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Health effects of shrinking 
hyper‑saline lakes: spatiotemporal 
modeling of the Lake Urmia 
drought on the local population, 
case study of the Shabestar County
Bakhtiar Feizizadeh 1,2, Tobia Lakes 2,3*, Davoud Omarzadeh 4 & Samira Pourmoradian 5

Climate change and its respective environmental impacts, such as dying lakes, is widely 
acknowledged. Studies on the impact of shrinking hyper-saline lakes suggest severe negative 
consequences for the health of the affected population. The primary aim was to investigate the 
relationship between changes in the water level of the hyper-saline Lake Urmia, along with the 
associated salt release, and the prevalence of hypertension and the general state of health of the local 
population in Shabestar County north of the lake. Moreover, we sought to map the vulnerability of the 
local population to the health risks associated with salt-dust scatter using multiple environmental and 
demographic characteristics. We applied a spatiotemporal analysis of the environmental parameters 
of Lake Urmia and the health of the local population. We analyzed health survey data from local health 
care centers and a national STEPS study in Shabestar County, Iran. We used a time-series of remote 
sensing images to monitor the trend of occurrence and extent of salt-dust storms between 2012 and 
2020. To evaluate the impacts of lake drought on the health of the residences, we investigated the 
spatiotemporal correlation of the lake drought and the state of health of local residents. We applied 
a GIScience multiple decision analysis to identify areas affected by salt-dust particles and related 
these to the health status of the residents. According to our results, the lake drought has significantly 
contributed to the increasing cases of hypertension in local patients. The number of hypertensive 
patients has increased from 2.09% in 2012 to 19.5% in 2019 before decreasing slightly to 16.05% in 
2020. Detailed results showed that adults, and particularly females, were affected most by the effects 
of the salt-dust scatter in the residential areas close to the lake. The results of this study provide 
critical insights into the environmental impacts of the Lake Urmia drought on the human health of the 
residents. Based on the results we suggest that detailed socioeconomic studies might be required for 
a comprehensive analysis of the human health issues in this area. Nonetheless, the proposed methods 
can be applied to monitor the environmental impacts of climate change on human health.

The significance of healthcare is undeniable. The prevalence of communicable and non-communicable diseases is 
rooted in various and sometimes invisible patterns of environmental phenomena. Some diseases, such as hyper-
tension, can be caused by environmental phenomena such as the release of salt-dust scatter or air pollution1. Envi-
ronmental risks have been shown to significantly impact human health, either directly, by exposing individuals to 
toxic agents, or indirectly, by affecting life-sustaining ecosystems2. According to the World Health Organization3, 
the environmental risk of air pollution is one of the leading universal public health issues and is responsible for 
about 9 million deaths per year. ​Environmental effects contribute to about 25% of diseases worldwide4. Envi-
ronmental risks can take many forms. In recent decades, the environmental challenges associated with climate 
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change, such as drought, deforestation, and desert extension, are increasingly widespread and severe and have 
significantly impacted the ecology of most of the lakes around the world.

Drought is one of the most tangible impacts of climate change. It leads to global environmental challenges 
such as water scarcity, decreased food production, and the drying of large lakes. Large lakes are significant 
freshwater sources that now face critical consequences due to climate change and associated phenomena5. Some 
noteworthy examples include Lake Urmia, Lake Chad, the Sea of Galilee, and Aral6. Salt-dust scattering occurs in 
areas where saline lakes are drying up and this can have severe negative impacts on the health of the residents in 
the area7. Salt-dust scatters are a type of atmospheric phenomenon linked to various environmental and climate 
impacts8. Dust scatters, which generally affect semi-arid and arid environments, are generated by thunderstorms 
or significant air pressure gradients that increase the wind speed across a large area9.

Salt-dust scatters have been occurring more frequently in temperate regions in recent years as a result of the 
effects of climate change, such as growing air pressure differences between the polar and tropic zones or pro-
longed drought periods10,11. From the centers of salt diffusion, salt-dust is scattered to the surrounding environ-
ment, including residential areas, causing significant air pollution. Particulate matter (PM), particles of variable 
but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular 
diseases, reproductive and central nervous system dysfunctions, and cancer1. Therefore, the survey and monitor-
ing of environmental phenomena that may endanger the health of the community should be prioritized.

In this context, earlier studies emphasized the determinative role of the environment on human health4,7–9,12, 
with many studies emphasizing the relationship between environmental changes and human health3. In a fragile 
ecosystem, such as that of a dying lake, the manifestation of various diseases can be expected13,14. These diseases 
can include tuberculosis, respiratory diseases, hypertension, asthma, eye diseases, pharynx and larynx diseases, 
kidney and liver diseases, hepatitis, and many more13. Exposure to air pollution causes various acute and severe 
health effects, such as respiratory and cardiovascular diseases15. As confirmed by earlier studies, air pollution 
and dusts scatters lead to tangible environmental issues associated with hypertension and a decline in general 
health of the affected population1,16–19. In addition, heavy metals, bacteria, viruses, and dangerous minerals may 
be carried by salt-dust scatters and inhaled by individuals, causing health problems8.

It is widely acknowledged that human health can be impacted by environmental factors, some of which 
can be catastrophic. Therefore, developing appropriate mitigation plans based on health vulnerability and risk 
assessments is critical to minimize the environmental impacts on human health20. In this context, vulnerability 
is an all-pervasive phenomenon in healthcare21. Geospatial health vulnerability mapping enables us to define and 
quantify vulnerability in geographic space and thus identify areas most in need of intervention22. Geographic 
Information System (GIS)-based spatial analysis allows us to model the spatial distribution of salt-dust scatters 
and their effects on human health. Due to the technological advancements over the past decade, the implemen-
tation of GIS spatial analysis for human health modeling and assessment has increased markedly. GIS spatial 
analysis aims to support the treatment of health problems in various geographic areas4,7. The ability of GIS to 
complement a range of different information sources associated with people and their locations also makes them 
particularly beneficial to human health specialists23. As GIS techniques support health planning, mapping of the 
environmental hazard, management of produced data, and spatial identification of human health vulnerability 
and risks, governments and organizations can effortlessly recognize the distribution and spread of disease across 
areas, and thus optimize the planning of intervention measures and monitor their effectiveness24,25.

Lake Urmia, one of the world’s largest dying lakes, has been facing the impacts of climate change for decades. 
Due to its hyper-salinity, it is expected to significantly impact its surrounding ecosystems. The salinity of the mar-
ginal lake, the increase in total salinity, the reduction of conventional agriculture, and salt-dust scatter are critical 
aspects of the dying lake14. Therefore, this research about the health of the local population in Shabestar County 
in relation to the dying lake Urmia has to main objectives: (1) To identify the relationship between changes in 
the water level of the hyper-saline Lake Urmia and associated salt release with the prevalence of hypertension in 
the local population. (2) To assess and map the risk of salt dust effects on human health.

Study area
The study area, Shabestar County, with an area of 2631.45 km2, lies north of Lake Urmia in Iran. The county 
borders Mishow Mountain to the north and Lake Urmia to the south. The elevation increases from 1286 m at 
the lake bed to 3126 m in the Mishow mountain range (Fig. 1). The study area experience a semi-arid climate, 
with a maximum temperature about 40○C in summer is and minimum temperature of -18○ C in winter. The 
annual average rainfall is around 350 mm26. According to the 2016 census, the population of this county is 
135,421 people. In recent years, changes in the water level of Lake Urmia have caused salt release centers in the 
southern and southwestern areas of Shabestar County. The Lake Urmia drought has led to dry soil, deforesta-
tion, an increase in airborne dust, and the dispersion of allergens, which potentially compromise respiratory and 
circulatory health27. Early studies for analyzing the lake drouth and its respective environmental issues pointed 
out the integrated impacts of intensive anthrophonic factors and climate change for lake drouth. In this regard, 
agricultural extension particularly with high water demand crops such as onion, tomato, water melon and etc., 
dam construction, and water diversions/withdrawals as reported as major anthrophonic factors contributed to 
the lake drought. The climate change impacts by means of increasing a temperature and drouth has also con-
tributed over the past decades26–30. Figure 2a shows timeseries annual temperature and precipitation trends in 
lake Urmia basin. As this figure shows the annul precipitation has reduced since 1990 while the annual average 
temperature slightly increased. The impacts of anthrophonic factors and climate change for water level change 
and surface area of the lake is also represented in Fig. 2bc which clearly indicated an intensive exposed saline 
flow threating the ecosystems of area significantly.
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Figure 1.   Location of the study area north of Lake Urmia (a), and several examples of salt-dust sources around 
the lake (b). The map is created in ESRI- Arc GIS version 10.7 under licenses of Humboldt-Universität zu Berlin 
(https://​deskt​op.​arcgis.​com/).

Figure 2.   Trend of average annual precipitation and temperature, and the changes in surface area of Lake 
Urmia between 1990 and 2020. The map is created in ESRI- Arc GIS version 10.7 under licenses of Humboldt-
Universität zu Berlin (https://​deskt​op.​arcgis.​com/).

https://desktop.arcgis.com/
https://desktop.arcgis.com/
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Earlier studies also confirmed that drought leads to airborne salt-dust scatter7,14,31–33. When the saline flow 
sources around the lake are activated during monsoon season, they emit a wave of salt-dust into the air that 
can reach the neighboring cities34. The atmospheric aerosol is a complex and dynamic combination of solid and 
liquid particles affected by natural phenomena and human activities35. Due to the decrease in precipitation in 
recent years, the use of water for agriculture, construction of hydraulic structures and etc., surface area of the 
lake has been decreased. The predominant wind direction in Shabestar is westward. Considering the extensive 
exposed salt lands resulting from the lake drought and the direction of the wind, the coastal and even inland 
areas of Shabestar are in serious danger of salt intrusion27. There is a direct relationship between the scatter of 
salt particles in the air and the drying lake. The airborne particles are associated with serious illnesses36, as they 
can make their way into the airways and quickly reach the bloodstream. Aside from causing many diseases, salt 
release has also led to soil salinity, drying up the orchards in these areas (Fig. 1) and polluting the groundwater 
with heavy metals. According to some studies, the county’s groundwater has reached contaminant concentrations 
exceeding WHO standards for drinking water37–39.

Dataset and methods
Data acquisition.  We employed multi-temporal earth observation satellite imagery to detect and monitor 
the saline flow sources resulting from the Lake Urmia drought. The Spatial Data Infrastructure (SDI) project of 
the East Azerbaijan Province provided climatology, topography, and demography datasets of the study area at 
the scale of 1:25,000 (Table 1). To monitor the impacts of the drought on the public health of the study area, we 
consulted time-series health observation data from Shabestar Health Center and NIFHR40. We received several 
health indicators from the Health Center of Shabestar County, which we used to identify a trend of hypertension 
linked to the Lake Urmia drought. The details of data acquisition using the employed multi criteria approach are 
outlined in the following sections.

Health data and hypertension status.  To assess the lake drought and impacts of salt-dust scatters on 
the prevalence of hypertension in local residents, we employed time-series secondary health monitoring data 
from 2012 to 2020 obtained from the medical and health care centers in Shabestar County and the national 
STEPS project, which is funded by the Iranian Ministry of Health and Medical Education (I-MHME) under the 
ethics code IR.SBMU.RETECH.REC.1394.12141. The STEPS population-based survey of chronic disease risk 
factors considers Iranian adults aged 15–64, and those aged 25–64 for the biochemical measures42. In this survey, 
a cluster sample design was applied to produce representative data for the considered age range. A total of 12,000 
adults participated voluntarily in the time-series survey43. This national study includes three phases, which are 
shown in Table 2 along with the data collected in each step. In step I, demographic data and behavioral meas-
urements of all participants were collected through interviews. In the second step, the anthropometric indices, 
including height, weight, waist circumference, hip circumference, and systolic and diastolic blood pressure, were 
measured for all 12,000 participants. Finally, in the last phase, the biochemical measurements of the participant’s 
ages between 25 and 64 were collected. This time series survey was carried out based on the international stand-
ards to reserve all human rights of the participants which are already acknowledged by I-MHME41. In order 
to support the relevant studies, the I-MHME makes these data available for researchers and scientists through 
certain policies such as research proposals, or official reasonable requests by universities and institutes. As the 
primary objective of our research was to investigate the relationship between changes in the water level of Lake 
Urmia and associated salt release and the prevalence of hypertension, we obtained the hypertension dataset col-
lected through the STEPS project as secondary dataset to our study. In addition, in order to monitor the impact 
of the salt-dust scatters on the health of residents in the study area, we employed time-series health data obtained 
from 200 health care centers in cities and rural primary health care centers in rural areas. This dataset, which 
covers the timeframe of 2012 to 2020, includes the number of hypertension patients recorded in each health care 
center, their home location, and demographic characteristics. We also obtained the GPS location of the STEPS 
project participants’ area of residence. The survey included measuring the general health status of the 12,000 

Table 1.   Datasets employed in this study.

Main criteria Sub-criteria Sources

Demographic characteristics

Age group
Census in 2016

Population density

Hypertension STEPES survey and health care centers dataset from 2012 to 2020

Land use/cover Landsat Satellite images with spatial resolution of 30 m

Vegetation continuous fields Global Forest Cover Change-Surface Reflectance product, which is based on the enhanced Global Land  
Survey datasets

Geomorphological and land surface

Aspect
Topography dataset of the study area in the scale of 1–25,000

Slope

Salt center Landsat Satellite images

Moisture NASA-USDA SMAP Global soil moisture dataset

Wind direction
Meteorology stations dataset and SDI project of the EAP

Wind speed
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participants every three months as well as hypertension and other measures (see Table 2). To consider the living 
conditions and quality of life of the participants, they were also categorized based on their socioeconomic and 
lifestyle characteristics such as job, traveling plan on holidays, owned property (e.g., house, car, computer, etc.). 
In order to analyze the spatiotemporal patterns of the residents’ health, we mapped the spatial patterns using 
these datasets and GIS spatial analysis and interpolation techniques.

Demographic characteristics.  Demographic characteristics are one of the major aspects of the health 
and disease patterns within a society. It is well-known that the population characteristics such as age and gender, 
along with the anthropometric indices such as the lipid profile and the systolic and diastolic blood pressure, 
factor into the most common non-communicable diseases such as hypertension, type 2 diabetes, cancer, and 
chronic respiratory diseases, which affect the health-related quality of life of the susceptible population44 The 
STEPS projects already considered the demography of the 12,000 participants, but as we intended to provide 
the population density of the study area for the task of vulnerability and health risk mapping, we considered the 
detailed demographic information obtained using the latest census in 2016 for all 135,421 people in Shabestar 
County. We categorized the population into different classes based on the vulnerability to the salt-dust scatter 
hazard. Therefore, population data were classified from 15–25, 26–35, 36–45, 46–55, 56–65 based on the health 
STEPS survey dataset45. We also developed a population density map of the study area based on the census data.

Geomorphological and land surface characteristics.  We developed a digital elevation model (DEM) 
based on a 1:25,000 topographic map of the study area. We then used the DEM to generate slope and aspect 
maps. The slope and aspect were used as geographical indicators as they can affect the extent and distribution 
paths of salt and dust scatter35. Aspects facing the winds that blow from the lake in the east are more at risk, 
including western, southern, and southwestern slopes (180 to 360 degrees).

Land use/cover and vegetation continuous percentage.  Land use/cover can affect the spread of dust 
and salt particles around the lake. For instance, vegetated areas, especially with a dense tree cover, can prevent 
the spread of salt to residential areas, while bare lands or salt lands around the lake are the hot spots of the dis-
tribution of dust and salt particles. The land use/cover data for the year 2020 was obtained from our earlier stud-
ies regarding the Lake Urmia drought and its respective environmental impacts46. We also used the vegetation 
continuous fields (VCF) product to analyze the vegetation cover of the study area. The VCF represents the global 
surface coverage from 2000 to 2020, comprising data on tree cover, non-vegetative cover, and cloud cover. Given 
its global span and two-decade timeframe, the VCF has proven to be a valuable tool for researchers across disci-
plines. The VCF dataset is derived from the Global Forest Cover Change-Surface Reflectance product, which is 
based on the enhanced Global Land Survey (GLS) datasets. The GLS datasets are composed of high-resolution 
Landsat 5 and Landsat 7 images at a 30-m resolution from Google Earth Engine47.

Saline sources.  Since exposure to the saline sources is expected to significantly impact the residents’ health 
in the study area, we considered the distance to saline flows as one of the causal criteria. We obtained the saline 
diffusion center data from our earlier studies47. It is well understood that proximity to these saline diffusion 
centers both directly and indirectly affects the prevalence of respiratory diseases and hypertension. We thus 
considered the areas within 80 km of saline diffusion sources.

Table 2.   Data gathered in each phase of the national STEPS project and the criteria observed in the survey 
analysis41.

Step I
Physical activity

Tobacco use

Alcohol consumption

Fruit and vegetable consumption (in a typical week)

Physical activity

Step II
Physical measurements

Mean body mass index—BMI (kg/m2)

Percentage who are overweight or obese (BMI ≥ 25 kg/m2)

Percentage who are obese (BMI ≥ 30 kg/m2)

Average waist circumference (cm)

Mean systolic blood pressure—SBP (mmHg)

Mean diastolic blood pressure—DBP (mmHg)

Percentage with raised BP (SBP ≥ 140 and/or DBP ≥ 90 mmHg)

Percentage with raised BP (SBP ≥ 160 and/or DBP ≥ 100 mmHg)

Step III
Biochemical measurements

Mean fasting blood glucose (mmol/L)

Percentage with raised blood glucose (≥ 7.0 mmol/L)

Mean total blood cholesterol (mg/dL)

Percentage total cholesterol (≥ 5.2 mmol/L)

Percentage total cholesterol (≥ 6.5 mmol/L)
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Climate criteria.  The spatial distribution of salt-dust scatters is closely correlated with the climate charac-
teristics. The following criteria were considered to represent the climate characteristics of the study area.

Soil moisture.  Soil moisture plays an important role in releasing salt particles and dust into the air. Particles 
are transported by the wind more easily in areas where the soil moisture is low. We, therefore, employed the 
NASA-USDA Global Soil Moisture Dataset to represent the soil moisture of the study area. The NASA-USDA 
Global soil moisture and the NASA-USDA SMAP Global soil moisture dataset provide soil moisture informa-
tion across the globe at a 0.25° × 0.25° spatial resolution. Values around 0 indicate typical moisture conditions, 
while very positive and very negative values indicate extreme moisture (soil moisture conditions above average) 
and dryness (soil moisture conditions below average), respectively48.

Wind speed.  Wind speed is another main factor affecting the impact of salt-dust on the health of the resi-
dents. Thus, the wind speed data of meteorology stations were collected from the SDI project of the EAP, and 
wind speed and direction maps were obtained based on interpolation techniques. Based on this dataset, we 
consider winds speed of 14–17 knots (7–8.5 m/s) to be causal indicators in the study area.

Wind direction.  The wind direction determines the distribution of dust and salt particles in the areas 
around Lake Urmia. The wind ordinarily blows from north to south and from east to west in the study area. In 
some cases, in the north of Lake Urmia, the wind direction changes from west to east and affects the study area.

Methodology
The research methodology was established based on GIScience’s geospatial analysis and spatiotemporal modeling 
techniques. Landsat earth observation satellite images were used to obtain the trend of exposed salt lands in the 
area north of Lake Urmia. For this goal, we employed timeseries Landsat satellite images from July 2012 to 2020 
provided by NASA/USGS. All image processing performed in geospatial platform of Google Earth Engine. In the 
second step, a GIS spatial analysis was applied to map the hotspots of hypertension using Moran’s I Index. In addi-
tion, a GIS-based multi-criteria decision analysis (GIS-MCDA) approach was also used to develop a public health 
risk susceptibility map based on the relevant indicators. Figure 3 gives an overview of the research methodology.

Trend analysis of the of salt‑dust scatter sources.  Our first step was to investigate the relationship 
between changes in the water level of Lake Urmia and associated salt release and the prevalence of hypertension. 
Therefore, we applied remote sensing time-series satellite imagery to monitor the multi-temporal trend of lake 
changes. An integrated deep learning and machine learning data-driven algorithm was applied to determine the 
saline flow sources and salt-dust scatter sources around the lake. We refer to our earlier work in his area for the 
detailed approach, results, and their validation7.

Spatiotemporal hypertension hotspot analysis.  GIS-based spatial analysis provides unique capabili-
ties for hotspot mapping. Since the survey data was recorded in the GPS points format, we were able to apply 
a GIS-based point pattern analysis to determine the spatiotemporal pattern of hypertension. Therefore, in the 
first step, the Kernel Density Estimation technique was applied to obtain the spatial pattern of the hypertension 

Figure 3.   Main steps of the implemented research methodology for human health risk mapping using 
integrated spatiotemporal techniques.
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dataset. In the second step, the Global Moran’s Index (GMI) was applied to detect the hypertension hotspots in 
the study area. The GMI is one of the most efficient spatial autocorrelation assessment methods in GIS49,50. The 
GMI is frequently used to depict a spatial relationship based on spatial attributes, which can be used to analyze 
the location of impacting criteria such as land characteristics. We employed the GMI method to investigate the 
spatial correlation of the hypertension hotspots with environmental indicators (e.g., land characteristics, climate, 
etc.). The geographical distribution highlights a complicated distribution and spatial patterns. Thus, the GIS-
based GMI can be used to investigate the spatial correlation to determine whether nearby areas have similar or 
dissimilar values51. The spatial correlation measures the spatial dependency between the values of random vari-
ables in different geographical regions50,52. The GMI spatial correlation index is calculated using Eq. (1):

where Xi is the relative distance correlation between area units of i, N is the number of area units, and Wij is the 
weight. The GMI value ranges from 1 to − 1. A number close to 1 indicates grouped patterns in areas with similar 
values (high or low), whereas a value around − 1 indicates dispersed patterns. Random patterns are indicated 
by a value close to zero53.

GIS‑MCDA for HHR mapping.  GIS-based Multi-Criteria Decision Analysis (GIS-MCDA) methods have 
become prevalent in environmental modeling and natural hazard prediction54. Of the spatial decision-mak-
ing methods, the MCDA produces the most consistent judgement as it has a better structure and methods for 
obtaining and translating human judgements into priorities55. GIS-MCDA methods support meaningful spatial 
decisions by integrating multiple criteria from various spatial data sources54,56,57. Leveraging this capability, we 
used 11 criteria in three major groups to analyze and develop human vulnerability and health risk maps. The 
selection of the relevant criteria was based on the data availability and research literature23,58–62. Table 3 shows 
the list of selected criteria for vulnerability and health risk mapping. After identifying the relevant criteria, the 
required geometric and topological editing was carried out to develop the criteria into a 20 m-resolution spatial 
dataset and stored in a geodatabase for further analysis (Fig. 4).

In GIS-MCDA, standardization is critical due to the variety of data sources and the different measurement 
scales. To facilitate standardization, fuzzy logic can be employed as a mathematical basis for incorporating dif-
ferent variables and decision systems with varying levels of ambiguity56. As Table 3 shows, the selected criteria 
have different values (e.g., degree, percent, kilometer, etc.) depending on the nature of the initial data source it 
was prepared from (e.g., topography, climatology, demography, or health dataset). In the GIS-MCDA process, 
all selected criteria can either be considered as beneficial criteria, where a higher score is favorable (e.g., wind 
speed), or cost criteria, where smaller scores are favorable (e.g., distance to salt centers). Thus, in order to equal-
ize all criteria, a standardization was applied using the fuzzy method considering the cost -benefit context at a 
scale of 0–1. In this standardization, pixels with a value of 1 have complete membership, and pixels with a value 
of 0 have no membership. Therefore, after the standardization step, all criteria were converted to values between 
0 and 1 based on the linear function. Figure 5 represents the standardized spatial distribution of the selected 
criteria affecting the onset and increase of respiratory diseases. Table 3 also shows the initial classes of each 
criterion and their fuzzy memberships.

Criteria weighting and sensitivity analysis.  GIS-MCDA-based spatial modeling requires the signifi-
cance of each criterion to be determined. Criteria weighting must thus be applied to establish the importance 

(1)I =
n��wij(xi − x)(xj − x)

w�(xi − x)2

Table 3.   The internal classes of each criterion and their fuzzy memberships which are standardized at a scale of 
0–1 based on the significance of each criterion for the vulnerability and health risk.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1622  | https://doi.org/10.1038/s41598-023-28332-6

www.nature.com/scientificreports/

of each criterion54. We employed the integrated fuzzy analytical network process (FANP) approach for criterion 
weighting. FANP is one of the most widely used methods for calculating criteria weights63–66, and previous stud-
ies attest to its effectiveness7,56,57. The integrated FANP technique can be used to calculate the intrinsic weight of 
each criterion. We applied the FANP to the initial criteria ranking obtained in the pairwise comparison matrix 
based on the expert knowledge of 30 specialists from the department of environmental health at the Medicine 
University of Tabriz, who ranked the criteria from 1 to 9 based on the significance of each criterion for vulner-
ability and health risk. Then, the pairwise comparison matrix was developed using the Super Decisions software, 
and the criteria weights were computed (Table 5).

To standardize the layers, we employed the fuzzy membership function in GIS. The linear function was 
applied to transform the categorized raster layers into fuzzy standard layers with pixel values ranging from 0 to 
1. The FANP method combines the analytical network process method with the fuzzy level evaluation method67. 
Furthermore, the fuzzification allows us to objectively analyze qualitative factors in complex decision-making 
using fuzzy mathematics membership theory68. 11 standardized raster maps were obtained, each with values 
ranging from 0 to 1. The regional distribution of the selected and standardized criteria is depicted in Fig. 6. The 
impact of each layer class on HHR was used to establish superiority and value allocation.

Due to the various data sources, expert knowledge for criterion ranking, and modeling faults, uncertainty in 
GIS-MCDA is inevitable69. Criteria weighting contributes significantly to the ambiguity of the MCDA framework 
in this case. According to earlier studies, such an ambiguity can potentially lead to incorrect results70. Thus, earlier 
studies proposed a sensitivity analysis as a means to overcome this issue47,71. In this study, the sensitivity analysis 

Figure 4.   Spatial distribution of the selected criteria for the vulnerability and health risk mapping criteria: (a) 
population age group, (b) current status of hypertension, (c) population density, (d) slope-aspect, (e) land use/
cover, (f) slope, (g) vegetation continuous fields, (h) moisture, (i) distance to salt-center, (j) wind speed and (k) 
wind direction. Note: these data are taken from the initial source (e.g., topography, climatology, demography, 
or health dataset used in this research). The map is created in ESRI- Arc GIS version 10.7 under licenses of 
Humboldt-Universität zu Berlin (https://​deskt​op.​arcgis.​com/).

https://desktop.arcgis.com/
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of the criteria weights produced from the FANP was computed using an integrated sensitivity analysis. There-
fore, we applied a sensitivity analysis to examine the uncertainty associated with the FANP’s weights for spatial 
modeling to reduce the risk of mistakes in our GIS-MCDA-based decision model. Our integrated approach was 
established based on the Monte Carlo simulation (MCS) and a global sensitivity analysis (GSA) to calculate the 
uncertainty of the criteria weights. The MCS was computed as follows:

where T is the simulation, wi is the random number and N indicates the simulation number. The GSA can also 
be computed using the following equations:

Equation (3) is known as ‘interactions’. A model without interactions among its input factors is considered as 
additive. In this case, 

∑k
i=1 S = 1 , and the first-order conditional variances are necessary in order to decompose 

the model output variance. For a non-additive model, higher order sensitivity indices, which are responsible 

(2)MCS : T =

√

1

n

∑

(

δi
wi

)2

(3)Si = vi/v

Figure 5.   Fuzzy-based standardized layers of the selected criteria shown in Fig. 4 for the vulnerability and 
health risk mapping: (a) age group, (b) current status of hypertension, (c) population density, (d) slope-aspect, 
(e) land use/cover, (f) slope, (g) vegetation continuous fields, (h) moisture, (i) distance to salt-center, (j) wind 
speed, and (k) wind direction. Note: due to heterogeneous contexts of the indictors, we standardized all criteria 
in fuzzy scale for the spatial aggregation of HH-VRM. The map is created in ESRI- Arc GIS version 10.7 under 
licenses of Humboldt-Universität zu Berlin (https://​deskt​op.​arcgis.​com/).

https://desktop.arcgis.com/
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for interaction effects among sets of input factors, must be computed. However, higher order sensitivity indices 
are usually not estimated, as in a model with k factors the total number of indices (including the Sis) that should 
be estimated is as high as 2k − 1. For this reason, a more compact sensitivity measure is used. This is the total 
effect sensitivity index, which concentrates all the interactions involving a given factor Xi in one single term. 
For example, for a model of k = 3 independent factors, the three total sensitivity indices would be as follows73.

Analogously:

In other words, the conditional variance in Eq.  (8) can be generally written as VX−i{EX−i(Y |X−i)}
73. It 

expresses the total contribution to the variance of Y due to non-Xi, i.e. to the k − 1 remaining factors, hence 
V(Y)− VX−i{EX−i(Y |X − i)} includes all terms, i.e. a first-order term as well as interactions in Eq. (4), which 
involve factor Xi. In general, 

∑k
i=1 STi ≥ 1 , with equality if there are no interactions. For a given factor Xi a notable 

(4)ST1 =
V(Y)− VX2X3

{

EX1(Y |X2,X3)
}

V(Y)
= S1 + S12 + S13 + S123

(5)ST2 = S2 + S12 + S23 + S 123,

(6)ST3 = S3 + S13 + S23 + S 123.

Figure 6.   Results of Lake Urmia drought monitoring and the extension of salt-dust scatter sources around the 
lake in: (a) 2012, (b) 2013, (c) 2014, (d) 2015, (e) 2016, (f) 2017, (g) 2018, (h) 2019, and (i) 2020. These maps are 
based on the time-series satellite images and remote sensing change detection analysis. The map is created in 
ESRI- Arc GIS version 10.7 under licenses of Humboldt-Universität zu Berlin (https://​deskt​op.​arcgis.​com/).

https://desktop.arcgis.com/
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difference between STi and Si flags an important role of interactions for that factor in Y. Highlighting interac-
tions between input factors helps us to improve our understanding of the model structure73. In the context of 
implementation variance-based GSA we continued the analysis from calculating the importance of spatial bias 
in determining option rank order by means of Average Shift in Ranks (ASR) as follows69:

where ASR is the average shift in ranks, a_rankref is the rank of option A in the reference ranking (e.g. equal weight 
case), and a_rank is the current rank of option A. ASR captures the relative shift in the position of the entire set 
of options and quantifies it as the sum of absolute differences between the current option rank (a_rank) and the 
reference rank (a_rankref), divided by the number of all options69. In this regard, the original FANP weights can 
be applied as input weights for MCS and GSA-based sensitivity analysis. Thus, the MCS-GSA implementation 
consists of four essential steps, namely: (a) obtaining training data from the results of the hypertension hotspot 
analysis, as discussed above, (b) using the FANP’s weights as reference weights, (c) running the MCS-based 
simulation 10,000 times, and (d) computing the spatial distribution of ranks (minimum, maximum, average, 
and standard deviation) results using the inverse weighted distance spatial interpolation method. As part of the 
GSA implementation, we also computed the two critical indices of S (first-order) and St (second-order) using 
the GSA approach (total effect). Technically, the S and St stand for the FANP’s weights, which are indicated 
semantically. The uncertainty associated with the criteria weights can be defined as any difference between the 
value and order of the S and St indexes and the reference weights (e.g., FANP’s weights). A considerable disparity 
in the values of S and St suggests that the reference weights (e.g., FANP) are questionable, which could lead to 
erroneous conclusions. Table 4 illustrates the evaluated criteria, the FANP weights that were obtained as reference 
weights, and the GSA sensitivity analysis results. The difference between S and St is not significant, indicating 
that the computed FANP weights can be used in data aggregation.

Spatial aggregation and validation.  The final maps were created using the computed weights and geo-
graphical data aggregation of the required criteria. The ordered weighted average method (OWA) is a popular 
spatial aggregation method in GIS that has been supported by research [e.g.,57]. In this numerical technique, the 
geographical criteria from one map layer are integrated with the attributes (numerical) of the other criteria72. The 
OWA is one of the most efficient data aggregation models in GIS that uses fuzzy decision rules for data aggrega-
tion and provides a parameterized class of MCDA aggregating operators. OWA provides a parameterized class 
of multi-criteria aggregation operators between the minimum and the maximum. For a given set of n criterion 
(attribute) aps, an OWA operator can be defined as the following function OWA : In → I , where I = [0, 1] that 
is associated with a set of order weights V = [v1,v2, . . . , vn ] so that vjǫ[0, 1] for j = 1, 2,…, n and 

∑n
j=1 = 1vj = 1 

given a set of standardized criterion value Ai = [ai1, ai2, . . . , ain] for i = 1,2,…m, where aijǫ[0, 1] is associated with 
the location (e.g., cell, polygon, line, point), the OWA operator is defined as follows:

where zai1 ≥ zi2 ≥ · · · ≥ zin is the sequence obtained by reordering the criterion values ai1, ai2, . . . , ain . With 
different sets of order weights V , one can generate a wide range of OWA operators by changing the set of order 
weights V46. The OWA combination operator in Eq. (8) ignores the fact that most of the GIS-based decision-
making problems require a set of different weights to be assigned to criterion maps layers. In order to extend 
the conventional OWA approach, it is necessary to fuse the ‘criterion weights’ (importances), W, into the OWA 

(7)ASR =
1

n

n
∑

a=1

∣

∣a_rankref − a_rank
∣

∣

(8)OWAi = [ai1, ai2, . . . , ain] =

n
∑

j=1

vjzij

Table 4.   Results of criteria weighting using the Fuzzy Analytical Process and sensitivity analysis based on the 
Monte Carlo and Global Sensitivity Analysis to validate the obtained indicator weights for vulnerability and 
health risk mapping.

Main criteria Sub-criteria FANP’s weights S St

Demographic characteristics

Age group 0.12 0.051 0.054

Population density 0.048 0.061 0.068

Hypertension 0.34 0.157 0.164

Land use/cover 0.04 0.013 0.018

Vegetation continuous fields 0.025 0.042 0.028

Geomorphological and land surface characteristics
Aspect 0.015 0.009 0.012

Slope 0.015 0.083 0.046

Climatological characteristics

Salt Center 0.177 0.182 0.198

Moisture 0.055 0.152 0.148

Wind direction 0.151 0.132 0.141

Wind speed 0.0038 0.006 0.009
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procedure. In this regard a criterion weight modification approach for the inclusion of criterion weights into 
the OWA operator is as follows:

where uj is the reordered jth criterion weight, wj , according to the reordered zij. Considering Q(p) = px for x > 0, 
Eq. (2) can be simplified to:

Accordingly, given the sets of criterion weights, W, and order weights, V , the OWA operator can be defined as:

OWA provides a tool for generating a wide range of decision strategies in a decision strategy space, by 
applying a set of order weights to criteria that are ranked in ascending order on a pixel-by-pixel basis. Using 
the fuzzy decision rules for spatial aggregation provides further flexibility for the aggregation technique and 
improves the method’s functionality72. We refer to Feizizadeh and Kienberger73, for detailed information and 
the mathematical background of the OWA method. In order to apply the OWA as a spatial aggregation method, 
the standardized criteria were aggregated based on the computed FANP weights.

Ethics approval and consent to participate (human ethics, animal ethics or plant ethics).  The 
study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, and the Ethics Commit-
tee of Shahid Beheshti University of Medical Sciences under the ethics code IR.SBMU.RETECH.REC.1394.121 
approved it. Researches considered all the principles of medical ethics, including the consent of the participants, 
the confidentiality of personal data and free measurements.

Statement on the experimental human participant.  We state that the use of experimental human 
participants is not relevant to this study. We employed a secondary dataset obtained from a health survey of the 
national STEPS project which is carried out by the Iranian Ministry of Health and Medical Education based on 
the international standards to reserve all human rights of the participants.

Results
This research spatially relates several significant environmental aspects, particularly saline flow sources and 
salt-dust scatter sources, to their respective impacts on human health in Shabestar County. Although our results 
have demonstrated a decline in changes to the lake level, the areas of salt lands are still increasing significantly. 
Figure 6 shows the extent of salt-dust scatter sources in the north area of the lake from 2012 to 2020. The water 
level changes and exposition of salat lands has also represented in the Fig. 2 in the section of case study state-
ment. The detailed results showed that the water body of the lake changed several times over the studied period 
based on the annual precipitation. Table 5 also shows the computed environmental changes and the number of 
patients in settlements around the lake over the years. As Table 5 shows, the exposed salt-dust scatter hotspots 
increased significantly over the past decade. Based on Table 5, the area of salt-dust scatter sources in 2012 was 
computed to be 103.24 km2, which increased to 229, 345, and 343.6 km2 in 2016, 2017, and 2018, respectively. 
The salt-dust scatter sources reduced in 2019 and 2020 to 189.70 and 111.51 km2, respectively (Fig. 2).
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Table 5.   Time-series analysis for salt-dust releases in the area north of the lake, as represented in Fig. 6, 
and percentage of hypertensive patients in each year obtained by the STEPS survey and health centers, as 
represented in Fig. 7.

Year Salt-land area (km2) Water-body area(km2)
hypertensive female 
patients hypertensive male patients Sum hypertensive patients

Major age group of 
hypertensive patients

2012 103.24 434.56 142 108 250 35–64

2013 135.14 603.33 225 156 381 35–64

2014 185 406.40 75 40 115 35–64

2015 178 389.25 560 375 935 35–64

2016 229 330.14 784 497 1281 35–64

2017 345 280.56 1136 1017 2153 35–64

2018 343.6 260.3 1076 1010 2086 35–64

2019 189.70 540.9 1225 1115 2340 35–64

2020 111.51 654.85 1155 770 1925 35–64
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Figure 7 also represents the trend of hypertensive patients from 2012 to 2020. As can be seen from this fig-
ure, the expansion of the salt-dust scatters has impacted the residents’ health, as confirmed by the increasing 
number of hypertensive patients. As indicated in Table 5, the trend of hypertensive patients in the 12000 STEPS 
participants shows that in the year 2012, only 250 patients (2.09%) suffered from hypertension. This number 
reached 1925 (16.05%) in 2020. Our results also showed 2340 hypertensive patients (19.5%) in 2019, 2086 
patients (17.39%) in 2018, and 2153 (17.95%) patients in 2017, which shows that higher numbers of hypertensive 
patients coincide with times when the lake was facing a very critical condition, and the expansion of salt lands 
was profound.

Figure 8 shows the computed spatial correlation between the average hypertension level and the selected 
vulnerability and health risk mapping (VHRM) criteria. The results demonstrate the relationship between the 
lake drying and the prevalence of hypertension in the surrounding areas. There is a significant relationship 
between decreasing lake levels and increasing percentages of patients with hypertension. As indicated in Figs. 7 
and 8j,k, the wind speed and direction have a substantial spatial correlation with the number of hypertensive 
patients. According to these maps, the wind speed and distance from salt/dust scatter sources clearly indicate 
the significance of these sources on the health of the nearby residents. Furthermore, ancillary information has 
shown that the number of female patients with hypertension is higher than the number of affected men, which 
indicates an increased sensitivity of females to these environmental challenges. It must be noted that all hyper-
tension patients, both male and female, were aged between 35 and 70.

Figure 9 shows the result of the GIS-MCDA-based vulnerability and health risk mapping. According to this 
map, the cities of Shabestar, Vaigahn, Shandabad, and Sis lie within areas with a high risk of salt-dust scatters. 

Figure 7.   Results of the time-series analyzing hypertension in the study area in: (a) 2012, (b) 2013, (c) 2014, 
(d) 2015, (e) 2016, (f) 2017, (g) 2018, (h) 2019, and (i) 2020. These maps were developed based on the results 
obtained from the STEPS survey and health care centers for monitoring the impacts of the Lake Urmia drought 
on human health in Shabestar County. The map is created in ESRI- Arc GIS version 10.7 under licenses of 
Humboldt-Universität zu Berlin (https://​deskt​op.​arcgis.​com/).

https://desktop.arcgis.com/
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These cities are located in the northern area of the Lake Urmia and are thus impacted by the local climate condi-
tion called the “Sea breeze”, which is a local wind from lake to land and one of the most critical causal climate 
characteristics leading to the dispersion of salt-dust. The map shown in Fig. 9 also shows the effect of salt-dust 
scatters on the public health in the study area. Based on this figure and the results of trend assessments, it can 
be expected that the area will face a serious threat to its residents’ health in the coming years that will require 
the careful attention of authorities and decision-makers. According to Fig. 9, in deposit of the distance from 
lake, there are several villages in the eastern area that are also identified as highly vulnerable area for the salt/
dust scattering. Our investigation and field evaluation shows that the significance of population in age groups 
older than 60 years in these villages for identifying them as highly vulnerability and health risks due to salt-dust 
distribution. Our field investigation and interview with local residents indicated that due intensive impacts of 
lake drought on agricultural activities over the past decades, many young generation immigrated to the Tabriz, 

Figure 8.   Results of the spatial correlation of the aggregated hypertension map with the selected criteria for 
health vulnerability and risk mapping: (a) age group, (b) current status of hypertension, (c) population density, 
(d) slope-aspect, (e) land use/cover, (f) slope, (g) vegetation continuous fields, (h) soil moisture, (i) distance to 
salt-centers, (j) wind speed, and (k) wind direction. These plots indicate the contribution of each criterion to 
the vulnerability and health risk. As can be observed from the plots, all criteria positively correlate with average 
hypertension.
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Tehran and other large cities in search of job and a better life quality. This socioeconomic issue turned to regular 
process in village areas in the vicinity of Lake Urmia over the past years which also resulted serious challenge 
for the host cities such as Tabriz and Urmia. Such an intensive immigrant resulted developing of the enormous 
informal settlements around the Tabriz which accordingly costed significant impacts for the sustainable urban 
development in the city. Based on this situation there is unbalanced development in this city which resulted 
different lifestyle and life quality in Tabriz46.

Discussion
The results indicated a significant relationship between decreasing lake water levels and increasing hypertension, 
as depicted in Figs. 6, 7 and Table 5. We also identified a positive correlation between the decrease in the surface 
area of Lake Urmia and an increase in the number of patients. Results of spatial correlation analysis of the average 
hypertension (Fig. 8) indicated that there is liner correlation between average hypertension and current status 
of hypertension, age of local population, slope as well as wind speed and direction, which clearly indicate the 
significance of physical and environmental characteristics the study area and number of hypertension patients. 
The obtained mapping results show the number of hypertensive patients in different areas within the study area, 
whereby the areas are classified from diffuse to dense based on the number of patients. The age map indicates 
where people are at risk of developing hypertension based on their age, ranging from low to severe. According 
to this classification, people aged between 35 and 50 have a low to moderate risk and people aged 50 to 70 have 
a moderate to high risk of developing respiratory diseases and hypertension. In addition, the demographic 
analysis showed that people between the ages of 35 and 70 were most likely to have hypertension. Furthermore, 
throughout the entire study period, the number of female residents with hypertension outweighed the number 
of men suffering from hypertension. Our study also ascertained that the percentage of residents with hyper-
tension, proximity to salt diffusion centers, wind direction, and age were the most critical factors determining 
hypertension risk in the area. Several studies have recently been conducted on the relationship between spatial 
dimensions and patient prevalence67,74–78.

Review of research laterite regarding the air pollution resulted from the saline flow resources of the lake Urmia 
indicated the significant increase in aerosol pollution around the lake over the last 10 years. The significance 
concern of harvesting deposited salts from the exposed saline flows from the lake bed. Based on these studies, 
the dust emission phenomena could become more severe and widespread because of uncovering and drying of 
sludge existing under the salt layers79–87. According to Gholampour et al.79, in the Tabriz city and suburbs areas of 
the Lake Urmia, water soluble ions accounted to be approximately 20% ± 10% of total TSP mass and 25% ± 12% 
of total PM10 mass. They also evaluated the characterization of saline dust emission resulted from Urmia Lake 
drying analysis. They aimed to analysis particulate matter (PM) in the vicinity of lake Urmia for the year of 2013. 
According to their study, the highest concentration of PM was observed during the summer season (521.6, 329.1, 
42.6, and 36.5 for TSP, PM10, PM2.5, and PM1, respectively)79–81. According to Alizade Govarchin Ghale et al.84,85, 

Figure 9.   Results of GIS-MCDA-based vulnerability and health risk mapping based on the aggregation of 
the affecting environmental criteria as represented in Fig. 5. The map shows areas that face vulnerability and 
health risks due to salt-dust distribution. The map is created in ESRI- Arc GIS version 10.7 under licenses of 
Humboldt-Universität zu Berlin (https://​deskt​op.​arcgis.​com/).

https://desktop.arcgis.com/
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there was an inverse relationship between water level fluctuations of the lake and aerosol pollution. They also 
observed that the mean of aerosol optical depth increased to 0.42 from the period of 2010 to 2019. Based on this 
study, the annual mean PM10 concentration has increased after 2013 significantly. They pointed out the maximum 
24-h mean PM10 concentration to be in December of 2015 to be about 876.13 μg/m384,85. As our study as well as 
the related studies also indicated, the water level of Lake Urmia dramatically dropped from 2013 to 2015 which 
accordingly exposed incisive saline flow sources.

From the methodological perspective, results of this study pointed out that remote sensing enables us to 
represent the spatial and temporal relationships of various phenomena, which is critical for monitoring the 
environmental impacts on human health. Our results indicated that the integrated GIS and remote sensing (or 
Geoinformation) approach could be applied for human health monitoring and vulnerability and risk mapping 
through forecasting the future environmental conditions and their impacts. Healthcare planning and GIS are two 
related fields that both depend on spatial data. Spatial features in healthcare include the geographical location 
of the patient and the distribution of healthcare facilities, the management of which is supported by various GIS 
functions and models. One of the issues that justifies the existence of an appropriate GIS system in the healthcare 
field, is less reliable population data, sensitivity to lost data, and data elimination in sparsely populated areas78. 
The field of epidemiology makes use of the capabilities of GIS, which has been one of the most significant inves-
tigation domains in the past two decades88. Considering that epidemiology is completely related to the spatial 
dimension, questions about the origin and prevalence patterns of diseases can thus be answered based on a GIS 
spatial analysis47. Access to accurate data can help identify and treat disease and prevent the occurrence and 
spread of disease using screening and prevention measures. In this regard, strong statistical approaches were 
developed to identify spatial or spatiotemporal clusters88.

The combination of public health and informatics shows how numerous health problems affect certain popula-
tions and identifies the trends of this impact24. Planning the allocation of healthcare resources is critical to assure 
maximum equality in healthcare access75,90. GIS has played a crucial role in managing various health issues (e.g., 
the impact of COVID-19 on human health, as a recent example), which has led researchers to consider the spatial 
relationships between health and various influencing factors affecting it. In this context, GIS-based analysis plays 
a principal role in the spatial modeling of pandemics to support epidemic prevention and control measures, 
determine the spatial allocation of health resources and recognize social behavior patterns89. GIS has played a 
significant role in analyzing health issues by applying analytical approaches and evaluating the spatial inequality 
of access to healthcare facilities. The use of GIS for surveying healthcare planning problems is vital to relevant 
studies65. It is vital that all patients are able to access healthcare facilities and political policy should ensure that 
access to adequate healthcare is available to all. In this regard, to define a unique theoretical geographic unit 
for the healthcare market (e.g., primary care service areas, hospital service areas, and cancer service areas), it is 
necessary for researchers and policy-makers to make use of a GIS spatial analysis.

Our study faces some limitations in terms of data availability. The health data we have is of good quality (refer-
ence), but it only represents a small sample of the total population. Not all age groups are covered, for example. 
There could also be a temporal lag between exposure to salt dust, or other variables that affect health, and suffer-
ing the negative health effects of these impacts. Long-term analyses should be established to address this effect 
in more detail. Moreover, we had to approximate the determination factors of hypertension using indicators 
because of missing modeling results on salt dust distribution patterns, e.g., wind speed, land use. A salt-dust 
diffusion and impact model is a necessary next step to better understand the actual spatial and temporal effects 
of salt dust. Finally, in several steps of the analysis, expert knowledge was used to inform weight adjustments, our 
choice of indicators, and to define parameters. We took care to do this with transparency towards the experts and 
leveraging the current body of knowledge. Monitoring future health outcomes in relation to the proposed risk 
map and transferring the presented approach to other regions may be useful to further develop the approach.

Conclusion
The main objective of this research was to monitor the spatiotemporal impacts of the Lake Urmia drought on 
the human health of the local population in Shabestar County. As indicated in the research methodology, we 
also carried out GIS-MCDA-based vulnerability and health risk mapping (VHRM) to ascertain the future health 
risks in the study area. We compared the resulting average hypertensive map against the selected criteria to 
analyze the spatial correlation of the number of hypertensive patients in the study area with selected criteria for 
VHRM. According to our results, the main conclusion to be drawn from this study was the direct association 
between Lake Urmia drought, the expansion of salt diffusion centers and their respective salt-dust scatters, and 
the increase in hypertension risk in Shabestar County. The study indicated that the appearance of salt diffusion 
centers around the lake, coupled with certain environmental criteria (e.g., wind direction and geomorphologi-
cal characteristics), can significantly contribute to the increase in hypertension in all area of Lake Urmia basin 
which lead us to conclude that the lake drought will further impact the health of the residents around the lake 
in years to come. It must be highlighted that about 7.3 million people live around Lake Urmia, and we only 
evaluated a small fraction of Shabestar County based on the data available through the health care centers and 
STEPS survey. Thus, we expect the actual number of hypertension patients to be much higher than the number 
of patients identified in this study, although the percentages certainly indicate a general trend. Therefore, the 
results of this study are critical for decision-makers and authorities because they provide detailed information 
regarding the environmental impacts of the lake drought on salt-dust-scatter and its respective impacts on the 
health of the residents in Shabestar County.

Even though the results show a significant correlation between the lake drought and increasing numbers of 
hypertension patients in Shabestar County, it must be said that hypertension can also be impacted by lifestyle 
choices, nutrition, and socioeconomic status. It might even be worthwhile considering the impacts of the current 
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economic situation in Iran that led to a drop-in revenue, a depreciation of the national currency, an increase in 
inflation, and unemployment. These issues significantly impact the quality of life by reducing people’s overall 
wellbeing and their capacity to acquire basic necessities such as nutritious food, healthcare, and medicine90. 
Therefore, we conclude that a comprehensive study that considers lifestyle and nutrition might be required to 
provide further details to thoroughly analyze public health in this area. The results of this initial research could 
already be used in planning measures to allocate services to areas with a high risk of hypertension to identify 
and mitigate possible damage caused by consequences of the lake drought through strategies such as prevent-
ing the destruction of halophyte plants around the lake. This study clearly indicates the significant impacts of 
environmental issues associated with dying lakes on the health of the residents. In considering the extensive 
impacts of global climate change and the issues associated with dying lakes, we conclude that the proposed 
integrated Geoinformation approach can be efficiently applied to investigate the relationship between environ-
mental degradation and scenario-based human health vulnerability and risk mapping in other areas with dying 
lakes around the world.

Data availability
The GIS format of the environmental data will be available by request to the corresponding author. Request for 
the health survey dataset must be sent to the Iranian Ministry of Health and Medical Education as data holder 
and authority. Data will be available on reasonable request, research proposals from universities /institutes or 
individual researchers through the following link: https://​en.​tums.​ac.​ir/.

Received: 30 April 2022; Accepted: 17 January 2023

References
	 1.	 Manisalidis, L., Stavropoulou, E., Stavropoulos, A. & Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. 

Front. Public Health https://​doi.​org/​10.​3389/​fpubh.​2020.​00014 (2020).
	 2.	 Remoundou, K. & Koundouri, P. Environmental effects on public health: An economic perspective. Int. J. Environ. Res. Public 

Health https://​doi.​org/​10.​3390/​ijerp​h6082​160 (2009).
	 3.	 WHO. World Health Organisation. Air Pollution. Available online at: http://​www.​who.​int/​airpo​lluti​on/​en/ (2019).
	 4.	 Fradelos, E. C., Papathanasiou, I. V., Mitsi, D., TsarasK, K. C. F. & Kourkouta, L. Health based geographic information systems 

(GIS) and their applications. Acta Inform. Med. 22(6), 402 (2014).
	 5.	 Sterner, S. W., Keeler, B., Polasky, S., Poudel, R. & Rhude, K. Ecosystem services of Earth’s largest freshwater lakes. Ecosyst. Serv. 

https://​doi.​org/​10.​1016/j.​ecoser.​2019.​101046 (2020).
	 6.	 Feizizadeh, B. et al. Scenario-based analysis of the impacts of lake drying on food production. Sci. Rep. Nat. https://​doi.​org/​10.​

1038/​s41598-​022-​10159-2 (2022).
	 7.	 Feizizadeh, B., Kazamei Garajeh, M., Blaschke, T. & Lakes, T. A deep learning convolutional neural network algorithm for detect-

ing saline flow sources and mapping the environmental impacts of the Urmia Lake drought in Iran. CATENA https://​doi.​org/​10.​
1016/j.​catena.​2021.​105585 (2021).

	 8.	 Aili, A. & Nguyen Thi, K. O. Effects of dust storm on public health in desert fringe area: Case study of northeast edge of Taklimakan 
Desert, China. Atmos. Pollut. Res. 6, 805T814 (2015).

	 9.	 WMO. World Meteorological Organization. Sand and Dust Storms. Available online: https://​public.​wmo.​int/​en/​our-​manda​te/​
focus-​areas/​envir​onment/​SDS (2021).

	10.	 Schepanski, K. Transport of mineral dust and ist impact on climate. Geoscience 8, 151 (2018).
	11.	 Opp, C., Groll, M., Abbasi, H. & Ahmadi, F. M. Causes and effects of sand and dust storms: What has past research taught us? A 

survey. J. Risk Financ. Manag. 14, 326. https://​doi.​org/​10.​3390/​jrfm1​40703​26 (2021).
	12.	 Palencia, I. A. et al. Associations of urban environment features with hypertension and blood pressure across 230 Latin American 

cities. Environ. Health Perspect. https://​doi.​org/​10.​1289/​EHP78​70 (2022).
	13.	 Sakiev K.Z. On evaluation of public health state in Aral Sea area. Meditsina Truda i Promyshlennaia Ekologiia. 1–4. PMID: 25549450 

(2014).
	14.	 Kazemi Garajeh, M. et al. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution 

mapping in Lake Urmia, Iran. Sci. Total Environ. https://​doi.​org/​10.​1016/j.​scito​tenv.​2021.​146253 (2021).
	15.	 Beelen, R. et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts 

within the multicentre ESCAPE project. Lancet 383(9919), 785–795 (2014).
	16.	 Saadat, S., Sadeghian, S., Lotfi, M. & Najafi, M. A. Urban air pollution and emergency visits and in hospital mortality in Tehran 

heart center, International Society for Environmental Epidemiology (ISEE). Abstract Indication in Environmental Health Perspec-
tive. https://​doi.​org/​10.​1289/​isee.​2011.​00484 (2011).

	17.	 Serensen, M. et al. Long-term exposure to traffic-related air pollution associated with blood pressure and self-reported hyperten-
sion in a Danish Cohort. Environ. Health Perspect. 120(30), 418–424 (2012).

	18.	 Foraster, M. et al. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic. Environ. Health 
Perspect. 122(4), 404–411 (2014).

	19.	 Hashizume, M. et al. Health effects of Asian dust: A systematic review and meta-analysis. Environ. Health Perspect. https://​doi.​
org/​10.​1289/​EHP53​12 (2020).

	20.	 Resnik, D. B. Human health and the environment: in harmony or in conflict?. Health Care Anal. HCA J. Health Philos. Policy 17(3), 
261–276 (2009).

	21.	 Boldt, J. The concept of vulnerability in medical ethics and philosophy. Philos. Ethics Humanit. Med. PEHM 14(1), 6. https://​doi.​
org/​10.​1186/​s13010-​019-​0075-6 (2019).

	22.	 Reid, C. E. et al. Mapping community determinants of heat vulnerability. Environ. Health Perspect. 117(11), 1730–1736 (2009).
	23.	 Fletcher Lartey, S. & Caprarelli, G. Application of GIS technology in public health: Successes and challenges. Parasitology 143(4), 

401–415 (2016).
	24.	 Musa, G. J. et al. Use of GIS mapping as a public health tool—From cholera to cancer. Health Serv. Insights 6, HSI-S10471 (2013).
	25.	 Sharma S. K. Role of remote sensing and GIS in integrated water resources management (IWRM). In Ground Water Development-

Issues and Sustainable Solutions 211–227 (Springer, 2019).
	26.	 Parsinejad, M. et al. 40-years of Lake Urmia restoration research: Review, synthesis and next steps. Sci. Total Environ. 832(1), 

155055 (2022).
	27.	 Feizizadeh, B. et al. Impacts of the Urmia Lake drought on soil salinity and erosion risk: An integrated Geoinformatics analysis 

and monitoring approach. Remote Sens. 14, 3407. https://​doi.​org/​10.​3390/​rs141​43407 (2022).

https://en.tums.ac.ir/
https://doi.org/10.3389/fpubh.2020.00014
https://doi.org/10.3390/ijerph6082160
http://www.who.int/airpollution/en/
https://doi.org/10.1016/j.ecoser.2019.101046
https://doi.org/10.1038/s41598-022-10159-2
https://doi.org/10.1038/s41598-022-10159-2
https://doi.org/10.1016/j.catena.2021.105585
https://doi.org/10.1016/j.catena.2021.105585
https://public.wmo.int/en/our-mandate/focus-areas/environment/SDS
https://public.wmo.int/en/our-mandate/focus-areas/environment/SDS
https://doi.org/10.3390/jrfm14070326
https://doi.org/10.1289/EHP7870
https://doi.org/10.1016/j.scitotenv.2021.146253
https://doi.org/10.1289/isee.2011.00484
https://doi.org/10.1289/EHP5312
https://doi.org/10.1289/EHP5312
https://doi.org/10.1186/s13010-019-0075-6
https://doi.org/10.1186/s13010-019-0075-6
https://doi.org/10.3390/rs14143407


18

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1622  | https://doi.org/10.1038/s41598-023-28332-6

www.nature.com/scientificreports/

	28.	 Hassanzadeh, E., Zarghami, M. & Hassanzadeh, Y. Determining the main factors in declining the Urmia Lake level by using system 
dynamics modeling. Water Resour. Manag. 26, 129–145. https://​doi.​org/​10.​1007/​S11269-​011-​9909-8 (2012).

	29.	 Alizade Govarchin Ghale, Y., Altunkaynak, A. & Unal, A. Investigation anthropogenic impacts and climate factors on drying up 
of Urmia Lake using water budget and drought analysis. Water Resour. Manag. 32, 325–337. https://​doi.​org/​10.​1007/​S11269-​017-​
1812-5 (2018).

	30.	 Pooralihossein, S. & Delavar, M. A multi-model ensemble approach for the assessment of climatic and anthropogenic impacts on 
river flow change. Hydrol. Sci. J. 65(1), 71–86. https://​doi.​org/​10.​1080/​02626​667.​2019.​16821​48 (2020).

	31.	 Isazade, V., Qasimi, A. B. & Kaplan, G. Investigation of the effects of salt dust caused by drying of Urmia Lake on the sustainability 
of urban environments. J. Clean WAS 5(2), 78–84 (2021).

	32.	 Alizadeh Motaghi, F., Hamzehpour, N., Mola Ali Abasiyan, S. & Rahmati, M. The wind erodibility in the newly emerged surfaces 
of Urmia Playa Lake and adjacent agricultural lands and its determining factors. CATENA 194, 10467 (2020).

	33.	 Roshan, G., Samakosh, J. & Orosa, J. The impacts of drying of Lake Urmia on changes of degree day index of the surrounding cities 
by meteorological modelling. Environ Earth Sci. https://​doi.​org/​10.​1007/​S12665-​016-​6200-6 (2016).

	34.	 Mehrian, M. R., Hernandez, R. P., Yavari, A. R., Faryadi, S. & Salehi, E. Investigating the causality of changes in the landscape 
pattern of Urmia Lake basin, Iran using remote sensing and time series analysis. Environ. Monit. Assess. 188(8), 462 (2016).

	35.	 Valizadeh, K. & Namdari, S. Temporal-spatial analysis of aerosols trend in the zone of influence Urmia aerosols by processing of 
satellite imageries in 2000–2015 (case study: East Azerbaijan and West Azerbaijan). Geogr. Plan. 24(72), 427–446 (2020).

	36.	 Hamidi, S. M., Fürst, C., Nazmfar, H., Rezayan, A. & Yazdani, M. H. A future study of an Environment Driving Force (EDR): The 
impacts of Urmia Lake water-level fluctuations on human settlements. Sustainability 13, 11495. https://​doi.​org/​10.​3390/​su132​
011495 (2021).

	37.	 Hassan, N. A., Hashim, Z. & Hashim, J. H. Impact of climate change on air quality and public health in urban areas. Asia Pac. J. 
Public Health 28(2_suppl), 38S-48S (2016).

	38.	 Kelishadi, R. & Poursafa, P. Air pollution and non-respiratory health hazards for children. Arch. Med. Sci. AMS 6(4), 483 (2010).
	39.	 Barzegar, R. et al. Heavy metal (loid) s in the groundwater of Shabestar area (NW Iran): Source identification and health risk 

assessment. Expo. Health 11(4), 251–265 (2019).
	40.	 NIFHR: National Institute for Health Research Islamic Republic Iran. https://​nih.​tums.​ac.​ir (2020).
	41.	 RITUMS: Research Institute of Tehran University of Medical Sciences. Atlas of Non-Communicable Diseases Risk-Factors Surveil-

lance in the Islamic Republic of Iran: STEPs 2016. https://​en.​tums.​ac.​ir/ (2016).
	42.	 Kolahi, A. A., Moghisi, A. & Ekhtiari, Y. S. Socio-demographic determinants of obesity indexes in Iran: Findings from a nationwide 

STEPS survey. Health Promot. Perspect. 8(3), 187 (2018).
	43.	 Zinab, H. E., Kalantari, N., Ostadrahimi, A., Tabrizi, J. S. & Pourmoradian, S. A Delphi study for exploring nutritional policy pri-

orities to reduce prevalence of non-communicable diseases in Islamic Republic of Iran. Health Promot. Perspect. 9(3), 241 (2019).
	44.	 Kazemi Shishavan, M., Asghari Jafarabadi, M., Aminisani, N., Shahbazi, M. & Alizadeh, M. The association between self-care and 

quality of life in hypertensive patients: Findings from the Azar cohort study in the North West of Iran. Health Promot Perspect. 
8(2), 139–146 (2018).

	45.	 Feizizadeh, B., Omarzadeh, D., Kazemi Garajeh, M., Lakes, T. & Blaschke, T. Machine learning data-driven approaches for land 
use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. https://​doi.​org/​10.​1080/​15481​603.​
2021.​20003​50 (2021).

	46.	 Feizizadeh, B., Ronagh, Z., Pourmoradian, S., Gheshlaghi, H. A. & LakesT, B. T. An efficient GIS-based approach for sustainability 
assessment of urban drinking water consumption patterns: A study in Tabriz city, Iran. Sustain. Cities Soc. 64, 102584 (2021).

	47.	 Sazib, N., Mladenova, I. & Bolten, J. Leveraging the google earth engine for drought assessment using global soil moisture data. 
Remote Sens. 10(8), 1265 (2018).

	48.	 Fu, W. J., Jiang, P. K., Zhou, G. M. & Zhao, K. L. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density 
in a subtropical region of southeastern China. Biogeosciences 11(8), 2401–2409 (2014).

	49.	 Nazmfar, H., Alavi, S., Feizizadeh, B. & Mostafavi, M. A. Analysis of spatial distribution of crimes in urban public spaces. J. Urban 
Plan. Dev. https://​doi.​org/​10.​1061/​(ASCE)​UP.​1943-​5444.​00005​49 (2020).

	50.	 Yuan, Y., Cave, M. & Zhang, C. Using Local Moran’s I to identify contamination hotspots of rare earth elements in urban soils of 
London. Appl. Geochem. https://​doi.​org/​10.​1016/j.​apgeo​chem.​2017.​07.​011 (2017).

	51.	 Zhang, T. & Lin, G. A decomposition of Moran’s I for clustering detection. Comput. Stat. Data Anal. 51(12), 6123–6137 (2007).
	52.	 Abdollahizad, S., Balafar, M. A., Feizizadeh, B., SangarA, B. & Samadzamini, K. Using hybrid artificial intelligence approach based 

on a neuro-fuzzy system and evolutionary algorithms for modeling landslide susceptibility in East Azerbaijan Province, Iran. Earth 
Sci. Inform. https://​doi.​org/​10.​1007/​s12145-​021-​00644-z (2021).

	53.	 Ebrahimy, H., Feizizadeh, B., Salmani, S. & Azadi, H. A comparative study of land subsidence susceptibility mapping of Tasuj plane, 
Iran, using boosted regression tree, random forest and classifcation and regression tree methods. Environ. Earth Sci. https://​doi.​
org/​10.​1007/​s12665-​020-​08953-0 (2020).

	54.	 Malczewski, J & Rinner, C.. Introduction to GIS-mcda. In Multicriteria Decision Analysis in Geographic Information Science 23–54 
(Springer, 2015).

	55.	 Abedi Gheshlaghi, H., Feizizadeh, B. & Blaschke, T. GIS-based forest fire risk mapping using the analytical network process and 
fuzzy logic. J. Environ. Plan. Manag. 63(3), 481–499 (2020).

	56.	 Omarzadeh, D. et al. A GIS-based multiple ecotourism sustainability assessment of West Azerbaijan province, Iran. J. Environ. 
Plan. Manag. https://​doi.​org/​10.​1080/​09640​568.​2021.​18878​27 (2021).

	57.	 Morra, P., Bagli, S. & Spadoni, G. The analysis of human health risk with a detailed procedure operatingin a GIS environment. 
Environ. Int. 32, 444–454 (2006).

	58.	 Poggio, L. & Vrscaj, B. A GIS-based human health risk assessment for urban green space planning—An example from Grugliasco 
(Italy). Sci Total Environ. 407(23), 5961–5970 (2009).

	59.	 Ekenberg, L., Mihai, M., Fasth, T., Komendantova, N. & Danielson, M. A multi-criteria framework for pandemic response measures. 
Front. Public Health https://​doi.​org/​10.​3389/​fpubh.​2021.​583706 (2021).

	60.	 Lopes, D. F., Marques, J. L. & Castro, E. A. A MCDA/GIS-based approach for evaluating accessibility to health facilities. In Com-
putational Science and Its Applications, ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science Vol. 12952 (eds Gervasi, O. 
et al.) (Springer, 2021). https://​doi.​org/​10.​1007/​978-3-​030-​86973-1_​22.

	61.	 Devarakonda, P., Sadasivuni, R., Nobrega, R. A. A. & Wu, G. Application of spatial multicriteria decision analysis in healthcare: 
Identifying drivers and triggers of infectious disease outbreaks using ensemble learning. J. Multi-Criteria Decis. Anal. https://​doi.​
org/​10.​1002/​mcda.​1732 (2021).

	62.	 Saaty, T. L. & Vargas, L. G. Decision Making with the Analytic Network Process: Economic, Political, Social and Technological Applica-
tions with Benefits, Opportunities, Costs and Risks Vol. 195 (Springer Science and Business Media, 2013).

	63.	 Naboureh, A. et al. Traffic accident spatial simulation modeling for planning of road emergency services. ISPRS Int. J. Geo Inf. 8, 
371 (2019).

	64.	 Mohamadzadeh, P., Pourmoradian, S., Feizizadeh, B., Sharifi, A. & Vogdrup-Schmidt, M. A GIS-based approach for spatially-
explicit sustainable development assessments in East Azerbaijan Province, Iran. Sustainability https://​doi.​org/​10.​3390/​su122​410413 
(2020).

https://doi.org/10.1007/S11269-011-9909-8
https://doi.org/10.1007/S11269-017-1812-5
https://doi.org/10.1007/S11269-017-1812-5
https://doi.org/10.1080/02626667.2019.1682148
https://doi.org/10.1007/S12665-016-6200-6
https://doi.org/10.3390/su132011495
https://doi.org/10.3390/su132011495
https://nih.tums.ac.ir
https://en.tums.ac.ir/
https://doi.org/10.1080/15481603.2021.2000350
https://doi.org/10.1080/15481603.2021.2000350
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000549
https://doi.org/10.1016/j.apgeochem.2017.07.011
https://doi.org/10.1007/s12145-021-00644-z
https://doi.org/10.1007/s12665-020-08953-0
https://doi.org/10.1007/s12665-020-08953-0
https://doi.org/10.1080/09640568.2021.1887827
https://doi.org/10.3389/fpubh.2021.583706
https://doi.org/10.1007/978-3-030-86973-1_22
https://doi.org/10.1002/mcda.1732
https://doi.org/10.1002/mcda.1732
https://doi.org/10.3390/su122410413


19

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1622  | https://doi.org/10.1038/s41598-023-28332-6

www.nature.com/scientificreports/

	65.	 Valizadeh, K. K., Feizizadeh, B., Khorrami, B. & Ebadi, Y. A comparative approach of support vector machine kernel functions for 
GIS-based landslide susceptibility mapping. Appl. Geomat. https://​doi.​org/​10.​1007/​s12518-​021-​00393-0 (2021).

	66.	 Gu, H., Lao, X. & Shen, T. Research progress on spatial demography. In Spatial Synthesis 125–145 (2020).
	67.	 Kahraman, C., Onar, S. C. & Oztaysi, B. Fuzzy multicriteria decision-making: A literature review. Int. J. Comput. Intell. Syst. 8(4), 

637–666 (2015).
	68.	 Feizizadeh, B. & Blaschke, T. An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility 

mapping. Int. J. Geogr. Inf. Sci. 28(3), 610–638 (2014).
	69.	 Ligmann-Zielinska, A. & Jankowski, P. Spatially-explicit integrated uncertainty and sensitivity analysis of criteria weights in 

multicriteria land suitability evaluation. Environ. Model. Softw. 57, 235–247 (2014).
	70.	 Keenan, P. B. & Jankowski, P. Spatial decision support systems: Three decades on. Decis. Support Syst. 116, 64–76 (2019).
	71.	 Haghshenas, E., Gholamalifard, M., Mahmoudi, N. & Kutser, T. Developing a GIS-based decision rule for sustainable marine 

aquaculture site selection: An application of the ordered weighted average procedure. Sustainability 13(5), 2672 (2021).
	72.	 Feizizadeh, B. & Blaschke, T. GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods 

for the Urmia lake basin, Iran. Nat. Hazards 65(3), 2105–2128 (2013).
	73.	 Feizizadeh, B. & Kienberger, S. Spatial explicit sensitivity and uncertainty analysis for multicriteria based vulnerability assessment. 

J. Environ. Plan. Manag. 60(11), 2013–2035 (2017).
	74.	 Khashoggi, B. F. & Murad, A. Issues of healthcare planning and GIS: A review. ISPRS Int. J. Geo Inf. 9(6), 352 (2020).
	75.	 Pickle L.W. Spatial analysis of disease. In Biostatistical Applications in Cancer Research 113–115 (Springer, 2002).
	76.	 Sarwar, S., Waheed, R., Sarwar, S. & Khan, A. COVID-19 challenges to Pakistan: Is GIS analysis useful to draw solutions. Sci. Total 

Environ. 730, 139089 (2020).
	77.	 Bag, R., Ghosh, M., Biswas, B. & Chatterjee, M. Understanding the spatio-temporal pattern of COVID-19 outbreak in India using 

GIS and India’s response in managing the Pandemic. Reg. Sci. Policy Pract. https://​doi.​org/​10.​1111/​rsp3.​12359 (2020).
	78.	 Wang, S., Zhang, L., Zhang, H., Han, X. & Zhang, L. Spatial-temporal wetland landcover changes of Poyang Lake derived from 

Landsat and HJ-1A/B data in the dry season from 1973–2019. Remote Sens. 12(10), 1595 (2020).
	79.	 Gholampour, A. et al. Physicochemical characterization of ambient air particulate matter in Tabriz, Iran. Bull. Environ. Contam. 

Toxicol. 92(6), 738–744 (2014).
	80.	 Gholampour, A., Nabizadeh, R., Hassanvand, M. S., Nazmara, S. & Mahvi, A. M. Characterization of saline dust emission resulted 

from Urmia Lake drying. J. Environ. Health Sci. Eng. https://​doi.​org/​10.​1186/​s40201-​015-​0238-3 (2015).
	81.	 Gholampour, A., Nabizadeh, R., Hassanvand, M. S., Nazmara, S. & Mahvi, A. M. Elemental composition of particulate matters 

around Urmia Lake, Iran. Toxicol. Environ. Chem. 99(1), 17–31. https://​doi.​org/​10.​1080/​02772​248.​2016.​116622 (2017).
	82.	 Boroughani, M., Hashemi, H., Hosseini, S. H., Pourhashemi, S. & Berndtsson, R. Desiccating Lake Urmia: A new dust source of 

regional importance. IEEE Geosci. Remote Sens. Lett. 17(9), 1483–1487 (2019).
	83.	 Boroughani, M., Hashemi, H., Hosseini, S. H., Pourhashemi, S. & Berndtsson, R. Desiccating Lake Urmia: A new dust source of 

regional importance. IEEE Geosci. Remote Sens. Lett. 17(9), 1483–1487. https://​doi.​org/​10.​1109/​LGRS.​2019.​29491​32 (2020).
	84.	 Alizade Govarchin Ghale, Y., Tayanc, M. & Unal, A. Impacts of drying up of Urmia Lake, the second largest hypersaline lake in 

the world, on particulate concentration in the northwestern Iran. In 19th Annual CMAS Conference, Chapel Hill, NC, October 
26–28, 2020 (2020).

	85.	 Alizade Govarchin Ghale, Y., Tayanc, M. & Unal, A. Dried bottom of Urmia Lake as a new source of dust in the northwestern 
Iran: Understanding the impacts on local and regional air quality. Atmos. Environ. https://​doi.​org/​10.​1016/j.​atmos​env.​2021.​118635 
(2021).

	86.	 Ghale, Y. A. G., Unal, A. & Baykara, M. Impacts of drying up of Urmia Lake, the second largest hypersaline lake in the world, on 
particulate matter concentration in northwestern Iran. In Conference: 19th Annual CMAS Conference, Chapel Hill, NC, October 
26–28, 2020 (2020).

	87.	 Ghale, Y. A. G., Tayanc, M. & Unal, A. Dried bottom of Urmia Lake as a new source of dust in northwestern Iran: Understanding 
the impacts on local and regional air quality. Atmos. Environ. 262, 118635 (2021).

	88.	 Kirby, R. S., Delmelle, E. & Eberth, J. M. Advances in spatial epidemiology and geographic information systems. Ann. Epidemiol. 
27(1), 1–9 (2017).

	89.	 Zhou, C. et al. COVID-19: Challenges to GIS with big data. Geogr. Sustain. 1(1), 77–87 (2020).
	90.	 Kokabisaghi, F. Assessment of the effects of economic sanctions on Iranians’ right to health by using human rights impact assess-

ment tool: A systematic review. Int. J. Health Policy Manag. 7(5), 374–393 (2018).

Acknowledgements
This research was funded by Alexander von Humboldt Foundation as an experienced research project. The 
authors would also like to express their appreciation to the Iranian Ministry of Health and Medical Educa-
tion for providing the STEPS survey data as well as health care authorities in Shabestar County, which was a 
fundamental health dataset in this study. The article processing charge was funded by the Deutsche Forschun-
gsgemeinschaft (DFG, German Research Foundation)—491192747 and the Open Access Publication Fund of 
Humboldt-Universität zu Berlin.

Author contributions
B.F. has developed methods and techniques. He wrote the paper and contributed for all tasks as first author. 
T.L. has supervised the research project. She has contributed for developing and improving all sections in the 
paper as well. D.O. has contributed for applying the methods and data collecting in the field operation. S.P. has 
contributed for data collection, validation and medical analysis of the health issues.

Funding
Open Access funding enabled and organized by Projekt DEAL. Alexander von Humboldt Foundation.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.L.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1007/s12518-021-00393-0
https://doi.org/10.1111/rsp3.12359
https://doi.org/10.1186/s40201-015-0238-3
https://doi.org/10.1080/02772248.2016.116622
https://doi.org/10.1109/LGRS.2019.2949132
https://doi.org/10.1016/j.atmosenv.2021.118635
www.nature.com/reprints


20

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1622  | https://doi.org/10.1038/s41598-023-28332-6

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	Health effects of shrinking hyper-saline lakes: spatiotemporal modeling of the Lake Urmia drought on the local population, case study of the Shabestar County
	Study area
	Dataset and methods
	Data acquisition. 
	Health data and hypertension status. 
	Demographic characteristics. 
	Geomorphological and land surface characteristics. 
	Land usecover and vegetation continuous percentage. 
	Saline sources. 
	Climate criteria. 
	Soil moisture. 
	Wind speed. 
	Wind direction. 

	Methodology
	Trend analysis of the of salt-dust scatter sources. 
	Spatiotemporal hypertension hotspot analysis. 
	GIS-MCDA for HHR mapping. 
	Criteria weighting and sensitivity analysis. 
	Spatial aggregation and validation. 
	Ethics approval and consent to participate (human ethics, animal ethics or plant ethics). 
	Statement on the experimental human participant. 

	Results
	Discussion
	Conclusion
	References
	Acknowledgements


