

InfoHound tool

Improving OSINT open source
CyberArsenal for good

Xavier Marrugat Plaza

Master's Degree in
Cybersecurity and Privacy

Supervisor
Jordi Guijarro Olivares

PRA
Víctor García Font
13/06/23

Nom del programa 02/09/2022

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-
SinObraDerivada 3.0 España de Creative
Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

i

 FICHA DEL TRABAJO FINAL

Title:
InfoHound tool – Improving OSINT open
source CyberArsenal for good

Author’s name: Xavier Marrugat Plaza

Supervisor’s name: Jordi Guijarro Olivares

PRA’s name: Víctor García Font

Submission date (mm/aaaa): 03/2023

Degree or programme:
Master's Degree in Cybersecurity and
Privacy

Thesis’ field: Business security

Language: English

Key words OSINT, Google Hacking, Tool development

Abstract

During the reconnaissance phase, an attacker searches for any information
about his target to create a profile that will later help him to identify possible
vulnerabilities or misconfigurations to exploit. Using passive analysis methods
(which do not interact directly with the target) through OSINT, a large amount
of data can be extracted, such as: organisation addresses, IPs, systems open
ports, sensitive files or directories exposed to the internet and subdomains,
among others. Are we aware of this data? Do we know what impact they can
have in an organization? What information is publicly available about us?

Currently, there are specific Open Source OSINT tools for each of the data that
we want to monitor. This involves setting up and running these programs
separately and then grouping the results together. Although there are tools that
combine different functionalities to extract more data, such as ReconFTW (an
Open Source tool that finds IPs, ports, subdomains and more from the target)
and LookingGlass (a private solution that monitors a large amount of internet
sources to detect possible threats to an organisation), no Open Source tool has
been found that groups a great variety of these techniques together.

Therefore, the aim of this project is to implement an Open Source tool that
collects all the information that can be extracted from publicly accessible
sources from an Internet web domain. In addition, considering the information
obtained, it will create a profile of the company and its employees helping
analysts in their cybersecurity assessments.

ii

Index

1. Introduction .. 1

1.1. Context and justification of the work ... 1

1.2. Objectives ... 1

1.3. Sustainability, social-ethical and diversity impacts .. 2

1.4. State of the art ... 2

1.5. Work planning .. 4

1.6. Brief summary of products obtained .. 6

2. Materials and methods .. 7

2.1. Potential risks ... 8

3. Technical details ... 9

3.1. Why Python? .. 9

3.2. What will Infohound do? .. 9

3.3. Infohound tool design ... 9

3.3.1. Data types ... 10

3.3.2. Retriever modules ... 12

3.3.3. Analysis modules .. 13

3.3.4. Custom modules ... 13

3.3.5. Data Sources ... 14

3.3.6. Possible improvements ... 14

4. Technical development ... 16

4.1. First iteration – Simple PoC ... 16

4.1.1. Data sources .. 16

4.1.2. Retrieval modules ... 17

4.1.3. Analysis modules .. 18

4.1.4. Custom modules ... 19

4.2. Second iteration – Django .. 19

4.2.1. General improvements .. 20

4.2.2. Data sources .. 21

4.2.3. Retrieval modules ... 21

4.2.4. Analysis modules .. 22

4.2.5. Custom modules ... 23

4.2.6. Results in numbers.. 23

4.2.7. File structure ... 24

4.3. Third iteration – The web app .. 26

4.3.1. Improvements from previous iteration ... 26

4.3.2. Web app .. 27

4.3.3. Tabs and content ... 29

5. Results comparison ... 36

5.1. Domain and general information .. 36

5.2. Subdomain enumeration ... 36

iii

5.3. Finding emails .. 39

5.4. Other entities discovery .. 40

6. Architecture and deployment of the tool .. 41

7. Conclusions .. 43

7.1. Next steps ... 43

8. Bibliography ... 45

iv

Figures list

Figure 1 - Infohound design .. 10

Figure 2 - Data types tables and column names .. 10

Figure 3 - Improved database properties .. 20

Figure 4 Improved database properties II ... 27

Figure 5 InfoHound Web Application .. 28

Figure 6 Add domain window ... 28

Figure 7 Deleteing a domain ... 29

Figure 8 General tab - Domain Overview .. 29

Figure 9 General tab - Findings ... 30

Figure 10 Subdomains tab... 31

Figure 11 List of people discovered ... 32

Figure 12 Emails list with useful information ... 33

Figure 13 Dorks table with example values .. 34

Figure 14 Tasks and initial tasks ... 34

Figure 15 Holehe custom task with Pending state ... 35

Figure 16 FinalRecon subdomain enumeration output .. 37

Figure 17 reconFTW subdomain enumeration output ... 38

Figure 18 TheHarvester subdomain enumeration output ... 39

Figure 19 Emails found by theHarvester .. 39

Figure 20 InfoHound - Found emails ... 40

Figure 21 InfoHound arquitecture ... 41

Figure 22 Data entities and sources realation .. 42

 1

1. Introduction

Nowadays, it is well known that information is one of the key elements for any

business. Whether they use their customer’s data to maximise their profits, discover new

market opportunities or both; information is power. However, they do also generate data

that can be interesting for other people, attackers.

1.1. Context and justification of the work

Every time something is published on the Internet it gets indexed by many services. For

example, Google indexes web pages [1] to be able to list them in case a user searches

for a particular topic. The Wayback Machine [2], an Internet archive project, in the

other hand, makes copies or snapshots of the state of any accessible website to preserve

the history of the Internet. There are many other services that indexes the content of the

internet for many other reasons. The important aspect is that, whenever something gets

indexed, it is very difficult to track where the information is and remove it.

Open Source Intelligence (OSINT) [3] refers to the knowledge acquired from publicly

accessible sources. A lot of tools have been developed to use OSINT techniques to

retrieve sensitive information that can be later used by cybersecurity analysts or

attackers. Those that are Open Source usually are just capable to search for one type of

data. Unfortunately, this causes analysts to expend a lot of time executing each tool and

parsing the results to use them in another one. Although it exists some of them that

combine different tools, they usually lack some types of data and it is very difficult for

analysts to develop their own code as a tool extension.

In this project, a multi-modular tool (named InfoHound) will be developed. Although

implementing the ability to retrieve and analyse every type of data from every data

source is not feasible, InfoHound will be designed to accept custom modules developed

by users so that they can adapt the tool to their special needs. Also, it will let users

visualize all data collected through a web application to facilitate the analysts’ work.

1.2. Objectives

The objectives of this master thesis are described in the following list:

• Raise awareness about the data that can be retrieved using publicly available

sources.

• Show how attackers use OSINT tools to gather any possible type of information

from their target that can help them later prepare an attack.

2

• Show how useful and powerful Google Hacking [4] (or dorking) techniques can

be to get information from a target.

• Develop a multi-modular python tool that, given an internet domain name,

retrieves and analyses information from open data sources in order to identify

sensitive information and potential vulnerabilities.

• Design and implement the modular python tool so it can accept custom modules

made by other analysts so they can adapt it to their needs.

• Design and implement a web application in order to easily visualize the data

collected.

1.3. Sustainability, social-ethical and diversity impacts

The MITRE ATT&CK matrix [5] is one of the main frameworks that defines adversary

tactics and techniques based on real-world observation. As we can see in it, the first

step in any attack is the reconnaissance. Then, it is wisely to consider that any malicious

actor will perform at least one of those techniques to gather as much information as

possible from their target.

As explained in the previous section, one of the objectives of this master thesis is to

developed a tool that will let anyone gather data from a target. Although this can be

used by attackers for their benefit, the main goal is to simplify this task for those

analysts that want to know which information their company has exposed on the

internet and apply measures to protect it from malicious actors.

Moreover, all the knowledge gathered from the state of the art and the emphasis done in

this document about the risk of exposing certain type of data on the internet, can be used

to create awareness through all people, not only IT.

For these reasons, it is foreseen that this master thesis will have a great impact on

society. Helping business and people know what internet has about them. However, it

will not help much in the sustainability of the planet as it does not try to neither reduce

CO2 emissions nor create affordable clean energy, among other things.

1.4. State of the art

The act of discovering sensitive data from a target in order to use it against it, it is not

something new. In fact, it has been done all over the history to know the weaknesses of

an adversary to exploit them.

Today, in the era of information, there is no need to send people all over the globe to

spy on a target. You can find almost any information you want on the internet. Luckily,

for cybersecurity analysts, this task can be easily done by the use of one of the many

automated tools that people have developed.

3

To know the capabilities of these type of tools, the following list shows in detail the

most relevant ones. Those which only gather one type of data (e.g. emails) are at the

beginning as the multi-purpose ones, that collects all kind of information, usually

combine many of them:

• Pagodo [6]: this tool lets the user perform Google Hacking automation. The aim

of this tool is to search for applications vulnerabilities and sensitive data exposed

directly from Google (or other browsers) by the use of dorks (advanced queries).

To do so, it uses some techniques to evade Google captcha as the preferred way

is by using Google’s API which it is not free.

• Hunter [7]: this service allows users to search emails related to a given domain

or an enterprise name. It has a paid API but it will show some emails for free.

• Shodan [8]: this web application let us find the ports a server has open without

having to perform any active scanning by our side. Also, it can detect

misconfigurations and vulnerable services on the target. However, this tool is

not free.

• FOCA [9]: is an open source tool that finds hidden information in documents.

Although it does not fall into an OSINT category tool, it can be used to discover

emails, usernames, software versions and operating systems.

• h8mail [10]: this tool uses different paid services to get passwords given an

email.

• Amass [11]: this project from OWASP [12] performs a network mapping of

attack surfaces and try to discover external assets through the use of open source

services and active reconnaissance techniques. Among the data that can be

retrieved using these techniques we find: emails (Hunter), passwords (IntelX

[13]), whois data, web snapshots (Wayback), open ports (Shodan), etc. It is

worth noting that, to be able to use some of the services, it requires paid API

keys.

• ReconFTW [14]: this tool is the most used and popular solution to automate the

entire process of reconnaissance. It is actively developed and maintain by the

community and has a lot of features implemented using of the tools mentioned

above. It has one particular downside, some of the techniques used are very

basic (for example the Google Dorks part) and it does not allow custom user-

made modules.

• Maltego [15]: the aim of this tool is to help analysts easily visualize all the data

that has been collected through the use of OSINT data sources available in their

marketplace. Almost all of these sources require a paid API key. One good thing

Maltego has is the ability to develop your own module.

4

Although these are only the most used tools, there are more Open Source ones on the

Internet that let people gather almost any kind of information (e.g. phone numbers,

names, emails, usernames, passwords…).

However, as we have seen from the list, it has not been found a multi-purpose tool that

really makes use of two main topics: browser hacking (dorks) and metadata analysis.

Also, almost all the reviewed tools do not directly support custom modules developed

by external people making it more time-consuming for analysts who have to jump from

different tools to get the same amount of data.

The proposed solution is a multi-modular tool that has some modules to retrieve and

analyse information from publicly available data sources and will let the community

(other users that use the tool) to develop their own ones to satisfy their needs. This will

also allow to have all the information centralized in one place making it easier when

doing a cybersecurity assessment.

1.5. Work planning

To correctly develop this project, a work planning has been defined. The following list

contains the detailed tasks for each of the project phases:

• PHASE 1 – Developing the idea

o Work planning: separate the project in tasks and create a Gantt graph to

easily visualize the project workload.

o Context definition: explain the context of the project and where does it fit

in the real world.

o Idea definition: define the idea and its main goals.

o State of the art research: see which tools and techniques are currently

used by attackers and cybersecurity analysts and find possible ways to

improve them.

o Methodology definition: explain which methodology will be used to

identify, implement and verify possible solutions for the project. This

section also explains how the tool is designed.

o Define data sources: search which open data sources the project should

use in order to retrieve information.

o Define techniques: check which techniques should be implemented in the

project so it has some differentiative aspects among the currently most

popular ones.

• PHASE 2 – Implementing the idea

o Retriever modules: implementation and definition of the modules in

charge of finding all type of data.

5

o Analysis modules: implementation and definition of the modules in

charge of analyse the found data to extract more information.

o WebUI development: implementation and definition of how the web

application is developed and its functionalities.

o Validation: check if the tool really analysts in their tasks and see if it

improves some aspects over other solutions

• PHASE 3 – Documentation

o Documentation: Writing this document.

o Prepare the presentation: search and user resources to create the slides.

Also, some time has been saved to practice for the presentation.

o Improve documentation and code: take a look at this document and see

ways to improve it and make the code clearer so it can be understood by

other users.

• PHASE 4 – Presentation

o Video recording

o Thesis defence

6

1.6. Brief summary of products obtained

At the end of this master thesis there will be available a python tool that, given an

internet domain name, it will retrieve and analyse public information related to it

without being noticed by the target. It will also output all the sensitive and potentially

vulnerable data found in the form of a web application so it can be checked during a

cybersecurity assessment.

7

2. Materials and methods

In order to develop this master thesis, the OSINT cycle has been used as a reference to

define the following methodology [16].

Firstly, it will be necessary to perform some research on what type of data is relevant

during a cybersecurity assessment so that the resulting tool can satisfy those needs.

Secondly, looking for tools that are being used now by analysts will help identify how

they retrieve such information and where they get it from by analysing their code. This

is important because we will be able to discover and use several open data sources for

each type of data, so the developed tool can rely on several of them instead of just one.

Once we have the type of data and we know where to collect it from, we will need to

define how to process it so it can be analysed more easily later.

At this point, we will be ready to start implementing the tool. To do so, Python has been

chosen as it is one of the easiest programming languages and very popular among

cybersecurity related tools too. In fact, Python will be used too to develop a web

application that will be responsible of showing all the collected and processed

information so it can help visualize the current state of an investigation. Also, it will

help us discover other types of data that could help analysts and the process will start

again from the beginning.

This procedure described above will be the main workflow used to implement data

types. In an initial research, the main data types detected to be useful are:

• Email addresses

• Phone numbers

• Names

• Usernames and passwords

• Google Hacking results

• Subdomains

• Files

Regarding the open data sources, the tool will use the following ones in its initial phase:

• Google

• Bing

• Wayback Machine

• Alienvault OTX

8

In order to validate and check for false positive results, the tool will be run to search

information of a known organization (200 employees) to see how it performs. This will

also help us check if it really speeds up the process comparing it to other tools.

2.1. Potential risks

During the development of this thesis there can appear the following risks:

• [LOW] As this is the first “big” OSINT tool that I will develop it can appear

other problems that will make me go slower on the planning.

• [LOW] Being unable to correctly identify which features are the ones that will

increase the value of the final tool.

• [LOW] Because some of the techniques that will be implemented on the tool

requires time to gather the data of a target it can suppose a drawback for analysts

that need their results rapidly.

• [MEDIUM] Lack of time to implement all data types and their corresponding

retriever and analysis modules.

• [MEDIUM] Lack of time to implement the web application that will help

visualise all the information gathered by the developed modules.

Although it has been identified the above risks, only the lack of time can really affect

the project. For this reason, following the methodology described should help identify

which features are the more important to develop earlier so the tool can be useful even if

we run out of time.

9

3. Technical details

As mentioned, developing a Python tool is the primary goal of this thesis. In this

section, its design and features will be discussed in depth.

3.1. Why Python?

Python is one of the most popular programming languages thanks to its ease of use,

simplicity and flexibility [17]. It is vastly used as a scripting programming language

and, in fact, many exploits are developed in Python.

Because it has a big community behind it is very easy to find all sorts of third-party

libraries that can be easily integrated into any project. The cross-platform compatibility

it offers is also key in order to develop a tool meant to be used in any operating system.

In conclusion, Python seems to be suitable for this project based on its features.

3.2. What will Infohound do?

Infohound will retrieve all publicly available information given a domain name. The

obtained results should provide analysts with an overview of what data malicious actors

can gather from, for example, a company. Some of this information will be then

analysed to extract additional details or to find vulnerable services. However, the main

goal is to help visualize which degree of exposure a web domain has on the internet.

3.3. Infohound tool design

The tool aims to be simple to use and customizable for every need an analyst can have

when performing passive enumeration. For this reason, its functionalities have been

divided as granularly as possible to create a multi-modular design.

10

Figure 1 - Infohound design

As can be seen in Figure 1, Infohound is divided in 5 big parts: database (containing

data types), retriever modules, analysis modules, custom modules and data sources.

Each of these groups is reviewed in detail in the following subsections.

Note: small changes will be made through the development of the tool as new and

better ways to divide each task will be found. This will be taken as a baseline to start

building the whole tool.

3.3.1. Data types

As mentioned in Section 2, after some initial analysis of what kind of data the most

popular OSINT tools look for, these have been stablished as the most basic ones:

domain information, subdomains, interesting URLs, files, Dorking results, people,

emails, credentials and IPs. For this reason, each data type will have its own table in the

database with the following columns:

Figure 2 - Data types tables and column names

• Domain: this table will have basic domain data like the actual domain being

analysed, all the WHOIS information and whether it has an email server. The

11

WHOIS field will have all found registries in order to analyse them later to find

emails, users, phones or any useful information.

• Subdomains: knowing all the subdomains (active and inactive) allows analysts

to monitor its activity and understand how a company operates. They can also be

later analysed to see if they can be taken over. This table will store the

subdomains found, whether the subdomain can be taken over, which service it is

using and in which data source it was discovered.

• URLs: every URL discovered at any stage will be added to this table. This will

let other modules use them to find the information they are looking for. For

example, it could be that when a file URL is discovered, it is, in fact, pointing to

a subdomain so it will be added to this table in order the corresponding module

can perform additional checks. This table will also contain in which data source

the URLs were discovered.

• Files: this table will contain the URL where the file is located, the name and the

whole metadata of each file the tool discovers. All this is important to further

extract information about the internals of a company. Metadata can contain a

wide range of data. However, each type of file can have different parameters

defined. For this reason, instead of redesigning the table each time we found a

new one, we store the entire metadata in its column. By doing so, we will be

able to revisit all its information whenever it is necessary. Also, at the end, the

tool should focus to reduce all the information to one of the basic data types.

• Dorks and Results tables: in these two tables, Dorking related information will

be saved. Dorks table will contain the queries to perform, the number of total

results Google says to have, the actual results found and when was the dork

executed last time. This will help both monitor if the results are complete and

create some rules to re-execute them in order to find other vulnerable paths.

Then, in the Results table, there will be an entry for every URL found followed

by the dork that discovered it, a description of the webpage content, all the

information Google returns and when it was seen. As before, the data is stored as

raw as possible so it is easy to revisit it in the future by custom modules, for

example.

• People: this table will be one of the most interesting for analysist as it will

contain names, phones and a list of social media profiles. It will also have where

they were found.

• Emails: this table is the most complete. For each entry, it will contain the email,

the person (if known) from the People table that belongs to, the services where

the email has been used in order to create an account, whether it can be spoofed

and if it has been found in a leak. Also, as other tables, it will be shown where

the email was discovered.

12

• Credentials: the goal of this table is to create a database of username and

password pairs in order to help analysts in the next steps of a red team exercise.

It will also contain (if known) who its owner is and which data source was used

in order to find them.

• IPs: this table will contain each IP found, related to the domain that is being

analysed, and whether it has some service found vulnerable.

As these tables will be difficult to customize by users (i.e. they will need to change not

only the table schema but every function where data is inserted into the database to

avoid conflicts), they should create their own. In addition, to avoid redundancy, a

foreign key should be used to reference one (or more) of the main data type described

above.

3.3.2. Retriever modules

These modules have the mission to request every data source needed to gather and save

the information for which they were created. Here Infohound will be defined, more or

less, with one retriever module for each data type. The following list shows the main

functionalities each default Infohound module will have:

• Domain (domain.py): it will have to retrieve from data sources any information

related to WHOIS. Also, it should check whether the domain has a mail service.

• Subdomains (subdomain.py): this module will aim to retrieve subdomains from

data sources and from other database tables like URLs.

• URLs (urls.py): this file will retrieve cached URLs from data sources like Web

Archive [2] where a large amount of these entities are stored. It will look for

URLs in other database tables too.

• Files (files.py): it will be responsible to populate Files database table from the

URLs found and based on a list of extensions. Following FOCA’s methodology

[9], these file extensions were selected as can support a lot of interesting

metadata information: doc, docx, ppt, pptx, pps, ppsx, xls, xlsx, odt, ods, odg,

odp, sxw, sxc, sxi, pdf, wpd, svg, indd, rdp, ica, zip and rar.

• Dorks (dorks.py): this module will load all dorks provided by the user through a

file into the Dorks database table. It will also update and create Dorks and

Results database table whenever a dork is executed as a query in any search

engine.

• People (people.py): for now, it will only be responsible to find social media

profiles using an email from Emails table and saving all the information found

inside People table. Also, if usernames are found they will be added to the

Credentials database table.

13

• Emails (emails.py): this module will find emails using search engines (each of

them will need to be present into the data sources folder) and in other tables such

as the metadata column from Files table.

• Credentials (credentials.py): it will be responsible to find credentials from

different sources based on the usernames found in the Credentials database table.

Remember that here usernames can be both nicknames or emails.

• IP (ips.py): this module will find the IPs the domain is using to host all of its

services.

3.3.3. Analysis modules

These modules should not retrieve any data from public sources, instead, they should

use already known information to process it and extract additional one. However, this

distinction can sometimes be difficult to identify and some analysis modules will need

to perform checks against some tools or services. As a reference, the following analysis

modules have been identified useful:

• Domain (domain_analysis.py): this analysis module will perform some analysis

on the WHOIS information found in its retriever module.

• Subdomain (subdomain_analysis.py): this module will be responsible to perform

additional checks like, for example, detect the service behind a subdomain and

check if can be taken over.

• Email (email_analysis.py): this module will detect the services where an email

has been registered to and check whether the email domain can be spoofed.

• Files (files_analysis.py): it will handle the process to download each file and the

metadata extraction.

• IPs (ips_analysis.py): this module will perform the necessary checks to

determine if a server hosts a vulnerable service or sensitive information.

As can be seen, not all basic data types have for its corresponding analysis module. This

is because at the moment of writing it has not been found any further analysis that can

be performed on URLs, dorks, people and credentials modules. However, it may appear

the need of them during the development of the tool.

3.3.4. Custom modules

In order to let users, add their own modules (retrieval and analysis), a special directory

will be created to place them there. These modules will be later imported by the main

script and executed.

14

Although each module created in this thesis has several functions, custom ones should

do only a specific task to maintain modularity and granularity.

To correctly create a custom module, the user will have to implement a function named

“execute” which will be called by the main program. This mandatory function should do

all the actions the user wants to be performed by the module.

For now, this is how a custom module should be created, but it may later be necessary

to create an optional “whenFinished” function which will allow the user to stablish what

should be done when his module finishes its execution.

3.3.5. Data Sources

Different types of data sources will be used:

• Search engines: two big search engines have been selected, Bing and Google, to

find as much information as possible from querying them. Although they will

share some functionalities, Google will be the only one performing Dorking

queries for simplicity. At least, at the beginning of the Infohound development.

• Tools: Holehe [18], with more than 120 sites to check, will be used to gather

which services an email has been registered to.

• Feeds: at this point of the project only Alienvault OTX (Open Threat Exchange)

[19] has been identified as useful. It’s a free thread hunting tool with an API

which allows users to retrieve information about domains. This will mainly be

used to find URLs, subdomains, files and WHOIS information.

• Other services: here we can find Web Archive [2], Shodan [8] and other tools

related to credentials discovery like Leak Lookup [20] or Have I Been Pwned

[21]. At first, Web Archive will help find URLs, subdomains and files that will

be possible to download without reaching the domain server. Secondly, Shodan

will be used to find more information about the IPs found like ports, services

and whether they are vulnerable to some exploits. The credential related services

will have to be analysed in depth to check which are the most useful and less

expensive.

3.3.6. Possible improvements

When defining what exactly Infohound should do and its design, some flaws were

detected. Although they do not directly impact on the results of the tool, they can make

a big difference in its performance. However, some of these improvements can be time

consuming when developing. To avoid running out of time, they will be considered and

implemented while creating Infohound.

15

• Concurrency problem: performing some tasks can take a lot of time. For

instance, when files have to be downloaded in order to extract the metadata,

depending on how many files have been retrieved it can last for hours.

Implementing the ability to execute asynchronous tasks will reduce waiting

times drastically.

• Improving the database: Sqlite3 was considered in this initial design, however, it

does not scale efficiently and it neither supports concurrent operations.

PostgreSQL [22], in the other hand, allows this type of queries and it performs

better. The only small drawback is that it requires to be run as a separate service.

• Django models: if the idea is to create a web interface at the end of the project it

should be considered the use of the Python web framework, Django [23]. Using

its system models to create the tables will give a layer of abstraction and will

allow users to decide which database they want to use without modifying

anything. Also, the code will be cleaner and it will be easier to understand when

the information is modified. This improvement can be easy to make, but it can

also be an overkill solution if Django is only used to show static data straight

from the database.

• Add more analysis modules: as mentioned above, the analysis modules have to

be improved. However, depending on which information wants to be extracted,

it can increase its complexity a lot which can lead to running out of time.

16

4. Technical development

4.1. First iteration – Simple PoC

This iteration has several goals. First, to check the viability of the whole project.

Although, we have seen that there are a lot of open source tools doing similar tasks as

proposed in this project, it could be possible to find some difficulties when trying to

implement this type of tools. Second, this iteration while help us to see if the previously

defined database schema needs to be changed as some other important data may be

discovered. Third, to detect which are the most valuable information to be gathered and

methods to accomplish this task.

This section has been divided in three subsections: retrieval modules, analysis modules

and custom modules. In each of them, it will be discussed the first implemented

functions.

4.1.1. Data sources

From now, when any external service is used, it will be handled by its corresponding

data source. This is done to avoid duplicate code and to facilitate its maintenance. In

this first iteration the following data sources are implemented:

• alienvault.py

• archive.py

• bing_data.py

• google_data.py

• leak_lookup.py

• adobe.py

• duolingo.py

• imgur.py

• mewe.py

• parler.py

• rumble.py

• snapchat.py

• twitter.py

• wordpress.py

17

4.1.2. Retrieval modules

domains.py

• get_whois_info: given a domain name it requests all the data associated to it

from the whois registers. The tool used to perform this task is the python whois

library [24]. Although, it exists other sources to find these records, for example

the Alienvault OTX API, it has been observed that they all have the same level

of information.

subdomains.py

• get_subdomains: this function will use the Alievault OTX API to retrieve all the

domains from the /indicators/domain/<domain>/passive_dns endpoint

(performed by the data source). This call will return all the hostnames Alienvault

have detected from a particular domain. For example, for uoc.edu it returns 52

unique subdomains which is a very good starting point.

• get_subdomains_from_urls: as all URLs detected on other modules will be

added in the URLs database table, it is wise to check all its entries to check if

any other subdomain is found.

urls.py

• get_urls: one great source to get URLs is Web Archive (implemented as a data

source). As discussed earlier, it creates snapshots of the internet to preserve its

history. For this reason, is easy to find a lot of URLs from a single domain

included those that are no longer available. For example, querying URLs from

the uoc.edu domain it returns more than 400k URLs. This will help discover

new subdomains, files and even emails. Also, as all this URLs have been cached

by Web Archive, files and pages can be downloaded and accessed without being

detected by the target domain.

files.py

• get_files_from_urls: this function reads every entry in the URLs database table

and when a file is detected (i.e. the url is pointing to a file with one of the

following extensions: doc, docx, ppt, pptx, pps, ppsx, xls, xlsx, odt, ods, odg,

odp, sxw, sxc, sxi, pdf, wpd, svg, indd, rdp, ica, zip and rar) it adds it to the Files

database table. As Web Archive files URLs point to a previsualization window

and not the actual cached file, it is necessary to change the link. In those cases,

the File database entry is added with the downloadable modified link. However,

creating this new URL is not as simple as adding some value, because Web

Archive has snapshots of each file we request to get the latest one. This is very

time consuming and needs to be improved.

18

dorks.py

• load_dorks_from_file: given a file with dorks and a category, this function will

add them to the Dorks database table. In case <domain> tag is detected it will

be changed to domain being analysed.

• execute_dorks: this function will query each dork to Google (using its data

source) and store its output to the Results database table.

emails.py

• find_emails: this function will use Google and Bing data sources to look for

emails related to the domain being analysed. It will do it by using the following

dork (using uoc.edu as example): intext:@uoc.edu and inbody:@uoc.edu

respectively.

• find_emails_from_urls: sometimes parameters can be cached too so it is worth

checking if an email is being indexed by any engine, especially in Web Archive.

people.py

• find_social_profiles_by_email: given the emails found, this function searches in

Google splitting each: from example@uoc.edu to the dork “example” uoc.edu.

Then it will try to find in the results, Twitter and LinkedIn profiles extracting the

person name (to add an entry in the People database table) and usernames (to

add them in the Credentials database table).

credentials.py and ips.py

In this first iteration these two modules were skipped. Firstly, because checking

searching for credentials and IPs seemed to be trivial in the form of using an external

service or performing a name resolution. And secondly, to focus in other modules that

seemed to have more work and difficulties.

4.1.3. Analysis modules

domain_analysis.py

• can_be_spoofed: DMARC policy is a parameter in the email server

configuration that will stablish what to do when the sender of an email header

and the sender of the email body are not the same (i.e. email spoofing). This

function, will check this policy in order to determine if the email domain can be

spoofed. Although, this functionality could have been added in the

emails_analysis.py file, it seemed right to put as a domain check rather than for

each email found. To implement this function, SpoofThatEmail [25] tool was

taken as a reference.

19

• subdomain_takeover_analysis: for every subdomain found, this function will

check if it can be taken over. Taking over a subdomain [26] can be tricky as

there are a lot of services. For this reason, “Can I take over XYZ?” [27]

repository has been used as a reference, in fact, only its fingerprints.json file that

contains fingerprints and other checks for every service.

files_analysis.py

• download_all_files: this function will download each file found in the Files

database table to the downloaded_files directory. This will allow to perform

further analysis on them. As hundreds of files can be found, the time spent to get

all of them can be very high. For this reason, this function will need to be

improved to be able to download several files at the same time.

• get_metadata: using the ExifTool [28] package, the metadata of each

downloaded file will be extracted and saved entirely to the database.

• get_emails_from_metadata: this function will loop over each Files database table

entry to get the metadata and extract all emails found.

emails_analysis.py

• find_registered_sites: as emails are used to create accounts over internet

platforms, it is worth checking if the emails Infohound found were used too. To

perform this task, Poastal [29] tool has been used as a reference as it checks on

popular platforms such us Facebook, Twitter, Snapchat, Parler, Rumble, MeWe,

Imgur, Adobe, WordPress, and Duolingo. Each of this site will have its data

source file.

• check_breach: this function will check if the email is found in a data breach.

There are many services that can perform this task however, most of them are

limited or require a paid subscription. Leak-lookup [30] has been chosen as it

has a public API to perform simple checks (without showing the actual

password) although it only allows 10 daily requests. It has been added as a data

source.

4.1.4. Custom modules

In this iteration, custom modules were not implemented.

4.2. Second iteration – Django

Within the first iteration it could be seen that the project was really viable and there was

room to improve. In this section it will be discussed the upgrades done in each module

and in the whole project.

20

4.2.1. General improvements

a) Using Django: as said in previous sections, the output of the tool will be

visualized in a web page. For this reason, and sticking to Python language,

Django can easily perform this task. Also, this will allow us to forget about

future problems when changing the database technology as Django stablishes its

model schema.

b) PostgreSQL: in the first iteration we detected that a lot of records can be

gathered for several database tables. To handle that amount of data efficiently, it

was necessary to migrate from SQLite3 to PostgreSQL. Using Django this task

was as easy as changing the configuration of it rather than finding and

modifying each SQL query in the whole tool.

c) Concurrency: we saw that there are some functionalities that can take a lot of

time to complete as they need to perform some kind of processing to request to

other services. Trio is a Python library for asynchronous concurrency and I/O,

and it has been implemented to solve this problem.

d) Tables properties: changes were made in some of the tables:

▪ In the Peoples model (the table equivalent in Django) the “Profiles”

property has been renamed to “Social Profiles” because it will only

contain LinkedIn and Twitter links pointing to the person profile.

▪ A new property has been added into the Domain model: DNS_Records.

This will store the A, AAAA, MX, NS and TXT records.

▪ The Credentials model has been renamed to Usernames as it better

represents the information stored in there. Now, it will also have a

“Profiles” property which will contain a list of profile links to services

where that username is being used.

▪ A new property has been added to every model, the “Domain_ID”. This

will allow the Infohound tool to handle several domain analyses at the

same time.

Figure 3 - Improved database properties

21

4.2.2. Data sources

Some changes and parsing improvements have been made. Also, a new file structure

has been defined, later discussed.

4.2.3. Retrieval modules

domains.py

• get_dns_records: this function will look for A, AAAA, MX, NS and TXT DNS

records from a domain. This information can be useful to, for example,

determine which email service is being used and to find other information

subdomains.py

Nothing has been added or changed in this iteration.

urls.py

Nothing has been added or changed in this iteration.

files.py

• get_files_from_urls: this function has been divided in two. Instead of handling

all the process to retrieve the file download URL from Web Archive, which is

time consuming, now it retrieves the entries of the URLs model and passes the

link to another function to perform the heavy work. This allows a better

integration with Trio library to create concurrent calls which greatly improves its

performance.

dorks.py

Nothing has been added or changed in this iteration.

people.py

Nothing has been added or changed in this iteration.

emails.py

Some improvements have been made. Now all found emails are being lowercased and

validated before adding them into the database to prevent false positives and duplicated

entries.

usernames.py

22

• find_usernames_from_people: this function adds the usernames found in Twitter

or LinkedIn to Usernames model. This task was done earlier by people.py when

looking for social profiles given an email.

• find_usernames_from_emails: some services use the email as a username, that is

why the emails found will be used too to find possible matches in several

platforms.

• It is being studied to add a function to generate possible usernames based on

people’s name performing some type of variations. Although this can increase

our finding it will also output a lot of false positives.

ips.py

This module has only one function, given an IP it gets all its related information

available in Shodan to be later analysed. The main drawback is that to use Shodan’s API

the user will need to have a paid subscription as it only allows a few queries per month.

4.2.4. Analysis modules

domain_analysis.py

Nothing has been added or changed in this iteration.

files_analysis.py

• download_all_files: in order to improve the performance of this function, it has

been used the Trio library to make concurrency calls to another function that

performs the actual file downloading process.

• get_emails_from_file_content: reading the content of several file types can be

tricky. At this time, only text is extracted to be later analysed from file types:

doc, docx, ppt, pptx, pps, ppsx, xls, xlsx, pdf, svg, indd, rdp, ica and rar.

email_analysis.py

Nothing has been added or changed in this iteration.

usernames_analysis.py (new)

• get_profiles: Given the usernames found, this function will pass them to Maigret

[32] tool which is a fork of Sherlock [33]. These two tools check usernames on a

huge number of sites. More specifically, Maigret currently supports more than

3000 sites without requiring an API key.

23

4.2.5. Custom modules

In this iteration, the support of custom modules has been implemented. It works very

simple. The only thing the user who wants to create a custom module must do is to

create a Python file inside custom_modules directory and implement a function named

custom_task. The file can contain other functions that gives support to this main one.

Infohound will import all files it finds in this directory and execute the custom_task

function. As an example, it has been added the tool Holehe (previously discussed)

which given an email address checks if it has been used to register to specific services.

Holehe supports more than 120 sites although some of them stablish a request rate limit

and can give false negatives. The way this tool is added as a custom module is as

specified before:

1.1 Create a file named holehe.py inside custom_modules directory.

2.1 Import necessary packages, including holehe, Emails model and Trio.

3.1 Create the function custom_task. This function will immediately call another one

present in the same file, find_registered_sites_holehe. As can take some time to

gather all the information, this function has been implemented as an

asynchronous one.

4.2.6. Results in numbers

The test following results have been obtained analysing a company which has more than

150 employees.

• Number of URLs: 22191

• Number of subdomains: 103

• People: 13

o Most of them with Twitter or LinkedIn

o Four of them with two usernames

• Emails: 18

• Files: 726

It is important to note that when a function is executed, it can add additional information

useful for a previous executed function. So, although this numbers might seem low not

all functions have been run again. At this stage of the project, the goal has been to

implement functionalities rather than trying to perform a deep analysis. Now, that

Infohound tool has a great base, one of the next steps is to improve the results and add

more capabilities.

24

4.2.7. File structure

As a lot of files and directories have been discussed, it can be hard to follow the overall

project structure. The main folders inside the project are:

• data_sources: will contain the implementations to query services like Google,

Bind, Web Archive, AlienVault and other. It also has one folder for leaks

services (like LeakLookup) and another one that contain services to check if

certain emails have been registered there.

• analysis_modules: has the modules that analyse the data already present in the

database.

• retrieval_modules: contains the modules in charge to gather as much information

as possible about the target domain.

• custom_modules: will has user created modules.

• dorks: in order to import the dorks to be executed by the tool the user will need

to provide them in a text file where one line represents one dork. This file will

need to be placed in this folder.

Here you can find a simplified schema:

25

infohound/

├── data_sources/

│ ├── leaks/

│ │ └── leak_lookup.py

│ ├── services/

│ │ ├── adobe.py

│ │ ├── duolingo.py

│ │ ├── imgur.py

│ │ ├── mewe.py

│ │ ├── parler.py

│ │ ├── rumble.py

│ │ ├── snapchat.py

│ │ ├── twitter.py

│ │ ├── wordpress.py

│ │ └── //more services could be added

│ ├── alienvault.py

│ ├── archive.py

│ ├── bing_data.py

│ ├── google_data.py

│ └── shodan.py //New data source

├── analysis_modules/

│ ├── domain_analysis.py

│ ├── email_analysis.py

│ ├── files_analysis.py

│ ├── fingerprints.json

│ └── usernames_analysis.py

├── retrieval_modules/

│ ├── domains.py

│ ├── dorks.py

│ ├── emails.py

│ ├── files.py

│ ├── ips.py

│ ├── people.py

│ ├── subdomains.py

│ ├── urls.py

│ └── usernames.py

├── custom_modules/

│ └── holehe.py

├── dorks/

│ └── dork_list.txt

├── infohound_utils.py //Stores API keys

└── main.py

26

4.3. Third iteration – The web app

With all the progress done in terms of functionalities, the next big step is the creation of

the web application. The initial idea was to create a basic html report where the data

would be displayed. But creating a web application seemed to be a good idea to give the

user the ability to dynamically execute tasks based on the information that previously-

executed tasks found.

4.3.1. Improvements from previous iteration

a) Web application: in this iteration a backend and a frontend have been developed.

The web app has been designed with the idea to be easy to use and understand

all the found data. InfoHound now is a complete tool with a fully functional

web.

b) Tasks and progress bars: as the tool have some functionalities that can be

executed more than one time (e.g. new email addresses have been found and it is

possible to search for related people) it is mandatory that the analyst has the

ability to launch some tasks the backend must do. It has been possible to develop

an architecture to handle these operations.

c) Improve modules: some modules have been updated to fix minor errors and to

improve their features.

d) New data sources: subdomains can now be gathered from CRT.sh and

HackerTarget sources.

e) Dorks: a folder is created so the analyst can put there the dorks to be loaded in

the application. The category of the dork is determined by the filename. Six files

have been added to this folder containing some dorks for the following

categories: exposed services, find files, general information, information in

external services (GitHub, Confluence, Trello, etc.), possible vulnerabilities and

search emails.

f) Table properties: changes were made in some tables:

• The Domain table now has a Boolean parameter to determine if the

analysis to be performed should be 100% passive. If false, the URLs that

point directly to files hosted on the specified domain will be downloaded

and analysis. However, if full_passive is set to true, those will not be

queried as the target could log the activity.

• A new column has been added to Subdomains table where a Boolean will

indicate whether the subdomain is active.

27

• The URL in Results table now is a foreign key pointing to an entry from

URLs.

• A new table has been created, Tasks. This will be used to keep track of

the available tasks the analyst can perform through the web application

and their state.

• The IP table is left in the database but the functionalities have not been

implemented due to lack of utility, for now. Although it is true it could

give a lot of helpful information using services like Shodan, it has been

noticed that a lot of domains are behind hosting or other technologies to

mask their real IP making it difficult to correlate the findings to the

domain being analysed.

Figure 4 Improved database properties II

4.3.2. Web app

The web application has 3 sections:

• Domain list: located at the left, it lists all the domains added by the user. As

mentioned previously, being able to analyse multiple domains at the same time

can be very helpful to an analyst. It has been designed to make it easy to know

what information is being viewed at any given time.

• Navigation bar: there are 5 tabs for each domain. The data displayed in them is

described in the next section.

• Content: here the user will see the results gathered from the tool.

28

Figure 5 InfoHound Web Application

Adding a domain

Adding a domain is as easy as clicking on the “Add domain” button at top of the

domain list. A pop up will appear where the user can enter the domain name and check

if the analysis should be fully or partially passive.

Figure 6 Add domain window

After submitting the form, the domain will be added in the domain list and some initial

task (e.g. get DNS records) will be executed.

Deleting a domain

If the domain has to be deleted from the domain list, it is as simple as clicking in the bin

icon it appears next to the domain when selected.

29

Figure 7 Deleteing a domain

Another pop up will be shown to the user alerting of the deletion of all entries in the

database for that specific domain.

4.3.3. Tabs and content

The web application has 5 tabs: general, people, emails, dorks and tasks. In this section

it will be discussed which information can be found in each these tabs.

General

This tab gives a general overview about the findings. For instance, it shows the

information given from a whois query and the DNS records if found.

Figure 8 General tab - Domain Overview

There are some stats about the general findings of the tool too:

• Total number of URLs gathered

30

• Total number of subdomains discovered

• People found

• Files found

• Number emails that contains leaks

• Number of spoofable emails

• Number of emails that have been possible to link to a person

• Number of emails that has been used to log in other services

Figure 9 General tab - Findings

Subdomains

This tab shows all the subdomains found, where they have been found and whether they

are active or/and can be taken over. Also, there is a button which allows the analyst to

export the findings to a CSV file.

31

Figure 10 Subdomains tab

People

In this tab, the people found is shown in a grid design. It is possible for the user to easily

see the emails, phones, usernames/credentials and services or profiles linked to each

person the tool has identified. It also shows the icons of Facebook, Twitter and LinkedIn

in case the profile has been discovered.

32

Figure 11 List of people discovered

When clicking any of those people a new window is opened with further information

about the person. There we can find several things:

• the email addresses associated to that person,

• the services where email has been found to be registered

• the usernames, whether they appear to have a leak and, in case the analyst has

entered the Leak Lookup API key, the password

• the services where it has been found to exists the username

As explained in previous section the services are found using other tools, Holehe for

emails and Maigret for usernames. These two tools can produce false positives results

so it has been marked with a tooltip so the analyst is aware of the situation and can

understand more precisely what is shown in the application.

Emails

This tab shows the emails InfoHound has found with some additional information:

• The email

• The Person linked (if found)

• If the email has been found in a leak

33

• Whether the email is spoofable

• The source where the email was found

Also, a “Export to CSV” button has been added to allow the analyst bring the results to

other tools.

Figure 12 Emails list with useful information

Dorks

After thinking of different approaches when designing this tab, the most useful was to

only show the dorks that produced results as the analyst could load hundreds or

thousands of dorks. So, for every dork with results, the dork will be displayed, the

dork’s category and the link to the page that satisfies the dork’s query.

34

Figure 13 Dorks table with example values

Tasks

This final tab has the most interactive part of the tool as it handles the launches of the

tasks to be performed in the backend. Each task has a name, a description and the time it

was last executed. The tasks are divided in retrieval and analysis ones. Also, some

badges have been added: initial task and custom.

The initial task indicates that the task will be automatically executed when a domain is

added. However, the analyst will be able to re-launch the task in case new something

has changed.

Figure 14 Tasks and initial tasks

35

The custom badge indicates that the task has been added by the analyst by the creation

of a custom module which will be automatically added as a task.

Figure 15 Holehe custom task with Pending state

It is possible to see the state of a task as the Execute button will change to Pending and

a progress bar will appear when launching a task.

Files and IPs could have their own tab but this idea has been discarded for the following

reasons:

• Although IPs could give some potentially valuable information it has been found

many domains are running behind services with multiple servers sharing the

same IP making it very difficult to extract useful data related to a specific

domain.

• We can gather hundreds of Files with InfoHound however, only emails are being

extracted at this moment. For this reason, it does not make sense to have a tab

specific to Files although it could be added in the future.

36

5. Results comparison

Before comparing InfoHound with other similar tools we have to stablish which aspects

will be evaluated. For instance, the following points have to be considered:

• As InfoHound is a passive focused tool, only these types of reconnaissance

techniques will be considered. So, for example, when discovering subdomains,

no brute-forcing can be performed.

• Although some tools integrate third party paid services to gather more results

only free ones will be used. The main reason is that while they can achieve

better results they can be also added to InfoHound as custom modules. The

comparison should not be made to something it can be implemented with more

time but how the tool gets same results without spending money.

The tools that InfoHound will be tested against are: reconFTW, FinalRecon [34] and

theHarvester [35]. These tools are very well known and together they have more than

14.5K stars in GitHub.

For the following tests the domain used is i2cat.net as they have let me perform some

validations. However, other domains were tested while developing InfoHound, to check

that it worked well, and the results are very similar.

5.1. Domain and general information

All three tools and Infohound got the same information as whois and DNS queries are

very standard. However, the way they present it is different. For example, FinalRecon

has a specific command argument to display it, reconFTW writes the output in a file and

theHarvester shows it directly to through the console.

5.2. Subdomain enumeration

The subdomain enumeration is performed more or less in the same way in all three tools

although they get different results:

• FinalRecon searches in CRT.sh [36], ThreatMiner [37], HackerTarget [38],

WebArchive and CertSpotter [39]. It obtains 325 unique subdomains.

37

Figure 16 FinalRecon subdomain enumeration output

• reconFTW obtained 458 subdomains but 368 were passively obtained while the

others were got by brute-forcing.

38

Figure 17 reconFTW subdomain enumeration output

• theHarvester also uses CRT.sh, CertSpotter, ThreatMiner and Alienvault as

sources. It launches Sublist3r [40], a subdomain enumeration tool, to obtain as

many subdomains as possible. In total, it gets 341 unique subdomains.

39

Figure 18 TheHarvester subdomain enumeration output

InfoHound obtained 295 unique subdomains. Although it is lower than other tools it

only uses WebArchive, Alienvault, CRT.sh and HackerTarget so there is room to

improve by adding other sources. Luckily, this can be done very easily.

5.3. Finding emails

FinalRecon and reconFTW do not have the ability to find emails directly (i.e. they crawl

the domain web pages to find relevant data). However, theHarvester does and it

obtained a total of 7 emails.

Figure 19 Emails found by theHarvester

Here, InfoHound surprisingly outperformed by finding 42 emails. This can be due the

different locations InfoHound looks for emails. For instance, the main sources are

Google (12) and Files (18).

40

Figure 20 InfoHound - Found emails

5.4. Other entities discovery

This test could not be performed because the tools are unable to correlate results as, for

example, they cannot link an email to a person. However, they can perform other

straightforward checks like verifying if a subdomain can be taken over or a domain

spoofable.

41

6. Architecture and deployment of the tool

At this stage of the project a lot have been introduced and it may seem difficult to see

the structure of the tool and how it works. These are the most important elements of

InfoHound:

• Djnago project:

o Core tool: here lies the code that performs all the gathering and analysis

actions. Also, it contains the folders where files are downloaded and

custom modules uploaded by the user.

o WebApp: this element interacts with the database to get the results and

display them on a web application so it is easy to understand what has

been obtained.

o PostgreSQL: this is the database used to save all the data found. All

actions are performed using Django models so it is abstract for de

developer and can the database technology can be changed.

• Task management: Redis and Celery are used to create tasks and get their states.

These tasks are created in the WebApp and is the only way to interact with the

core tool. However, if a user desires to develop a script to launch the core tool

by command line it can be done with minimal effort.

Figure 21 InfoHound arquitecture

In terms of functionalities, the following figure shows the data sources InfoHound has

and the data entities they affect:

42

Figure 22 Data entities and sources realation

InfoHound has been thought to be Open Source from the beginning so it is now

available in a public GitHub repository [41] licensed under GPL-v3. This license has

been chosen for its permissions and conditions.

It has been included a Dockerfile and a docker-compose.yml files too so it can be

deployed easily with Docker. Finally, a GitHub workflow [42] has been created so it

automatically builds and publish an image to Dockerhub [43].

43

7. Conclusions

After analysing the results obtained from testing several domains, it is wise to say that

this thesis has become successful in creating a tool that combines several passive

enumeration techniques.

It does not only provide results previously gathered by open data sources but it also has

its own methods to discover emails, for example. Additionally, InfoHound uses other

tools too like Holehe or Maigret to discover more entities related to people. Some

uncommon techniques have been implemented like downloading and analysing files,

which it is not a feature that the most popular tools have.

However, the main key features are the modularity and customization by adding new

modules. The modularity has allowed the InfoHound to its own source for some entities

as when URLs are added to the database then they can be used to discover new

subdomains. On the other hand, the customization allows the expansion of the tool.

There are a lot of open data sources, online paid services or custom created scripts that

can bring more rich and updated information. Connecting them to infohound is as

simple as creating a Python script and save it to the custom_modules folder.

Another worth-mentioning feature is the use of dorks. The dorks are executed by using

the Google API to avoid being blocked. Although the free plan has a limitation of 100

queries per day, it is enough to gather interesting information. There are tools, like

Pagodo, that can execute dorks without using the Google API but it has to be well

configured and the results are obtained very slowly.

7.1. Next steps

There are some things that could be improved, changed or added, here are some of

them:

• Improve how people are retrieved. For example, scraping names and other

information that could be interesting from social media or services.

• Add more data sources. For example, AIL-Framework [44] (developed by

CIRCL [45]) which analyse potential information leaks from unstructured data

sources like pastes from Pastebin.

• Add other tools like Blackbird [46], an OSINT tool to search for accounts by

username.

• Add a module to retrieve phone numbers.

• Improve the metadata and file analysis so it can show more relevant information

like the operating systems and software versions people are using.

44

• Let the analyst add entries through the web application. Now, if an analyst finds

an email and wants to add it to the tool, he/she must do it with PostgreSQL.

• Instead of using regex and other techniques to perform scraping, use Natural

Language Processing (NPL) with a library like spaCy [47]. This will improve

accuracy and better correlation between entities.

• Connect Maltego with InfoHound. It seems feasible to create a local

transformation server for Maltego so given an entity, InfoHound can return

related data. The main one would be that given a domain, it will return

everything but it could also be applied to emails to find people.

• Improve the web application views. The general tab should be re-designed to be

more visually helpful.

• Improve and clean the code so everyone can understand the project internals and

contribute to it.

• Use services to determine technologies used in the web domains and adapt the

Google Dorks to search for specific misconfigurations and vulnerabilities while

creating a web profile.

45

8. Bibliography

[1] J. Koetsier, “How Google searches 30 trillion web pages, 100 billion times a

month”, https://venturebeat.com/business/how-google-searches-30-trillion-

web-pages-100-billion-times-a-month/, 2013

[2] Wayback Machine: https://web.archive.org/ (accessed 03/03/23)

[3] A. Martínez, “OSINT - La información es poder”, https://www.incibe-

cert.es/blog/osint-la-informacion-es-poder, 2014

[4] Google Hacking: What is a Google Hack?

https://www.acunetix.com/websitesecurity/google-hacking/ (accessed

05/03/2023)

[5] MITRE ATT&CK: https://attack.mitre.org/matrices/enterprise/ (accessed

05/03/2023)

[6] Pagodo: https://github.com/opsdisk/pagodo (accessed 06/03/2023)

[7] Hunter: https://hunter.io/ (accessed 06/03/2023)

[8] Shodan: https://www.shodan.io/ (accessed 06/03/2023)

[9] FOCA: https://github.com/ElevenPaths/FOCA (accessed 06/03/2023)

[10] H8mail: https://github.com/khast3x/h8mail (accessed 06/03/2023)

[11] Amass: https://github.com/OWASP/Amass (accessed 06/03/2023)

[12] OWASP: https://owasp.org/ (accessed 07/03/2023)

[13] IntelX: https://intelx.io/ (accessed 07/03/2023)

[14] ReconFTW: https://github.com/six2dez/reconftw (accessed 06/03/2023)

[15] Maltego: https://www.maltego.com/ (accessed 06/03/2023)

[16] K. Charles, “The Open-Source Intelligence (OSINT) Cycle”,

https://securityboulevard.com/2022/09/the-open-source-intelligence-osint-

cycle/, 2022

[17] R. Scarlett, “Why Python keeps growing, explained” https://github.blog/2023-

03-02-why-python-keeps-growing-explained/, 2023

[18] Holehe: https://github.com/megadose/holehe (accessed 04/04/2023)

[19] Alienvault OTX: https://otx.alienvault.com/ (accessed 05/04/2023)

[20] Leak-Lookup: https://leak-lookup.com/ (accessed 05/04/2023)

[21] Have I Been Pwned? https://haveibeenpwned.com/ (accessed 06/04/2023)

[22] PostgreSQL: https://www.postgresql.org/ (accessed 06/04/2023)

[23] Django: https://www.djangoproject.com/ (accessed 06/04/2023)

[24] Whois (Python library): https://pypi.org/project/python-whois/ (accessed

15/04/2023)

[25] SpoofThatEmail: https://github.com/v4d1/SpoofThatMail (accessed

15/04/2023)

https://venturebeat.com/business/how-google-searches-30-trillion-web-pages-100-billion-times-a-month/
https://venturebeat.com/business/how-google-searches-30-trillion-web-pages-100-billion-times-a-month/
https://web.archive.org/
https://www.incibe-cert.es/blog/osint-la-informacion-es-poder
https://www.incibe-cert.es/blog/osint-la-informacion-es-poder
https://www.acunetix.com/websitesecurity/google-hacking/
https://attack.mitre.org/matrices/enterprise/
https://github.com/opsdisk/pagodo
https://hunter.io/
https://www.shodan.io/
https://github.com/ElevenPaths/FOCA
https://github.com/khast3x/h8mail
https://github.com/OWASP/Amass
https://owasp.org/
https://intelx.io/
https://github.com/six2dez/reconftw
https://www.maltego.com/
https://securityboulevard.com/2022/09/the-open-source-intelligence-osint-cycle/
https://securityboulevard.com/2022/09/the-open-source-intelligence-osint-cycle/
https://github.blog/2023-03-02-why-python-keeps-growing-explained/
https://github.blog/2023-03-02-why-python-keeps-growing-explained/
https://github.com/megadose/holehe
https://otx.alienvault.com/
https://leak-lookup.com/
https://haveibeenpwned.com/
https://www.postgresql.org/
https://www.djangoproject.com/
https://pypi.org/project/python-whois/
https://github.com/v4d1/SpoofThatMail

46

[26] EdOverflow, “A Guide To Subdomain Takeovers”

https://www.hackerone.com/application-security/guide-subdomain-takeovers,

2018

[27] Can I take over XYZ? https://github.com/EdOverflow/can-i-take-over-xyz

(accessed 15/04/2023)

[28] P. Harvey, ExifTool https://exiftool.org/, (accessed 15/04/2023)

[29] Poastal: https://github.com/jakecreps/poastal, (accessed 16/04/2023)

[30] Leak-Lookup: https://leak-lookup.com/, (accessed 16/04/2023)

[31] Trio: https://github.com/python-trio/trio, (accessed 16/04/2023)

[32] Maigret: https://github.com/soxoj/maigret, (accessed 16/04/2023)

[33] Sherlock: https://github.com/sherlock-project/sherlock, (accessed 16/04/2023)

[34] FinalRecon: https://github.com/thewhiteh4t/FinalRecon, (accessed 29/04/2023)

[35] TheHarvester: https://github.com/laramies/theHarvester, (accessed 10/05/2023)

[36] CRT.sh: https://crt.sh/, (accessed 10/05/2023)

[37] ThreatMiner: https://www.threatminer.org/, (accessed 10/05/2023)

[38] HackerTarget: https://hackertarget.com/, (accessed 10/05/2023)

[39] CertSpotter: https://sslmate.com/certspotter/, (accessed 10/05/2023)

[40] Sublist3r: https://github.com/aboul3la/Sublist3r, (accessed 10/05/2023)

[41] InfoHound – Github: https://github.com/xampla/InfoHound, (accessed

04/06/2023)

[42] Github workflows: https://docs.github.com/en/actions/using-workflows,

(accessed 04/06/2023)

[43] InfoHound – Dockehub: https://hub.docker.com/r/xampla/infohound, (accessed

04/06/2023)

[44] AIL-Framework: https://github.com/CIRCL/AIL-framework, (accessed

08/06/2023)

[45] CIRCL: https://www.circl.lu/, (accessed 08/06/2023)

[46] Blackbird: https://github.com/p1ngul1n0/blackbird, (accessed 08/06/2023)

[47] SpaCy: https://spacy.io/, (accessed 09/06/2023)

https://www.hackerone.com/application-security/guide-subdomain-takeovers
https://github.com/EdOverflow/can-i-take-over-xyz
https://exiftool.org/
https://github.com/jakecreps/poastal
https://leak-lookup.com/
https://github.com/python-trio/trio
https://github.com/soxoj/maigret
https://github.com/sherlock-project/sherlock
https://github.com/thewhiteh4t/FinalRecon
https://github.com/laramies/theHarvester
https://crt.sh/
https://www.threatminer.org/
https://hackertarget.com/
https://sslmate.com/certspotter/
https://github.com/aboul3la/Sublist3r
https://github.com/xampla/InfoHound
https://docs.github.com/en/actions/using-workflows
https://hub.docker.com/r/xampla/infohound
https://github.com/CIRCL/AIL-framework
https://www.circl.lu/
https://github.com/p1ngul1n0/blackbird
https://spacy.io/

	1. Introduction
	1.1. Context and justification of the work
	1.2. Objectives
	1.3. Sustainability, social-ethical and diversity impacts
	1.4. State of the art
	1.5. Work planning
	1.6. Brief summary of products obtained

	2. Materials and methods
	2.1. Potential risks

	3. Technical details
	3.1. Why Python?
	3.2. What will Infohound do?
	3.3. Infohound tool design
	3.3.1. Data types
	3.3.2. Retriever modules
	3.3.3. Analysis modules
	3.3.4. Custom modules
	3.3.5. Data Sources
	3.3.6. Possible improvements

	4. Technical development
	4.1. First iteration – Simple PoC
	4.1.1. Data sources
	4.1.2. Retrieval modules
	4.1.3. Analysis modules
	4.1.4. Custom modules
	4.2. Second iteration – Django
	4.2.1. General improvements
	4.2.2. Data sources
	4.2.3. Retrieval modules
	4.2.4. Analysis modules
	4.2.5. Custom modules
	4.2.6. Results in numbers
	4.2.7. File structure
	4.3. Third iteration – The web app
	4.3.1. Improvements from previous iteration
	4.3.2. Web app
	4.3.3. Tabs and content

	5. Results comparison
	5.1. Domain and general information
	5.2. Subdomain enumeration
	5.3. Finding emails
	5.4. Other entities discovery

	6. Architecture and deployment of the tool
	7. Conclusions
	7.1. Next steps

	8. Bibliography

