

Benchmark of pre-

processing pipelines

of single cell RNA

sequencing data

Dídac Jiménez Sánchez

MU Bioinformàtica i Bioestadística

Omics data analysis area

Final project Tutor

Alfonso Saera Vila

Date of submittal:

20/06/2023

Nom del programa 02/09/2022

Aquesta obra està subjecta a una llicència de

Reconeixement-NoComercial-

SenseObraDerivada 3.0 Espanya de Creative

Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

i

 FITXA DEL TREBALL FINAL

Títol del treball:
Benchmark of pre-processing pipelines of

single cell RNA sequencing data

Nom de l’autor: Dídac Jiménez Sánchez

Nom del consultor/a: Alfonso Saera Vila

Nom del PRA: Alfonso Saera Vila

Data de lliurament (mm/aaaa): 06/2023

Titulació o programa:
Màster universitari en Bioinformática i

bioestadística

Àrea del Treball Final: Anàlisi de dades òmiques

Idioma del treball: Anglès

Paraules clau scRNA-seq, bioinformatics, preprocessing

Resum del Treball

El single-cell RNA sequencing (scRNA-Seq) és una eina molt potent per estudiar el
transcriptoma. Hi ha diverses eines disponibles per preprocessar les dades que se
n'obtenen. Tanmateix, no existeix cap estàndard. L'objectiu d'aquest treball és
comparar quatre eines de preprocessament de scRNA-Seq, extreure conclusions
sobre els avenços dels darrers anys, i determinar si hi ha una eina superior. Les eines
comparades han sigut (i) UMI Tools, una de les primeres eines publicades, que
serveix de punt de referència, (ii) Salmon Alevin, una eina amb moltes
característiques interessants, (iii) Kallisto Bustools, una eina centrada en l'eficiència
computacional i (iv) STARSolo, una implementació recent sobre un aligner popular.
He dissenyat 4 pipelines en bash per implementar cada eina i he implementat un
anàlisi downstream per a avaluar la significació biològica dels resultats. He comparat
la velocitat i l'eficiència computacional, les count matrix produïdes i els resultats
biològics. Per a les comparacions, he utilitzat els conjunts de dades proporcionats per
Tabula Muris com a ground truth. He trobat que Kallisto Bustools és significativament
més ràpid i eficient, mentre que UMI Tools és l'eina més lenta. Les count matrix
produïdes per UMI Tools i Kallisto Bustools han estat coherents amb la ground truth,
mentre que les produïdes per Salmon Alevin i STARSolo presentaven inconsistències.
Els resultats biològics han sigut coherents, tot i que Salmon Alevin ha presentat
problemes. Concloc que el preprocessat de dades de scRNA-Seq ha progressat en
els darrers anys, però més en eficiència computacional. Kallisto Bustools es l'eina
més ràpida i consistent entre les avaluades.

Abstract

Single cell RNA sequencing (scRNA-Seq) is a very powerful tool to study the
transcriptome. Several tools are available to pre-process the data it produces.

ii

However, no standard exists. The objective of this work is to compare four scRNA-Seq
pre-processing tools and extract conclusions regarding the advancements over recent
years, and to determine the superior tool. The tools compared were (i) UMI Tools, one
of the first published tools, which served as reference point, (ii) Salmon Alevin, a tool
with many interesting features, (iii) Kallisto Bustools, a tool focused on computational
efficiency and (iv) STARSolo, a recent implementation to a popular aligner. I designed
4 pipelines in bash to implement each tool, and I implemented a downstream analysis
to evaluate the biological significance of the results. I compared the computational
speed and efficiency, the count matrices produced and the biological results. For the
comparisons, I used the datasets provided by Tabula Muris as ground truth. I found
that Kallisto Bustools was significantly more efficient and faster, while UMI Tools was
the slowest tool. The count matrices produced were consistent with the ground truth
for UMI Tools and Kallisto Bustools while Salmon Alevin and STARSolo presented
inconsistencies. The biological results were coherent, although Salmon Alevin showed
problematics. I concluded that scRNA-Seq has progressed in recent years but more
so in computational efficiency. Kallisto Bustools was the fastest and most consistent
tool among those evaluated.

iii

Contents

1. Introduction ... 1
1.1. Context and justification of the thesis .. 1
1.2. Objectives ... 2

1.3. Impact in sustainability, ethics, and diversity ... 2
1.4. Approach and methodology .. 3
1.5. Planification of the project ... 5
1.6. Brief summary of obtained products .. 6

1.7. Brief description of the chapters .. 6
2. State of the art ... 7

2.1. Cell isolation and RNA sequencing ... 7
2.2. Pre-processing .. 8

3. Materials and methods .. 10
3.3. Materials .. 10

3.3.1. Hardware ... 10

3.3.2. Software .. 10

3.4. Methods .. 11

3.4.1. Data obtention ... 11

3.4.2. Pre-processing .. 12

3.4.3. Downstream analysis .. 13

3.4.4. Comparisons ... 16

4. Results .. 17

4.1. Computational speed and efficiency ... 17
4.2. Count Matrices .. 19

4.3. Biological significance ... 21
5. Conclusions and future works ... 25
6. Glossary .. 27
7. Bibliography .. 28

 1

1. Introduction

1.1. Context and justification of the thesis

The central dogma of molecular biology states that genes encoded in DNA are

transcribed into messenger ribonucleic acid (RNA) which in turn is translated

into proteins. However, not every gene is transcribed in the same frequency and

not all transcripts are translated into proteins. This system comprised by all

RNA molecules makes up the transcriptome which is the first instance of the

phenotype of a cell. The expression profile is different in each cell type and

changes with the cell cycle. This, in turn, will affect the proteins that are

synthesized which will be tailored for the functions and needs of the cell.

Therefore, studying the transcriptome at a cellular level is key to understand the

role of each cell type and, in consequence, it is necessary to develop

techniques to obtain transcriptomic data as precisely as possible.

In the past two decades, significant progress has been made in transcriptomic

technologies. RNA microarrays, capable of detecting thousands of transcripts,

were developed as early as 1995 [1]. However, these arrays are limited

because they only detect a finite number of transcripts that must be present as

probes. Recently, Next Generation Sequencing (NGS) techniques have become

more cost-effective and are now widely recognized as the primary method for

genomic expression analysis. RNA sequencing (RNA-Seq), which involves

sequencing reverse transcribed RNA samples, has replaced microarrays as the

preferred method for gene expression analysis [2], [3].

The samples of traditional RNA-Seq, however, are obtained from bulk tissue,

without discriminating its cell population. During the last decade, significant

technological advancements have been made in the with the goal of obtaining

RNA sequencing data at a cell resolution thus developing the technology known

as single-cell RNA Sequencing (scRNA-Seq). Single-cell RNA sequencing now

enables the analysis of transcriptomes of millions of cells in a single study at the

single-cell level. This ability to classify, characterize, and distinguish cells at the

transcriptome level has enabled the identification of rare cell populations that

are functionally important [4].

The raw output of these techniques are sequencing files (FASTQ) that contain

millions of sequences (reads) of transcripts. Each read contains a nucleotide

sequence that encodes a barcode and a Unique Molecular Identifier (UMI). The

barcode associates the read with a cell, while the UMI associates the read with

an RNA molecule that existed before amplification. These files cannot be

analysed directly. It is necessary to pre-process the raw data to produce a

2

counts matrix, which contains the number of transcripts for each gene in each

cell. With a counts matrix, we can then study the transcriptomic profile of our

cell sample.

The pre-processing step can be computationally intensive, depending on the

size of the sample. In consequence, a variety of specialized tools to carry and

optimize this task have been developed. Despite that, there is still no procedure

considered as a standard. Consequently, it is interesting to compare the

different available tools to find the one that best suits our needs, computational

resources, and specifications of the experiment.

1.2. Objectives

Main objectives:

1. Compare the performance of four single-cell RNA Sequencing data pre-

processing pipelines, each built through different available software tools.

2. Extract conclusions about the improvement in scRNA-Seq data pre-

processing over the last years, and determine which tool is the superior

option or in which circumstances each tool performs better.

Specific objectives:

1. Design, in bash, scRNA-Seq data pre-processing pipelines with the tools:

UMI-Tools/STAR, STARsolo, Kallisto|Bustools and SalmonAlevin.

2. Design an R Markdown notebook to perform the downstream analysis:

quality control, dimensional reduction, clusterization and marker gene

obtention.

3. Run the pipelines and notebook with a dataset well characterized and

compare the performance and results obtained by each tool.

1.3. Impact in sustainability, ethics, and diversity

The impact of this work on environmental sustainability and ecological footprint

is negligible or non-existent. As for energy consumption, it is not in the scope of

this work to compare consumption. The computations were carried in a

personal computer with a commercial CPU. Therefore, it is not a relevant

subject because the energy used for computation is negligible. The significance

of computational efficiency remains crucial in the field of omics, as it enables

operations to be executed on personal computers and optimizes the utilization

of high-performance computer clusters. However, pre-processing is not meant

to be computed perpetually nor in extreme volumes of data, and, therefore, its

3

energy consumption is not an issue. Regarding material consumption, waste,

and pollution, since this work is focused on comparing computational

processes, there is no direct generation of waste or pollution. As for legislation

and regulations, there are none that directly affect this topic. The data used

comes from mouses (Mus musculus), but it is publicly available and no

experiments, on animals or otherwise, were carried explicitly for this work. This

work does not directly impact any of the Sustained Development Goals (SDG)

related to environmental sustainability.

Just as well, the impact of this work on ethical-social aspects is negligible. The

objectives focus on the evaluation of technical methodologies, rather than

addressing broader societal or ethical concerns. This work, has the potential to

contribute to advancements in applications of single-cell RNA sequencing,

which could have implications for areas such as healthcare, precision medicine,

and biological research. These areas align with SDG 3 (Good Health and Well-

being). However, this work is unlikely to be key or to have any direct impact.

Therefore, it is not reasonable to attach responsibility in addressing these

issues. In a similar line, the gender and race dimensions of society have no

impact in the research of this work. Data is from mouse, and the data is not the

focus of study and thus gender is not relevant.

1.4. Approach and methodology

Regarding the choice of tools of pre-processing software, I have chosen UMI-

Tools because it was one of the first publicly available tools and should serve as

a contrast against the other more vanguard tools [5]. Second, STARsolo is an

integration with the STAR aligner for single cell analysis [6]. These two tools

require mapping the reads to the genome which is a computationally intense

process. On the other hand, Kallisto Bustools uses pseudomapping [7]. Instead

of aligning reads to a genome, a pseudomapping algorithm identifies which

transcripts are compatible with each read to quantify the transcript, resulting in a

faster process. Last, Salmon Alevin, uses a lightweight algorithm that the

authors claim is faster than traditional aligners [8].

I have written four pre-processing pipelines in bash, meant to be executed in

terminal. The inputs for the pipelines are: The raw reads in fastq files, a genome

index for the alignment and, depending on the tool, other files like a transcript to

gene list, the genome sequence, or an annotation file. The main output is the

counts matrix, which is a matrix describing the number of transcripts found for

each gene and cell. Obtaining this file from the raw reads is what is known as

pre-processing and is the focus of this work. Along with it, the pipelines provide:

The list of genes and of cell barcodes as separate files, a file containing the logs

printed in terminal, and a file that tracks execution times and resource usage.

4

To evaluate the pre-processing, it is necessary to analyse the counts matrix, in

a process known as downstream analysis. For this I have used the Seurat

library to write an RMarkdown file in R [9]. This type of file enables code

execution in separate chunks, which is convinient for some steps. It also allows

writing in Markdown between these chunks to document the analysis.

Additionally, it allows "knitting" the document together with the output of each

chunk into an HTML or PDF file. The downstream analysis I have implemented

consists in quality control, dimensional reduction, clusterization and differential

expression analysis to find marker genes. A workflow chart of the methodology

is provided in Figure 1.

Figure 1: Workflow of the approach taken. In white are files needed or produced, in red are the

pre-processing pipelines, in green the downstream notebooks and in purple the comparisons.

Note that the right-side is repeated for each pre-processing tool.

I have compared the pre-processing tools on three different accounts. First, in

terms of computational efficiency by comparing the execution times and the

resources used. Second, by evaluating the number of genes and cells obtained.

And lastly, by comparing the biological significance of the obtained results. For

the first comparison, execution times and resources used can be compared

directly. For the second and third comparisons, the results need to be compared

with a ground truth. For this I have chosen a dataset provided by the Tabula

Muris project, a compendium of single cell transcriptome data from the model

organism Mus musculus [10]. Tabula Muris provides both the raw reads and

already pre-processed counts matrices from datasets originated from different

tissues. For the second comparison, the Tabula Muris matrix provides the

expected number of cells and genes for each dataset. For the comparison of

the biological significance of the results, I have written a separate RMarkdown

notebook. It performs the same downstream analysis on the counts matrix

provided by Tabula Muris and saves key results to files. Hence, I can compare

the results obtained from the ground truth to the results obtained with my count

matrices. I have taken two different approaches for these comparisons. First is

5

to compare if the marker genes of a given cluster match, together, with the

marker genes of a cluster from the ground truth. Consequently, we can infer

that we have identified a set of cells with a function matching that of another set

in the ground truth. The second comparison is checking the proportion of cells

from a cluster that are found together in the same cluster of the ground truth.

From these comparison, we can infer that the features that classify the dataset

are kept through the pre-processing.

Figure 2: Workflow chart for the biological comparisons. Computations in purple are done in the main

RMarkdown and computations in green happen in the RMarkdown designed for Tabula Muris matrices.

Finally, to keep version control and for code availability I used git and I

published all the code in my GitHub.

1.5. Planification of the project

The tasks of this project were: To write the pre-processing pipelines, to write the

downstream analysis, to find a suitable dataset that served as ground truth,

implement the comparisons of the different aspects of the pipeline, and execute

the pipelines and analysis.

In a first phase, I learnt how to use UMI Tools and Kallisto Bustools, I built the

genome indices for Kallisto and STAR and I wrote pipelines. Then, I designed

the downstream analysis before I proceeded with the Salmon Alevin and

STARSolo pipelines. Next, I decided to use the Tabula Muris dataset. I

designed the biological comparison section of the notebook, and I created the

second notebook to analyse the ground truth. At this point I invested time into

polishing the pipeline: I added error codes, getopts parameters, help messages,

code commentary, and other improvements to ease-of-use and reproducibility.

https://github.com/didacjs/scRNAseq-Preprocessing-benchmark

6

As part of these improvements, I started using Git for version control and I

uploaded the project to GitHub. Next, before the final execution, I fine-tuned the

parameters of both pre-processing and downstream analysis. I changed the

metric used to identify marker genes and I changed the identification of

barcodes for certain pipelines. Finally, I executed the code on its last version

with all datasets to produce the results.

1.6. Summary of obtained products

The products obtained are the code I have written, and the data obtained, along

with the GitHub page and this memory. The code is divided between the pre-

processing bash pipelines and the RMarkdown notebooks for the downstream

analysis. The pipelines are four scripts written in bash and a module file that

stores utility functions. The purpose of these scripts is to pre-process single-cell

RNA sequencing raw data into a cell by gene counts matrix. The downstream

notebooks are RMarkdown files, with its code chunks written in R. Their

purpose is to perform the downstream analysis on the counts matrices. The

data obtained is comprised by the count matrices, the records of the pre-

processing performance and the reports produced by the notebooks.

1.7. Brief description of the chapters

State of the art: I describe the current methods to perform single cell RNA

sequencing and I describe the relevant methods to process and analyse the

data.

Materials and methods: In materials I describe the hardware, software, and data

that I used in this work. In methods I describe the process to obtain the results

and I describe, step by step, the workflow of each pipeline and of the

downstream notebooks.

Results: Here I present the comparisons among the pre-processing tools. I

compare the computational speed and efficiency, the raw and filtered count

matrices obtained and the biological significance of the analysed results against

the ground truth.

Conclusions: Summary and discussion of the obtained results, evaluation of the

success in the objectives and possible future lines of work.

7

2. State of the art

2.1. Cell isolation and RNA sequencing

Every single-cell RNA-seq protocol is based in four fundamental stages: (i)

individual cell isolation, (ii) mRNA retro transcription (RT), (iii) cDNA

amplification, and (iv) preparation of next-generation sequencing libraries.

Methods for obtaining DNA libraries from the transcriptome of single cells, were

pioneered by Brady and colleagues in 1990 and Eberwine and colleagues in

1992, as methods of DNA amplification had recently become available [11],

[12]. The former, isolated a cell on which they performed retro-transcription and

amplification, while the latter microinjected the necessary enzymes into an

isolated neuron. Initially, these libraries were then analyzed through microarray

chips [13]. Later, as early as 2009, the methods were adapted to be used with

next generation sequencing methods [14].

These methods, however, rely on isolating cells through high dilutions or

micromanipulation with specialized pipettes. As such, they have a very low

throughput and are very time-consuming. A common solution is Fluorescence

Activated Cell Sorting (FACS), which allows to record phenotype data of each

cell while also separating them into wells onto which the rest of stages can be

performed [15], [16]. This method requires a higher volume of cells but offers

higher sensitivity, and the phenotype data it gathers can be useful for several

purposes [17].

Another predominant technology is nanodroplet encapsulation, developed and

provided commercially by 10x Genomics Inc. The key step of this technology is

the encapsulation of isolated cells in gel beads. The gel beads contain

oligonucleotides and primers while the necessary enzymes are added along the

cells. After encapsulation cell lysis and retro transcription happen and library

preparation can start. The final library structure depends on the brand of 10x

Genomics protocol and the purpose of the experiment, although the

constituents are common. Libraries will always include: (i) adapters for paired

end sequencing, (ii) two sequencing primers, one per each read, (iii) a cell

barcode, unique to the cell, (iv) a unique molecular identifier (UMI), unique to

each transcript, (v) the transcript sequence (vi) a poly-T sequence, which

hybridizes with the poly-A sequence added by the reverse transcriptase and

(vii) a sample barcode, to allow running more than one sample. The specific

library structure of the 10x protocol used to obtain the data of this work is

described in Figure 3. Once the library is ready, it is amplified and sequenced

[18], [19].

8

Figure 3: Specific library structure used in the data of this work.

The product of this protocol is two fastq files: One storing the UMI and barcode,

read 1, and another storing the read itself, read 2. From this point, the pre-

processing can start with the objective of obtaining the counts matrix from these

files.

2.2. Pre-processing

All existing single cell RNA sequencing pre-processing methods, generally,

follow a common structure. The first step is identifying the cell barcodes of the

sample, usually saving them to a whitelist file. Second is the deduplication of all

reads with the same UMI. Since all molecules with a shared UMI will have

originated in amplification from a single transcript, only one transcript should be

counted for that gene. The next process is assigning each read to the gene it

was transcribed from. The most common method for this step is aligning the

reads to a genome through mapping algorithms, as with bulk RNA sequencing.

The last step is to quantify the gene counts per cell in a matrix.

In 2017 Smith T. and colleagues published UMI-tools, an open-source software

tool written in python that performed deduplication of scRNA-Seq data, although

it does not perform mapping and instead relies in other software [5]. In their

work, the authors demonstrated that miscallings in the sequencing of UMIs are

common, which leads to false UMIs being counted as genuine. The UMI-tools

deduplication function can correct these errors by building networks of UMIs of

the same genetic loci. Similarly, UMI-tools can correct miscallings in cell

barcodes to ensure that no artificial cells are counted. UMI-tools has been used

extensively and the publication has over a thousand citations [5], [20]. Many

other tools developed ideas presented by UMI-tools and used it for

benchmarking [21], [22].

Along with droplet-based technologies, 10X Genomics also developed Cell

Ranger, a tool to preprocess scRNA-Seq data [18]. Cell Ranger identifies UMIs

and barcodes by correcting both to a hamming distance of one and uses the

STAR aligner. Its advantages are that the pipeline can be run through a single

integrated function, its ease of use and that it is well maintained by 10X

Genomics. However, it can only process sequences obtained through 10X

Genomics protocols and it is not as fast as other available tools.

9

In 2019, Srivastava A. and colleagues published Alevin an open-source

software tool written in C++ that performed all pre-processing steps [8]. It works

within the Salmon framework, which is a tool developed for bulk RNA

sequencing. It integrates whitelisting, mapping, deduplication and counting [23].

Salmon utilizes a lightweight mapping algorithm that the authors claim is much

faster than other aligners. The authors of alevin implemented a novel

deduplication algorithm that uses transcript level information and that considers

multimapping reads to identify the correct UMIs. Transcript level information

such as isoforms is kept by building equivalence classes using the method

described by Turro E. and colleagues in 2011 [24]. Using these classes, reads

with similar UMIs that map to the same gene may not be collapsed if the

transcripts are distinct. Also, on deduplication, the authors identified that other

tools discarded reads that map to more than one gene (multimapped) and

proved that this approach lost information. In Alevin’s algorithm these reads are

kept, and their counts are distributed through an expectation maximization (EM)

algorithm [25].

In 2021, Melsted P and collegues presented the Kallisto Bustools pipeline,

which is focuses on computational speed and efficiency [7]. This pipeline uses

Kallisto to assign reads to genes, but instead of aligning the reads traditionally,

Kallisto uses pseudo-alignment [26]. Pseudoalignment is a technology

developed with the objective of reducing the computational resources that

traditional alignment needs. Instead of aligning all bases of a sequence to a

reference, it breaks the read into “k-mers” (sub-sequences of length k) and finds

which transcripts it is compatible with. Then, the algorithm builds a De Brujin

graph of the compatible transcripts and keeps those that are valid for all k-mers

as an equivalence class. The key to the efficiency of this algorithm is that it

does not care about read orientation nor exact per base alignment.

Furthermore, it can skip the evaluation of most k-mers since the authors show

that two are often enough to determine the original transcript. Thus, Kallisto

outputs a “Barcode, UMI, Set” (bus) file that contains the UMI, barcode and

equivalence class of each read. The authors developed both the file type and

Bustools, a software meant to manipulate bus files [27]. Through Bustools, then,

the counts of multimapped reads are distributed with EM. Furthering the focus

on computational speed, the authors of alevin deem the miscallings in UMIs to

be negligible, only correcting those that are a Hamming distance of 1 away.

Kallisto Bustools has shown to be a very efficient tool and has already been

used in multiple studies [28], [29].

STARsolo is an integration to the STAR aligner developed to quantify single cell

data [6]. The design is meant to be a “drop-in” replacement for CellRanger. It

claims to be the fastest tool among those that have a higher accuracy and

presents a tight pipeline that does not use intermediary files.

10

3. Materials and methods

3.3. Materials

3.3.1. Hardware

The hardware that I used in this work is my personal computer with the

following specifications:

- CPU: AMD Ryzen 5 2600X Six-Core Processor

- RAM: 16 GB DDR4 + 40GB of swap RAM

- Disk: WD Blue SN570 500GB

- Storage: ST1000DM010-2EP102 - 1TB

3.3.2. Software

The operating system used was Ubuntu 22.04.1 LTS with release 5.1.16(1) of

bash. The software tools used for pre-processing were:

- UMI tools: umi_tools 1.1.4, STAR 2.7.10a, samtools 1.16.1,

featureCounts 2.0.3

- Salmon Alevin: Salmon 1.9.0

- Kallisto Bustools: kb_python 0.27.3, bustools 0.39.3

- STARsolo: STAR 2.7.10a

Other tools used in designing the pipelines include time and getopts from GNU.

For the downstream analysis, I used R 4.2.2 on RStudio 2022.07.02. The

libraries used are:

- dplyr v1.0.10

- dropletUtils v1.16.0

- ggplot2 v3.4.0

- knitr v1.40

- Matrix v1.5-1

- Seurat v4.3.0

- tidyverse v1.3.2

Also, to obtain certain gene lists I used biomaRt v2.52.0.

11

3.4. Methods

3.4.1. Data obtention

All data utilized was originated from the Tabula Muris Project. Tabula Muris

provides the already pre-processed data in a repository, available in their

website [30]. The count matrices generated by Tabula Muris can be found in

this repository, along with the corresponding R objects that can be loaded into R

to obtain the downstream results obtained by Tabula Muris. The raw data,

however, is only available through the Sequence Read Archive (SRA), under

Gene Expression Omnibus (GEO) series accession GSE109774. The data in

this study is categorized into various sample formats, and for this particular

work, the selected formats were GEO accessions GSM3040906 (derived from

lung tissue) and GSM3040917 (derived from trachea tissue). Data is also

available in various formats, and the one downloaded was the original 10X

Genomics bam file. Once downloaded, bedtools provides a tool, “bamtofastq”,

that allowed me to obtain the original FASTQ files. These files are divided into

read 1 (UMI and barcode), read 2 (real read) and indexes 1 and 2.

Other external data needed was the reference genome of Mus musculus

(assembly GRCm39 or mm39), gene annotation files (GRCm39 from ensemble

and M32 from Gencode) and lists obtained through BioMart (ensemble id of

mouse mitochondrial genes, transcript to gene id associations and gene

description). The whitelist, which is a list of the barcodes used in the

experimental part, is identical for all experiments done with the same version of

the chemistry. In our case it is the whitelist used for V2 chemistry. It is available

for download in the github of Cell Ranger.

3.4.2. Genome indexes

Mouse (Mus musculus) genome indexes were built for each aligner, STAR,

Kallisto and Salmon. Indexes are generated with built-in functions of the

aligners and are one-time processes since the same index can be used for

every execution of an aligner. The methods used to generate the indexes were

those provided in the documentation of the aligners. STAR and kallisto used the

genome fasta sequence and the annotation file from Ensembl (GRCm39).

Kallisto also used the transcript to gene dictionary. To build the Salmon index I

used the approach of using the entire genome as a decoy sequence, also

following the documentation. It used both the transcriptome the genome from

Gencode (M32).

12

3.4.3. Pre-processing

All pre-processing pipelines are written in bash and are meant to be executed

as:

$ bash <path-to-script> [options]

There are parts of the code that are common to all pipelines. As a first step, all

pipelines load these functions, described latter, that perform common

processes. Then, using getopts, the script stores the required parameters in

variables. These parameters are the paths to various files, including the raw

data directory, aligner-specific index files, the barcode whitelist and the

transcript-to-gene mapping file. Also, the path where the user wants to store the

output files must be indicated. If any necessary option is not provided, the script

then returns a help message and indicates to the user what is missing.

Likewise, the help message is shown if a file or directory at the indicated paths

is missing.

After saving the paths, all pipelines run a function called merge. This function

first asks for the number of files. If its four, then they correspond to read 1, read

2, index 1 and index 2. The function then saves the path to reads 1 and 2 in two

variables. If more than 4 files are found in the directory, it means that reads are

separated into lanes. If that is the case, the files of reads 1 (R1) and 2 (R2) are

concatenated by category. The resulting files are saved in the output directory

and their path is saved to variables. These files will be the ones used in the rest

of the functions.

After this step, the pipelines differ from each other. The Kallisto Bustools

requires a transcript to gene file, a Kallisto index file and the cell isolation

technology name, as well as the raw reads. After that, the files are directed to

“kb count” a wrapper function provided by the authors. It performs sequentially

“kallisto bus”, “bustools correct”, “bustools sort” and “bustools count”. This

function produces de counts matrix directly.

The STARsolo pipeline takes the reads, the STAR index directory and the

whitelist. After merging, the pipeline unzips the FASTQ files. Then the inputs

are passed to STAR, with the parameter “--soloType" set to “CB_UMI_Simple”. The

number of threads I used for this function is 6. It also produces the counts

matrix directly.

The Salmon Alevin script requires the transcript to gene file, the salmon index

file and the whitelist. After that, the files are directed to “salmon alevin” which

performs the pre-processing and saves a counts matrix.

13

Last, the UMI tools pipeline takes the STAR index directory, the transcript to

gene file and the gene annotation file. First, “umi_tools whitelist” takes the R1

file and the structure of the UMI and barcode and it finds the valid barcodes of

the dataset, saving them to a new whitelist file. The rest of the pipeline can use

a whitelist provided externally, but the UMI correction methodology of UMI tools

requires a specific format. I have chosen to use this function to obtain the valid

barcodes to test this feature. After that, the reads and the whitelist are passed

to “umi_tools extract” to append the barcode to the read names, which is

necessary for subsequent steps. Then, the extracted reads along with the

STAR index are used to align the reads to the genome with STAR. I used 6

cores to run this function and I discarded all multimapping reads with the flag “-

-outFilterMultimapNmax 1”. After this step we need to assign each read to a

gene because we aligned the reads to the genome and because fragmentation

happens after PCR amplification. This means that two reads with different

mapping locations may still be duplicates. To do this I used featureCounts, from

the subread package, which returns a bam file with the gene assignment in the

XS tag. After using featureCounts, however, the reads are not sorted which is

needed for quantification. To sort the bam file this I used samtools sort followed

by samtools index, which take the bam file as input and return it sorted. This

bam file can then be passed to umi_tools count, which deduplicates and

quantifies the transcripts by gene and cell (using --per-gene and --per-cell).

All the functions used that are related to the pre-processing, were benchmarked

and timed using time -v -a -o and the output was saved to a text file for latter

comparison. Additionally, I redirected the output printed to terminal to a text file

to help with debugging and development.

I executed the pipelines with both the dataset of trachea cells and of lung cells.

3.4.4. Downstream analysis

Downstream analysis was written in R into an RMarkdown notebook with the

purpose of performing the downstream analysis and comparing the biological

significance of each counts matrix. I designed two notebooks: One to perform

the analysis on the count matrices provided by Tabula Muris and save its

results to files, and another to perform the analysis on the count matrices that I

obtained. The notebooks take as inputs the count matrices, a list of the

ensemble IDs of mitochondrial genes and, in some cases, a list of genes and

barcodes.

The notebook starts by loading all libraries, saving the path to the count matrix

to be analysed and saving the tool used to pre-process it as a pre-determined

string. The second part is loading the counts matrix to R as a sparse matrix. As

the output formats vary slightly, I used conditionals to be able to use the correct

14

functions to load the data. Next, mitochondrial genes needed a tag on their

name so that I could use the proportion of mitochondrial transcripts as a quality

control measure. To do so, I loaded the mitochondrial gene list and I iterated

over the present genes to add “MT-“ before the corresponding ensembl ID in

the sparse matrix. After this, the sparse matrix is used to create a Seurat object.

While creating the object, I filtered: Genes that appear in less than 5 cells and

cells that have less than 5 genes. This is a small filter that removes data points

that would be remover later and speeds up computations.

The first part of the analysis itself is the quality control. I have applied quality

control by setting thresholds on certain per-cell metrics: Number of unique

genes, total count of molecules and percentage of mitochondrial cells. The

percentage of mitochondrial transcripts was set to less than 5% in all cases. To

choose the other thresholds, I plotted the metrics as violin plots as well as the

number of molecules against the number of genes in a dispersion graph. The

thresholds were set, then, such that no obvious outliers remained after the plot

and such that the dispersion graph was approximately linear.

The second part of the analysis was normalizing the data, selecting the most

variable genes, and scaling the data. The purpose of normalization is so that

the expression values of cells can be compared among themselves. Each value

(expression A of gene i and cell j is divided by the total expression in its cell,

multiplied by a scale factor and then log transformed (Equation 1). After

normalizing, we select the most variable genes with the purpose of focusing the

analysis on the genes that differentiate the cells. The metric used for this

purpose is the standardized log dispersion, as described in Equation 2.

Following Tabula Muris approach, I selected as highly variable those genes that

had: di > 0.1 AND mi > 0.5. To end the second part of the analysis, I scaled the

data so that the mean across cells would be 0 and the variance across cells 1.

The formula applied is that of Equation 3. While scaling the data the percentage

of mitochondrial counts is regressed out, to minimize its impact.

Equation 1: Scaling of expression value A from gene i and cell j into normalized expression value N.

𝑁𝑖𝑗 = log (1 + 104
𝐴𝑖𝑗

∑ 𝐴𝑖𝑗𝑗
)

Equation 2: Standarized log dispersion of gene i with mean m and variance v.

𝑑𝑖 = log (
𝑣𝑖
𝑚𝑖

)

Equation 3: Scaled value X of gene i in cell j with normalized value N,and cell mean and standard

deviation m and s

𝑋𝑖𝑗 = (𝑁𝑖𝑗 −𝑚𝑖)/𝑠𝑖

15

The next section carries out the dimensional reduction and clustering of cells. I

performed dimensional reduction through principal component analysis. Cells

have thousands of genes expressed so I needed to reduce the dimensions to

proceed with the rest of the analysis while keeping as much variance as

possible. After computing the components, I plotted the cumulative variance

and, in each analysis, I selected the number of components before the elbow.

With the components, then, I clustered the cells through shared nearest

neighbours. Crucially, the cluster label of each cell is saved in the metadata of

the Seurat object. I also computed the t-distributed stochastic neighbour

embedding dimensional reduction from the principal components to mimic the

graphics obtained by Tabula Muris.

The last part of the downstream analysis is the differential expression analysis

to identify the marker genes of each cluster. The metric I used is the area under

the curve (AUC). To calculate it, a Seurat function, FindAllMarkers, constructs a

classifier for every pairing of gene and cluster. This classifier uses the gene as

the sole predictor and differentiates between the cluster and the remaining cells

as the two distinct classes. To evaluate each classifier, the function computes

the area under the receiver operating characteristic curve (ROC). This curve

built from the true positive rate against the false positive rate. Essentially, it

measures how well a gene discriminates between the cells of a cluster and the

rest of the cells. An AUC value of 1 means that expression values for this gene

alone can perfectly classify the two groupings. This means that each of the cells

in the evaluated cluster exhibit a higher expression level of the evaluated gene

than in the cells of the rest of clusters. An AUC value of 0 also signifies perfect

classification. However, I only evaluated genes that are more expressed than

average in the cluster, as I want to find marker genes and not build a classifier.

The function kept all marker genes with an AUC of over 0.7. However, I kept the

top 10 markers of each cluster.

The analysis was identical in both notebooks with a few exceptions. The

notebook designed to analyse the data from Tabula Muris takes as input an robj

file, which contains the counts matrix in a seuratObject. These objects are in

Seurat’s version 3 of the class while the version I used is the number 4. As such

the objects had to be updated. Also, the objects contain data from two different

samples of the same tissue, therefore, only the data of the sample I used in the

pre-processing was used. Another difference in the notebooks is that the main

notebook carries out the comparison while the one designed for Tabula muris

data saves key data for the biological comparison. The data saved, to a text file,

was the cluster identity of each cell, and a table that detailed the top 10 marker

genes of each cluster. The latter included: (i) The name of the marker gene, (ii)

the cluster it was a marker gene for, (iii) the AUC metric, (iv) the log fold change

between its expression and the mean and (v) the description of the gene

16

provided by Mouse Genome Informatics (MGI). Hence, I produce two of each of

these files, one for each dataset.

3.4.5. Comparisons

To directly compare the results of each pre-processing I compared, among the

pipelines: (i) The number of barcodes identified as correct, (ii) the total number

of counts, (iii) the mean and median number of counts per barcode, (iv) the

mean and median number of genes per barcode. And again, the same values,

after applying the quality control filters.

I based the biological evaluation of the pipeline in comparisons between the

results of the downstream analysis and the same analysis applied to the Tabula

Muris-provided counts matrix. To compare the clusters directly, I computed the

number of cells from a given cluster that coincide in identity in both analyses.

In another biological comparison, I first produced a table of the top marker

genes as described in the las section of the downstream analysis and I loaded

the corresponding file. Then, I inner-joined the tables by description, so that

genes that were found to be marker genes in both analyses were joined. The

information provided by this resulting table is how many, out of 10 marker genes

per cluster, are common in both analyses.

17

4. Results

4.1. Computational speed and efficiency

I benchmarked the time each pipeline needed to run with GNU’s time function. I

measured the real time elapsed and the time the processes spent in the CPU,

both in user and kernel mode. The time spent in CPU is in every case higher

than the time elapsed because of parallelization, where a process can be

undertaken by more than one CPU core at the same time. This way the time

needed to execute the full pipeline in a single core is the user time plus the

kernel time. To measure the grade of parallelization, we can calculate the

percentage of time spent in CPU of the time elapsed to execute with Equation

4.

Equation 4: Formula of the percentage of CPU used by a pipeline. Used to measure parallelization.

%ofCPUused =
𝑈𝑠𝑒𝑟𝑡𝑖𝑚𝑒 + 𝐾𝑒𝑟𝑛𝑒𝑙𝑡𝑖𝑚𝑒

𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑡𝑖𝑚𝑒
∗ 100

Since the time spent in CPU is higher than the elapsed time, this value indicates

if a pipeline uses the available resources efficiently. This is heavily affected by

the number of cores used, which can be set as an argument for all pipelines

except UMI Tools. However, using a higher number of cores requires loading

more data into RAM, which was the limiting factor in the STARSolo and Salmon

Alevin pipelines. The number of cores, the maximum memory load used and the

rest of the data is presented in Table 1, for the trachea dataset and Table 4 for

the lung dataset.

Table 1: Table 2: Technical benchmark results of the preprocessing of the lung cell data set.

Umi Tools STARSolo Kallisto

Bustools

Salmon

Alevin

Elapsed (hh:mm:ss) 02:08:50 00:28:21 14:32.0 00:39:39

User time (hh:mm:ss) 03:33:06 02:44:56 01:26:28 01:17:12

Kernel time (hh:mm:ss) 00:02:22 00:01:38 00:00:32 00:00:41

% of CPU used % 167,1 % 587,6 % 598.6 % 196,4

Maximum memory used (Gb) 14,70 11,55 4,29 14,26

Cores 1 (6 for STAR) 6 8 4

As expected, UMI tools was the slower pipeline, taking over 2 hours to

preprocess the trachea dataset, more than twice as long as next slower

pipeline. There are several reasons for this. First, being written in python is a

handicap when compared to other, more efficient, languages. Second it is fully

modular and relies in intermediary files: umi_tools extract produces

intermediary FASTQ files equal in length to the inputs, and STAR, featureCounts,

18

samtools sort and umi_tools count each produce an intermediary bam file.

Lastly, the UMI Tools pipeline has no parallelization except for the read

mapping which is done with STAR and for the read assignment. A detailed per-

function summary of the pipeline is presented in Table 3.

Table 3: Per-function breakdown of the UMI Tools pipeline

 Trachea dataset Lung Dataset

Function Elapsed CPU time Elapsed CPU time

umi_tools whitelist 00:25:14 00:25:14 00:15:19 00:15:19

umi_tools extract 00:53:52 00:53:52 01:59:10 01:59:07

STAR 00:24:32 01:46:39 00:44:29 04:22:23

featureCounts 00:00:31 00:05:03 0:01:32 00:15:43

samtools sort 00:10:31 00:10:30 00:30:55 00:30:50

samtools index 00:00:54 00:00:54 00:02:22 00:02:22

umi_tools count 00:13:16 00:13:16 0:25:15 00:25:15

The elapsed time and the CPU time are almost identical in every function, which

means that it had no parallelization. The exception is the STAR aligner that

used 434% and 589% of the CPU respectively. This allowed the pipeline to

finish 1h22min and 3h37min faster. The read assignment with featureCounts

also had a high parallelization of 977% and 1020%, which is possible because it

is a lightweight tool that could use as much memory as it needed. However, it

only accelerated the process by 4 min and 14 min respectively.

Table 4: Technical benchmark results of the preprocessing of the lung cell data set.

Also expected was that Kallisto Bustools was the fastest pipeline and the one

that used the least memory. It finished the process in 14 min and 10 min for the

trachea and lung datasets respectively and used only 4 Gb. I was able to run

this pipeline with any number of cores and, as such, it had the highest

parallelization. The next fastest tool, STARSolo took twice as much time for the

trachea dataset and 5.5 times more for the lung dataset. STARSolo and Salmon

Alevin were close to each other, with the former being 10 to 20 minutes faster

and the latter using less memory. However, STARSolo required over twice the

Umi Tools STARSolo Kallisto

Bustools

Salmon

Alevin

Elapsed (hh:mm:ss) 3:59:02 0:55:56 00:10:30 01:20:24

User time (hh:mm:ss) 07:48:13 05:25:46 00:39:34 02:36:12

Kernel time (hh:mm:ss) 00:02:47 00:02:50 00:00:45 00:00:39

% of CPU used % 197,0 % 587,5 % 383,9 % 195,1

Maximum memory used (Gb) 11,49 11,62 4,20 14,51

Cores 1 (6 for STAR) 6 8 4

19

amount of CPU time, as it relies on traditional genome aligning. Despite this, it

still outperformed Salmon Alevin with a 587% of CPU usage.

4.2. Count Matrices

To evaluate the result produced by the pipelines I compared the number of

transcripts, cells, and genes of each count matrix, including those provided by

Tabula Muris. I also show the number of barcodes that passed the quality

control filters that also passed the quality control filters in the Tabula Muris

analysis. The data is presented in Table 5 and Table 6. The quality control

filters applied were: (i) More than 2000 molecules per cell and less than 12000

molecules per cell (ii) more than 500 genes per cell and less than 3700 genes

per cell (iii) less than 5% of counts of mitochondrial origin.

Table 5: Number of counts, cells and genes in the count matrices obtained from the trachea dataset.,

before and after the application of filters. Also shown, the number of cells after filtering that coincide by

barcode with the Tabula Muris analysis.
TabulaMuris UMITools KallistoBustools Salmon alevin STARSolo

Unfiltered

Counts 22,334,002 23,855,028 28,364,583 1,897,657 8,020,154

Cells 4,643 11,975 86,415 5,398 75,097

Genes 23,341 21,534 23,309 9,521 6,728

Filtered

Counts 17,965,131 18,063,628 18,227,971 1,703,939 2,212,169

Cells 4,306 3,633 3,694 3,849 764

Genes 23,341 21,534 23,309 9,521 6,728

Coinciding 3,139 3,191 3,217 216

Table 6: Number of counts, cells and genes in the count matrices obtained from the lung dataset., before

and after the application of filters. Also shown, the number of cells after filtering that coincide by barcode

with the Tabula Muris analysis.

TabulaMuris UMITools KallistoBustools Salmon alevin STARSolo

Unfiltered

Counts 3,873,187 5,847,402 7,737,860 472,031 7,448,203

Cells 621 5,982 111,480 868 113,172

Genes 23,341 18,157 19,657 7,134 19,023

Filtered

Counts 2,072,285 3,108,475 3,160,955 418,749 2,978,967

Cells 461 558 493 602 494

Genes 23,341 18,157 19,657 7,134 19,023

Coinciding 411 420 442 411

UMI Tools produced the most similar results to Tabula Muris on all three

accounts before filtering. After filtering all matrices were similar in magnitude of

these values, with a few exceptions. As can be seen in both tables, the count

matrices of Salmon alevin appear to be filtered beforehand, according to the

number of cells. Furthermore, the per-cell values of counts and genes followed

20

a different distribution than in the other matrices as can be seen in Figure 4.

Thus, different filters were used for Salmon Alevin: 100 to 2000 counts per cell,

100 to 750 genes per cell and less that 5% of mitochondrial counts per cell.

With these filters, the count matrices of Salmon Alevin were very similar to the

other filtered matrices, albeit with significantly less unique genes.

Figure 4: Distribution of the counts per cell, the genes per cell and the percentage of mitochondrial genes
per cell in the matrices obtained from the trachea data set before filtering.

In figure 4 it can also be observed the relevance of filtering barcodes with a high

proportion of mitochondrial genes. Kallisto Bustools and STARSolo

overestimated the number of cells by as much as 22 times. After applying

filtering, Kallisto Bustools yielded the anticipated values, whereas STARSolo

exhibited a considerably reduced cell count in the trachea dataset, due to the

application of the mitochondrial percentage filter.

Following the application of filters, the barcodes that remained had a

percentage of coincidence with the ground truth ranging from 73% to 96%. The

analysis with the most coinciding barcodes was salmon Alevin in the lung

dataset.

21

4.3. Biological significance

To compare the cell clusters obtained with those from the ground truth dataset I

generated a joint table that matched the cluster identities of each cell barcode

across the two datasets. In the clustering of the Tabula Muris trachea dataset, 7

clusters were identified. The results of these analyses can be found in Figure 5

and Figure 6.

Figure 5: Cell flow diagram showing where the trachea cells from a given cluster are found in the ground
truth clustering.

22

Figure 6: Cell flow diagram showing where the lung cells from a given cluster are found in the ground truth
clustering.

To evaluate if the clusters of each analysis match with the ground truth I
counted the number of cells that are in a correct cluster equivalence. For
example, from the UMI Tools counts matrix analysis, the cells of the cluster
number 1 are divided between clusters 0 and 2 of the ground truth. Therefore,
that is set as an equivalence, since it is arguable that they belong to a distinct
type of cell. However, there are 66 cells of the cluster number 2 of the analysis
that are also found in the cluster number 2 of the ground truth. Since the ground
truth cluster number 2 better matches cluster 1 and UMI tools cluster 2 better
matches ground truth cluster 1, these 66 cells are wrongly assignedError!
Reference source not found.. The proportion of correctly assigned cells for
each analysis is shown in Table 7 Table 7.

 Table 7: Percentage of cells with a consistent assignation, per tool and dataset

 Trachea Lung

UMI Tools 97,61% 87,10%

Kallisto Bustools 97,01% 77,61%

Salmon Alevin 90,02% 88,64%

STARSolo 100% 82,24%

The results were better for the trachea dataset. Most of the error in all analyses
of the trachea dataset originates from a number of cells from the second cluster
of ground truth being found in the second cluster of the analysis. In the analyses

23

of the lung dataset, the cells of the biggest Tabula Muris cluster are found
distributed on various clusters, which produces error. The clustering of the
STARSolo matrix produced results that perfectly matched the ground truth,
though this analysis had a lower number of cells. Overall, the best results in this
aspect are those obtained from the UMI Tools matrix.

In another approach to compare the biological significance of the results I

compared the marker genes obtained in each analysis with those obtained from

the ground truth matrix. The top ten marker genes by AUC of each cluster were

considered. Then, similarly to the previous comparison, I traced how many

markers for a cluster were also found in the ground truth and if they were found

together. These results are summarized in Figure 7 and Figure 8.

Figure 7: Flow chart of marker genes found in each analysis of the trachea dataset that were also
found to mark a cluster of the Ground truth.

In the trachea dataset, for UMI Tools 53 out of 70 markers matched, for Kallisto
Bustools 50 out of 60 markers matched and for STARSolo 19 out of 40 markers
matched. No markers matched for Salmon Alevin. I found a consensuated
cluster identified by Cytl1, Chad, Coll11a and Wif1 among others. Nine out of
ten top markers found in the UMI Tools and Kallisto Bustools matrices coincide
with those found in the Tabula Muris Matrix. This cluster is the largest in all
cases and these are genes related to cartilaginous tissue. Therefore, the cells
belonging to this tissue are likely the structural part of the endoderm of the
trachea. The second largest cluster for all cases, is marked by collagen and
collagen related genes as well as cell matrix related genes. These results are
consistent with the cell identity correspondence of the previous comparison.

24

Figure 8: Flow chart of marker genes found in each analysis of the lung dataset that were also
found to mark a cluster of the Ground truth.

In the lung dataset, less markers coincided with the ground truth. For UMI
Tools, 13 out of 50 markers matched, for Kallisto Bustools 11 out of 50 markers
matched, for Salmon Alevin 13 out of 40 markers matched and for STARSolo
12 out of 50 markers matched. A cluster with 8 markers that coincide with those
of a ground truth cluster were found in the UMI Tools, Salmon Alevin and
STARSolo matrices. The coinciding markers are Chi3l3, Abcg1, Cd44, Hebp1,
Mrc1 and Ear2. The gene Lst1 was found to mark the second largest cluster in
all analyses. In the Salmon Alevin analysis, however, it is a false coincidence
since the cells of the cluster are not the same as the cells of the ground truth
cluster. Overall, this comparison in the lung dataset is less useful because all
pipelines found a low proportion of coinciding markers with the ground truth,
although it also is consistent with the results of the cell identity comparison.

25

5. Conclusions and future works

As expected, UMI Tools was the slowest and least efficient pre-processing tool,

while also being the hardest to implement. Kallisto Bustools was the fastest and

most memory efficient tool which is also expected due to the implementation of

pseudo-alignment and the compromises made in its design. STARSolo was

faster than Salmon Alevin, which was unexpected, since Salmon does not fully

align the reads to the genome unlike STAR. The key to the speed of STAR is its

parallelization, because even though it spent more time being processed in the

CPU than Salmon, it needed less real time to complete the process.

In the count matrices produced, UMI Tools and Kallisto Bustools produced

matrices that were consistent with the ground truth in number of molecules,

genes, and cells. Salmon Alevin needed to use less strict quality control filters

due to having a different distribution in the metrics that were considered.

STARSolo, unexpectedly, produced a very low-quality count matrix for the lung

dataset due to high mitochondrial gene count proportions. This resulted in a low

number of cells remaining after filtering, which affected latter results.

In the biological significance comparison, the clusterization of cells was found to

be consistent, with over 75% of cells being clustered together both in the

analysis of my count matrices and the Tabula Muris matrices. The marker

genes were consistent with the ground truth, although less so in the lung cell

dataset, likely due to being smaller in size. However, no marker genes of the

Salmon alevin trachea matrix matched any marker gene in the Tabula Muris

matrix. This is possibly due to the different distribution and lesser filters applied.

Thus, the first objective of comparing and benchmarking the pre-processing

tools was successful. As for the second objective, it is clear that pre-processing

has improved substantially in the las half decade in terms of computational

efficiency. All tools performed significantly faster than UMI Tools, were easier to

implement and used equal or less memory. However, in terms of matrix quality

and biological results, the matrix produced by UMI Tools produced good results

when compared to the ground truth in all accounts. Kallisto Bustools also

produced good results in all accounts while STARSolo and Salmon Alevin

showed inconsistencies. Since Kallisto Bustools was the fastest software,

according to this work, it should be the superior option for general purpose

single cell RNA sequencing preprocessing.

To further the objectives of this work, other tools could be easily evaluated

within this workflow as well as other datasets. With more data volume and

comparing more software, more certain conclusions could be extracted. Another

26

possible implementation would be a system to assign a cell type to clusters,

which would improve the biological significance comparison.

27

6. Glossary

- AUC Area Under the Curve

- BAM Binary Alignment and Map

- BUS Barcode, UMI, Set

- CPU Central Processing Unit

- DNA DeoxyriboNucleic Acid

- EM Expectation Maximization

- FACS Fluorescence-Activated Cell Sorting

- GEO Gene Expression Omnibus

- mRNA messenger RiboNucleic Acid

- NGS Next Generation Sequencing

- PCR Polymerase Chain Reaction

- RAM Random Access memory

- RNA RiboNucleic Acid

- ROC Receiver Operating Characteristic (curve)

- RT Retrotranscription

- scRNA-Seq single-cell RNA Sequencing

- SDG Sustainable Development Goals

- SRA Sequence Read Archive

- UMI Unique Molecular Identifier

28

7. Bibliography

[1] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative
Monitoring of Gene Expression Patterns with a Complementary DNA
Microarray,” Science (1979), vol. 270, no. 5235, pp. 467–470, Oct. 1995,
doi: 10.1126/SCIENCE.270.5235.467.

[2] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: A revolutionary tool for
transcriptomics,” Nat Rev Genet, vol. 10, no. 1, pp. 57–63, Jan. 2009, doi:
10.1038/NRG2484.

[3] R. Stark, M. Grzelak, and J. Hadfield, “RNA sequencing: the teenage
years,” Nat Rev Genet, vol. 20, no. 11, pp. 631–656, Nov. 2019, doi:
10.1038/S41576-019-0150-2.

[4] B. Hwang, J. H. Lee, and D. Bang, “Single-cell RNA sequencing
technologies and bioinformatics pipelines,” Experimental and Molecular
Medicine, vol. 50, no. 8. Nature Publishing Group, Aug. 01, 2018. doi:
10.1038/s12276-018-0071-8.

[5] T. Smith, A. Heger, and I. Sudbery, “UMI-tools: modeling sequencing
errors in Unique Molecular Identifiers to improve quantification accuracy,”
Genome Res, vol. 27, no. 3, pp. 491–499, Mar. 2017, doi:
10.1101/GR.209601.116.

[6] B. Kaminow, D. Yunusov, and A. Dobin, “STARsolo: accurate, fast and
versatile mapping/quantification of single-cell and single-nucleus RNA-
seq data,” bioRxiv, p. 2021.05.05.442755, May 2021, doi:
10.1101/2021.05.05.442755.

[7] P. Melsted et al., “Modular, efficient and constant-memory single-cell
RNA-seq preprocessing,” Nature Biotechnology 2021 39:7, vol. 39, no. 7,
pp. 813–818, Apr. 2021, doi: 10.1038/s41587-021-00870-2.

[8] A. Srivastava, L. Malik, T. Smith, I. Sudbery, and R. Patro, “Alevin
efficiently estimates accurate gene abundances from dscRNA-seq data,”
Genome Biol, vol. 20, no. 1, pp. 1–16, Mar. 2019, doi: 10.1186/S13059-
019-1670-Y/FIGURES/8.

[9] Y. Hao et al., “Integrated analysis of multimodal single-cell data,” Cell, vol.
184, no. 13, pp. 3573-3587.e29, Jun. 2021, doi:
10.1016/J.CELL.2021.04.048/ATTACHMENT/1E5EB5C1-59EE-4B2B-
8BFA-14B48A54FF8F/MMC3.XLSX.

[10] N. Schaum et al., “Single-cell transcriptomics of 20 mouse organs creates
a Tabula Muris,” Nature 2018 562:7727, vol. 562, no. 7727, pp. 367–372,
Oct. 2018, doi: 10.1038/s41586-018-0590-4.

[11] J. Eberwine et al., “Analysis of gene expression in single live neurons,”
Proc Natl Acad Sci U S A, vol. 89, no. 7, pp. 3010–3014, 1992, doi:
10.1073/pnas.89.7.3010.

[12] G. Brady, M. Barbara, and N. N. Iscove, “Representative in vitro cDNA
amplification from individual hemopoietic cells and colonies,” Methods Mol
Cell Biol, vol. 2, no. 1, pp. 17–25, 1990, Accessed: May 14, 2023.
[Online]. Available: http://wwwlabs.uhnresearch.ca/iscove/MMCB90.pdf

[13] C. A. Klein et al., “Combined transcriptome and genome analysis of single
micrometastatic cells,” Nature Biotechnology 2002 20:4, vol. 20, no. 4, pp.
387–392, 2002, doi: 10.1038/nbt0402-387.

29

[14] F. Tang et al., “mRNA-Seq whole-transcriptome analysis of a single cell,”
Nature Methods 2009 6:5, vol. 6, no. 5, pp. 377–382, Apr. 2009, doi:
10.1038/nmeth.1315.

[15] M. H. Julius, T. Masuda, and L. A. Herzenberg, “Demonstration That
Antigen-Binding Cells Are Precursors of Antibody-Producing Cells After
Purification with a Fluorescence-Activated Cell Sorter,” Proc Natl Acad
Sci U S A, vol. 69, no. 7, p. 1934, 1972, doi: 10.1073/PNAS.69.7.1934.

[16] N. M. Clark, A. P. Fisher, and R. Sozzani, “Identifying Differentially
Expressed Genes Using Fluorescence-Activated Cell Sorting (FACS) and
RNA Sequencing from Low Input Samples,” Methods Mol Biol, vol. 1819,
pp. 139–151, 2018, doi: 10.1007/978-1-4939-8618-7_6.

[17] N. Attaf et al., “FB5P-seq: FACS-Based 5-Prime End Single-Cell RNA-
seq for Integrative Analysis of Transcriptome and Antigen Receptor
Repertoire in B and T Cells,” Front Immunol, vol. 11, p. 216, Mar. 2020,
doi: 10.3389/FIMMU.2020.00216/BIBTEX.

[18] G. X. Y. Zheng et al., “Massively parallel digital transcriptional profiling of
single cells,” Nature Communications 2017 8:1, vol. 8, no. 1, pp. 1–12,
Jan. 2017, doi: 10.1038/ncomms14049.

[19] “10x Genomics Website.” https://www.10xgenomics.com/ (accessed May
18, 2023).

[20] P. Kindgren, M. Ivanov, and S. Marquardt, “Native elongation transcript
sequencing reveals temperature dependent dynamics of nascent RNAPII
transcription in Arabidopsis,” Nucleic Acids Res, vol. 48, no. 5, pp. 2332–
2347, Mar. 2020, doi: 10.1093/NAR/GKZ1189.

[21] S. Parekh, C. Ziegenhain, B. Vieth, W. Enard, and I. Hellmann, “zUMIs -
A fast and flexible pipeline to process RNA sequencing data with UMIs,”
Gigascience, vol. 7, no. 6, pp. 1–9, Jun. 2018, doi:
10.1093/GIGASCIENCE/GIY059.

[22] S. Chen, Y. Zhou, Y. Chen, and J. Gu, “fastp: an ultra-fast all-in-one
FASTQ preprocessor,” Bioinformatics, vol. 34, no. 17, pp. i884–i890, Sep.
2018, doi: 10.1093/BIOINFORMATICS/BTY560.

[23] R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, “Salmon
provides fast and bias-aware quantification of transcript expression,” Nat
Methods, vol. 14, no. 4, pp. 417–419, Mar. 2017, doi:
10.1038/nmeth.4197.

[24] E. Turro, S. Y. Su, Â. Gonçalves, L. J. M. Coin, S. Richardson, and A.
Lewin, “Haplotype and isoform specific expression estimation using multi-
mapping RNA-seq reads,” Genome Biol, vol. 12, no. 2, pp. 1–15, Feb.
2011, doi: 10.1186/GB-2011-12-2-R13/TABLES/3.

[25] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from
Incomplete Data Via the EM Algorithm,” Journal of the Royal Statistical
Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22, Sep. 1977,
doi: 10.1111/J.2517-6161.1977.TB01600.X.

[26] N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, “Near-optimal
probabilistic RNA-seq quantification,” Nat Biotechnol, vol. 34, no. 5, pp.
525–527, May 2016, doi: 10.1038/NBT.3519.

[27] P. Melsted, V. Ntranos, and L. Pachter, “The barcode, UMI, set format
and BUStools,” Bioinformatics, vol. 35, no. 21, pp. 4472–4473, Nov. 2019,
doi: 10.1093/BIOINFORMATICS/BTZ279.

30

[28] A. S. Booeshaghi et al., “Reliable and accurate diagnostics from highly
multiplexed sequencing assays,” Scientific Reports 2020 10:1, vol. 10, no.
1, pp. 1–7, Dec. 2020, doi: 10.1038/s41598-020-78942-7.

[29] T. Brink Buus et al., “Improving oligo-conjugated antibody signal in
multimodal single-cell analysis,” bioRxiv, p. 2020.06.15.153080, Mar.
2021, doi: 10.1101/2020.06.15.153080.

[30] “Tabula Muris.” https://tabula-muris.ds.czbiohub.org/ (accessed May 23,
2023).

