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Gómez, who proposed this project to me and started working with me even before the beginning

of the academic year. His knowledge and experience have been fundamental pieces in the

development of this project and it’s been a pleasure to work under his guidance. Additionally,

I would like to extend my appreciation to Professor Clara Granell, who even joining the project

later, has become an essential key to the project, bringing a new vision, proposing important

improvements and helping with the closure of this project. Thanks a lot to both of them for

their advice and for helping me to finish this master’s thesis.

On the other hand, I would like to mention and to acknowledge the support of my family,

my friends and specially to my girlfriend for the support given to me through this journey. I

couldn’t enumerate the times I explained to them the different problems I had when performing

the different experiments and how could I solve them. Thanks a lot for your patience and your

unconditional support.

Finally, I would like to appreciate the opportunity of performing this master’s degree final

thesis since it has let me to learn about a new field, to improve my programming skills, to apply

the different knowledge acquired during the master’s degree and, last but not least, to improve

in my organization and working effectively skills.

vii



viii



Abstract

Betweenness Centrality (BC) is a fundamental measure in network analysis that quantifies,

for each node, its importance in terms of their relative positions and ability to efficiently

connect to other nodes and facilitate the flow of information of the network. Its analysis can

lead to relevant applications on various domains, such as identifying influential individuals in

social networks, critical nodes in transportation networks, and essential proteins in biological

networks. However, its computation is really expensive when dealing with graphs with a large

number of nodes and connections, as is often seen in real-world graphs. In view of this, we

analyse the possibility of applying Graph Neural Networks for the computation of BC with the

hope of reducing the computational effort needed.

In order to find a solution for our purpose, we conducted extensive research in which we

found a Graph Neural Network model introduced by [1] for the prediction of the Betweenness

Centrality. Therefore, we analysed this approach in depth in order to understand its main

features and perform some experiments.

In this work we perform and reproduce a selection of the experiments shown by [1], extend-

ing their analysis in terms of parameter variability. To further assess the model’s performance

in realistic scenarios, we introduce novel experiments considering new metrics and the inclu-

sion of graphs that show community structure for the analysis of the model’s accuracy. Our

results reveal that the accuracy of the model is heavily influenced by the specific graphs used

for training and testing, and that the inclusion of trivial solutions can lead to misleadingly

high accuracy. The insights gained from our research contribute to a better understanding of

the application of GNNs for BC computation and provide meaningful conclusions for future

investigations in this field.

Keywords: Complex Networks, Graph Neural Networks, Betweenness Centrality
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Chapter 1

Introduction

1.1 Project context and justification

Betweenness Centrality (BC) is one of the most important graph centrality measures when

analysing the spread of information through communities. It measures the level of importance

of some graph nodes in terms of their relative positions and its analysis can lead to relevant

conclusions and real applications. However, the calculation of the BC can be very expensive in

terms of computational effort when graphs with a high number of nodes and connections are

considered. This is precisely the case with real-world networks, where the computation of BC

holds immense utility.

On the other hand, Machine Learning algorithms have proven their ability on problem-

solving tasks such as predicting numerical values, classifying components into different cate-

gories, or automatically grouping data into different clusters, among others.

This work combines the last two previous subjects with the aim of analysing the possibility

of applying a Machine Learning algorithm to predict the Betweenness Centrality of graphs, and

therefore, avoiding the computational effort needed for the exact BC calculation.

1.2 Project’s social-ethical, sustainability and diversity-

related impact

The global ethical commitment competency (GECC) is included in this section. Taking into

account that the calculation of Betweenness Centrality can have substantial impact on society

when determining the importance of some nodes on real networks we relate this work with the

Sustainability core aspect of GECC.

3



4 Introduction

Sustainability: We consider that this work is related with the SDG 11 - Sustainable

cities and communities taking into account the possible social applications, for instance, the

identification of optimal locations for placing recharge car stations on cities. Then, a good

identification of nodes with a high betweenness centrality could have a positive impact on the

SDG 11. However, the current is a theoretical work, so there is not an specific analysis for

this specific application. Instead, we analyse a mathematical model for predicting Betweenness

Centrality focusing on its performance in a general and broader sense.

Ethical behaviour and social responsibility / Diversity (including gender) and

human rights: Regarding the last two core aspects of the GECC this work doesn’t have

neither a positive or negative impact on their related SDGs (United Nation’s 2030 Sustainable

Development Goals). The analysis performed is so technical that it does not have a relation

with human ethical behaviour neither diversity or human rights.

1.3 Project planning and objectives

Considering the project context and justification given, the main objective of this project is to

analyse the possibility of predicting Betweenness Centrality using Machine Learning and, more

specifically, Graph Neural Networks models. Then, in order to do it the first step of the project

was to conduct extensive research on Graph Neural Networks and their applications, with a

focus on graph centrality measures to analyse the possibility of predicting the Betweenness

Centrality of graphs with these algorithms. Subsequently, after identifying a relevant paper

[1] that introduces a Graph Neural Network model for computing Betweenness Centrality, the

subsequent sections and stages of the project planning were determined as outlined below:

1. Perform research on Graph Neural Networks and its applications, with specific focus on

graph centrality measures.

2. Analysis of the paper by Maurya et al. (2021) [1] and its introduced Graph Neural

Network model.

3. Analysis and understanding of the code provided by [1] at https://github.com/sunilkmaurya/

GNN_Ranking considering the requirements for its execution and the creation of a similar

Python environment

4. Perform initial experiments to gain familiarity with the code.

5. Adaptation of the code for reproducing selected experiments shown by [1].

https://github.com/sunilkmaurya/GNN_Ranking
https://github.com/sunilkmaurya/GNN_Ranking


1.4. Brief summary of outcomes 5

6. Extend the analysis performed by [1] in certain the experiments.

7. Analyse the potential of increasing the accuracy of the model using graphs with commu-

nity structure.

8. Consider new metrics for evaluating the model’s accuracy and behaviour.

9. Analyze the obtained results and draw conclusions based on the findings.

The tasks were executed following the prescribed order, considering the results obtained at

each stage. The adherence to a well-defined workflow facilitated the achievement of the primary

objective and the production of the results presented in this project.

1.4 Brief summary of outcomes

In this work a set of experiments are performed for testing the accuracy of the model introduced

by [1]. We replicate some of the experiments shown by the paper in which we extend the

analysis performed considering more variation parameters. In addition, we consider completely

new scenarios for analysing the performance of the model in which we take into account new

accuracy metrics.

All the experiments explained and performed in this work have been run using the code avail-

able at https://github.com/asanchezqui/tfm-gnn. It is worth noticing that the main part

of the code belongs to [1] and has been extracted from https://github.com/sunilkmaurya/

GNN_Ranking. However, with the aim of performing the different experiments we have adapted

some parts of the code including all the necessary development for the replicated experiments

and the new scenarios considered. As it can be seen, there is a Readme.md in which the con-

tent of the repository is described. It consists on different Python notebooks that contain the

code used for running the different experiments. Moreover, there is an env.yml file with the

dependencies needed for generating a Python environment able to run the code.

1.5 Brief description of the other section of the report

The next part of this work is divided into two main chapters. The second chapter is focused

on introducing the theoretical concepts that are needed to understand the different sections.

Firstly, a brief introduction to graphs is given, as well as the definition of the Betweenness

Centrality measure. Then, an introduction to some machine learning concepts is given with a

focus on Deep Learning, and more specifically, to Graph Neural Networks (GNN). Then, we

describe the algorithm used in the paper of reference of this work: [1].

https://github.com/asanchezqui/tfm-gnn
https://github.com/sunilkmaurya/GNN_Ranking
https://github.com/sunilkmaurya/GNN_Ranking


6 Introduction

The third chapter is made of three clearly different sections. The first section of this chapter

introduces the GNN framework described at [1] showing its main features and assumptions.

Then, the second section is based on the replication of some of the experiments shown by

[1] in which we extend the analysis performed considering more parameter variations. The

third and last section of this chapter contains some new experiments in which we analyse the

performance of the model when considering completely new scenarios such as training with

different networks or considering new accuracy metrics. Moreover, some interesting patterns

related to the model’s accuracy are found when testing over real networks and the results are

analysed.

Finally, Chapter 4 is devoted to the conclusions based on the diverse set of results obtained

in the course of this work.



Chapter 2

Definition of the main concepts

2.1 Graphs

2.1.1 Graph representation and definition

Graphs have been present in the literature in a wide range of fields. They constitute the central

object analysed by graph theory and can have a large number of applications due to its definition

and properties. The main data structure this work is focused on are graphs and therefore, it is

relevant to start the project explaining what a graph is and giving some examples.

A graph is formed by two objects, the nodes and the edges. The nodes (or vertices) are the

set of objects that form the graph and the edges correspond to the relations (or connections)

between the nodes. Taking this into account, a graph can be represented by G(V,E) where V

corresponds to the set of vertices or nodes and E corresponds to the set of edges connecting

the different nodes. An edge can be represented by a pair of nodes eij = (vi, vj) meaning that

the node vi is connected to the node vj by the edge eij. Moreover, there can be graphs in which

the direction of the edges is relevant (directed graphs) and then it is understood that the edge

eij goes from the node vi to the node vj. Conversely, undirected graphs do not consider the

direction of edges and the important thing is that the two nodes are connected.

Regarding the representation of graphs, one can think about the efficient way of storing

these objects when a high number of nodes and edges are considered. There exist different

ways of storing the graph structure on a computer in order to recover it easily and efficiently,

but one of the most commonly used representations (and the one used in this work) is the

adjacency matrix. The adjacency matrix notation is based on representing a graph G(V,E)

using a matrix. If the graph G(V,E) contains n nodes, we define the entries of the adjacency

matrix as Aij = 1 if there is an edge from node vi to node vj. Following this notation, the

dimension of the adjacency matrix will be n × n. In addition, it is interesting to notice that

7



8 Definition of the main concepts

not all edges must have the same value of 1 at the adjacency matrix. Some graphs consider

edges with weights, and consequently the adjacency matrix is given by Aij = wij, where wij

corresponds to the weight of the corresponding edge eij. Besides, it is interesting to notice

that the adjacency matrix of an undirected graph is symmetric since each edge eij can be

considered as the two edges {eij, eji} and then Aij will be the same as Aji. The following

figure (Fig. 2.1) extracted from [2] shows an example of an undirected graph and its symmetric

adjacency matrix:

Figure 2.1: Example of a graph and its adjacency matrix.

2.1.2 Betweenness centrality and graph applications

Graphs have a large number of applications [2] and have been broadly used for representing

real relational data. An example of a graph in the real world could be a social network in which

the nodes are represented by people and the edges represent their relationships of friendship,

debt or anything that relates two people. Another example of graph applications consists on

representing the relations between scientific papers in which the nodes are the papers and the

edges represent the references between them. Note that in this case the edges would be directed,

since one paper referencing another does not imply a reference in the opposite direction. There

are also applications related to biology and chemistry where graphs can be used to represent

molecules and their interactions. Some interesting results arise from recent developments such

as the contribution to the analysis of new drugs and the prediction of toxicity. As it can be

seen, graphs can be applied to a wide range of real world fields.

Taking into account that graphs are constantly present in real life, it is interesting to consider

some of the mathematical graph measures that might lead to relevant conclusions over real

problems and therefore, its analysis could have a great impact on society. Betweenness centrality

is a centrality measure that calculates the importance of nodes in a network based on their

position as intermediaries in the flow of information or resources. It is important because

nodes with high betweenness centrality can act as bridges, connecting otherwise disconnected
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parts of the network and facilitating the flow of information or resources. Consequently, the

analysis of betweenness centrality is important for different real situations. More specifically,

betweenness centrality could be used for determining the priority of vaccine distribution to

hospitals based on their potential to spread diseases, for example. Another useful application

in the electric vehicle and transportation industry, would be to apply betweenness centrality to

identify optimal locations for placing recharge stations.

Before defining betweenness centrality there is the need of introducing the shortest path

concept. Given a graph G(V,E), the shortest path between two nodes vi and vj is the set

of edges that form the path between the two nodes minimizing the sum of the edge weights

involved on the specific path.

The Betweenness Centrality (BC) measure is given by the following expression [1].

BC(v) =
∑

u̸=v ̸=w

σuw(v)

σuw

(2.1)

In the previous expression, BC(v) corresponds to the Betweenness Centrality of node v, σuw

corresponds to the total number of shortest paths going from node u to node w and σuw(v)

corresponds to the number of those shortest paths that go through v. For simplicity, if we

consider every pair of nodes with at most one shortest path between them, the betweenness

centrality of a node v corresponds to the fraction of all shortest paths (there will be one for

each pair of nodes) between all the nodes except v that go through that node v.

Finally, it is worth to notice that the computational effort required for the calculation of

the betweenness centrality once a graph is given grows rapidly with the size of the graph.

Therefore, the time needed for computing the BC of a graph is directly related to the size of

the graphs (number of nodes) since it requires analysing the shortest paths between all the pair

combinations of nodes. Consequently, there is an interest on predicting the BC value of the

nodes of a given graph using some algorithms that require a lower computational effort than

the last expression. The solution this work is focused on is directly related to the prediction of

BC using Graph Neural Networks.

2.2 Graph Neural Networks

The main purpose of the present work is to analyse the solution proposed at [1] based on Graph

Neural Networks (GNN) for predicting the Betweenness Centrality of graphs. Therefore, it is

worth introducing the concept of GNN but, in order to do it properly, the next sections briefly

review the Machine Learning and Neural Networks (the model in which GNN are based on)

concepts.
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2.2.1 Introduction to Neural Networks

On the one hand, the concept of machine learning was introduced by Arthur Samuel [3] in 1959.

It is a subfield of artificial intelligence and it is defined by IBM as a “branch of artificial intel-

ligence (AI) and computer science which focuses on the use of data and algorithms to imitate

the way that humans learn, gradually improving its accuracy” [4]. In short, Machine learning

algorithms use statistical and computational methods to identify patterns and relationships in

data, and to make predictions or decisions based on that information. These algorithms typ-

ically involve training a model on a set of labeled data, adjusting its parameters to minimize

the difference between its predictions and the true labels, and then applying it to new, unseen

data. The output can be used to perform a variety of tasks, such as predicting numerical values

or classifying input data into different categories.

On the other hand, Neural Networks are the main mathematical algorithms that Deep

Learning (a subfield of Machine Learning) is focused on [5], and are the basis of Graph Neural

Networks. Neural networks are a type of machine learning model that can make predictions for

a variety of applications. These models are formed by a series of nodes (called neurons) and

their weighted connections. At this point we can think of it as a kind of directed graph. The

following figure (Fig. 2.2) extracted from [5] shows an example of a Neural Network:

Figure 2.2: Example of a Neural Network.

As it can be seen in Figure 2.2, there is the input layer, the hidden layers and the output

layer where each of the layers contain their own nodes. The input layer contains the input

information with which the prediction (output layer) will be computed and the hidden layers

contain a large number of parameters for adjusting the model with the objective of giving good
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predictions and obtaining a good model performance. To understand how a Neural Network

works, it is convenient to start by reviewing the concept of its fundamental unit, the Neuron.

The purpose of a neuron is to perform a set of calculations on a set of input values, and then

generate an output signal or value that is transmitted to other neurons in the network.

Figure 2.3: Example of a neural network’s node.

In Figure 2.3, extracted from [6], we show the schema of what a neuron is. As we can see,

the node y receives information from all the previous nodes considering different weights wi

and it outputs a value using the function f . Therefore, the output value from the node y will

be z = f(
∑

i wi · xi + b). The function f is known as the activation function and it may vary

depending on the Neural Network and the layer considered. Some of the typical activation

functions are the sigmoid function and the Rectified Linear Unit function (ReLU).

Once we have reviewed the concept of a neuron, we can take a look at the previous figure

of a Neural Network and better understand its parts:

• Input Layer: These nodes correspond to input values to the algorithm

• Weights: Each of the connections correspond to a weight parameter that will contribute

to the output of each node.

• Hidden Layers: Hidden layers are sets of nodes that sit between the input layer and the

output layer. Their outputs are used to calculate the output of the next layer or the final

output of the model.

• Output Layer: These nodes correspond to the final output of the model

Finally, taking into account the different parts of the model, the output values are obtained

from left to right of the Neural Network. The input values are passed to the first hidden layer

considering all the weights for all the hidden nodes. Then, the process is repeated again for all

the layers until the data arrives to the output layer where the result of the model is obtained.
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2.2.2 Loss function and Back propagation

One of the most important parts of a machine learning model is the training process, where the

model is adjusted in order to give good and reliable results. When a Neural Network is defined,

the values of the weights are initialized randomly. After, they need to be properly adjusted, so

the natural question is: How is a Neural Network trained? How does it learn from data? To

answer these questions we need to introduce the concept of the loss function. The loss function,

also known as the objective function or the cost function, quantifies the discrepancy between

the predicted output of a neural network and the actual or desired output, with the goal of

minimizing this discrepancy. It guides the adjustment of weights during the training process,

aiming to achieve the lowest possible value for the loss function and thus improve the model’s

performance.

The backpropagation algorithm is the main algorithm for minimizing the loss function on

Neural Networks so it is the key with which the Neural Networks models learn. The basic idea

of this algorithm consists on using the derivatives of the cost function. If we have a training

set available defined as some input data with its corresponding desired output, we can use

the input data from the training set to obtain predictions with our Neural Network. Once we

have the predictions made by the model, we can compare them with the expected or desired

values. From this comparison we obtain the cost using the loss function and therefore, we have

a measure of the error made by the model. The basic idea is to compute the derivative of the

loss function and modify the weights with the aim of minimizing the cost. With the aim of

knowing how much each weight should be modified, the partial derivatives of the loss function

respect to the different weights are considered identifying the different weight contributions

to the cost. As a consequence, the weights are adjusted taking into account their individual

contribution to the model error.

For a deeper understanding of the algorithm and its mathematical derivation the following

reference is a good resource [7].

2.2.3 The Graph Neural Network model

A Graph Neural Network is a sort of Neural Network totally focused on learning from graph

data. As it is well known, graph data can be very complex because of its origin and represen-

tation. Graphs vary a lot in literature and they can show very different structures depending

on the number of nodes and their connections. In order to introduce the concept of a GNN, it

is common to start with the model proposed at [8].

The main objective of Graph Neural Networks is to define a Neural Network model which is

able of representing graph data and learning from it. In graph theory, a graph is a mathematical
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structure that consists of nodes (also known as vertices) and edges that connect them. Then,

the the principal idea behind the model is based on the spreading of information through the

graph nodes and edges. To obtain this spreading of information, an iterative operation is

defined: in each iteration, each node aggregates the information of its neighbours. Therefore,

as we perform more iterations each node will know, not only information about its neighbours,

but also about the neighbours of its neighbours and so on.

More specifically, the model considers the nodes as objects or concepts and the edges repre-

sent their relationships. In addition, there are label vectors attached to each node and to each

edge where the label vectors contain information representing some features of the correspond-

ing object. The example given by [8] regarding the labels is based on considering an image.

If we consider the representation of an image as a graph, each node of the image will have its

label vector that can contain information related to the regions such as the area, perimeter and

average color intensity. On the other hand, edge labels could contain information about the

relative position regarding the regions. In addition, a state vector xn (that will contain some

aggregated feature information) is attached to each node in the graph and it will be used for

obtaining an output on for each node. As it is already commented, the main idea is to define

an aggregation operation with the aim of spreading the information through the graph.

The mentioned paper [8] introduces two important functions used by the GNN model, the

local transition function fw and the local output function gw that are given by the following

expressions:

xn = fw(ln, lco[n], xne[n], lne[n]) (2.2)

on = gw(xn, ln) (2.3)

The last expression introduces some objects where ln, lco[n] and lne[n] correspond to the label

of a node n, the labels of its edges and the labels of its neighbours respectively. As it is already

commented, these labels contain feature information of the edges and the nodes. Finally, xne[n]

correspond to the vector states of the neighbours of the node n. It is interesting to show the

next figure (Fig. 2.4) extracted from [8] in which the notation of the last expression is used:
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Figure 2.4: Graph and the neighborhood of a node. The state x1 of the node 1 depends
on the information contained in its neighborhood.

Following the last expression, it can be rewritten as:

x = Fw(x, l) (2.4)

o = Gw(x, lN) (2.5)

where x, o, l and ln correspond to the vectors containing all the states, outputs and labels.

Then, Fw and Gw are known as the global transition and output functions respectively.

It is guaranteed by the Banach fixed-point theorem that the previous system of equations

has an existing unique solution. The method for solving the last set of equations is given by

the following expression:

xn(t+ 1) = Fw(x(t), l) (2.6)

We can iterate the previous expression in order to obtain the solution of the system, and it is

assured that for any initial state the system will converge rapidly to the solution. Therefore,

it can be seen that, using the previous expression, an operation for spreading the information

through the network is obtained.

Considering the last expressions, in which the aggregation operation spreads information

through the network, and the already mentioned method for training machine learning algo-

rithms (using a loss function), we obtain a method for obtaining predictions and training the

Graph Neural Network. As it will be seen, the GNN-based solution proposed by [1] analysed

in the present work uses the multiplication of the adjacency matrix of a graph by its feature

matrix to perform the aggregation operation and then spreading the information through the
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graph.

2.2.4 Applications of GNN

It is well known that graphs have a large number of applications and, similarly, Graph Neural

Networks can be applied to a wide range of fields [9]. Since there are so many applications, it is

interesting to notice that the Graph Neural Networks tasks and applications can be at different

levels such as Graph level, Node level or Edge level [10].

The main idea behind a graph-level graph neural network task is focused on the classification

of an entire graph. A good example could be, in terms of drug discovery, a GNN model that is

being used for predicting if a certain molecule is toxic or not.

On the other hand, node-level applications are those focused on nodes. Applications such

as node classification and node regression belong to this group. The main objective of the

present work is analysing the work performed in [1] for betweenness centrality prediction which

is clearly a regression task focused at the node level.

Finally, in terms of edge-level tasks, the main purpose of graph neural networks is the edge

prediction. A good example of this kind of problem could be the prediction of relationships

between elements where the elements correspond to the nodes and the relations to the edges.

For instance, in a social network, a graph neural network could be used for predicting some

future node connections obtaining a social recommender.

For more information about the different Graph Neural Networks models and applications,

a good resource could be [9].
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Chapter 3

Graph Neural Networks for Fast Node

Ranking Approximation

3.1 Article’s proposed framework

With the aim of obtaining predictions of the betweenness centrality of graphs, a framework

based on Graph Neural Networks is proposed by [1]. The proposed model is based on the

aggregation operations of graph neural networks and, therefore, it uses the feature of message

passing information through the layers of the model. Before introducing the model used by the

related paper [1] it is worth showing two of the main model’s features that are different from

other GNN models:

• On the one hand, the model considers the typical GNN aggregation operation only

through certain nodes. In order to do it, certain nodes (these nodes will correspond

to Nz) with 0 betweenness centrality are identified beforehand. Then, these nodes are

not considered for the graph neural network aggregation operation.

• On the other hand, the second main feature and difference with other models is that it

does not include the node’s own feature vector in the current layer. In other words, the

node’s own features are not directly used during the aggregation operation.

Taking into account the previously mentioned features, the following items delineate the pri-

mary assumptions and considerations of the proposed GNN model:

• The shortest paths going through a node are considered separately in incoming paths and

outgoing paths. The computations regarding these two types of paths are performed in

parallel and they do not interact until the end of the proposed model. This implies that

the proposed GNN model considers directed graphs where the directionality of edges is

taken into account.

17
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• Identification of nodes with zero betweenness centrality:

– Nodes that only have outgoing edges or incoming edges have not shortest paths going

through them and therefore, resulting in a betweenness centrality of zero.

– Nodes where all incoming neighbors are connected to all outgoing neighbors are also

assigned a betweenness centrality of zero, since they do not act as intermediaries

in the graph. Since all incoming neighbors are directly connected to all outgoing

neighbors, there is no need for these nodes to mediate the flow of information or

influence the shortest paths in the graph. For example, consider a node n0 that has

the connections e10, e20 and e03. If the connections e13 and e23 exist, node n0 has

zero betweenness centrality.

• With the aim of not considering the zero betweenness centrality nodes on the aggregation

operation, the rows of the adjacency matrix regarding to these nodes are set to 0. There-

fore, when the adjacency matrix is multiplied by the feature matrix, these nodes will not

aggregate information of their neighbours.

• All nodes are assigned unique embeddings at the model initialization. Therefore, at the

first layer, the information of the nodes Nz (the initialization embedding) is aggregated

by their neighbours. However, it is worth mentioning again that although the initial

embeddings of the Nz nodes are passed through their neighbours, these nodes Nz will not

aggregate any information of other nodes since their row at the adjacency matrix is set

to 0.

• The aggregation operation will correspond to the sum of the feature vectors. In order

to perform the aggregation operation, the adjacency matrix is multiplied by the feature

matrix with the aim of aggregating this information. Since each node will have a 1 at

each position of the adjacency matrix where there is a neighbour, when multiplying by

the feature matrix the output will be the sum of the neighbour’s features for each node,

except for the Nz nodes.

• A ReLu operation will be used as non-linearity in each layer

• The model will be formed by four layers where each layer will be formed by the aggregation

operation, a ReLu operation as non-linearity and an MLP of this result. Where MLP

corresponds to a Multilayer Perceptron, which is a totally connected Artificial Neural

Network.

The following figure (Fig. 3.1) shows the pseudo-code of the algorithm described. As it can

be seen, it uses the modified Adjacency matrix where the Nz nodes have their row set to zero.
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In addition, ingoing paths and outgoing paths are considered separately: for ingoing paths, the

algorithm employs the adjacency matrix, while for outgoing paths, it utilizes the transpose of

the adjacency matrix. This first part of the process correspond to the preprocessing part of the

model. Then, for each layer, the modified adjacency matrix is multiplied by the output of the

previous layer H
(k−1)
out degree and the weight matrix W (k). The output values are passed through

a ReLu operation for breaking linearity obtaining H
(k)
out degree. Then, the obtained H

(k)
out degree

is passed through a MLP obtaining a vector S
(k)
out degree that contains an output value for each

node. Finally, the obtained values of each layer S
(k)
out degree are summed to obtain the final output

Sout degree. The same process is performed for incoming paths obtaining Sin degree. At the end

of the process, Sout degree is multiplied by Sin degree obtaining the final values for each node that,

once the model is trained, will be associated with the betweenness centrality of the nodes.

Figure 3.1: Pseudo-code of the model proposed by [1].

In addition, the next figure (Fig. 3.2) shows the schema of the proposed model:
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Figure 3.2: Schema of the model proposed by [1].

3.1.1 Loss function and Metrics

Considering the way in which machine learning models learn it is capital to define a good

cost/loss function that informs the model when it is failing or succeeding.

The loss function proposed by the paper does not focus on making comparisons between

the obtained values and the real ones of betweenness centrality. Instead, it places greater

emphasis on the relative ranking of the results, specifically focusing on how nodes are ranked

based on their centrality measure. Once the output vector with the predicted centrality values

is generated by the model, the real betweenness centrality values are used for evaluating the

wrongly ranked nodes over the generated results. Then, the MARGINRANKINGLOSS PyTorch

function is used for evaluating the cost that is related to the following equation:

loss(x1, x2, y) =
1

l

∑
i

max(0,−yi ∗ (x1i − x2i) + Margin) (3.1)

where

yi =

1 if x1i should be ranked higher than x2i

−1 if x2i should be ranked higher than x1i
(3.2)

Here x1 and x2 correspond to two lists of a different selection of nodes containing the between-

ness score obtained by the model. The size of the two lists is the same and correspond to l

in the equation. In addition, the two lists x1 and x2 are related to different nodes in order to

compare their betweenness score values having in mind their obtained ranking positions. Then,

in order to know if a node from list x1 should have a higher or lower betweenness score than

a node from list x2, the real list of betweenness centrality values is used for generating the y
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vector of the equation. Finally, the ”Margin” parameter of the equation is set to 1 by [1].

As it can be seen, when the predicted sequence of sorted nodes fits the real sequence per-

fectly, the cost will be 0 since the result is correct. However, when the model’s obtained ranking

is higher (or lower) than the actual ranking for a specific node, the loss function yields a positive

value, indicating an increase in the loss.

3.1.2 Data preparation and performance

Once we have reviewed the proposed model and the loss function used for learning from data,

we will focus on explaining how the data is prepared before using it as an input for the model,

and how we will perform the accuracy assessment of the model.

Size of the model: First and foremost, it is needed to define an expected size of the

model. This corresponds to the maximum size of the adjacency matrix that the model is able

to accept as an input. Please note that the model can be trained using graphs of various sizes

and can also be tested on graphs of different sizes. To be able to use adjacency matrices that

are smaller than those used in the training phase, we can set the extra positions of the input

adjacency matrices to 0. Please note that it is important to define a good model size before

the training phase, since graphs with a higher size will not be accepted by the model once it is

trained.

Splitting the data: The process of obtaining the training set and test set begins with a

collection of graphs in which the betweenness centrality has been computed for all nodes. This

initial information will allow us to train the model using the loss function and the real between-

ness centrality of certain graphs. Furthermore, the model’s performance is evaluated by using

it to make predictions on additional graphs, and then comparing the predicted centrality values

with the actual centrality values of those graphs. This comparison serves as a metric to assess

how well the model performs in predicting the betweenness centrality of nodes in previously

unseen graphs.

Once the initial data is ready, the amount of graphs that will be used for training or testing

should be defined. In addition, a replication factor is defined. This replication factor is used

to generate multiple training graphs from each original graph. By applying the replication

factor, several versions of the original graph are created, each serving as a training example.

Then, for each graph, a list of the nodes is created and randomly shuffled with the aim of

creating an adjacency matrix using the permutation order obtained from the shuffling process.

This process is performed n times (being n the replication factor) for each of the training graphs.
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Modification of the adjacency matrix: Once the data splitting process is done and the

test and train sets of graphs are ready to be used, the adjacency matrices are computed and

modified as mentioned before. The process is the following:

1. The self-loop edges are removed.

2. The adjacency matrix of each graph is built using the sequence of nodes obtained in the

shuffling process for each graph when splitting the data.

3. Each row of the resulting adjacency matrix is summed. Note that this quantity will

correspond to the number of neighbours for each node. The same summation operation

is performed for the transposed adjacency matrix. Then, the two previous values are

multiplied for each node (i.e. element-wise). Nodes with a zero resulting value will not

have shortest paths going through them and therefore will belong to the Nz set.

4. The nodes for which all the input neighbours are connected to all the output neighbours

are identified. These nodes will also belong to Nz as mentioned before.

5. The rows of the Nz nodes are set to 0 for the adjacency matrix and its transpose.

6. Finally, the resulting adjacency matrix and its transpose are placed on the diagonal of a

sparse matrix of model size dimension.

At this point the graphs are ready to be fed into the model to obtain predictions.

Performance Measure: As previously discussed, during the model training phase, we

employ a loss function that assesses the progress by evaluating the resulting ranking of nodes

based on their betweenness centrality values. Similarly, the evaluation phase will focus on the

ranked list of nodes based on their betweenness centrality values.

The measure used for evaluating the model’s performance is the Kendall’s Tau rank corre-

lation coefficient, a statistical measure used to assess the similarity or correlation between two

ranked sets of data. The definition of this measure as given by the original paper [1] corresponds

to the following equation:

τ =
Nc −Nd

n(n−1)
2

. (3.3)

Here Nc refers to the number of concordant pairs in the ranking, while Nd refers to the

number of discordant pairs. Let us explain these two concepts. Consider two lists of equal

length. We can select pairs of elements from these lists, denoted as (xi, yi) and (xj, yj) with

i < j where the x corresponds to values of the first list and y to the second. If xi < xj and
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yi < yj or xi > xj and yi > yj (the pairs agree) they are said to be concordant, instead, they

will be discordant. In the previous expression, n corresponds to the length of the lists that we

are comparing. In this case, it corresponds to the quantity of nodes. As it can be seen, since

the number of possible pairs is n(n− 1)/2, the value of τ will fall in the interval [−1, 1].

3.2 Replication of experiments

With the aim of analysing the commented solution for predicting the betweenness centrality of

graphs we first replicate some of the experiments shown by the paper of reference. Furthermore,

in certain cases, we conduct a more in-depth analysis of the obtained results by considering a

wider range of variations in the parameters used during the experiments.

Since we are expecting a similar model behaviour and the idea is to perform some compar-

isons (where possible) between our results and the results shown by the paper, we need to take

into account, if needed, the differences between the parameters and configurations used by the

paper and the ones that we use for each of the experiments.

In order to perform the different experiments we use the code provided by [1] and available

at https://github.com/sunilkmaurya/GNN_Ranking. We take their source code as a basis

and we modify the code as necessary to perform all the experiments that are shown in the

present work. Given that we utilized the code provided by the authors of the paper, available on

GitHub, we conducted the experiments without altering the preexisting parameters in the code.

This includes parameters related to graph generation as well as model parameters. However,

it is important to note that we observed discrepancies between the parameters documented

in the paper and those present in the source code. These variations on the parameters can

lead to some differences on the results obtained. However, they do not significantly impact

our conclusions and the overall findings. Furthermore, we obtained values that closely align

with those presented in the paper, and when necessary, we discuss potential differences in

experimental conditions. Here we detail the model parameters used in the current work and

the differences with the ones used in the original paper:

• The number of layers of the model is set to 4 in both cases, the present work and the

paper of reference.

• The model is trained using Adam as the optimizer with a learning rate of 0.0005 for the

present work and a learning rate of 0.005 for the paper of reference.

• The calculation of the loss value is not performed using all the possible pairs of nodes. In-

stead (because of computational effort), the number of node pairs considered corresponds

https://github.com/sunilkmaurya/GNN_Ranking


24 Graph Neural Networks for Fast Node Ranking Approximation

to 20 times the number of nodes. The last configuration is considered for both the current

work and also the paper of reference.

As it can be seen, the only difference between the model parameters utilized in the present

work and the ones used by [1] corresponds to the value of the learning rate.

Finally, it is important to note that all the results that we present are obtained using a

Macbook Pro with 2,3 GHz Intel Core i5 (4 nodes) and a RAM memory of 16 GB 2133 MHz

LPDDR3. Therefore, since we don’t have the same computational power as the one used by

the paper, certain experiments in terms of efficiency cannot be replicated, while others will

be adapted using smaller graphs. However, we take these variations into consideration when

obtaining conclusions and analysing the results obtained.

3.2.1 Accuracy of the model

In this section we aim to replicate some of the experiments shown in the original paper, involv-

ing the training and utilization of the model on various types of graphs. The graphs considered

belong to three different types of synthetic graphs, while some are real graphs.

Synthetic graphs

The synthetic graphs considered in the experiment correspond to Erdős-Rényi (ER), Scale-

free (SF), and Gaussian random partition (GRP) graphs. We follow the same process of graph

generation used by [1] for this experiment. In order to generate the input data, training, and

test datasets, a total of 15 graphs were generated for each type of synthetic graph. Out of

these 15 graphs, 10 graphs from each group of synthetic graphs were reserved for testing, while

5 graphs (following the shuffling process explained earlier) were used to obtain a total of 500

training graphs. Moreover, following the method used by the paper of reference, with the aim

of considering variations on the input graphs, the generation parameters are chosen randomly

for each graph considering some boundaries. Next, we give details of the Python Networkx

functions used to obtain each type of graph.

• Erdős-Rényi

– These graphs are generated using the Networkx Python library and the

random graphs.fast gnp random graph() function.

– The function returns an Erdős-Rényi graph according to the n and p parameters,

where n corresponds to the number of nodes considered and p corresponds to the

probability of creating an edge between two nodes.

• Scale-Free
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– These graphs are generated using the Networkx Python library and the

scale free graph() function. The function returns a scale-free directed graph with

the following parameters:

∗ n: Number of nodes in the graph.

∗ α: Probability of adding a new node connected to an existing node, chosen

randomly according to the in-degree distribution.

∗ β: Probability of adding an edge between two existing nodes. One existing

node is chosen randomly according to the in-degree distribution and the other

is chosen randomly according to the out-degree distribution.

∗ γ: Probability of adding a new node connected to an existing node chosen

randomly according to the out-degree distribution.

• Gaussian random partition

– These graphs are generated using the Networkx Python library and the

gaussian random partition graph() function. A Gaussian random partition graph

is created by creating k partitions each with a size drawn from a normal distribution

with mean s and variance s/v. Nodes are connected within clusters with probability

pin and between clusters with probability pout. The parameters are:

∗ n: Number of nodes in the graph.

∗ s: Mean cluster size.

∗ v: Shape parameter. It determines the variance of the cluster size distribution,

where a higher value of v leads to a larger spread of cluster sizes. The variance

of cluster size distribution is s/v.

∗ pin: Probability of intra-cluster connection. It determines the likelihood of cre-

ating edges between nodes within the same cluster.

∗ pout: Probability of inter-cluster connection. It determines the likelihood of

creating edges between nodes belonging to different clusters.

For more information regarding these types of graphs please refer to the Networkx package

documentation.

Regarding the parameters used for generating the different type of graphs, it is worth

mentioning that we find some differences between the graph generation parameters that are

present in the source code and the ones used by the paper. The parameters used for the current

work are listed below:

• Erdős-Rényi : These graphs are generated setting the probability p between 2
10000

and
25

10000
.



26 Graph Neural Networks for Fast Node Ranking Approximation

• Scale-free: The parameters are set to: α between 40
100

and 60
100

, γ = 5
100

and β = 1−α− γ.

• Gaussian random partition: s and v take values between 200 and 1000, and pin and pout

are set between 2
10000

and 25
10000

.

The parameters used in the original paper are the following ones:

• Erdős-Rényi: p between 1
1000000

and 99
1000000

• Scale free: α between 40
100

and 60
100

, γ = 1− α− γ and β of 5
10
.

• Gaussian random partition: s and v between 2000 and 10000, pin and pout between
2

100000

and 25
100000

In addition, the original paper considers experiments involving graphs ranging from 50,000

to 100,000 nodes. However, due to resource limitations such as the unavailability of a GPU

and the use of a laptop for the simulations, we will generate graphs of 5,000 to 10,000 nodes,

to accommodate to the lack of computational power. Lastly, the paper does not specify the

exact number of epochs for which the model is trained but mentions a range of 5 to 10 epochs.

Therefore, in our experiments, we also train the model for up to 10 epochs and evaluate the

obtained values.

Once the graphs previously mentioned have been generated, the model is trained and tested

independently for each group of synthetic graphs. The results of the accuracy of the model using

the Kendall’s Tau (KT) measure obtained for each experiment are shown below (Table. 3.1):

Dataset Paper KT value Obtained KT value
Synthetic-ER 0.902± 0.03 0.889± 0.019
Synthetic-SF 0.976± 0.01 0.974± 0.001
Synthetic-GRP 0.899± 0.04 0.879± 0.056

Table 3.1: KT values for synthetic graphs.

As it can be seen in Table 3.1, the results obtained are close to the results shown in the paper.

However, there are some differences since we do not obtain the same level of accuracy. It is

worth remembering that we have used synthetic graphs of 5,000 to 10,000 nodes for training

and testing the model instead of 50,000 to 100,000 nodes and therefore, it is important to

mention that we were able to achieve comparable results even when working with smaller

graphs. Regarding our experiment, it is still consistent since we train and test the model over

the same type (5,000 to 10,000 nodes) of graphs. However, we obtain slightly lower values of

performance for the graphs used in the experiment.
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It is interesting to note that certain configurations can alter the results of the experiment.

For instance, as we have just seen, the differences on the parameters used for generating the

graphs. In addition, the random seed used when replicating the training graphs also plays a

role since different random seeds will lead to different input matrices for the training process.

These parameters change the test and training sets of graphs that are used by the model,

resulting in experiments conducted under varying conditions. In addition, even if we were to

apply the same parameter boundaries for graph generation, selecting a different random seed

during the generation process would still produce different graphs, making it challenging to

precisely replicate the conditions outlined in the paper.

Finally, taking into account the possible variations on the train and test data due to random

seeds and to certain parameters what we can conclude looking at the results is that, even though

the experiments have been run with certain differences on the test and train graphs compared

to the paper’s experiment, the model shows a similar value of accuracy for the different types

of graphs. Therefore, we still obtain a good performance of the model and it is not worth

comparing the exact value obtained with the paper’s value since we cannot reproduce the same

experiment conditions exactly.

In addition to the previous experiment, we try to extend the analysis performed by [1] by

analysing the performance obtained when modifying the replication parameter for the training

graphs. The same experiment is repeated for a replication rate of 1, 2, 10, 20 and 40, so the

training sets considered will contain a different number of training graphs for each experiment.

The results obtained are shown below (Table. 3.2):

Average KT values obtained using diferent training sets
Dataset 5 graphs 10 graphs 50 graphs 100 graphs 200 graphs

Synthetic-ER 0.792± 0.043 0.807± 0.021 0.869± 0.025 0.880± 0.021 0.880± 0.022
Synthetic-SF 0.965± 0.002 0.970± 0.001 0.974± 0.001 0.974± 0.002 0.974± 0.001
Synthetic-GRP 0.783± 0.073 0.810± 0.075 0.857± 0.080 0.866± 0.071 0.871± 0.064

Table 3.2: KT values for synthetic graphs when changing the replication factor of
training graphs.

The average KT results obtained in Table 3.2 show variations on the performance of the model

when the replication factor is modified. We obtain that when the replication factor increases,

and therefore the number of training graphs is increased, the performance obtained is higher,

as expected. This result makes sense because when a higher replication factor is considered, a

larger training set is obtained, providing the model with more data for learning. However, it is

worth considering the standard deviation values of each result, as they indicate some variability

when testing over different graphs. Finally, it is worth remembering that we are considering 10
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epochs for training the models.

Because we want to explore the possible variations on the graphs considered due to the

random selection of parameters for the generation of graphs and the replication process, we

extend the analysis performed in the paper by considering variations on these parameters.

For the next experiment we generate 10 SF, ER and GRP graphs respectively for testing the

models. We then generate 5 SF, ER and GRP graphs for the training process, considering 5

different random seeds at the replication process (with a replication factor of 10). Finally, we

train different models using the distinct training sets obtained and we test always with the

same test set (for each type of graph) with the aim of testing over the same conditions across

all cases. The next table (Table. 3.3) shows the results obtained when considering different

random seeds at the replication process for the same train set of graphs.

ER KT values SF KT values GRP KT values
0.8589± 0.0186 0.9745± 0.0028 0.8988± 0.0078
0.8491± 0.0165 0.9744± 0.0027 0.8936± 0.0065
0.8537± 0.0164 0.9745± 0.0026 0.8962± 0.0086
0.8532± 0.0176 0.9744± 0.0026 0.8958± 0.0089
0.8496± 0.0175 0.9744± 0.0026 0.8966± 0.0075

Table 3.3: Results obtained when considering different random seeds during the
replication process.

In the next experiment, we analyse the effect of generating again the training graphs. We

generate again (using different random seeds) 5 SF, ER and GRP training graphs, and we

test over the same graphs used in the last table. The generation process of graphs contains a

random choice of parameters, so we expect to obtain different training sets for the same type

of graphs. Then, the random seed used for the replication process of the training graphs is

fixed for each of the train sets obtained, in order to specifically analyse the effect of changing

the random seed in the graph generation process. The next table (Table. 3.4) shows the results

obtained.

In the previous two experiments, we expected that the variations on the random seeds

considered (at the replication and at the graph generation stages) would lead to variations on

the accuracy results obtained, however, one of the changes is more relevant than the other.

As we can see in Table 3.3 when looking one column at a time, there are minimal vari-

ations on the results obtained when changing the random seed of the replication parameter.

Conversely, when we consider different random seeds at the graph generation stage for the

training graphs (see Table 3.4), we obtain higher variations on the accuracy results than when

considering variations on the random seed at the replication stage. Besides, it is interesting to
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ER KT values SF KT values GRP KT values
0.8589± 0.0186 0.9744± 0.0025 0.8981± 0.0087
0.8092± 0.0909 0.9745± 0.0027 0.8988± 0.0136
0.8143± 0.038 0.9746± 0.0027 0.8791± 0.0048
0.8396± 0.0638 0.9742± 0.0028 0.9032± 0.0131
0.858± 0.0228 0.9746± 0.0028 0.8972± 0.0149

Table 3.4: Results obtained when considering different random seeds at the graph
generation process.

notice that this behaviour is consistent across the different synthetic graphs considered, except

for SF graphs.

Considering the results obtained and also shown in the paper of reference, it is interesting to

notice that, for all experiments, the model performance is higher for SF graphs than for GRP

and ER graphs. The difference of performance for different types of graphs can be ascribed to

the different nature and features of each type of graph. Therefore, it could be interesting to

consider more types of synthetic graphs for a deeper analysis of the model performance.

Finally, it is worth remembering that the loss function also contains a certain level of ran-

domness since the number of pairs considered when computing the loss is 20 times the number

of nodes. As a consequence, we expect also some variations on the results when performing

the same experiment again with a different random seed. However, despite this randomness,

we obtain results that are consistent not only with the paper’s results but also with repeated

experiments using different random seeds while maintaining the same train and test sets. This

demonstrates that the observed outcomes are not merely the result of chance, affirming the

effectiveness of the training process.

Real graphs

The Graph Neural Network model introduced in the original paper is also tested over dif-

ferent real networks. With the goal of testing the model over real graphs, a synthetic set of SF

graphs is used during the training process. The choice of using Scale-free graphs to train the

model follows the assumption that real graphs have Scale-free properties and therefore their

structure is similar. To perform the experiment, the paper considers 5 SF graphs of 100,000

nodes. Then, a replication factor is used for obtaining 200 training graphs. However, similarly

to the last experiment, we will perform the same experiment considering smaller graphs but,

at the same time, we perform a deeper analysis of the performance of the model when varying

the parameters. The real graphs considered are obtained from the SNAP dataset and can be

found at: https://snap.stanford.edu/data/.

https://snap.stanford.edu/data/
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We choose to work with four of the real graphs considered in the paper, considering their

diverse structure and configurations. The results shown by the paper are presented below (see

Table 3.5).

Graph Nodes Edges Paper KT values
wiki vote 7115 103689 0.937

soc Epinions 75879 508837 0.917
email EuAll 265214 420045 0.927
web Google 875713 5105039 0.699

Table 3.5: Real graphs considered and its features: Number of nodes, edges, and
KT values obtained in the original paper.

As previously mentioned, we conduct an extensive analysis of the model’s performance by

exploring a wide range of parameter values. We perform the experiment considering variations

on the number of nodes considered when generating the SF training graphs, and we also modify

the replication parameter. The number of nodes considered are 10, 100, 1,000, and 10,000 nodes,

while the replication factors considered are 1, 10, 20 and 40, yielding training sets of 5, 50, 100

and 200 graphs, respectively. The Kendall’s Tau values obtained are shown in Tables 3.6, 3.7,

3.8 and 3.9 below.

Copies 10 nodes 100 nodes 1000 nodes 10000 nodes
1 0.9262 0.9243 0.9229 0.924
10 0.8845 0.9187 0.9261 0.9253
20 0.9091 0.8986 0.9241 0.922
40 0.8804 0.8964 0.9284 0.9215

Table 3.6: Wiki-Vote network. KT values obtained testing over the wiki-Vote network. A
model size of 10,000 was used for this experiment.

Copies 10 nodes 100 nodes 1000 nodes 10000 nodes
1 0.9032 0.9036 0.9036 0.9036
10 0.9075 0.9024 0.896 0.8895
20 0.9022 0.8994 0.8947 0.8915
40 0.9026 0.8877 0.8949 0.8943

Table 3.7: soc-Epinions network. KT values obtained testing over the soc-Epinions network.
A model size of 100,000 was used for this experiment.
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Copies 10 nodes 100 nodes 1000 nodes 10000 nodes
1 0.9949 0.9949 0.995 0.9949
10 0.9945 0.9957 0.996 0.9961
20 0.9922 0.996 0.9961 0.9309
40 0.9939 0.9951 0.9957 0.9664

Table 3.8: email-EuAll network. KT values obtained testing over the email-EuAll network.
A model size of 300,000 was used for this experiment.

Copies 10 nodes 100 nodes 1000 nodes 10000 nodes
1 0.8089 0.8093 0.8089 0.8094
10 0.7921 0.8119 0.8121 0.813
20 0.7921 0.8109 0.8153 0.8169
40 0.7993 0.7981 0.8116 0.8189

Table 3.9: web-Google network. KT values obtained testing over the web-Google network.
A model size of 900,000 was used for this experiment.

The results obtained reveal minimal variations on the results when the parameters are

modified. One would expect that considering more nodes for the training graphs would lead

to higher values of the Kendall’s Tau coefficient, since considering more nodes gives more

information to the model to learn. Similarly, we would expect an increase of the performance of

the model when increasing the replication factor. Indeed, we have already obtained, on previous

experiments and considering other type of graphs, an increase of the model’s performance

when a higher replication factor is considered but the same pattern is not obtained on the

last experiments over real graphs. However, we have shown in previous experiments that

changing the parameters when considering scale-free graphs led to small variations on the

results. Therefore, the results that we obtain from the current experiments where we train with

SF and test over real networks are still consistent if we consider the assumption of similarity

between real graphs and SF graphs. We therefore conclude that for this experiment we do not

obtain high and consistent variations when the number of nodes considered for the training

graphs or the replication factor is changed.

On the other hand, we obtain a good performance of the model. We obtain similar results to

the ones shown in the original paper for the Wiki-Vote and soc-Epinions graphs. In addition,

we have obtained a higher performance for the bigger graphs, which are email-EuAll and web-

Google. As it can be seen we obtain a value around 0.99 for email-EuAll while the paper shows

a KT (Kendall’s Tau) value of 0.92. However, it is interesting that for a particular configuration

(20 copies and 10,000 nodes) we obtain a KT value of 0.93 that is a closer value to the one

shown by the paper of reference. Regarding the web-Google graph we obtain values up to 0.81
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while the paper’s value is of 0.69. Thus, we achieve notably higher KT values for the latter

two graphs. The reason for this might be related to the networks used for the training process

since, as it has been seen, the parameters used for graph generation are are not identical and

also exhibit some degree of randomness.

Finally, it is worth mentioning that the model has been able to perform predictions over real

networks obtaining a good performance when it is trained using SF graphs. In addition, it is

interesting to notice that we still obtain high KT values when we consider small training graphs

(10 to 100 nodes) and a low number of replications.

3.2.2 Scalability

This section focuses on the analysis of the computational time required to identify the zero

shortest path nodes (Nz). As mentioned previously, the process of identifying these nodes

takes place on the preprocessing part of the data.

To perform this experiment, synthetic Erdős-Rényi graphs are selected in the original paper,

due to the ease of modifying the parameters generation of these graphs. Then, an ER graph is

created for each combination of parameters. The experiment considers graphs with a number

of nodes of (1 to 10)× 105. The ratio between the number of nodes and the number of edges in

these graphs is set to 2, 4, and 6. The following figure (Fig. 3.3) show our results (at the left)

and the results obtained in the paper (at the right).

Figure 3.3: Scalability results. Time needed to process ER graphs as a function of the size
of the graph, for three different ratios of the number of nodes and number of edges. The left
plot is our result, while the right one is the result of the original paper. We can observe a good
qualitative agreement between the two plots, with discrepancies in the time scale attributed to
differences in computational power between the original paper and our work.
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As it can be seen in Figure 3.3, the results obtained are in agreement with the results that

are shown in the paper. On the one hand, the time needed for processing ER graphs increases

with the number of nodes, as expected. Moreover, we obtain the same linear behaviour when

increasing the number of nodes considered. On the other hand, the time needed when consid-

ering a higher ratio of number of nodes and edges is not only higher for higher ratios but also

the slope of the linear behaviour is increased. Finally, it is worth noticing that the absolute

time values obtained are far from the values shown by the paper since we do not have the same

computational power for performing the experiments.

3.2.3 Ablation tests

Varying the number of layers

This experiment aims to analyse the accuracy of the model when the number of layers is

changed. We train and test the model for each type of synthetic graphs considered and the

number of layers is changed from 1 to 7. The synthetic graphs used here are the same train

and test sets used when analysing the performance on synthetic graphs in Section 3.2.1. The

results obtained, as well as the results provided by the paper, are shown in Fig. 3.4.

Figure 3.4: Kendall’s Tau coefficient obtained when training and testing over ER, SF
and GRP synthetic graphs. Variations on the number of model layers are considered. The
left plot is our result, while the right one is the result of the original paper [1]. We can observe
some discrepancies between the two plots where we obtain more variability on the results.

Looking at the results provided in the paper (see Fig. 3.4 (right)), the accuracy of the model

is clearly increased in the three types of networks when the number of layers is increased from

1 to 4. When the number of layers considered is increased from 4 to 7, the performance of the

model still increases slightly, but the lines obtained are close to flat lines. Therefore, one of the

conclusions of this experiment is that the model is robust against changes when we consider a

number of layers >= 4. In our case (see Fig. 3.4 (left)), it can be seen that we do not obtain
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exactly the same increase in accuracy and behaviour when the number of layers is changed.

Instead, our average KT values remain relatively constant with some variations depending on

the graphs under consideration. Regarding scale-free graphs, our experiments show a very good

agreement with the results of the original paper. In this type of networks, there is no variation

on the results when the number of layers is changed, and we obtain similar KT score values.

However, this is not the case in the specific case of GRP networks, which show high variations

not only on the average KT score obtained but also on the standard deviation of the results.

Let us remind the reader that the error bars are obtained from testing over 10 different graphs

for each experiment. Our results show an increase on the KT score for GRP graphs when

the number of layers is increased from 1 to 4. After that, when we increase the layers from

4 to 7, the KT score seems to decrease. However, taking into account the standard deviation

(error bars) of our results, it is difficult to obtain a clear conclusion about the behaviour of the

model’s performance when the number of model layers is changed for GRP networks. Finally,

regarding the Erdős-Rényi graphs, we do not obtain the clear increase on KT that the paper

shows when increasing the number of layers from 1 to 4. Instead, we obtain more stable results

on KT score as the number of layers increases.

In line with the previous analyses, it is worth noticing and remembering that our results

have not been obtained with the same graphs used by the paper since we have considered

different boundaries for the graph generation parameters. This can lead to differences on

the KT results and standard deviation values. Even if we had considered the same graph

generation parameters, we probably would have obtained different graphs due to the randomness

of the process of generating the graphs and the test and train sets. In addition, different

boundary values can lead to a wider range of graph structures and consequently a higher

standard deviation values when testing the model over different graphs. Therefore, one of

our main conclusions is that the model’s performance can vary for different graphs, and the

effects of parameter changes may be different depending on the specific test and train graphs

considered.

Finally, it is important to note that the paper does not provide an explanation of how the

error bars are obtained. We use standard deviation values to plot the error bars but this metric

could differ from the one used by the paper. Additionally, if we were to calculate the SEM

(Standard Error of the Mean), we would need to divide our standard deviation values by the

square root of the sample size. Since we test over 10 different graphs for each experiment,

we should divide the current error values by
√
10, which is nearly 3. By comparing the error

bars in our results with those reported in the paper, we find that the paper’s error bars are

approximately one-third the length of ours, suggesting a possible match between our results

and the paper’s under the assumption that they would be using the SEM measure. However,



3.2. Replication of experiments 35

even if we obtained similar error values, the different trends commented previously are still

present.

Varying the embedding dimensions

In addition to the last experiment, this experiment analyses the accuracy of the model when

changing the embedding dimension used for the three types of synthetic graphs considering

models of 1, 4 and 7 layers. Regarding the train and test graphs, the graphs used are the same

that have been used by the last experiment. The results obtained are shown in Figure 3.5.

Before analyzing the results obtained, it is worth mentioning that we considered embedding

dimensions from 4 to 20 instead of 2 to 20 since the code provided by the paper thrown ”NaN”

values for the specific configuration of 2 embedding dimensions.

As we can see in Figure 3.5, the results obtained for the Scale-free networks are similar

to the ones given by the paper. The KT score values are lower for the 1-layered model than

the values obtained when considering more layers. However, we obtain smaller variations on

the results when considering different layers than the ones given by the paper. Regarding the

Erdős-Rényi networks, we can see that the results obtained in the paper (right plot) for a 1-

layered embedding yield lower KT scores than embeddings that consider more layers. However,

we do not observe this behaviour in our results (left plot). Instead, we obtain very similar

values for all the configurations. Similarly, regarding the Gaussian Random Partition networks

we do not obtain the same variations when changing the number of layers. Taking into account

the results obtained and the standard deviation values it is difficult to conclude a clear trend.

Finally, it is worth noticing that the main conclusion obtained from this experiment and

also the one given in the original paper is that the model is robust against changes on the

embedding dimensions. As we have seen, we also obtain the same general conclusion from our

experiments.
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Figure 3.5: Kendall’s Tau coefficient obtained when training and testing over SF,
ER and GRP synthetic graphs. Variations on the number of model layers and embedding
dimensions are considered. The left plot is our result, while the right one is the result of
the original paper [1]. We can observe similarities between the KT values obtained and the
variations when changing the embedding dimensions. Some differences are obtained when
changing the number model layers.
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3.3 Considering new scenarios and experiments

In this section we perform more experiments considering additional scenarios different from

the ones explored in the original paper of reference. First, we show some interesting results

considering trained and untrained models. Then, we evaluate the model’s performance on real

networks by training it using synthetic networks that exhibit community structure. Finally, we

perform a deeper analysis on the results considering more accuracy metrics.

3.3.1 Prediction with untrained models

It is interesting to show the results of untrained models since in some cases we have obtained

a surprisingly high performance on accuracy when no training has been performed. In order

to understand this behaviour, we contacted with the authors of [1], obtaining that this is an

already known behaviour since it is possible to have some graph information encoded in the

output due to the nature of the aggregation operation used by the Graph Neural Network.

Similar observations can be found in [11] and [12].

Without prior knowledge of this behavior, one would expect untrained models to yield a

KT score close to 0, since the expected KT score between two random sorted lists is close to

0. In order to test the performance of the model when no training is performed we generate

50 randomly initialized models (using different random seeds) for each of the real networks

considered. Then we perform a prediction using each of the generated models. After obtaining

the results from the untrained models, we train all the models for one epoch using the same set

of Scale-free networks that were used to evaluate the model’s performance on real networks. At

this point we are able to compare the differences in the KT scores obtained with the untrained

and trained models. The result of this comparison is show in Figure 3.6.

As it can be seen in Figure 3.6, when the models are not trained (left plot) we obtain an

uniform range of results covering all possible KT score results. The KT scores range uniformly

from -1 to 1, and therefore in some cases we obtain a good KT score without training. However,

it is interesting to notice that the average KT score of all the results when using untrained

models is 0, which is the expected value. In addition, an important observation is that when

the models are trained we do not obtain such variations on the KT scores. As it can be seen in

the right plot, in all the cases the KT scores are close to 1 and have a small standard deviation.

Therefore, we can conclude that the model is really learning and the results obtained when

training the model are not merely random.
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Figure 3.6: Kendall’s Tau coefficient obtained when testing with trained and un-
trained models for the different real graphs considered. We can observe a wide range
of KT scores for untrained models. Conversely, small variations on KT score are obtained for
trained models.

3.3.2 Training with LFR Networks

Real networks are commonly formed by a characteristic structure based on communities. In the

paper on which our work is based, the model that predicts over real networks is trained using

scale-free networks based on the assumption that scale-free networks have similar properties

with real networks. However, in our analysis, we extend beyond this assumption by examining

the model’s performance when trained using networks that display a community structure,

particularly LFR networks. LFR (Lancichinetti-Fortunato-Radicchi) networks are a type of

synthetic network model specifically designed to mimic the community structure observed in

real-world networks. They are generated based on a generative algorithm that allows for the

control of community sizes, degree distributions, and mixing patterns. Then, the main idea of

this experiment is to analyse the performance of the model when testing over real networks

and training with LFR networks instead of scale-free networks with the hope of improving the

resulting KT scores.

First of all, before making predictions over real networks, we perform a baseline experiment

and we analyse the performance of the model when training with LFR networks and predicting

also over LFR networks. The experiment performed is the same as we did when analysing the

performance on synthetic graphs. Here, 15 LFR networks have been obtained where 5 graphs

will be used for training and 10 for testing. Similarly to previous experiments, we test the

performance when varying the replication factor for the training graphs. The parameters used

for the LFR graph generation are shown below:

• Graph generation: The function used for the graph generation corresponds to the Networkx

Python library and it is LFR benchmark graph(). For a detailed explanation about the
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generation of the graphs please check the Networkx official documentation.

• N = 10, 000. This is the number of nodes in the created graph.

• τ1 = 3. Power law exponent for the degree distribution of the created graph. This value

must be strictly greater than one.

• τ2 = 1.5. Power law exponent for the community size distribution in the created graph.

This value must be strictly greater than one.

• µ = 0.05. Fraction of inter-community edges incident to each node. This value must be

in the interval [0, 1]. Please note that we choose a small value in order to have bridges

between communities.

• average degree = 6. Desired average degree of nodes in the created graph. This value

must be in the interval [0, n].

• min community = 20. Minimum size of communities in the graph.

The results obtained using a replication factor of 1, 10, 20 and 40, yielding 5, 50, 100 and

200 training graphs are shown below in Table 3.10.

5 training graphs 50 training graphs 100 training graphs 200 training graphs
0.7125± 0.0082 0.7529± 0.0057 0.7576± 0.0057 0.7639± 0.0063

Table 3.10: KT values for LFR synthetic graphs considering variations on replication
factor.

As it can be seen in Table 3.10 there is a clear improvement in the KT scores when increasing

the number of training graphs from 5 to 50. In fact, we obtained this same result when

performing the same experiment for ER and GRP graphs in Section 3.2.1. However, there are

not relevant KT score variations when we keep increasing the replication factor beyond 10, since

we obtain similar values for the experiments that consider 50, 100, and 200 training graphs. In

addition, it is interesting to notice that the KT values obtained in this experiment where we

train and test on LFR graphs are lower compared to the results obtained with the other types

of synthetic graphs considered previously in this work. As a result, the model faces greater

challenges when learning from LFR graphs. This finding is especially significant because it

emphasizes the variations in model performance when dealing with different types of graphs.

With the aim of comparing the performance over real networks when training with LFR

or SF networks we perform the following experiment. We consider 5 SF and 5 LFR graphs of

10,000 nodes each to train each model independently. We then consider a replication factor of
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1, 10, 20 and 40 yielding training sets of 5, 50, 100 and 200 graphs respectively. Additionally, in

order to obtain standard deviation values we consider 15 different random seeds to initialize the

models during training. Finally, we train a model for each of the combinations of the different

parameters involved, effectively generating 480 different models, which will be used to obtain

the results. Considering this vast amount of models and our limited computational power, we

train only for one epoch, since we have seen (and this will be further validated in the upcoming

experiments) minor variations when increasing the number of epochs if we consider enough

training graphs. As will be observed, the standard deviation values diminish as the number of

training graphs is increased. However, it is important to analyze the following results having

in mind that they are based on a single epoch only. The results obtained are shown below, in

Table 3.11.

Training graphs
Graph Train set 5 50 100 200

wiki-Vote SF 0.7688± 0.3429 0.9199± 0.0051 0.9199± 0.0046 0.92± 0.0042
wiki-Vote LFR 0.8373± 0.152 0.9202± 0.0046 0.917± 0.003 0.9157± 0.0018

soc-Epinions SF 0.5198± 0.6069 0.8995± 0.0019 0.8985± 0.0018 0.8948± 0.0023
soc-Epinions LFR 0.5679± 0.5921 0.8987± 0.0019 0.8958± 0.0012 0.8947± 0.0009
email-EuAll SF 0.7004± 0.4462 0.9945± 0.0004 0.995± 0.0003 0.9959± 0.0001
email-EuAll LFR 0.7038± 0.4062 0.9954± 0.0002 0.9961± 0.0 0.9962± 0.0
web-Google SF 0.715± 0.1079 0.8069± 0.0023 0.8074± 0.0021 0.8079± 0.0035
web-Google LFR 0.7432± 0.0795 0.8094± 0.0011 0.8142± 0.0011 0.8172± 0.0006

Table 3.11: LFR vs SF training. Testing over real graphs for one epoch.

As we can see in Table 3.11, there is an increase of the KT scores when the number of

replications is increased from 1 to 5 (5 to 50 graphs) in all cases. Then, similarly to the last

experiment where we kept increasing the replication factor, we obtain minor variations on the

accuracy and we do not see a clear pattern. Regarding the differences on the KT score when

comparing the LFR and SF trained models we do not obtain a clear difference when considering

a number of training graphs greater than or equal to 50. Once again, we observe small variations

without a clear pattern.

It is interesting to notice that if we focus on the experiment that uses 5 training graphs

with no replication factor, we obtain better average KT results for all the real networks when

we train the network using LFR networks instead of scale-free networks. However, as it can

be seen, the standard deviation values for this particular experiment are high. This finding is

interesting since it means that when the model has less data for training and only one epoch is

considered, it performs better on real graphs using LFR networks for training than SF. Finally, it

is worth remembering that only one training epoch has been considered for the results obtained.
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However, as it will be seen on the following experiments there are no significant variations on

the results when we consider more epochs given a training set sufficiently large.

With the aim of obtaining more insights and to compare the performance of LFR and SF

training models, we perform the following experiments. Taking into account the differences

obtained when considering a different number of training graphs we will perform the same ex-

periment considering only 5 training graphs and considering 50 generated (without replication)

LFR and SF graphs. Once we obtain the training graphs we train the model for 10 epochs

and consider 15 different random seeds to initialize the models. Therefore we generate a total

of 150 models for each training set and real graph, since we set a different model size for each

real graph as shown before. Taking into account the computational effort required, we only

consider the 3 first real networks (we exclude the biggest one) and then a total of 1800 models

is generated. The results obtained are shown in Figure 3.7.

Please note that in Figure 3.7 the range of values of the vertical axis of the graphs is different

for the experiments using 5 training graphs and the experiments using 50 training graphs. This

difference is intentional to effectively visualize the variations in the results.

After analysing the results (see Fig. 3.7), we observe a clear difference when training using

5 graphs compared to 50 graphs. On the one hand, when we consider a larger training set

we obtain significantly more stable results and also lower standard deviation values. Then, as

commented before, when we use a large enough training set, training for more epochs does

not result in relevant differences. On the other hand, it can be seen that when the models are

trained using only 5 graphs, the KT values are clearly increased when the epochs are increased

in all the cases for the first epochs. In addition, the standard deviation values are also reduced

as the number of epochs increases. Besides, it is interesting to mention that there is a point

from which the KT values remain stable even if we keep increasing the training epochs for the

experiments using 5 training graphs.

Regarding the differences between the performance obtained when training with LFR or

SF networks, we do not obtain a clear conclusion. There is not a clear improvement using

either of these two types of synthetic graphs for training since we do not always (it depends on

the tested graph) obtain a better result for one type of graphs. However, we observe that the

results are consistent with the last experiment in which we trained using only one epoch. If

we analyse the first point (one epoch) of each of the plots we obtain similar trends to the ones

given in the last table. Additionally, it is interesting to note that similar results (for one epoch)

are obtained when considering 50 generated graphs and when considering 50 graphs replicated

from 5 initial graphs. Similar patterns with unclear trends were also observed when evaluating

the model’s performance on real graphs in Section 3.2.1.
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Figure 3.7: Kendall’s Tau coefficient obtained over real graphs when training with SF
and LFR networks. Variations on the number of training graphs, type of training graphs,
training epochs considered and model’s initialization random seed are considered. We can
observe small variations on KT scores in all the cases when 50 training graphs are considered
and the epochs are increased for each of the real graphs. Conversely, we obtain higher variations
on the results (for each real graph, respectively) when 5 training graphs and less than 4 epochs
for training are considered.
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3.3.3 Considering other metrics

Taking into account the results obtained (mainly when testing over real graphs) by all the

experiments performed, we try to represent the accuracy of the model considering different

metrics.

Up to now, the accuracy of the model has been tested in all the performed experiments by

computing the betweenness centrality between the output vector of node’s betweenness values

and the real one focusing on differences over the ranked values. Taking into account that the

main purpose is to compare two ranked lists, we try to define some new metrics to analyse the

accuracy.

When we perform a prediction with the model we obtain two lists that correspond to the

prediction and the real betweenness values for all the nodes of the corresponding graph. Once

we have the predicted and real lists of betweenness values we can sort the nodes of the two

arrays by its betweenness centrality values in descending order. Consequently, we will obtain

two new lists where the first position of each list will have the node’s label (from predicted

or real values) with the highest betweenness centrality value. Therefore we obtain the ranked

node labels based on the betweenness centrality values and the two lists will contain exactly

the same total number of labels. Considering the two ranked label lists obtained we can define

the following two metrics:

• Coincident values: This metric calculates the percentage of labels that appear in the same

position in both the predicted and real ranked label lists. For each sublist (1 to 100 % of

the sorted label lists) we compute the percentage of nodes or labels that are predicted on

the same position of the real ones. For example, consider that a the graph has 5 nodes and

the predicted and real ranked label lists are [3, 0, 1, 4, 2] and [1, 0, 3, 2, 4]. If we consider

the first 80% of the nodes (that is, positions from 1 to 4), the score obtained is 1
4
= 25%

because only the label ’0’ is classified in the same position in both lists. In this example,

if we consider the complete lists we obtain that 20% of the nodes were predicted on the

real ranked position.

• In-top values: This metric calculates the percentage of predicted nodes or labels that

appear in the real percentage of top labels. For each sublist (1 to 100% of the sorted

label lists) we compute the percentage of predicted nodes or labels that are present in

the real percentage of top labels. For instance, using the last example we would obtain

a value of 3
4
= 75% considering the first 80% of the nodes, because labels ’3’, ’0’, and ’1’

are present in both sublists. It is interesting to notice that this metric will tend to 100%

as we consider more nodes, since the two sublists will have the same labels when all the

nodes are included.
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Taking into account the previous definitions, we compute the two described metrics for all

the results obtained from the previous two experiments. In these experiments, we used 5 and

50 SF and LFR training graphs, considering the results obtained using 15 different random

seeds to obtain the standard deviation. In addition, we consider the results obtained for the

highest number of training epochs computed (10). Then, we compute the metrics for the three

real graphs considered. The metrics were calculated for different subsets of the ranked node

lists, ranging from the first 1% to the full 100%. The results obtained are shown in Figure 3.8.

The first conclusion we can arrive to (see Fig. 3.8) is that there are not clear differences on

the metric values obtained between LFR trained models and SF trained models. In addition,

and similarly to the last results obtained, we obtain significantly higher standard deviation

values when we consider models trained only with 5 graphs if we compare with the results

obtained when using 50 training graphs. Regarding the metric values obtained, it can be seen

that the ”equal” (i.e. ”coincident values”) scores are always below the ”in top” metric scores.

This is not surprising since it is more difficult to predict the exact raking position of each node

than predicting, for example, if a node is included in the 10% top values.

On the one hand, the ”in top” metric starts at a significantly higher point of the vertical axis

than the ”equal” metric. Moreover, it increases rapidly as the percentage of nodes considered

increases up to 100%. Then, it remains at 100% until all the nodes are considered. This is an

interesting result since it means that the differences between the predicted and sorted ranked

nodes are at the beginning of the lists and once the metric reaches the 100% there are no

differences between the lists. This behaviour will be understood when analysing the percentage

of nodes with zero Betweenness Centrality values.

On the other hand, regarding the ”equal” metric it is interesting to show that, when con-

sidering a small part of the nodes, the results are close to 0 and there is not a general good

prediction on exact ranked positions. However, there is a point from which the metric starts

increasing when considering more percentage of sorted nodes.

It is interesting to notice that the same patterns have been obtained for all the real networks

under consideration. Indeed, all the results obtained show a clear phase transition for the two

metrics when the percentage of sorted nodes considered is increased. In addition, the phase

transition takes place, on each graph, at the same point for the two metrics considered. However,

it is worth noticing that the observed phase transition does not appear always at the same value

of the percentage of nodes for the three networks considered. Instead, it seems to take place at

the point in which the ”in top” metric reaches the 100%, which corresponds to 33% of sorted

nodes considered for the two first real graphs and the 2% for the email-EuAll graph.

To further investigate the cause of the observed phase transitions, we analyse the different

label vectors obtained and their corresponding betweenness centrality values. We find that the
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Figure 3.8: Accuracy metrics over the different real graphs considered using the
results obtained in Fig. 3.7. The metrics were calculated for different subsets of the ranked
node lists, ranging from the first 1% to the full 100%. No clear differences on metric’s values
are obtained between SF and LFR trained models. A clear phase transition is observed for each
of the real graphs considered in all the results. It is worth to notice that the horizontal axis
range from 1 to 10 in email-EuAll plots (due to its size) to effectively visualize the variations
in the results.

phase transition point matches the point in which the nodes start having a zero betweenness

centrality values. Table 3.12 shows, for each graph, the number of nodes having 0 betweenness
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centrality.

Graph Total Nodes Nodes with zero BC Percentage of nodes with zero BC
wiki-Vote 7115 4711 66.21%

soc-Epinions 75879 50540 66.61%
email-EuAll 265214 258884 97.61%

Table 3.12: Nodes with a score of zero betweenness centrality.

As it can be seen in table 3.12 , we find that in the different real graphs considered, an

important percentage of nodes have 0 betweenness centrality. If we remember the data prepa-

ration process explained in Section 3.1.2, some of the nodes with 0 betweenness centrality (Nz)

are identified beforehand, in order to avoid the feature aggregation process through these nodes.

Taking into account that these zeros correspond to trivial zeros (since they are identified by

certain logical rules) we analyse the proportion between Nz and all the zero BC nodes, finding

that all the nodes with zero BC are identified beforehand. Since the accuracy of the model is

computed (using the Kendall’s Tau coefficient) considering all the nodes of the different graphs,

we raise the concern that the results obtained are directly affected by this high percentage of

trivial values. Consequently, we show the same KT results obtained for the last experiment but

now without considering the zero BC nodes. The results obtained are shown in Figure. 3.9.

As it can be seen in Figure. 3.9, the KT values are significantly reduced, as expected,

when considering only the non-zero BC nodes instead of considering all the nodes. Taking into

account the results obtained we see that the model is not so good as expected when training

with LFR or SF graphs and predicting over real graphs. This result is obtained because of the

high percentage of trivial zeros that were considered when computing the KT. On the other

hand, we continue to observe the same patterns as previously noted when comparing training

with LFR and SF networks, regardless of whether we consider 5 or 50 training graphs.

Finally, it is worth mentioning that in the original paper [1] there is an analysis to find

the proportion of nodes with zero Betweenness Centrality. The paper reveals a substantial

proportion of zero BC nodes for both real and SF graphs. However, despite this finding, all the

nodes are considered when computing the KT coefficient at the code provided in the paper.
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Figure 3.9: Comparison between the KT scores obtained including or excluding the
zero betweenness nodes. We can observe that the KT score values are significantly reduced
when the nodes with zero BC are not included on the accuracy calculation for the three real
graphs considered.

3.3.4 Analysis of the different graphs used

Taking into account the previous finding that the majority of graphs had a non-negligible

amount of nodes with zero BC value, we aim to further explore the features of the graphs

used in the paper. Therefore, we generate 10 graphs for each of the synthetic type of graphs
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considered, taking into account the boundary parameters already explained respectively for each

type of graph. Then, we compare the results obtained with the plots shown by [1] regarding

the different synthetic graphs used.

Figure 3.10: Percentage of nodes with zero Betweenness Centrality for the different
synthetic graphs considered. At the right the graphs used by [1]. At the left the graphs
generated in this work. Each pair of plots correspond to a type of synthetic graph (SF, ER or
GRP) where each Graph id corresponds to a single generated graph. We observe differences
between the graphs used by the paper and the ones generated in this work for ER and GRP
graphs. Conversely, similar results are obtained when SF graphs are considered.
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As it can be seen in Figure 3.10, there are clear differences regarding to the nodes with

zero betweenness centrality. On the one hand, we obtain clearly a lower percentage of zero BC

nodes when generating the ER and GRP synthetic graphs using the parameters considered in

this work. On the other hand, we obtain a similar zero BC nodes percentage when considering

SF graphs. Then, it is worth to notice that, taking into account the results obtained on the

last experiments and the percentage of zero BC nodes obtained by [1], the zero BC nodes can

increase the accuracy obtained by the model.
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Chapter 4

Conclusions

To begin the conclusions, it is important to highlight that the main objective of this project has

been successfully accomplished. We have been able to predict the Betweenness Centrality of

graphs using Graph Neural Networks. To do so, extensive research was conducted, to thoroughly

analyse the GNN model introduced by [1], leading to a deep understanding of its architecture

and its behaviour. Then, we conducted a series of experiments to replicate the experiments and

the analysis shown in [1]. Furthermore, we explored new scenarios by performing additional

experiments, yielding noteworthy results and conclusions.

On the one hand, regarding the predictions performed over synthetic graphs, the following

observations were made:

• Similar Kendall Tau values are obtained between our results and the ones shown by the

paper of reference when sufficient training graphs are considered.

• Increasing the replication factor improves the accuracy of the trained models.

• Variations on the generation parameters lead to different training sets, which, in turn,

can lead to differences on accuracy results.

• Regarding the ablation tests, there are variations between the obtained results and those

presented in the paper.

Consequently, our main conclusion when considering synthetic graphs is that the accuracy of

the model strongly depends on the graphs used for testing and training. There is no universal

model accuracy that applies to all graphs. In addition, considering the differences observed

in the ablation experiments, we can conclude that it is difficult to show a general model’s

behaviour since differences on the graphs used lead to differences on the results obtained.

On the other hand, regarding the predictions performed over real graphs we obtain the

following:
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• We obtain high Kendall’s Tau values for most configurations tested, when we calculate

the KT score using all nodes.

• We do not obtain clear patterns when varying the parameters at the different experiments

performed regarding real graphs.

• The choice between training the model using LFR graphs or SF graphs does not appear

to significantly impact the accuracy when testing on real networks. Our experiments

revealed that the performance of the model was similar regardless of the type of synthetic

graphs used for training.

• When introducing new metrics and analysing the model’s performance, we observed an

interesting phase transition that highlighted a significant percentage of trivial solutions

being considered.

• When we consider only the non-trivial predictions, we observe a decrease in the model’s

performance.

Based on the last observations, our main conclusion is that, when we consider graphs with

a high percentage of trivial BC zeros, the accuracy of the model is misleadingly increased due

to the inclusion of trivial solutions. However, when we consider the non-trivial solutions only,

the performance of the model over real graphs is substantially reduced. Let us note that in this

analysis we did not observe clear differences in the accuracy obtained when training with LFR

or SF graphs.

Finally, considering all the factors that can lead to changes on train and test graphs such

as the random seeds used for graph generation, the boundaries of the parameters selected for

each graph or differences on graph size and variability considered, we conclude that to obtain

stronger and more general results about the performance of the model we should consider

larger experiments with more variability. This can be achieved by running tasks in parallel

and using computational resources with higher processing power. By considering a broader

range of graph types and sizes, we can enhance the comprehensiveness and reliability of our

findings. Nevertheless, the findings presented in this work provide a foundation for future

research and optimization of graph neural networks for accurate predictions and analysis of

network structures, and in particular, of its Betweenness Centrality values.
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