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Usage of Network Simulators in
Machine-Learning-Assisted 5G/6G Networks

Francesc Wilhelmi, Marc Carrascosa, Cristina Cano, Anders Jonsson, Vishnu Ram, and Boris Bellalta

Abstract—Without any doubt, Machine Learning (ML) will be
an important driver of future communications due to its foreseen
performance when applied to complex problems. However, the
application of ML to networking systems raises concerns among
network operators and other stakeholders, especially regarding
trustworthiness and reliability. In this paper, we devise the role of
network simulators for bridging the gap between ML and com-
munications systems. In particular, we present an architectural
integration of simulators in ML-aware networks for training,
testing, and validating ML models before being applied to the
operative network. Moreover, we provide insights on the main
challenges resulting from this integration, and then give hints
discussing how they can be overcome. Finally, we illustrate the
integration of network simulators into ML-assisted communi-
cations through a proof-of-concept testbed implementation of a
residential Wi-Fi network.

Index Terms—Future Networks, ITU, Network Simulator, Ma-
chine Learning, Wireless Local Area Networks

I. INTRODUCTION

Beyond the fifth-generation (5G) of mobile communications
systems, namely the sixth generation (6G), Artificial Intelli-
gence (AI), and more precisely Machine Learning (ML), are
expected to be pervasively included as part of the network
operation, which would entail a huge leap towards optimiza-
tion, automation, and self-healing. This is possible thanks to
the paradigm shift driven by the softwarization of networks
– achieved through Software Defined Networks (SDN) and
Network Function Virtualization (NFV) – which provides the
necessary flexibility to empower data-driven approaches.

The integration of ML to communications has started to
be considered for the upcoming versions of 5G. This fact
is supported by the content already approved by the 3rd
Generation Partnership Project (3GPP) for Release 16 (2020)
and Release 17 (2021) [1], which aim to continue improving
the efficiency of 5G systems in many domains such as inter-
ference mitigation, power consumption, and user mobility, to
name a few, and further push for Self-Organizing Networks
(SON) with Big Data. Besides, we find of high relevance the
contributions made by the International Telecommunication
Union (ITU) Focus Group on Machine Learning for 5G and
Beyond (FG-ML5G) and the Study Group 13 (SG13), which
published specifications on an ML-aware architecture [2, 3].

Through the exploitation of the rich amount of available
data, ML can overcome the systemic complexity inherited
from novel use cases like Vehicle to Everything (V2X) com-
munications, Machine Type Communications (mMTC), and
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extended reality and high-quality video content delivery. These
use cases comprise heterogeneous scenarios with mobility, a
huge number of devices, and high-bandwidth and low-latency
requirements. In particular, ML may offer substantial perfor-
mance gains due to the inherent flexibility of automatically
learning diverse situations, thus allowing to solve problems
related to interference management, improving spatial reuse,
or efficient resource allocation. ML mechanisms such as neural
networks or Q-learning (to name a few popular methods) have
been widely adopted to address communication and security
issues in networks (e.g., secure Internet-of-Things access con-
trol). The promising benefits of ML-enabled communications
systems has been studied in [12]. We refer the interested reader
to that work and the references therein.

While ML promises significant productivity gains, it also
raises serious challenges and concerns. First of all, the suc-
cessful application of ML depends on the quality of the
available training data. An important challenge lies, therefore,
in problems with limited or noisy data. Apart from that,
dealing with non-stationary data is still an open challenge,
which casts doubts on the validity of learned models. A
prominent example is that of IEEE 802.11 Wireless Local
Area Networks (WLANs). The typical decentralized nature
of WLANs (e.g., residential deployments) complicates data
collection procedures, and also leads to complex and highly
non-stationary environments, where ML may fail to learn in
time.

These challenges put into question the worthiness of in-
troducing ML to networking systems. In particular, network
operators and other stakeholders may have concerns regarding
architectural (e.g., how to train and transfer ML models across
a network) and operational aspects (e.g., how to provide
trustworthy ML optimizations). While significant efforts have
been put towards defining architectural solutions for ML-
aware communications [1–4], the implications of applying ML
methods to networks have been barely studied. In this regard,
we find an architectural element in [2] (the ML sandbox) for
training and evaluating ML models in a safe environment.
The ML sandbox has been defined to mitigate the potential
side effects that ML optimizations can have communications
systems. Nevertheless, at the date of publishing this paper, the
functionalities of ML sandbox remain unspecified.

In this paper, we devise the usage of network simulators
as an important way to realize a sandbox in ML-aware
communications systems. Network simulators play a crucial
role both in academia and industry, and can potentially enable
the paradigm shift towards ML-assisted communications. By
prototyping complex problems and systems, simulators are key
to evaluate new features and technologies, thus boosting inno-
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vation. In this regard, we believe that network simulators can
contribute to providing reliable and robust ML mechanisms for
communications. A plethora of network simulation tools (e.g.,
ns-3, OMNET++) can be used in the sandbox environment
to characterize different types of deployments (e.g., a WLAN
in a campus network) according to the operators’ use case
(e.g., energy saving enabled by deep learning). Simulators
are, therefore, envisioned to validate the performance of ML
methods in 5G/6G environments (e.g., the 5G New Radio
implementation is already available in ns-3). To the best of our
knowledge, this is the first work on addressing this emerging
issue. The main contributions of this paper are as follows:

• We discuss the main aspects related to the reliability of
ML for future communications.

• We devise the usage of simulators for training, testing,
and evaluating the performance of ML models for com-
munications.

• We showcase the potential integration of network sim-
ulators within the ITU ML-aware architecture, which is
an adaptable and interoperable framework for realizing
specific ML-based network functionalities.

• We provide insights on practical aspects for the integra-
tion of network simulators into ML-assisted communica-
tions systems.

• We illustrate the potential advantages of using simulators
in ML-assisted networks by applying the outcome of an
ML-driven simulation to a residential WLAN testbed.

II. RELIABLE ARTIFICIAL INTELLIGENCE FOR
COMMUNICATIONS

ML has been proved to offer outstanding results in many
fields, but has also raised some concerns in terms of reliability
and trustworthiness. The fact is that many ML mechanisms
are seen as black boxes due to the non-linearity of their
output (e.g., a prediction), especially for problems with high
dimensional spaces. For instance, in Deep Learning (DL), the
accuracy of a model is typically tied to its complexity in terms
of the number of neurons and hidden layers. Although it is
possible to get some insights on the behavior of a neural net-
work (e.g., through visualization tools), its inherent complexity
hampers interpretability, thus making outputs unpredictable.

In the telecommunications realm, ML has been successfully
applied to multiple problems (see, for instance, the surveys in
[5–9] and the references therein). Much of the credit resides
in the extraction of useful information from large amounts of
data. For instance, the authors of [7] show that autonomous
Unmanned Aerial Vehicles (UAV) can be empowered by
Artificial Neural Networks (ANN). In particular, on-time de-
cisions such as the flying direction can be optimized based on
the data collected (e.g., users’ location, available resources,
or wireless environment). This data, which may come from
multiple sources, can be exploited and comprehended by the
ANN for the sake of optimization.

Whereas ML can potentially improve the management and
operation of networks, the uncertainty associated with the
output of ML methods can lead to performance degradation.
For instance, an online learning mechanism that is driven by

exploration-exploitation may fail to comply with Service Level
Agreements (SLAs). The fact is that exploration may lead to
experiencing an undesired performance by triggering certain
configuration settings. This is a critical aspect to take into con-
sideration since many applications rely on certain minimum
requirements to operate, and not meeting them could be even
dangerous (for instance, consider networking applications for
autonomous driving). As a result, the application of ML can
raise concerns and lead to mistrust when applied to networks.

To address the potential lack of confidence generated by
ML, we find two main state-of-the-art approaches: (1) ex-
plainable AI [10] (understand how ML algorithms behave),
and (2) safe Reinforcement Learning (sRL) [11] (provide
safe exploration mechanisms). Firstly, explainable AI is based
on the interpretation of AI-based decisions, which is useful
to devise the impact of potential optimizations and predict
misbehavior. However, this field is not mature enough, and
the existing techniques are mainly based on visualization, so
they are subjective and may lead to misinterpretation. For that
reason, explainable AI currently lacks applicability in ML-
assisted communications, where the potential understanding
of AI mechanisms should be directly translated into specific
operations in the network.

Furthermore, sRL aims to minimize the negative effects
that unconstrained exploration methods can produce during
the learning procedure. This can be achieved either by adding
extra information to the exploration mechanism (e.g., external
advice) or by applying certain risk-aware criteria (e.g., explo-
ration based on water-filling methods). While sRL is useful
to mitigate the randomness of exploration, its application may
provide moderate improvements and lead to slow optimization
when applied to networks, which may be unacceptable in
non-stationary systems. Besides, sRL is restricted only to RL
mechanisms, and cannot be generalized to other approaches
such as DL.

Given the lack of general mechanisms and procedures for
providing trustworthy ML-aware communications, we devise
the potential usage of network simulators for training, testing,
and evaluating the effect of ML models before being applied
to operative networks. In particular, simulators can provide
diverse functionalities to enhance the confidence level of future
ML-assisted networks:

1) Validate the output of ML models: a simulator can
test and evaluate the output of a certain ML optimization
before being applied to a production environment.

2) Assess the impact of ML models on networks:
simulators can be used to study the effect that a given
ML optimization has on the rest of the network. The
whole procedure can be simulated together if the simu-
lator includes ML functionalities, which is the case, for
instance, of ns-3 and Komondor. To put an example,
the authors of [9] propose an innovative end-to-end
solution to jointly reconstruct the physical layer of a
given transmission through DL. In this regard, the usage
of simulators can help at devising the effects that the
ML-driven approach may produce on the rest of the
network layers.
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Fig. 1: ML-enabling elements and operations of the ITU architecture.

3) Generate training data: sometimes, training data ex-
tracted from network devices can be sparse, limited,
incomplete, or incoherent. To address this, simulators
can generate synthetic data, which would broaden the
available training data sets. However, assessing the
quality of synthetic data sets can be challenging for
operators, especially concerning complex problems that
cannot be modeled accurately. For that reason, it is
important to monitor the effects of applying ML models
trained with synthetic data on operative networks.

4) Train ML models: ML models can also be trained in
a simulation environment. As an example, consider the
case where online learning is simulated along with the
network operation.

5) Complement ML models: simulators can also con-
tribute to filling the intersection between model-based
and data-driven approaches. The fact is that simulators
can act as experts to assist the operation of ML algo-
rithms. As an example, random initialization is typically
employed for ML methods, which sometimes leads
to converging to suboptimal saddle points. By adding
additional knowledge from simulations, the learning
procedure can be improved.

III. NETWORK SIMULATORS TO ENABLE ARTIFICIAL
INTELLIGENCE IN COMMUNICATIONS

In this Section, we describe the architectural aspects of inte-
grating network simulators into ML-assisted communications.
Besides, we analyze the key requirements, challenges, and
opportunities that emerge from the proposed integration.

A. Architectural Integration

Most of the existing simulation platforms have no relation
with AI/ML techniques, nor have any integrated module
for evaluating and training ML models. Moreover, current
simulated network functionalities are typically too specific

(e.g., simulate the effect of multiple antennas on the PHY
layer performance), and seldom support open interfaces, as a
result of being developed by focused academic or industrial
organizations. To enable the next generation of ML-based
communications systems, it is imperative to design inter-
operable mechanisms between network simulators and ML
mechanisms. For that purpose, we find of high relevance the
ITU ML architecture defined in [2].

The ITU ML architecture defines a set of logical compo-
nents, interfaces, and procedures to realize ML-assisted com-
munications. For a complete overview of the ITU architecture,
we refer the interested reader to the work in [12], which
proposes a realization for future IEEE 802.11 WLANs, an
important part of the 5G/6G ecosystem in unlicensed bands.
In particular, the ML-aware architecture is composed of the
following elements:

• Management subsystem: this element is responsible for
the management and orchestration of the ML operation in
a network. The responsibilities of this module range from
data collection to ML model deployment and monitoring.

• ML underlay network: network at which the ML opti-
mization is applied.

• ML sandbox: isolated domain for reproducing the be-
havior and operation of live networking systems.

• ML marketplace: container of ML models that are
applied to operative or simulated underlay networks.

• ML pipeline: set of elements that interact with underlay
networks to perform the ML optimization.

To integrate simulators into the loop of ML-assisted net-
works, we target interoperability as the principal driver. In-
teroperability allows building end-to-end ML pipelines in
simulated network underlays, thus allowing the integration of
network simulators in the ML-aware architecture. The fact
is that we find a plethora of proprietary and open-source
network simulators (e.g., ns-3, OMNET++, OPNET, NetSim,
Komondor) for characterizing multiple types of scenarios,
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technologies, and network functionalities.1 Simulators will
play an important role in characterizing future 5G/6G use cases
(namely, eMBB, uRLLC, and mMTC) because they can cost-
effectively reproduce challenging deployments encompassing
a massive number of devices with strict network requirements.

To address interoperability, we devise the set of components
and procedures to be held at the sandbox that is depicted in
Fig. 1. In this regard, the management subsystem must deploy,
configure, and interact with the simulated functionalities that
are required by the ML use case. Notice that, given the
diversity of simulation tools (stored and maintained in a
repository), an interoperability plugin is required to translate
simulator-specific commands into standardized operations.

The sandbox operations can be enabled by the softwariza-
tion of networks in 5G/6G systems. In the first place, this
change of paradigm enables all the procedures related to data
collection and processing, thus allowing to train and evalu-
ate data-driven models in the sandbox. Besides, virtualized
elements and standard interfaces can be reused to build and
adapt the network in the simulation domain. For instance, the
Open Radio Access Network (O-RAN) project provides an
intelligent and virtualized RAN for open hardware. According
to that, a RAN controller can be used to handle both the
operative network and the equivalent simulation environment.

To illustrate the potential applications of simulators within
the ML-aware architecture, Fig. 1 also provides an example
where the output of an ML model is evaluated at the sandbox
before being applied to the operative network. The involved
procedures are as follows:

1) The management subsystem extracts features from the
underlay network.

2) Based on the characteristics of the underlay network and
the ML use case, the simulation environment is prepared
through sandbox’s deployment tools.

3) The management subsystem selects the ML model from
the marketplace, according to the use-case metadata, the
optimization goals, and the available models.

4) The ML model is pushed into the sandbox and applied
to the simulated network.

5) The ML model is evaluated in the simulator. Evaluation
of other ML models may be considered upon unsuccess-
ful results.

6) Once the evaluation is done, the ML model is pushed
into the operative network, where the ML optimization
takes place.

7) The network performance is monitored, as well as new
data is gathered.

8) The information obtained from monitoring is used to up-
date the ML models and/or metadata in the marketplace.

The ML output evaluation procedure allows devising the
potential benefits and drawbacks of using a certain ML model
in a network. The fact is that ML outputs can sometimes
look surprising from the perspective of a network operator,
and their effect on the network may be unknown a priori.

1Besides networking aspects, other specific phenomena can be simulated.
For instance, Simulation of Urban MObility (SUMO) and UnderWater sim-
ulator (UWsim) simulate vehicular urban mobility and underwater physical
effects, respectively, along with OPNET and ns-3 simulators.

Unpredictability is further noticeable for complex problems
from which there is limited knowledge.

B. Practical Integration Aspects

Integrating simulators into ML-assisted networks entails a
set of challenges concerning execution, interoperability, and
portability aspects.

First of all, to test, train, and evaluate ML models in sim-
ulators, it is important to reproduce the behavior of the target
operative network. The main handicap lies in the plethora of
existing simulation tools, each one with specific functionalities
and execution requirements. In this regard, it is required to
handle simulation-related metadata to maintain information
such as the supported technologies and network functionalities,
the maturity of simulation blocks (e.g., beta release), and the
potential number of domains the simulators can span (e.g.,
from the core to access network). Metadata can, therefore,
enable the automated deployment and configuration of network
simulators according to the ML use case requirements. For
instance, an update of policies should be reflected in the
simulation domain, so that operators’ requirements can be
fulfilled.

To carry out deployment operations, a great disadvantage is
that simulators are written in multiple programming languages
(e.g., C/C++, Java) and are supported by different specific
platforms. In this regard, containerization (e.g., via Docker)
can boost portability and allow network operators to deploy
simulators flexibly. Apart from that, parallelization is impor-
tant to determine, for instance, the number of ML pipeline
nodes and simulated network functionalities that the simulator
can support at any instant. With knowledge on supported
capabilities, the simulated functionalities can be adapted to the
use case. For instance, short execution and configuration times
can serve to empower ML-driven real-time applications. First,
we consider the time it takes for the simulator to generate a
given output, which may indicate the tractability of simulating
large-scale scenarios. Second, fast reconfiguration of network
simulators would allow following potential changes on the
operative network (e.g., user demands, available resources,
policies, etc.).

Concerning pluggable ML functionalities, built-in ML mod-
ules can boost the procedures for simulating the behavior
of ML mechanisms or training ML models in a simulator.
A few existing simulators support ML functionalities. Two
examples are the framework connecting ns-3 with OpenAI
Gym [13], and the agent-based implementation in Komondor.
The ns3-gym Gym framework exemplifies the interconnection
of network simulators with ML platforms, and opens the door
to new integrations with other well-known ML libraries such
as TensorFlow or Acumos. In ns3-gym, the synchronization
between the simulator and the ML components is achieved
through a discretized mapping of the simulation’s information
(e.g., channel status, nodes number, traffic demands) with the
states, actions, and rewards to be used by an ML algorithm.
The whole procedure is carried out in execution time.

When it comes to interoperability, an important aspect lies
in the degree of flexibility of simulators for interacting with the



5

components of the ML-aware architecture. Interoperability is,
therefore, meant to enable a seamless integration of intelligent
network functionalities in the communication network. For
that, it is imperative that the simulated network functionali-
ties are managed using the same operation and maintenance
mechanisms as for the network functionalities in the ML
underlay. In this regard, the interoperability plugin is crucial
to handle the different simulated networks in execution time,
thus allowing for standardized functionalities such as start
or stop. In particular, the features that may facilitate the
interoperability of out-of-the-box simulators are the support
for Command-Line Interface (CLI) execution mode, the level
of monitoring supported (real-time, batch, model-based, etc.),
automation of data collection, and in applying the ML output
in the simulator (e.g., reading from log files vs. API-based
interface with ML functions).

C. Accuracy of Network Simulators

The degree of reliability of a network simulator depends on
its accuracy on reproducing the actual phenomena. In other
words, simulations must be as close as possible to reality.
This topic was previously addressed in [14], where the authors
defended that simulators do not really fit the actual behavior of
networks, based on experimental results in a MANETs testbed.
Nevertheless, it was also shown that simulation results can
serve as a good upper-bound for testbed setups.

In general, network simulators accurately reproduce the
behavior of protocols in higher levels of the TCP/IP stack.
However, they can fail at characterizing complex physical phe-
nomena such as radio propagation, antenna radiation, or energy
consumption. As a result, network simulators typically provide
accurate qualitative performance results, and help to predict
the behavior of real networks under certain circumstances.
In contrast, some results may lack quantitative precision,
thus deviating from the exact performance that would be
experienced in real networking systems. Alternatively, hybrid
approaches can be employed for simulating certain layers (e.g.,
MAC) while taking advantage of the actual interactions that
occur in real implementations. Unfortunately, and to the best
of our knowledge, there is little literature on this topic.

IV. A USE-CASE: POWER CONTROL IN RESIDENTIAL
WLANS

To illustrate the potential of integrating simulators into ML-
assisted networks, we provide a testbed implementation of
an IEEE 802.11 WLAN that suffers from starvation due to
the high sensed interference of a residential environment. To
address this problem, a joint ML-based solution is simulated,
validated, and then provided to the testbed devices.

A. From Testbed to Simulation Domain

The considered testbed implementation comprises two over-
lapping Basic Service Sets (BSSs) in a residential environ-
ment, which are characterized by being highly dense and un-
coordinated. The decentralized nature of WLAN deployments
in a neighborhood may lead to high interference, which can

be extremely variable due to the heterogeneous usage of the
network and the complex physical phenomena that can occur.
The non-stationarity characteristic of residential environments
is one of the most critical aspects to be considered when
designing dynamic solutions for improving network perfor-
mance. Hence, the usage of network simulators can contribute
to reducing the performance losses originated by the transitory
phases of training (e.g., exploration in online learning).

Our proposed testbed-simulator integration is illustrated in
Fig. 2, where a tested ML solution is provided to the testbed
devices by a simulated version of it. Two identical BSSs are
deployed in a high-density residential scenario. However, since
they are positioned at different locations, they are subject to
different interference conditions, and so experience different
performance. The characterization of the WLAN testbed is
done with the IEEE 802.11ax-oriented Komondor simulator,
which includes the operation of agents for simulating the
behavior of ML mechanisms when plugged into wireless
nodes.2

MAC

PHY

Traffic generator

AI Module

Core simulationObstacles
(path-loss)

UDP traffic
Full buffer

Interference

Testbed

UDP traffic
Full buffer

BSS2
(Channel 1)

BSS1
(Channel 1)

Scenario

AI/ML solution

Fig. 2: Use case application of the Komondor simulator to
apply ML in a testbed WLAN.

Through the procedures that have been previously illustrated
in Fig. 1, the testbed scenario is first characterized in the
simulator by gathering parameters such as the location of
nodes, path-loss effects, or the traffic load. As an example of
the characterization of the testbed in the simulator, consider
the path-loss model selected, which is chosen based on the
degree of similarity with respect to testbed measurements.
After preparing the simulation environment, the ML model
is applied in the simulator for the sake of improving a
certain performance metric. Finally, the optimized ML-based
configuration is passed and applied to the real devices whose
performance is expected to be enhanced.

B. Machine-Learning-based Transmit Power Control

To improve the performance of the target WLAN, we simu-
late a Multi-Armed Bandits (MABs) mechanism for Transmit
Power Control (TPC), as previously done in [15]. We take an
online learning approach to address the complexity of spatial
interactions in WLANs, where the effect of tuning the transmit
power can be hindered. Accordingly, the MABs framework is

2All the details of the experimental part and source code are open and
available at the following repository: https://github.com/fwilhelmi/usage of
simulators in future networks, accessed on May 15, 2020.

https://github.com/fwilhelmi/usage_of_simulators_in_future_networks
https://github.com/fwilhelmi/usage_of_simulators_in_future_networks


6

useful to reduce the complexity of the problem and effectively
improving the performance at a low computational cost.

This use case is particularly revealing since the transmit
power is a critical parameter to be freely adjusted, and trying
several configurations before finding the best performance
may lead to unpredictable effects during the transitory regime.
Moreover, commercial equipment typically offers a high delay
when changing the transmit power or other parameters such as
the primary channel. As a result, network simulators can play
a crucial role in palliating the negative impact that exploration
can have in communications.

Figure 3 illustrates the temporal throughput obtained by
each BSS when simulating the MAB method for tuning the
transmit power. Also, the performance that would be obtained
by both BSSs when using the default configuration is illus-
trated. As shown, both BSSs experience an unstable transitory
regime before reaching a stable state whereby performance is
improved. Among the set of input transmit power levels, the
most popular one to be used by both BSSs is 7 dBm, which,
based on simulation results, is expected to improve the average
throughput by 88.48 percent.

Fig. 3: Simulated throughput evolution after applying MABs
for tuning the transmit power in an Overlapping Basic Service
Set (OBSS). Each learning iteration corresponds to 5 seconds
in the simulation.

Finally, we provide some insights on the time it takes the
simulator to bring up results for the testbed. To include the
operation of simulators in future networks (especially for real-
time applications), it is very important to find an equilibrium
between the stability of the output and the time it takes to
generate it. Figure 4 shows the variability of the simulation
results, for different simulation time values. The execution
time is also displayed. As observed, the higher the simulation
time, the higher the stability is. However, this is paid with
execution time, which varies for different network simulators.

C. Testbed Results

Now, we show the results of applying the configuration
suggested by the simulator on the testbed. Figure 5 compares
the performance of applying the ML-based configuration (both
BSSs use a transmit power equal to 7 dBm) with that used by
default (i.e., 23 dBm).

Fig. 4: Execution time versus variability of the results in
Komondor simulator.

As shown, both BSSs improve their throughput significantly
by using the configuration suggested by the simulator. While
BSS1 improves its throughput by 76.16 percent, BSS2 expe-
riences a 93.98 percent improvement. Besides, based on the
lower number of observed outliers, we notice a higher stability
in terms of throughput variability, especially for BSS1. Note,
as well, that BSS2 experiences a higher number of outliers,
which are originated by the high channel variability found in
the residential environment where the tests were performed.

Fig. 5: Performance comparison of default (23 dBm) and ML-
based (7 dBm) configurations at the testbed WLAN.

V. CONCLUDING REMARKS

Future communications are expected to evolve towards
automated systems enabled by ML. However, the application
of ML to networking systems can generate instability and
degrade KPIs. To address that, we envision the integration of
sandbox environments for ML-assisted networks. In particular,
we find network simulators of great utility for training, testing,
and evaluating the performance of ML models before being de-
ployed to production environments. In this article, we proposed
the utilization of network simulators for future ML-based
communications and provided an architectural integration for
improving the level of confidence in ML within ML-aware
network architectures. Besides, we provided insights into the
most prominent challenges resulting from such an integration.
Finally, our testbed results in a residential IEEE 802.11 WLAN
showed how network simulators allow mitigating the negative
effects of directly applying ML in the operative network.
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Network simulators are expected to contribute to filling
the gap between AI and communications. Nevertheless, a
lot of effort is still needed with regards to the architectural
integration of simulators into ML-assisted networks. The most
important challenges lie in the definition and implementation
of standardized interfaces. Concerning practical implementa-
tions, we left as future work the further evaluation of ML
models in network simulators. In particular, different ML
models and simulation tools can be compared in terms of
output accuracy, execution time, or computation needs.
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