
Matrix Models:
Markov Chains
Problems in the context of software
development
PID_00266372

Marcel Serra Julià

© FUOC • PID_00266372 Matrix Models: Markov Chains

Marcel Serra Julià

I got my degree in Mathematics
at the Universitat Autònoma de
Barcelona (UAB) in 2009 and did
my eHealth Masters at the McMas-
ter University (Canada) in 2011.
While I did my graduate training I
was also a teaching assistant in the
Department of Computer Sciences
at the McMaster University. In 2012,
I developed my professional career
as a Software Developer working for
several companies in the digital sec-
tor in the Barcelona area, including
Mascoteros (a marketplace for the
pet industry) and YaEncontre (a re-
al estate website). In these compa-
nies I specialized in web develop-
ment with Symfony, a popular PHP
framework based on MVC architec-
ture. The rapidly changing digital
industry was a catalyst which led me
to look to new technologies such
as Big Data, Computer Vision and
Computational Modeling. As a re-
sult of my expertise and motivation
for research I am currently working
as a Data Manager at ICTA (Institut
de Ciència i Tecnologia Ambiental,
UAB).

The assignment and creation of this UOC Learning Resource have been coordinated
by the lecturer: Cristina Cano Bastidas (2020)

First edition: February 2020
© Marcel Serra Julià
All rights are reserved
© of this edition, FUOC, 2020
Av. Tibidabo, 39-43, 08035 Barcelona
Publishing: FUOC

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

c⃝ FUOC • PID_00266372 3 Matrix Models: Markov Chain

1. Problems
.

MATRIX MODELS: MARKOV CHAINS

Topics: Introduction to discrete matrix models. Discrete-time Markov Chains. States

diagram and transition probability. Evolution over time of Markov Chains. Positive

Matrices and dominant eigenvalues. Stationary states distribution. Applications.

A Markov Chain is a stochastic process in which the system has no mem-

ory. This means that future states only depend on the present state and the

transition probabilities between states. Hence, to determine a future state in a

Markov Chain it is not necessary to know anything about the past states.

This module will focus on discrete and homogenous Markov Chains. Homoge-

nous means that transition probabilities are independent of time. Transition

probabilities will be expressed by a matrix P, where the element pij is the prob-

ability of moving from state j to state i. In addition, the state of the system

on a given time will be represented by the vector Xt . Markov Chain iterations

will be represented by Xt+1 = PXt .

The following example illustrates how Markov Chains can be used for mod-

elling. After observing the weather for a long time, we have learnt that if we

have a rainy day (R) the probability that it would be rainy a day later is 0.4,

while the probability that it would be dry (NR) a day later is 0.6. We have also

observed that when we have a dry day the probability that it would be rainy

a day later is 0.1 and the probability that it would be dry is 0.9. Given this

observation, the information gathered is depicted in the diagram below:

Figure 1. Rain diagram

This diagram can be transformed into a matrix format, where each column

represents the probability of moving from each initial state to any other state.

The following table summarizes these probabilities:

c⃝ FUOC • PID_00266372 4 Matrix Models: Markov Chain

Initial States

R NR

Arrival

States

R 0.4 0.1

NR 0.6 0.9

The associated transition matrix for this Markov Chain is:

R NR

P =
R

NR

0.4 0.1

0.6 0.9


Any state is described by a vector. We assume it is not raining today, so today’s

state is X0 = (0,1). In order to compute probabilities for each state over the

next 3 days, we will iterate as follows:

R NR X0 X1

X1 =

0.4 0.1

0.6 0.9


0

1

 =

0.1

0.9

 R

NR

R NR X1 X2

X2 =

0.4 0.1

0.6 0.9


0.1

0.9

 =

0.13

0.87

 R

NR

R NR X2 X3

X3 =

0.4 0.1

0.6 0.9


0.13

0.87

 =

0.122

0.861

 R

NR

Before moving on to other examples, we will review some properties of Markov

Chains and their transition matrices. These properties will not be proven but

will be validated in our rain model.

Markov Chains are stochastic processes and, therefore, the transition matrix

satisfies the definition of a stochastic process. This definition requires the fol-

lowing two properties:

• All elements in a given column add to 1.

• None of the entries are negative.

Considering this, the matrix P from our rain model satisfies these conditions.

c⃝ FUOC • PID_00266372 5 Matrix Models: Markov Chain

For any stochastic process it can be proven that:

• If P is stochastic, then Pn is stochastic.

• The eigenvalues of P are all equal or smaller than 1.

• Given the transition matrix P and the vector of initial states, any future

state of a Markov Chain can be determined as follows:

Xn = PXn–1 = PPXn–2 = ... = PnX0

Then, the computation of the aforementioned X3 can be done as follows:

P3 X0 X3

X3 = P3X0 =

0.064 0.001

0.216 0.729


0

1

 =

0.122

0.861

 R

NR

Hence, knowing the state n of a Markov Chain is equivalent to computing the

n power of a matrix. Depending on the complexity of the transition matrix

it may be useful to use the knowledge acquired on matrix diagonalization to

compute the n power.

Let’s recall what the Diagonalization theorem states: A matrix P is diagonal-

izable if and only if it has linearly independent eigenvectors. Under these circum-

stances, it exists a matrix B such as D = B–1PB, where matrix D is diagonal.

We can now return to our example and compute the diagonal matrix. The

eigenvalues of P are 0.3 and 1 and the associated eigenvectors (1, – 1) and

(1,6), respectively. The Matrix B that satisfies D = B–1PB is

B =

 1 1

–1 6

 and the inverse will be B–1 =

6/7 –1/7

1/7 1/7

 .

By computing B–1PB we obtain the diagonal matrix D with the eigenvalues of

P in the diagonal. To compute the n power of a diagonal matrix we only need

to raise the elements in the diagonal to the required power.

D =

0.3 0

0 1

 and D3 =

0.33 0

0 13

 .

c⃝ FUOC • PID_00266372 6 Matrix Models: Markov Chain

Hence, to compute P3 we can also use the expression P3 = BD3B–1. This could

be extended to any power and matrix dimensions.

• The transition matrices of Markov Chains always have the eigenvalue 1,

which is the dominant eigenvalue.

• Under certain circumstances, the steady state vector X that satisfies PX = X

coincides with the normalized eigenvector associated to the eigenvalue 1.

• Homogeneous Markov Chains always have a steady state.

In our example, we can see that by normalizing (1,6) the eigenvector associ-

ated to eigenvalue 1 we obtain (1/
√

37,6/
√

37) = (0.16439898,0,98639392)

Notice that if we solved the following system and normalized the result, we

would find the same solution0.4 0.1

0.6 0.9


x

y

 =

x

y


With the concepts we have introduced and the previous example we can now

try to solve the following problems and self-assessment exercises.

1. An online university has 100,000 students around the world enrolled in

some of their courses. The IT team of the university has developed 3 ser-

vices for students to follow their courses:

• Video Streaming Service (VS). Students connect to it to have access to

the content in video format.

• Online Forum (F). Students connect to it to interact with other stu-

dents.

• Evaluation Platform (E). Students connect to it to answer quizzes and

assess their learning progress.

At any point in time, students can be either connected to any of the ser-

vices or disconnected (D). The team has been monitoring the migration of

students from one service to another and have been able to generate the

following diagram:

Figure 2. State Diagram

c⃝ FUOC • PID_00266372 7 Matrix Models: Markov Chain

(a) Based on this diagram, find the transition matrix for the Markov Chain.

Note: all columns on a Markov matrix add to 1.

(b) The following distribution of connections takes place at 9 am on Mon-

day: Video Streaming (VS): 20%; Forum (F): 5%; Evaluation (E): 5%;

Disconnected (D) 70%. What will the distribution be 1 hour later?

(c) How many connections to each service should be expected after 10

hours (7 pm)?

(d) How many students should be expected to be connected into each ser-

vice in the long term?

(e) Using the software R, plot the expected evolution of connections over

a period of 20 hours.

2. As software engineers, we have been asked to study an algorithm that

wasn’t written by us to evaluate the computing resources the algorithm

needs. We have been able to determine that the algorithm has 3 states:

• Waiting or Idle (I)

• Processing Information (P)

• Accessing disk to store processed information (S)

The transition matrix is as follows:

I P S

I

P

S


1/2 1/10 2/3

1/2 1/2 0

0 4/10 1/3



(a) Draw the state transition diagram for the given matrix.

(b) If at t0 the algorithm was at the I state, what is the probability that the

algorithm would be at state P for t = 1? And what is the probability that

the algorithm would remain at state S for t = 1?

(c) Which are the probabilities for each of the states for t = 5?

(d) What is the expected behaviour of the given algorithm in the long

term?

c⃝ FUOC • PID_00266372 8 Matrix Models: Markov Chain

2. Solutions to the Problems
.

1. a) The transition matrix for the given diagram is:

VS F E D

M =

VS

F

E

D



0.5 0.1 0.4 0.3

0.1 0.1 0 0.1

0.2 0 0.2 0.2

0.2 0.8 0.4 0.4


.

b) By multiplying the initial distribution vector by the transition matrix M

we will get the distribution one hour later.

M X0 X1

X1 =



0.5 0.1 0.4 0.3

0.1 0.1 0 0.1

0.2 0 0.2 0.2

0.2 0.8 0.4 0.4





0.2

0.05

0.05

0.7


=



0.335

0.095

0.19

0.38


.

c) To compute the distribution of connections after 10 hours, we can iter-

ate 10 times:

X1 = MX0

X2 = MX1

...

X10 = MX9

which can also be computed as X10 = M10X0

X10 =



0.5 0.1 0.4 0.3

0.1 0.1 0 0.1

0.2 0 0.2 0.2

0.2 0.8 0.4 0.4



10 

0.2

0.05

0.05

0.7


=



0.37755099

0.08163265

0.18367347

0.35714289


.

c⃝ FUOC • PID_00266372 9 Matrix Models: Markov Chain

d) In the long term, the distribution of students is given by the normalized

eigenvector corresponding to the eigenvalue 1.

VS

F

E

D



0.37755102

0.08163265

0.18367347

0.35714286


.

e) The evolution of connections over the first 20 hours is depicted in the

following graph:

Figure 1. Rain diagram

5 10 15 20

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

%
 o

f c
on

ne
ct

io
ns

VS F E D

days

%
 o

f c
on

ne
ct

io
ns

The required R code used to solve this exercise is the following:

> stateLabels<-c("VS","F","E","D")

> M<-matrix(c(0.5,0.1,0.4,0.3,0.1,0.1,0,0.1,0.2,0,0.2,0.2,0.2,0.8,0.4,0.4),4,4,

byrow=TRUE, dimnames = list(stateLabels, stateLabels))

> M

VS F E D

VS 0.5 0.1 0.4 0.3

F 0.1 0.1 0.0 0.1

E 0.2 0.0 0.2 0.2

D 0.2 0.8 0.4 0.4

> install.packages("markovchain")

> library(markovchain)

> MC_services<-new("markovchain",states = stateLabels,

byrow=FALSE, transitionMatrix=M,name="Students connection to each service")

> MC_services

Students connection to each service

A 4 - dimensional discrete Markov Chain defined by the following states:

VS, F, E, D

c⃝ FUOC • PID_00266372 10 Matrix Models: Markov Chain

The transition matrix (by cols) is defined as follows:

VS F E D

VS 0.5 0.1 0.4 0.3

F 0.1 0.1 0.0 0.1

E 0.2 0.0 0.2 0.2

D 0.2 0.8 0.4 0.4

> install.packages("shape")

> library("shape")

> install.packages("diagram")

> library("diagram")

> plotmat(M, pos=c(1,2,1), lwd=1, box.lwd=1, cex.txt=0.7, box.size=0.09,

box.type="circle", box.prop=0.75, box.col=0.5, self.shifty=0.01,

self.shiftx=-0.13, main= "states diagram")

> library(Matrix)

> library(expm)

> X0<-matrix(c(2/10,1/20,1/20,7/10), 4, 1, dimnames = list(stateLabels))

> X0

[,1]

VS 0.20

F 0.05

E 0.05

D 0.70

> X1<-M %*% X0

> X1

[,1]

VS 0.335

F 0.095

E 0.190

D 0.380

> MC_services^10

Students connection to each service^10

A 4 - dimensional discrete Markov Chain defined by the following states:

VS, F, E, D

The transition matrix (by cols) is defined as follows:

VS F E D

VS 0.37755107 0.37755067 0.37755117 0.37755097

F 0.08163265 0.08163266 0.08163265 0.08163265

E 0.18367347 0.18367347 0.18367347 0.18367347

D 0.35714281 0.35714320 0.35714271 0.35714291

> X10<- (M %^% 10) %*% X0

c⃝ FUOC • PID_00266372 11 Matrix Models: Markov Chain

> X10

[,1]

VS 0.37755099

F 0.08163265

E 0.18367347

D 0.35714289

> V<-eigen(M)

> V

eigen() decomposition

$values

[1] 1.0000000 0.2000000 0.1414214 -0.1414214

$vectors

[,1] [,2] [,3] [,4]

[1,] 0.6775602 7.071068e-01 -0.7158897 -0.05504412

[2,] 0.1464995 4.153925e-16 -0.1228273 -0.32082065

[3,] 0.3296239 -3.230830e-16 0.1737040 -0.45370891

[4,] 0.6409353 -7.071068e-01 0.6650130 0.82957368

> vaps <- V$values

> abs(vaps)

[1] 1.0000000 0.2000000 0.1414214 0.1414214

> veps<-V$vectors

> Vep1<-veps[,1]

> Vep1

[1] 0.6775602 0.1464995 0.3296239 0.6409353

> steadystate<-abs(Vep1)

> steadystate

[1] 0.6775602 0.1464995 0.3296239 0.6409353

> nomalizedSteadyState<-steadystate/sum(steadystate)

> nomalizedSteadyState

[1] 0.37755102 0.08163265 0.18367347 0.35714286

2. a) The transition diagram represented by the given matrix is:

Figure 4. Algorithm

c⃝ FUOC • PID_00266372 12 Matrix Models: Markov Chain

b) Given an initial state with X0 = (1,0,0), we do the following in order to

compute X1:

I P S X0 X1

X1 =


1/2 1/10 2/3

1/2 1/2 0

0 4/10 1/3




1

0

0

 =


1/2

1/2

0


I

P

S

.

Therefore, the probability of being at state P for t = 1 is 0.5 and the proba-

bility of being at state S for t = 1 is 0.

c) To compute X5:

X5 =


1/2 1/10 2/3

1/2 1/2 0

0 4/10 1/3



5 
1

0

0

 =


0.3948

0.3755

0.2296

 .

d) To calculate the steady state, we can either normalize the eigenvector

of the eigenvalue 1 or solve the following system (remember that they are

equivalent):


1/2 1/10 2/3

1/2 1/2 0

0 4/10 1/3




x

y

z

 =


x

y

z

 .

The result is:


x

y

z

 =


0.3846

0.3846

0.2307

 .

The required R code used to solve this exercise is the following:

> M<-matrix(c(1/2,1/2,0,1/10,1/2,4/10,2/3,0,1/3),3,3)

> M

[,1] [,2] [,3]

[1,] 0.5 0.1 0.6666667

[2,] 0.5 0.5 0.0000000

[3,] 0.0 0.4 0.3333333

c⃝ FUOC • PID_00266372 13 Matrix Models: Markov Chain

> X0<-matrix(c(1,0,0),3,1)

> X0

[,1]

[1,] 1

[2,] 0

[3,] 0

> M %*% X0

[,1]

[1,] 0.5

[2,] 0.5

[3,] 0.0

> library(Matrix)

> library("expm")

> M5<-M %^% 5

> M5 %*% X0

[,1]

[1,] 0.3948148

[2,] 0.3755556

[3,] 0.2296296

> V<-eigen(M)

> V

eigen() decomposition

$values

[1] 1.0000000+0.0000000i 0.1666667+0.4149967i 0.1666667-0.4149967i

$vectors

[,1] [,2] [,3]

[1,] -0.6509446+0i 0.6215816+0.0000000i 0.6215816+0.0000000i

[2,] -0.6509446+0i -0.3656362-0.4552134i -0.3656362+0.4552134i

[3,] -0.3905667+0i -0.2559453+0.4552134i -0.2559453-0.4552134i

> vaps <- V$values

> abs(vaps)

[1] 1.0000000 0.4472136 0.4472136

> veps<-V$vectors

> veps[,1]

[1] -0.6509446+0i -0.6509446+0i -0.3905667+0i

> steadystate<-abs(veps[,1])

> steadystate

[1] 0.6509446 0.6509446 0.3905667

> nomalizedSteadyState<-steadystate/sum(steadystate)

> nomalizedSteadyState

[1] 0.3846154 0.3846154 0.2307692

c⃝ FUOC • PID_00266372 14 Matrix Models: Markov Chain

3. Self-Assessment Problems
.

1. A corporation has 100 potential users for an internal system at t = 0. 20 of

these users are connected and 80 are disconnected. Due to the nature of

the system, we know that 40% of connected users will log off and the rest

will remain connected. We also know that 20% of disconnected users will

connect to the system. What is the steady state for this system?

⃝ Connected: 20, disconnected: 80.

⃝ Connected: 33.33, disconnected: 66.66.

⃝ Connected: 60, disconnected: 40.

⃝ Connected: 50, disconnected: 50.

2. A worldwide company running software as a service has 100000 users glob-

ally. The company has 3 main data centres around the world, namely

America (A), Europe (E) and Asia (As). The following matrix represents the

transition of connections that move from one data centre to another on a

daily basis.

A E As

A

E

As


0.8 0.1 0.1

0.2 0.9 0.2

0 0 0.7


.

What are the expected connections to the data centre in Asia in the long

term?

⃝ Connections to Asia: 70,000.

⃝ Connections to Asia: 30,000.

⃝ Connections to Asia: 0.

⃝ Connections to Asia: 100,000.

3. Two friends, John and Mary, are playing the following game with a dice.

If an even number comes out, the same player keeps throwing the dice. If

an odd number comes out, it is the other player’s turn to play. However,

they are using an unbalanced dice with the following probabilities for each

number to come out: P(1) = 1/12,P(2) = 3/12,P(3) = 1/12,P(4) = 3/12,P(5) =

2/12,P(6) = 2/12. If John starts playing, what is the probability that Mary

plays at turn 5?

c⃝ FUOC • PID_00266372 15 Matrix Models: Markov Chain

⃝ The probability that Mary plays at turn 5 is: 0.5021.

⃝ The probability that Mary plays at turn 5 is: 0.3333.

⃝ The probability that Mary plays at turn 5 is: 0.6666.

⃝ The probability that Mary plays at turn 5 is: 0.4979.

4. Suppose that there is a forest with two types of trees, type A and type B.

The death rate is 1% for type A and 5% for type B every year. 75% of the

space left by the dead trees is taken by type B trees and 25% by type A

trees.

a) What is the expected distribution of trees after 2 years if at t0 the distri-

bution is 50% for each type of trees?

⃝ Type A: 0.0125 . Type B: 0.9875.

⃝ Type A: 0.5 . Type B: 0.5.

⃝ Type A: 0.5049 . Type B: 0.4951.

⃝ Type A: 0.625 . Type B: 0.375.

b) What is the expected distribution of trees in the long term?

⃝ Type A: 0.0125 . Type B: 0.9875.

⃝ Type A: 0.5 . Type B: 0.5.

⃝ Type A: 0.5049 . Type B: 0.4951.

⃝ Type A: 0.625 . Type B: 0.375.

5. We are interested in studying the election results in a province with 3

political parties: the Conservative party (C), the Liberal party (L) and the

Green party (G). Several studies on election results have repeatedly shown

that there is a constant flow of voters across these three parties. This flow

can be represented by the following diagram:

c⃝ FUOC • PID_00266372 16 Matrix Models: Markov Chain

What is the expected distribution of voters in the long term?

⃝ Conservative: 0.85, Liberal: 0.65, Green: 0.8.

⃝ Conservative: 0.3809, Liberal: 0.2619, Green: 0.3571.

⃝ Conservative: 1, Liberal: 0.6875, Green: 0.9375.

⃝ Conservative: 0.01, Liberal: 0.15, Green: 0.84.

6. The mobile operating system market consists of two main platforms: An-

droid and Apple. A study has shown a constant flow of users across the

two platforms. Every year, 13% of Apple users switch to Android and 4%

of Android users switch to Apple.

a) Considering that this flow of users remains constant, what should the

expected market share be in the long term?

⃝ Apple: 0.8700, Android: 0.1300.

⃝ Apple: 0, Android: 1.

⃝ Apple: 0.2353, Android: 0.07647.

⃝ Apple: 1, Android: 3.25.

b) If Android has 30% and Apple 70% in 2019, what was the market share

in 2018?

⃝ Apple: 0.8700, Android: 0.1300.

⃝ Apple: 0.3243, Android: 0.6757.

⃝ Apple: 0.3132, Android: 0.6867.

⃝ Apple: 0.04, Android: 0.96.

c⃝ FUOC • PID_00266372 17 Matrix Models: Markov Chain

4. Solutions to Self-Assessment Problems
.

1. The transition matrix for the described system is:

C D

C

D

0.6 0.2

0.4 0.8



If we solve the following system:

0.6 0.2

0.4 0.8


x

y

 =

x

y



we get the vector (x,y) = (1,2). By normalizing this vector, we get the steady

state distribution (1/3,2/3). Therefore, if we multiply by 100, the result is:

⃝ Connected: 20, disconnected: 80.⊗
Connected: 33.33, disconnected: 66.66.

⃝ Connected: 60, disconnected: 40.

⃝ Connected: 50, disconnected: 50.

2. The eigenvalues for the given transition matrix

A E As

A

E

As


0.8 0.1 0.1

0.2 0.9 0.2

0 0 0.7



are 0.7 and 1 with multiplicity 2 and 1, respectively. The eigenvectors are

(1,0,–1) and (0,1,–1) corresponding to 0.7, and (1,2,0) corresponding to 1.

If we normalize the eigenvector corresponding to 1, we get (1/3,2/3,0) as a

steady state distribution. Therefore, the expected number of connections

to each data centre is 33333.3, 66666.6, and 0.

⃝ Connections to Asia: 70,000.

⃝ Connections to Asia: 30,000.⊗
Connections to Asia: 0.

⃝ Connections to Asia: 100,000.

c⃝ FUOC • PID_00266372 18 Matrix Models: Markov Chain

3. In order to build the transition matrix we need to know the probability

that a player keeps throwing the dice or that it is the other player’s turn.

P(Change) = P(1) + P(3) + P(5) = 1/12 + 1/12 + 2/12 = 1/3

P(Continue) = P(2) + P(4) + P(6) = 3/12 + 3/12 + 2/12 = 2/3
(1)

The transition matrix is:

2/3 1/3

1/3 2/3

 .

If John starts playing, we have to compute X5:

2/3 1/3

1/3 2/3


5 1

0

 =

0.5021

0.4979

 .

⃝ The probability that Mary plays at turn 5 is: 0.5021.

⃝ The probability that Mary plays at turn 5 is: 0.3333.

⃝ The probability that Mary plays at turn 5 is: 0.6666.⊗
The probability that Mary plays at turn 5 is: 0.4979.

4. a) We need to find the transition matrix for this forest. We define:

an = percentage of type A trees in the forest at year n

bn = percentage of type B trees in the forest at year n.
(2)

Now, to compute the number of trees one year later (an+1) we first subtract

the number of dead trees from the trees of the previous generation (an)

and then we add the proportion from the space left that is taken by each

of the species.

an+1 = an – 0.01 an + 0.25(0.01an + 0.05 bn)

bn+1 = bn – 0.05 an + 0.75(0.01an + 0.05 bn)
(3)

an+1 = (1 – 0.01 + 0.0025) an + 0.0125bn

bn+1 = (1 – 0.05 + 0.0375) bn + 0.0075an

(4)

an+1 = 0.9925 an + 0.0125 bn

bn+1 = 0.0075 an + 0.9875 bn .
(5)

c⃝ FUOC • PID_00266372 19 Matrix Models: Markov Chain

This system can be expressed as follows:

an+1

bn+1

 =

0.9925 0.0125

0.0075 0.9875


an

bn

 .

To compute the evolution of the forest two years on, we will compute

X2 = T2X0, where T is the transition matrix and X0 = (0.5,0.5) the initial

state of the system.

X2 =

0.9925 0.0125

0.0075 0.9875


2 0.5

0.5

 =

0.5049

0.4951



⃝ Type A: 0.0125, Type B: 0.9875.

⃝ Type A: 0.5, Type B: 0.5.⊗
Type A: 0.5049, Type B: 0.4951.

⃝ Type A: 0.625, Type B: 0.375.

b) To compute the distribution in the long term, we can normalize the

eigenvector associated to the eigenvalue 1. By solving the system (A–Id)X =

0 we get the eigenvector.


0.9925 0.0125

0.0075 0.9875

 –

1 0

0 1




x

y

 =

0

0

 .

The solution is (x,y) = (1,0.6). By normalizing it, we get (0.625,0.375).

⃝ Type A: 0.0125, Type B: 0.9875.

⃝ Type A: 0.5, Type B: 0.5.

⃝ Type A: 0.5049, Type B: 0.4951.⊗
Type A: 0.625, Type B: 0.375.

5. Given the transition matrix:


0.85 0.15 0.05

0.1 0.65 0.15

0.05 0.2 0.8



The eigenvector associated to the eigenvalue 1 is (1,0.6875,0.9375). If we

normalize it, we get the following steady state distribution: (0.3809,0.2619,0.3571).

c⃝ FUOC • PID_00266372 20 Matrix Models: Markov Chain

⃝ Conservative: 0.85, Liberal: 0.65, Green: 0.8.⊗
Conservative: 0.3809, Liberal: 0.2619, Green: 0.3571.

⃝ Conservative: 1, Liberal: 0.6875, Green: 0.9375.

⃝ Conservative: 0.01, Liberal: 0.15, Green: 0.84.

6. a) Again, by normalizing the eigenvector with eigenvalue 1 of the transi-

tion matrix we get the steady state distribution:

0.87 0.04

0.13 0.96



and the steady state is (0.2353,0.7647).

⃝ Apple: 0.8700, Android: 0.1300.

⃝ Apple: 0, Android: 1.⊗
Apple: 0.2353, Android: 0.7647.

⃝ Apple: 1, Android: 3.25.

b) If we want to calculate the market share the year before having a market

share of (0.3,0.7), we can solve the following system:

0.87 0.04

0.13 0.96


x

y

 =

0.3

0.7

 .

The solution is: (0.3132,0.6867).

⃝ Apple: 0.8700, Android: 0.1300.

⃝ Apple: 0.3243, Android: 0.6757.⊗
Apple: 0.3132, Android: 0.6867.

⃝ Apple: 0.04, Android: 0.96.

