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Introduction

In this module we will introduce two powerful methodologies for data analysis that

rely on concepts in linear algebra we have already presented in this course. Both

of them make an intensive use of eigenvalues, eigenvectors and the diagonalization

theorem. We will �rst present Principal Component Analysis (PCA) and then Single

Value Decomposition (SVD).

Working with large datasets formed by many variables can lead to the problem known

as the curse of dimensionality. It refers to the challenge of interpreting and extracting

knowledge from a large dataset. Although the amount of information grows as the

dataset increases, the dataset also becomes more complex. The increase in complexity

brings about other challenges, as for example the di�culty of extracting conclusions

from plots. The two methods presented in this module, PCA and SVD, can help

us to tackle scenarios with large datasets and overcome the e�ect of the curse of

dimensionality.

PCA is a method used in statistics to study large datasets. The mathematical idea

behind it is to apply a linear mapping to a dataset with the objective of transforming it

in such a way that the new dataset has a diagonal covariance matrix. Given a dataset

with n samples with m variables measured for each sample, Principal Component

Analysis will transform the data into a new set of variables satisfying two conditions:

1- The covariance among the new variables is reduced

2- The number of new variables is also reduced

The second method presented in this module will be Single Value Decomposition

(SVD). This method has many applications in data analysis and it has a relevant role

in image compression. We will present several examples of data compression.

From a mathematical point of view, Singular Value Decomposition can be seen as an

extension of the Diagonalization theorem. When applied to a matrix A, the Diagona-

lization theorem has some limitations. It can only be applied to a square matrix and

it requires that the number of linearly independent eigenvectors of A is equal to the

dimension of A. The SVD theorem has some advantages, one being that it relaxes

these requirements on the matrix A and only needs to have an m × n matrix with

real entries, and another being that the singular vectors (which are the equivalent to

the eigenvectors) form an orthogonal base.

Since images are represented by matrices with m × n real and positive entries, the

application of the SVD theorem on them is direct. In order to introduce the student

to the manipulation of images represented by matrices, we propose the following

example.
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Let's suppose that the matrix A represents an image.

A =



1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25



This image requires 5 · 5 = 25 entries to store the entire image. However, notice that

this matrix can be obtained by the following scalar product of vectors



1

2

3

4

5



(
1 2 3 4 5

)
=



1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25



These two vectors are represented by 5 + 5 = 10 entries, which represents a 40%

compression. With an original matrix of 200 · 200 = 40000 entries the reduction

would be down to 400 entries, which uses 1% of the original space to store the same

amount of information. This example provides some insight into how an image can

be compressed and the fact that less space is required to store the same amount of

information. This idea, which is easy to understand when applied to images, can also

be translated to any other dataset represented by a matrix of real entries.
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Objectives

The main objectives of this module are: to understand the two methods presented

(PCA and SVD); and to apply them in di�erent scenarios to solve problems with real

or realistic data.

1. To understand the curse of dimensionality problem when working with large da-

tasets.

2. To apply the concepts related to linear algebra learned in the previous modules

to practical problems.

3. To solve problems by applying the Principal Component Analysis method to real

or realistic data.

4. To solve problems by using the Single Value Decomposition method. In particular,

this method will be applied to image compression.

5. To practice and learn how to use the R programming language to solve problems

with large datasets.


