remaining nodes in

the circuit are also dishonest. In case of the first node and its

shadows are malicious, the initiator’s identity is

compromised. ShadowWalker is also vulnerable to end-to-

end timing analysis, due to if both ends of the circuit are

compromised, the circuit anonymity is broken.

 Schuchard et al. [68] put ShadowWalker through an

Eclipse and Denial of Shadows attack. The eclipse attack in

ShadowWalker permits the adversary to gain control of a

full neighbourhood of the network and thus, corrupting the

shadow mechanism: When a malicious node is asked about

another node in the network, they will provide a false ID and

its corresponding false shadows. Unfortunately, this

mechanism is used as well to build the routing tables in

DHT, and it is determined in [68] that only with 10% of the

nodes compromised, the attack can corrupt up to 90% of the

circuit. The Denial of Shadows attack exploits the number of

signatures that are required for a node to participate in the

circuit construction. A secure lookup is considered

successful when a node provides at least one signature. As

during the random walk nodes must present a full set of

signatures in order to build the circuit, an adversary could

refuse to provide a node with a matching signature to make

it non-viable for circuits. Even though, ShadowWalker uses

symmetry in the shadows (n is shadow of m and m is shadow

of n) to try to beat this attack, the reality is that the solution

is not good enough, making this scheme vulnerable to the

denial of shadows attack.

 NISAN: Network Information Service for

Anonymization Networks

Panchenko et al. [56] introduce a new scheme based on DHT

to deal with the scalability issues in anonymous distributed

systems. It proves that it provides a better redundancy than

other previous mechanisms by introducing NISAN, a system

based on Chord-like DHT which uses the following methods

to restrict the malicious behaviour: Aggregated Greedy

Search, Hiding the Search Value and Bounds Checking in

Finger Tables.

 In a case of nodeIDs uniformly distributed in the

spaceID, the aggregated greedy search starts with an

initiator v generating a random ID x and, per each round,

choosing the closest α nodes to x that it knows, and send the

query to them. The search finishes when after one iteration,

the list of α closest peers
2
 has not changed. The knowledge

is available on each of the different branches of the network.

It has been proven to work well in networks up to 50000

nodes, any higher and it produces an increased redundancy

of considerable proportions. Panchenko et al explain that

NISAN will keep its scalability in a case of malicious

colluding nodes located arbitrarily in the system, although it

will be vulnerable to high attacks rates.

 Another NISAN‘s strong feature is Hiding the Search

Value. In order to gain extra redundancy while executing the

lookup and avoiding spiteful nodes next to the ID, v would

request the entire finger table instead of just the ID x. FTs

contain log2N aggregated entries and the best will be

selected for the next iteration. This process is repeated until

the top of the list or the closest peer is found. It then will

return the result of the search.

 The final step in order to provide an anonymous lookup

is to perform Bounds Checking in the retrieved Finger

Tables to detect if colluding nodes have introduced

malicious nodes in the FT. This process consists of

calculating the mean of the distance between an ID in its FT

and the optimal ID -mean distance-, and multiply this value

with a factor – FT tolerance factor-. This test will be run in

each step of the lookup and only nodes that have passed it

will be considered.

 The results show how NISAN's new methods are strong

against active attacks but the leaks in its lookup lead to a

reduction in the user anonymity and how the lookup path is

more likely to involve a malicious node as it increases its

size.

 In [78], both active and passive attacks are used to

observe NISAN behaviour against them. The analysis

consists of using NISAN lookup to test three different circuit

creation mechanisms in anonymous communications. In

order to analyse the behaviour, the authors consider a partial

adversary who controls a fraction f of all the nodes in the

network, where f will be less than 0.2.

 Wang et al. [78] analysed the use of the NISAN lookup

in three circuit construction mechanisms for anonymous

communication. They demonstrate how the NISAN lookup

leaks information that leads to an important reduction in user

anonymity in all the three strategies. They also tested

NISAN with their own passive attack model, in a network of

10000 nodes with a 20% of colluding nodes. The results

show that this attack is able to reduce the entropy of the

circuit initiator by 2.2 bits, which is close to the ideal

passive attacks whose entropy reduction is 2.6 bits. NISAN

is also weak against a rage estimation attack.

Torsk

McLachlan et al. [46] introduced Torsk, a DHT-based

anonymous communication protocol that uses a combination

of two peer-to-peer mechanisms to avoid attacks to the

integrity and confidentiality of the lookups. It includes an

interesting alternative design for circuit construction by

using what they called secret buddy nodes that serve as

proxies during the lookup. Torsk requires each node to

privately select a number of random buddies from the

network and then a lookup initiator will request one of its

buddies to perform the lookup on its behalf, so that the

attacker cannot associate the final target with the initiator.

Every time a malicious node returns an invalid certificate,

the buddy selection process needs restarting.

 Torsk uses an iterative lookup scheme based on Kademlia

DHT [45] and Myrmic [77]. An initiator who wants to find a

target x, starts the lookup process by selecting the closest t

fingers to x from its Finger Table (FT), and uses them as

starting points for t independent lookup branches. The

initiator keeps a best list of closest fingers to x for each

lookup branch. In each iteration, the t fingers that have not

been contacted are selected from each best list and queried

with x in parallel. Any requested node returns k fingers

closest to x. The parallel lookup process finishes when any

best list is unchanged at the end of one iteration [46].

 Each node in Torsk keeps a certificate issued by a trusted

Central Authority (CA). It includes all its fingers and its

information. In this manner, a querier is able to verify if the

returned node is responsible for the x ID or, on the contrary,

it is a forged node.

 A very specific attack is run against Torsk, it is the buddy

exhaustion attack [56]: an attacker can prevent the circuits

that have honest entry nodes from being extended, they can

do this by exhausting the buddies of the end relays, of these

partial circuits. This attack can ally with a DoS attack to

affect the circuits. The results in [56] show how the

adversary has a good chance to interrupt the buddy selection

process, because when an invalid certificate returns, the

random walk is restarted. Then the adversary can let

malicious nodes get involved in a random walk return to

invalidate a certificate, preventing the querier to find new

buddies.

 In [78], Wang et al also analysed Torsk and determined

that its lookup is vulnerable to both passive and active

attacks. They suggest some changes in the random walk

process for buddy selection in cases where a node returns an

invalid certificate, indicating that Torsk should not start the

process again but instead, just return one hop back and

choose a random finger as the next hop. In addition, if all

fingers in a hop are malicious, the system could return

another hop and repeat the process. This way, an attacker

will not interrupt a random walk and honest nodes can find

honest buddies. Unfortunately, even with this improvement,

Torsk is still vulnerable to the buddy exhaustion attack.

Bifrost

Kondo et al. introduced Bifrost [38], an anonymous

communication system that separates the Node Management

Layer (NML) from the Anonymous Routing Layer (ARL),

combining multiple encryption and node management using

Chord as DHT. The advantage of separating NML from

ARL is that the node management remains independent from

anonymity. Bifrost scheme is comprised of multiple nodes

and a Public Key Server (PKS) that manages the public key

for each node. When a node wants to connects to the system,

it follows a participation procedure and registers its public

key in the PKS.

 The NML layer manages all nodeIDs using Chord. It

also uses its algorithm. In Bifrost, nodes only keep the IP

address of their successor and predecessor. On the other

hand, the ARL layer, as mentioned before, uses multiple

encrypted messages. To avoid traffic analysis attacks, the

final receiver is located half way on the route. Also the relay

nodes are chosen by the initiator, basing its choice in their

number and round trip time. This layer uses three types of

messages: construction, data and control. The relay nodes

and the final receiver memorize the connection information

on each anonymous route.

 When a node secedes, NML assigns automatically a

backup node (BN). The BN, which is a successor of the

seceded node, will need a private key and common keys

owned by it to reconstruct the route but because it does not

have keys owned by the seceding node. The new relay node

then begins to entrust its own keys to a successor and a next-

successor immediately, being capable of restoring the

anonymous path independently to ARL.

 Bifrost presents three features that are: A source that can

locate an arbitrary destination position in an anonymous

communication channel, different routes from and to a

destination; and a receiving area (RA) to reduce the

processing time of message encryption and searching for a

next node. This RA is a subspace of a spaceID that contains

consecutive Chord IDs. The first node of a RA receives a

message, which is repeatedly relayed to successors by nodes

in the RA until the message reaches the RA’s end node.

Finally, the end node sends the message to the first node of

the next RA. A source can arbitrarily set the number of

receiver areas and a beginning and ending nodes form them.

 Kondo et al. [38] determined that conspiracy attacks can

deduct the sender and the final receiver by sharing

information by considering two or more nodes. They also

analysed how final terminal nodes of a RA affects to its

security and anonymity: If the final terminal node of a RA

and a node are honest, the attacker will not be able to trace

the relationship between RAs, not being able to learn the

entire route, sender or final receiver. If, on the contrary, a

final terminal node of a RA is malicious, this node will be

able determine the connections between this RA and the next

RA, due to its capability of decoding the message and

detecting that they are the same before and after decoding

the message. Finally, if all terminal nodes of RAs conspire,

an attacker will be able to learn all RAs. However, they will

not be able to discover the final receiver because the final

receiver and the sender have disappeared somewhere on an

anonymous route.

 The downside of the performance is that generates delay

due to some nodes relay a message. The results show how

the processing cost of a terminal node of a RA is larger than

the cost of a general relay node due to the big increase at the

decoding processing time. Hence, when the number of RAs

increase, the communication delay increases more than if the

number of relays were increased instead. Unfortunately,

Bifrost has not been tested on Internet yet.

 Octopus

Wang et al. [79] introduce a novel, anonymous and secure

DHT lookup mechanism, which provides guarantees for

both security and anonymity. Its strong point is a novel

attacker identification mechanism used to discover and

remove malicious nodes.

 Octopus uses three techniques to achieve its security and

anonymity goals. These are: Anonymous path construction

while hiding their initiator –acquiring the whole finger table,

splitting the individual queries and introducing some dummy

ones to disguise the lookup target, and using secret security

checks to find and remove malicious nodes.

 It uses two mechanisms to secure the random walk: First,

bound checking like NISAN [56] is used, and the second one

identifies malicious nodes that manipulate finger tables (FT)

and remove them from the network. A combination of them

provides strong security and keeps the scalability.

 Also, to avoid the range estimation attack [], Octopus

introduced two features which aim to preserve the lookup

anonymity. They are: Multiple anonymous paths in the

lookup and add dummy queries in the lookup to blur the

adversary’s observation.

 Against finger table manipulation, Octopus introduces a

novel security mechanism called secret neighbour

surveillance, that allows nodes to monitor the possible

manipulation in their successor lists by a malicious node. In

order to do so, each node maintains a predecessor and a

successor list, both with the same size, so that a node n is

contained in the successor list of any predecessors. After a

short period of time, n sends randomly an anonymous

lookup query to a random predecessor p through an

anonymous path and check if it is included in the returned

successor list. Because of p cannot see the source of the

query, it cannot distinguish the testing query from the real

look up queries and therefore, if p tries to bias lookup, n will

detect it and report it to the CA. Then each routing table

needs to be signed and attached a time stamp by its owner.

An alternative method would be to to get the successor lists

signed by their owner and keeps a queue of latest received

successor lists in each node as proof, to verify that the

successor list is not intentionally manipulated.

 Wang et al [79] ran some tests over Octopus in order to

evaluate its performance. The results show a success in the

detection of malicious nodes. It also manages to preserve

privacy in networks with 20% of malicious nodes, only

leaking 0.57 bits of initiator information and 0.82 of target

information. They also analysed some security issues and

proved that Octopus is robust against end-to-end timing

analysis attack only leaking less than a 5% of information

where the network contains a 20% of malicious nodes; that a

Selective DoS attack can be constrained by identifying

malicious droppers; and that it is totally resistant to a relay

exhaustion attack. This scheme is very recent and because of

this there is not much information about it. Results are

promising and the scheme presents novel mechanisms to

deal with attacks that are effective in DHT lookups.

5. SYSTEMS COMPARISON

After having studied all these different systems, some of the

schemes have proved to be stronger than others not only in

the lookup mechanism but also in how they keep their

anonymity. An analysis of some characteristic present in the

lookup/search mechanisms previously studied will be

analysed below:

A. Scalability

 The first aspect that comes in mind is how peer-to-peer

anonymity systems are more scalable than the centralized

ones. This is not a surprise, since it was a known problem.

However, as a ray of hope, PIR-Tor [52], a client-server

structure is capable of achieving a promising scalability

while keeping it robustness. Yet any P2P system will be able

to provide the same degree of scalability.

B. Censorship-resistance:

The systems for censorship-resistance need to provide

censorship at storage level. Their task is to keep the contents

within a node free from undesirable presences. If these

mechanisms detect a malicious presence, block their content

so it cannot be deleted or modified by attackers. While Free

Haven [21] uses pseudonyms to hide the servers and onion

routing, Freenet [13] provides anonymity by using

probabilistic routing. Endsuleit and Mie [26] presented

promising results by using Castro et al’s secure lookup,

however, there have not been any recent improvements and

it seems is not being in use. On the other hand, Achord [33]

that uses Chord lookup, is scalable and able to keep the user

anonymity, nevertheless, it is subject to correlation attacks.

 C. Unobservability

In this paper we have only found two systems capable to

achieve unobservability in the communication. They are p5

[69] and Herbivore [29]. While p5 utilises broadcast

hierarchy as a binary tree and a noise mechanisms to cover

the traffic, Hervibore routes messages between cliques over

a structured overlay and computational puzzles to prevent

nodes from joining arbitrary cliques. P
5
 trades-off anonymity

for communication efficiency, this way it can offer different

levels of anonymity depending on the environment.

Hervibore, on the other hand uses 128-bit keys in each

clique which increases the chances that a dishonest node

appears in any given clique, giving an adversary the chance

to launch a DoS or Sybil attack.

D. Security

The security in the lookups/searching mechanisms is the

main aspect to take into account when designing a new

scheme. The amount of different attacks in the literature

makes it almost impossible for a system to be strong against

them all. Dos and timing attacks are the ones that our

systems struggle from more. While most of the designs in

P2P-based topologies do not include any defence

mechanism against Sybil, instead, they expect an external

mechanism to deal with it.

E. Anonymity

After studying all these anonymity systems, it can be easily

seen that all the newer designs are focused in creating secure

and anonymous random path creation and anonymous

random lookup P2P. The reason to this concentration could

be due to the fact that these systems are more scalable than

centralized schemes, and therefore there would be more

room for larger anonymity sets, allowing nodes and users to

“hide”. On the other hand, the larger the system, the higher

the churn will be, so systems will have to introduce strong

mechanisms to deal with this issue.

 Several techniques have been presented for preserving

anonymity. Freenet [13] protects the communication

channel, instead of anonymize it. Onion routing [30] and Tor

[22] use a recursive layer data structure –onion- where each

layer is encrypted with the public key of the nodes it was

routed through. This way, the secrecy of the path is

preserved. PIR-Tor [52] has improved Tor by introducing

Private Information Retrieval (PIR) to its design. Also, it is

able to obtain random relays both securely and anonymously

regardless of the fraction of compromised nodes in the

network. Tarzan [27] uses layered encryption and multi-hop

routing. While Crowds [61] hides nodes in groups and they

are controlled by a trusted server that knows all nodes in its

group set. Agyaat [66] introduce clouds as a way to hide the

nodes identity and does not use a CA. p
5

[69] architecture is

prepared to trade efficiency and anonymity degree.

 Mittal and Borisov [49] studied AP3 [47] and Salsa [53]

and found that both had significant leaks in the lookups that

compromise the route-selection security by an adversary

composed of a much smaller fraction of the total network

than had previously been thought..

 Some of the newer mechanisms are NISAN [56] and

Torsk [46]. NISAN uses redundancy to improve security and

aggregates greedy search to reduce information leakage. It

also retrieved the entire finger table to protect the anonymity

of the lookup targets. However, it can only offer very

limited anonymity protection because a passive adversary is

still able to analyse the locations of the queries. In [79], it

shows that NISAN does not preserve the initiator

anonymity. The same problem is found in Torsk [46], a

range estimation attack easily obtains information about the

lookup targets.

 Wang et al. [79] presents Octopus, a really new

anonymous and secure DHT lookup which introduces a

mechanism to find and remove malicious nodes from the

system. It is also resistant to many different attacks.

Out of all of these proposals, PIR-Tor, NISAN and Octopus

are the most outstanding. The three of them are interesting

schemes that have improved previous work by adding strong

mechanisms to preserve security and privacy. Even though

they still have goals to achieve.

6. CONCLUSIONS

This paper has analysed both centralized and peer-to-peer

anonymous systems and they have been categorized by their

architecture, client-server and peer-to-peer. Also, a study

over the degree of anonymity of the system or scheme was

completed, where the systems were grouped by their

characteristics according to if they were low-latency,

unobservable or censorship resistance. Also, a deeper

analysis on the peer-to-peer communications was provided,

where the systems were sectioned in scalable, secure,

random path-based and random lookup-based.

 After this study, it can be said that P2P architectures

provide a better degree of anonymity than traditional ones.

However, they leak much more due to the redundant lookup.

They both have serious issues against global attackers, but

also with timing attacks, DoS and Sybil attacks. In order to

provide a secure and anonymous design, there are still too

many issues to solve. Although newer schemes are working

in the right direction, one step at a time.

7. REFERENCES

[1] ANDROUTSELLIS-THEOTOKIS, S. AND

SPINELLIS, D. 2004. A survey of peer-to-peer

content distribution technologies. ACM Comput.

Surv., vol. 36, no. 4, pp. 335–371, 2004.

[2] BACKES, M., GOLDBERG, I., KATE, A., AND TOFT,

T. 2011. Adding query privacy to robust DHTs. Tech.

rep., arXiv:1107.1072v1 [cs.CR], July 2011.

[3] BAUER, K., MCCOY, D., GRUNWALD, D., KOHNO,

T., and SICKER, D. 2007. Low-resource routing

attacks against anonymous systems. Technical Report

CU-CS-1025-07, University of Colorado at Boulder.

[4] BAUMGART, I. AND MIES, S. 2007. S/Kademlia: A

Practicable Approach Towards Secure Key-Based

Routing. In Proc. 13th International Conference on

Parallel and Distributed Systems (Hsinchu, Taiwan).

IEEE [51]Computer Society Press, Los Alamitos,

CA., 2:1–8.

[5] BORISOV, N. 2005. Anonymous routing in structured

peer-to-peer overlays. Doctoral Dissertation.

University of California, Berkeley, CA.

[6] BORISOV, N., DANEZIS, G., MITTAL, P. AND

TABRIZ, P. 2007. Denial of service or denial of

security? How attacks on reliability can compromise

anonymity. In ACM Conference on Computer and

Communications Security, Oct. 2007

[7] CASTRO, M., DRUSCHEL, P., HU, Y.C., AND

ROWSTRON, A. 2002. Exploiting network proximity

in distributed hash tables. In International Workshop

on Future Directions in Distributed Computing

(FuDiCo) (June 2002), O. BABAOGLU, K.

BIRMAN, AND K. MARZULLO, Eds., 52-55.

[8] CASTRO, M., DRUSCHEL, P., GANESH, A.,

ROWSTRON, A. AND WALLACH, D.S. 2002.

Secure Routing for structured peer-to-peer overlay

networks. In OSDI, December 2002.

[9] CHAUM, D.L. Untraceable electronic mail, return

addresses and digital pseudonyms.Communications of

the ACM, 84-88. 1981.

[11] CHOLEZ, T., CHRISMENT, I., AND FESTOR, O.

2010. Efficient DHT attack mitigation through peers’

ID distribution. In HotP2P 2010.

[12] CHONOV, H. Exploiting Anonymity in P2P-based

Systems. 2011. Seminar P2P im Wintersemester 2010.

[13] CLARKE, I., SANDBERG, O., WILEY, B., AND

HONG, T. W. Freenet: A distributed anonymous

information storage and retrieval system. In

Proceedings of the ICSI Workshop on Design Issues

in Anonymity and Unobservability (Berkeley,

California, June 2000).

[14] CONDIE, T., KACHOLIA, V.,SANKARARAMAN,

S.,HELLERSTEIN, J. AND MANIATIS, P. Induced

churn as shelter from routingtable poisoning. In Proc.

13th Annual Network and Distributed System Security

Symposium (NDSS), 2006.

[15] DAI, W. 1998. Pipenet 1.0. Post to Cypherpunks

mailing list.

[16] DANEZIS, G. AND CLAYTON, R. Route

Fingerprinting in Anonymous Communications.

Proceedings of the Sixth

IEEE International Conference on Peer-to-Peer

Computing, pages 69–72, 2006.

[17] DANEZIS, G., DIAZ, C., KASPER, E. AND

TRONCOSO, C. The wisdom of Crowds: Attacks and

optimal constructions. In Proceedings of the 14th

European Symposium on Computer Security

(ESORICS 2009), St Malo, France, volume 5789 of

Lecture Notes in Computer Science, pages 406–423,

September 2009.

[18] DANEZIS, G., LESNIEWSKI-LAAS, C.,

KAASHOEK, M.F. AND ANDERSON, R. 2005.

Sybil-Resistant DHT Routing. In European

Symposium On Research In Computer Security, 2005.

[19] DATTA, A., GIRDZIJAUSKAS, S. AND ABERER, K.

On de Bruijn routing in distributed hash tables: there

and back again, Proc. Fourth IEEE Int'l Conf. on Peer-

to-Peer Computing, , 25-27 August 2004.

[20] DE BRUIJN, N. A combinatorial problem. In Proc.

Koninklijke Nederlandse Akademie van

Wetenschappen (1946), vol.49, pp.758–764. 1946.

[21] DINGLEDINE, R., FREEDMAN, M. J. AND

MOLNAR, D. 2000. The Free Haven project:

Distributed anonymous storage service. In Proc.

Workshop on Design Issues in Anonymity and

Unobservability, Berkeley, CA, July 2000.

[22] DINGLEDINE, R., MATHEWSON, N. AND

SYVERSON, P. 2004. Tor: The second-generation

onion router. In Proceedings of the 13th USENIX

Security Symposium, August 2004.

[23] DOUCEUR, J. 2002. The Sybil attack. In First IPTPS,

March 2002.

[24] EDMAN, M. AND YENER, B. 2009. On anonymity in

an electronic society: A survey of anonymous

communication systems. ACM Computing Surveys

(CSUR), Volume 42 Issue 1, 35 Pages, December

2009.

[25] EL-ANSARY, S.AND HARIDI, S. 2005. An Overview

of structured P2P Overlay Networks. In: Theoretical

and Algorithmic Aspects of Sensor, Ad Hoc Wireless

and Peer-to-Peer Networks, CRC Press, 2005.

[26] ENDSULEIT, R. AND MIE, T. 2006. Censorship-

Resistant and Anonymous P2P Filesharing. In Int.

Conf. on Availability, Reliability and Security

(ARES), Vienna, Austria, April 2006.

[27] FREEDMAN, M.J. AND MORRIS, R. 2002. Tarzan: A

peer-to-peer anonymizing network layer. In 9th ACM

Conference on Computer and Communications

Security (CCS 2002), Washington, DC, November

2002

[28] GHEORGHE, G., LO CIGNO, R. AND

MONTRESOR, A. 2010. Security and privacy issues

in P2P streaming systems: A survey. Peer-to-Peer

Networking and Applications (on-line 23 April 2010),

Springer.

[29] GOEL, S., ROBSON, M., POLTE, M. AND SIRER,

E.G.2003. Herbivore: A scalable and efficient

protocol for anonymous communication. Technical

Report TR2003-1890, Cornell University Computing

and Information Science, February 2003.

[30] GOLDSCHLAG, D., REED, M. AND SYVERSON, P.

1999. Onion routing for anonymous and private

Internet connections. Communications of the ACM

42(2). 39-41.

[31] LIU, Y., HAN, J., AND WANG, J. Rumor Riding:

Anonymizing unstructured peer-to-peer systems.

IEEE Transactions on Parallel and Distributed

Systems. Volume 22, Issue 3. Pages 464-475. March

2011.

[32] Harvey, N. J. A., Jones, M. B., Saroiu, S., Theimer, M.,

and Wolman, A. Skipnet: A scalable overlay network

with practical locality properties. In Proceedings of

the 4th USENIX Symposium on Internet Technologies

and Systems -Seattle, WA.2003.

[33] HAZEL, S. AND WILEY, B. Achord: A Variant of the

Chord Lookup Service for Use in Censorship

Resistant Peer-to-Peer Publishing Systems. In

Proceedings of the First Workshop on Peer-to-Peer

Systems, Cambridge, MA, 2002.

[34] HOPPER, N., VASSERMAN, E. Y., AND CHAN-

TIN, E. 2007. How much anonymity does network

latency leak? In Proceedings of CCS. 2007.

[35] KAASHOEK, F. AND KARGER, D. Koorde: A

Simple Degree-Optimal Hash Table. Proc. 2nd Int’l.

Wksp. Peer-to- Peer Systems (IPTPS’03), Berkeley,

CA, USA, Feb. 20–21, 2003.

[36] KAPADIA, A. AND TRIANDOPOULOS, N. 2008.

Halo: High-assurance locate for distributed hash

tables. In C. Cowan and G. Vigna, editors, Network

and Distributed System Security Symposium, pages

61–79, Feb. 2008.

[37] KHAN, S. M., MALLESH, N., NAMBIAR, A. AND

WRIGHT, M. The Dynamics of Salsa: A Robust

Structured P2P System. Network Protocols and

Algorithms, ISSN 1943-3581, Vol. 2, No 4. 2010.

[38] KONDO, M., SAITO, S., ISHIGURO, K., TANAKA,

H. AND MATSUO, H. 2009. Bifrost: A novel

anonymous communication system with DHT. In

Proceedings of PDCAT ’09, 2009, pp. 324–329

[39] KUBIATOWICZ, J., BINDEL, D., CHEN, Y.,

CZERWINSKI, S., EATON, P., GEELS, D.,

GUMMADI, R., RHEA, S., WEATHERSPOON, H.,

WEIMER, W., WELLS, C., AND ZHAO, B.

OceanStore: An architecture for global-scale

persistent storage. In Proceeedings of the Ninth

international Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS 2000) (November 2000) pp. 190–201.

[40] LEVINE, B.N., SHIELDS, C. AND MARGOLIN, N.B.

2006. A survey of solutions to the Sybil attack.

Technical Report 2006-052, Univ. of Massachussets

Amherst, 2006.

[41] LI, J. 2007. A Survey of Peer-to-Peer Network Security

Issues. Retrieved November 29, 2010 from

http://www.cse.wustl.edu/~jain/.

[42] LUA, E.K., CROWCROFT, J., PIAS, M., SHARMA,

R. AND LIM, S. 2005. A survey and comparison of

Peer-to-Peer Overlay network schemes. IEEE

Communications Surveys and Tutorials 7 (2005), 72–

93.

[43] MALKHI, D., NAOR, M., AND RATAJCZAK, D.

Viceroy: A scalable and dynamic emulation of the

butterfly. In Proceedings of ACM Principles of

Distributed Computing (PODC) Monterey, CA (July

2002).

[44] MANILS, P., CHAABANE, A., BLOND S.L.,

KAAFAR, M.A., CASTELLUCCIA, C., LEGOUT,

A. AND DABBOUS, W. 2010. Compromising Tor

Anonymity Exploiting P2P Information Leakage.

Technical report, INRIA, 2010.

[45] MAYMOUNKOV, P. AND MAZIERES, D. 2002.

Kademlia: A peer-to-peer information system based

on the xor metric. In Proceedings of IPTPS02,

Cambridge, USA, Mar. 2002.

[46] MCLACHLAN, J., TRAN, A., HOPPER, N. AND

KIM, Y. 2009. Scalable onion routing with Torsk.

ACM CCS, November 2009.

[47] MISLOVE, A., OBEROI, G., POST, A., REIS, C.,

DRUSCHEL, P. AND WALLACH, D.S. 2004. AP3:

Anonymization of Group Communication. In ACM

SIGOPS European Workshop, Sept. 2004

[48] MITALL, P. 2010. A security evaluation of the Salsa

anonymous communication system. Thesis. University

of Illinois at Urbana-Champaign.

[49] MITTAL, P. AND BORISOV, N. 2008. Information

leaks in structured peer-to-peer anonymous

communication systems. In CCS’08: Proceedings of

the 15th ACM conference on Computer and

Communications Security (New York, NY, USA,

2008), ACM, pp. 267–278.

[50] MITTAL, P. AND BORISOV, N. 2009.

Shadowwalker: Peer-to-peer anonymous

communication using redundant structured topologies.

ACM CCS (2009).

[51] MITTAL, P., BORISOV, N., TRONCOSO, C. AND

RIAL, A. 2010. Scalable anonymous communication

with provable security. In 5th USENIX Workshop on

Hot Topics in Security (HotSec 2010), page 7.

USENIX, 2010.

[52] MITTAL, P., OLUMON, F., TRONCOSO, C.,

BORISOV, N. AND GOLDBERG, I. 2011. PIR-Tor:

Scalable anonymous communication using private

information retrieval. In Proceedings of the 20th

USENIX Security Symposium, San Diego, CA,

August 2011.

[53] NAMBIAR, A. AND WRIGHT, M. 2006. Salsa: A

structured approach to large-scale anonymity. ACM

CCS, 2006.

[54] NEEDELS, K. AND KWON, M. Secure Routing in

Peer-to-Peer Distributed Hash Tables[C]//Proc. of

ACM Symposium on Applied Computing. Hawaii,

USA: [s. n.], 2009: 54-58.

[55] O’DONNELL, C. W. AND VAIKUNTANATHAN, V.

Information Leak in the Chord Lookup Protocol. In

P2P ’04: Proceedings of the Fourth International

Conference on Peer-to-Peer Computing, 2004.

[56] PANCHENKO, A., RICHTER, S. AND RACHE, A.

2009. NISAN: Network Information Service for

Anonymization Networks. In Ehab Al-Shaer, Somesh

Jha, and Angelos D. Keromytis, editors, ACM

Conference on Computer and Communications

Security (CCS 2009), pages 141–150. ACM, 2009.

[57] PLAXTON, C.G., RAJARAMAN, R. AND RICHA,

A.W. Accessing nearby copies of replicated objects in

a distributed environment. Theory of Computing

Systems, 32:241–280, 1999.

[58] PUTTASWAMY, K., SALA, A., WILSON, C., AND

ZHAO,B. Protecting anonymity in dynamic peer-to-

peer networks. In IEEE International Conference on

Network Protocols (ICNP) (Oct. 2008), pp. 104–113.

2008.

[59] RABIN, M.O. Efficient dispersal of information for

security, load balancing and fault tolerance. Journal of

the ACM, 36(2): 335-348. 1989.

[60] RATNASAMY, S., FRANCIS, P., HANDLEY, M.,

KARP, R. AND SHENKER, S. 2001. A scalable

content-addressable network. In Proc. ACM

SIGCOMM (San Diego,CA, August 2001), pp. 161–

172.

[61] REICHTER, M., RUBIN, A. 1997. Crowds:

Anonymity for Web Transactions (preliminary

announcement), DIMACS Technical Reports 97-15,

April 1997.

[62] REN, J. AND WU, J. 2010. Survey on Anonymous

Communications in Computer Networks. Comput.

Commun. (2010), Vol. 33, No. 4 pp. 420-431.

[63] RHEA, S., GEELS, D., ROSCOE, T. AND

KUBIATOWICZ, J. Handling churn in a DHT. In

USENIX Annual Tech. Conf., June 2004.

[64] ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry:

Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In Proceedings of the

18th IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware 2001)

(Nov. 2001).

[65] SARMADY, S. 2007. A survey on Peer-to-Peer and

DHT. Grid Lab, School of Computer Science,

University Sains Malaysia, Penang, Malaysia, 2007.

[66] SINGH, A., GEDIK, B. AND LIU, L. 2004. Agyaat:

Providing Mutually Anonymous Services over

Structured P2P Networks. Technical Report GIT-

CERCS-04-12, Georgia Inst. Of Tech. CERCS,

2004.Agyaat: mutual anonymity over structured P2P

networks. Internet Research, 16(2), 189-212.

[67] SINGH, A., CASTRO, M. DRUSCHEL, P. AND

ROWSTRON, A. 2004. Defending against Eclipse

attacks on overlay networks. Proc . SIGOPS European

Wksp., Leuven, Belgium, Sept. 2004.

[68] SCHUCHARD, M., DEAN, A., HEORHIADI, V.,

HOPPER, N. AND KIM, Y. 2010. Balancing the

shadows. ACM WPES, 2010.

[69] SHERWOOD, R., BHATTACHARJEE, B. AND

SRINIVASAN, A. 2002. p5: A protocol for scalable

anonymous communication. In IEEE Symposium on

Security and Privacy, pages 58–70. IEEE CS, 2002.

[70] STOICA, I., MORRIS, R., LIBEN-NOVELL, D.,

KARGER, D., KAASHOEK, M.F., DABEK, F.,

BALAKRISHNAN, H. 2001. Chord: A Scalable Peer-

to-peer Loopup Service for internet applications. In

Proceedings of SIGCOMM 2001, August 2001.

[71] SUNG, L.G.A., AHMED, N., BLANCO, R., LI, H.,

SOLIMAN, M.A. AND HADALLER, D. 2005. A

survey of data management in peer-to-peer systems.

Web Data Management, Winter 2005, pp.1–50 (2005).

[72] SYVERSON, P., TSUDIK, G., REED, M. AND

LANDWEHR C. 2000. Towards an Analysis of Onion

Routing Security. In H. Federrath, editor, Designing

Privacy Enhancing Technologies: Workshop on

Design Issue in Anonymity and Unobservability,

pages 96–114. Springer-Verlag, LNCS 2009, July

2000.

[73] TRAN, A., HOPPER, N. AND KIM, Y. 2009. Hashing

it out in public: Common failure modes of DHT-based

anonymity schemes. In Proc. of WPES, 2009.

[74] URDANETA, G., PIERRE, G. AND STEEN, M.V.

2011. A survey of DHT security techniques.

ACMComputing Surveys (CSUR) , Volume 43 Issue

2, January 2011.

[75] VASSERMAN, E.Y. 2010. Towards freedom of speech

on the Internet: Censorship-resistant communication

and storage. Doctoral dissertation. University of

Minnesota.

[76] WANG, L. 2006. Attacks against Peer-to-peer

Networks and Countermeasures. Technical report,

Helsinki University of Technology, December 2006.

[77] WANG, P., OSIPKOV, I., HOPPER, N. AND KIM, Y.

2007. Myrmic: Secure and Robust DHT Routing.

Tech. rep.,Digital Technology Center, University of

Minnesota at Twin Cities.

[78] WANG, Q., MITTAL, P. AND BORISOV, N. 2010. In

search of an anonymous and secure lookup: attacks on

structured peer-to-peer anonymous communication

systems. E. AL-SHAER, A.D. KEROMYTIS AND V.

SHMATIKOV, editors, ACM Conference on

Computer and Communications Security (CCS 2010),

pages 308-318. ACM, 2010.

[79] WANG, Q. AND BORISOV, N. 2011. Octopus:

Anonymous and secure DHT lookup. CoRR, March

2012.

[80] WESTERMANN, B., PANCHENKO,A. AND

PIMENIDIS, L. A kademlia-based node lookup

system for anonymization networks. In Advances in

Information Security and Assurance: Proceedings of

the Third International Conference on Information

Security and Assurance (ISA 2009), volume 5576 of

LNCS, pages 179–189, Seoul, South Korea, Jun 2009.

Springer.

[81] WRIGHT, M.K., ADLER, M., LEVINE, B.N. AND

SHIELDS, C. 2004. The predecessor attack: An

analysis of a threat to anonymous communications

systems. ACM Trans. Inf. Syst. Secur., 7(4):489–522,

2004.

[82] ZHAO, B., KUBIATOWICZ, J.AND JOSEPH,

A.“Tapestry: An infrastructure for fault-tolerant wide-

area location and routing,” Comput. Sci. Div., Univ.

California, Berkeley, Tech. Rep. UCB/CSD-01-1141,

2001.

[83] ZHUANG, L., ZHOU, F., ZHAO, B.Y. AND

ROWSTRON, A. 2005. Cashmere: resilient

anonymous routing. In NSDI’05: Proceedings of the

2nd conference on Symposium on Networked Systems

Design & Implementation (Berkeley, CA, USA,

2005), USENIX Association, pp. 301–314.

