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Resum del Treball 

El single-cell RNA sequencing (scRNA-Seq) és una eina molt potent per estudiar el 
transcriptoma. Hi ha diverses eines  disponibles per preprocessar les dades que se 
n'obtenen. Tanmateix, no existeix cap estàndard. L'objectiu d'aquest treball és 
comparar quatre eines de preprocessament de scRNA-Seq, extreure conclusions 
sobre els avenços dels darrers anys, i determinar si hi ha una eina superior. Les eines 
comparades han sigut (i) UMI Tools, una de les primeres eines publicades, que 
serveix de punt de referència, (ii) Salmon Alevin, una eina amb moltes 
característiques interessants, (iii) Kallisto Bustools, una eina centrada en l'eficiència 
computacional i (iv) STARSolo, una implementació recent sobre un aligner popular. 
He dissenyat 4 pipelines en bash per implementar cada eina i he implementat un 
anàlisi downstream per a avaluar la significació biològica dels resultats. He comparat 
la velocitat i l'eficiència computacional, les count matrix produïdes i els resultats 
biològics. Per a les comparacions, he utilitzat els conjunts de dades proporcionats per 
Tabula Muris com a ground truth. He trobat que Kallisto Bustools és significativament 
més ràpid i eficient, mentre que UMI Tools és l'eina més lenta. Les count matrix 
produïdes per UMI Tools i Kallisto Bustools han estat coherents amb la ground truth, 
mentre que les produïdes per Salmon Alevin i STARSolo presentaven inconsistències. 
Els resultats biològics han sigut coherents, tot i que Salmon Alevin ha presentat 
problemes. Concloc que el preprocessat de dades de scRNA-Seq ha progressat en 
els darrers anys, però més en eficiència computacional. Kallisto Bustools es l'eina 
més ràpida i consistent entre les avaluades. 

Abstract 

Single cell RNA sequencing (scRNA-Seq) is a very powerful tool to study the 
transcriptome. Several tools are available to pre-process the data it produces. 
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However, no standard exists. The objective of this work is to compare four scRNA-Seq 
pre-processing tools and extract conclusions regarding the advancements over recent 
years, and to determine the superior tool. The tools compared were (i) UMI Tools, one 
of the first published tools, which served as reference point, (ii) Salmon Alevin, a tool 
with many interesting features, (iii) Kallisto Bustools, a tool focused on computational 
efficiency and (iv) STARSolo, a recent implementation to a popular aligner. I designed 
4 pipelines in bash to implement each tool, and I implemented a downstream analysis 
to evaluate the biological significance of the results. I compared the computational 
speed and efficiency, the count matrices produced and the biological results. For the 
comparisons, I used the datasets provided by Tabula Muris as ground truth. I found 
that Kallisto Bustools was significantly more efficient and faster, while UMI Tools was 
the slowest tool. The count matrices produced were consistent with the ground truth 
for UMI Tools and Kallisto Bustools while Salmon Alevin and STARSolo presented 
inconsistencies. The biological results were coherent, although Salmon Alevin showed 
problematics. I concluded that scRNA-Seq has progressed in recent years but more 
so in computational efficiency. Kallisto Bustools was the fastest and most consistent 
tool among those evaluated. 
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1. Introduction 
 

1.1. Context and justification of the thesis 
 

The central dogma of molecular biology states that genes encoded in DNA are 

transcribed into messenger ribonucleic acid (RNA) which in turn is translated 

into proteins. However, not every gene is transcribed in the same frequency and 

not all transcripts are translated into proteins. This system comprised by all 

RNA molecules makes up the transcriptome which is the first instance of the 

phenotype of a cell. The expression profile is different in each cell type and 

changes with the cell cycle. This, in turn, will affect the proteins that are 

synthesized which will be tailored for the functions and needs of the cell. 

Therefore, studying the transcriptome at a cellular level is key to understand the 

role of each cell type and, in consequence, it is necessary to develop 

techniques to obtain transcriptomic data as precisely as possible. 

 

In the past two decades, significant progress has been made in transcriptomic 

technologies. RNA microarrays, capable of detecting thousands of transcripts, 

were developed as early as 1995 [1]. However, these arrays are limited 

because  they only detect a finite number of transcripts that must be present as 

probes. Recently, Next Generation Sequencing (NGS) techniques have become 

more cost-effective and are now widely recognized as the primary method for 

genomic expression analysis. RNA sequencing (RNA-Seq), which involves 

sequencing reverse transcribed RNA samples, has replaced microarrays as the 

preferred method for gene expression analysis [2], [3]. 

 

The samples of traditional RNA-Seq, however, are obtained from bulk tissue, 

without discriminating its cell population. During the last decade, significant 

technological advancements have been made in the with the goal of obtaining 

RNA sequencing data at a cell resolution thus developing the technology known 

as single-cell RNA Sequencing (scRNA-Seq). Single-cell RNA sequencing now 

enables the analysis of transcriptomes of millions of cells in a single study at the 

single-cell level. This ability to classify, characterize, and distinguish cells at the 

transcriptome level has enabled the identification of rare cell populations that 

are functionally important [4]. 

 

The raw output of these techniques are sequencing files (FASTQ) that contain 

millions of sequences (reads) of transcripts. Each read contains a nucleotide 

sequence that encodes a barcode and a Unique Molecular Identifier (UMI). The 

barcode associates the read with a cell, while the UMI associates the read with 

an RNA molecule that existed before amplification. These files cannot be 

analysed directly. It is necessary to pre-process the raw data to produce a 
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counts matrix, which contains the number of transcripts for each gene in each 

cell. With a counts matrix, we can then study the transcriptomic profile of our 

cell sample. 

 

The pre-processing step can be computationally intensive, depending on the 

size of the sample. In consequence, a variety of specialized tools to carry and 

optimize this task have been developed. Despite that, there is still no procedure 

considered as a standard. Consequently, it is interesting to compare the 

different available tools to find the one that best suits our needs, computational 

resources, and specifications of the experiment.   

 

1.2. Objectives 
 

Main objectives: 

 

1. Compare the performance of four single-cell RNA Sequencing data pre-

processing pipelines, each built through different available software tools. 

2. Extract conclusions about the improvement in scRNA-Seq data pre-

processing over the last years, and determine which tool is the superior 

option or in which circumstances each tool performs better. 

 

Specific objectives: 

 

1. Design, in bash, scRNA-Seq data pre-processing pipelines with the tools:  

UMI-Tools/STAR, STARsolo, Kallisto|Bustools and SalmonAlevin. 

2. Design an R Markdown notebook to perform the downstream analysis: 

quality control, dimensional reduction, clusterization and marker gene 

obtention. 

3. Run the pipelines and notebook with a dataset well characterized and 

compare the performance and results obtained by each tool. 

 

1.3. Impact in sustainability, ethics, and diversity 
 

The impact of this work on environmental sustainability and ecological footprint 

is negligible or non-existent. As for energy consumption, it is not in the scope of 

this work to compare consumption. The computations were carried in a 

personal computer with a commercial CPU. Therefore, it is not a relevant 

subject because the energy used for computation is negligible. The significance 

of computational efficiency remains crucial in the field of omics, as it enables 

operations to be executed on personal computers and optimizes the utilization 

of high-performance computer clusters. However, pre-processing is not meant 

to be computed perpetually nor in extreme volumes of data, and, therefore, its 
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energy consumption is not an issue. Regarding material consumption, waste, 

and pollution, since this work is focused on comparing computational 

processes, there is no direct generation of waste or pollution. As for legislation 

and regulations, there are none that directly affect this topic. The data used 

comes from mouses (Mus musculus), but it is publicly available and no 

experiments, on animals or otherwise, were carried explicitly for this work. This 

work does not directly impact any of the Sustained Development Goals (SDG) 

related to environmental sustainability. 

 

Just as well, the impact of this work on ethical-social aspects is negligible. The 

objectives focus on the evaluation of technical methodologies, rather than 

addressing broader societal or ethical concerns. This work, has the potential to 

contribute to advancements in applications of single-cell RNA sequencing, 

which could have implications for areas such as healthcare, precision medicine, 

and biological research. These areas align with SDG 3 (Good Health and Well-

being). However, this work is unlikely to be key or to have any direct impact. 

Therefore, it is not reasonable to attach responsibility in addressing these 

issues. In a similar line, the gender and race dimensions of society have no 

impact in the research of this work. Data is from mouse, and the data is not the 

focus of study and thus gender is not relevant. 

 

1.4. Approach and methodology 
 

Regarding the choice of tools of pre-processing software, I have chosen UMI-

Tools because it was one of the first publicly available tools and should serve as 

a contrast against the other more vanguard tools [5]. Second, STARsolo is an 

integration with the STAR aligner for single cell analysis [6]. These two tools 

require mapping the reads to the genome which is a computationally intense 

process. On the other hand, Kallisto Bustools uses pseudomapping [7]. Instead 

of aligning reads to a genome, a pseudomapping algorithm identifies which 

transcripts are compatible with each read to quantify the transcript, resulting in a 

faster process. Last, Salmon Alevin, uses a lightweight algorithm that the 

authors claim is faster than traditional aligners [8]. 

 

I have written four pre-processing pipelines in bash, meant to be executed in 

terminal. The inputs for the pipelines are: The raw reads in fastq files, a genome 

index for the alignment and, depending on the tool, other files like a transcript to 

gene list, the genome sequence, or an annotation file. The main output is the 

counts matrix, which is a matrix describing the number of transcripts found for 

each gene and cell. Obtaining this file from the raw reads is what is known as 

pre-processing and is the focus of this work. Along with it, the pipelines provide: 

The list of genes and of cell barcodes as separate files, a file containing the logs 

printed in terminal, and a file that tracks execution times and resource usage. 
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To evaluate the pre-processing, it is necessary to analyse the counts matrix, in 

a process known as downstream analysis. For this I have used the Seurat 

library to write an RMarkdown file in R [9]. This type of file enables code 

execution in separate chunks, which is convinient for some steps. It also allows 

writing in Markdown between these chunks to document the analysis. 

Additionally, it allows "knitting" the document together with the output of each 

chunk into an HTML or PDF file. The downstream analysis I have implemented 

consists in quality control, dimensional reduction, clusterization and differential 

expression analysis to find marker genes. A workflow chart of the methodology 

is provided in Figure 1. 

 

 

 
Figure 1: Workflow of the approach taken. In white are files needed or produced, in red are the 

pre-processing pipelines, in green the downstream notebooks and in purple the comparisons. 

Note that the right-side is repeated for each pre-processing tool. 

 

I have compared the pre-processing tools on three different accounts. First, in 

terms of computational efficiency by comparing the execution times and the 

resources used. Second, by evaluating the number of genes and cells obtained. 

And lastly, by comparing the biological significance of the obtained results. For 

the first comparison, execution times and resources used can be compared 

directly. For the second and third comparisons, the results need to be compared 

with a ground truth. For this I have chosen a dataset provided by the Tabula 

Muris project, a compendium of single cell transcriptome data from the model 

organism Mus musculus [10]. Tabula Muris provides both the raw reads and 

already pre-processed counts matrices from datasets originated from different 

tissues. For the second comparison, the Tabula Muris matrix provides the 

expected number of cells and genes for each dataset. For the comparison of 

the biological significance of the results, I have written a separate RMarkdown 

notebook. It performs the same downstream analysis on the counts matrix 

provided by Tabula Muris and saves key results to files. Hence, I can compare 

the results obtained from the ground truth to the results obtained with my count 

matrices. I have taken two different approaches for these comparisons. First is 
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to compare if the marker genes of a given cluster match, together, with the 

marker genes of a cluster from the ground truth. Consequently, we can infer 

that we have identified a set of cells with a function matching that of another set 

in the ground truth. The second comparison is checking the proportion of cells 

from a cluster that are found together in the same cluster of the ground truth. 

From these comparison, we can infer that the features that classify the dataset 

are kept through the pre-processing. 

 

 
Figure 2: Workflow chart for the biological comparisons. Computations in purple are done in the main 

RMarkdown and computations in green happen in the RMarkdown designed for Tabula Muris matrices. 

 

Finally, to keep version control and for code availability I used git and I 

published all the code in my GitHub. 

 

1.5. Planification of the project 
 

The tasks of this project were: To write the pre-processing pipelines, to write the 

downstream analysis, to find a suitable dataset that served as ground truth, 

implement the comparisons of the different aspects of the pipeline, and execute 

the pipelines and analysis. 

 

In a first phase, I learnt how to use UMI Tools and Kallisto Bustools, I built the 

genome indices for Kallisto and STAR and I wrote pipelines. Then, I designed 

the downstream analysis before I proceeded with the Salmon Alevin and 

STARSolo pipelines. Next, I decided to use the Tabula Muris dataset. I 

designed the biological comparison section of the notebook, and I created the 

second notebook to analyse the ground truth. At this point I invested time into 

polishing the pipeline: I added error codes, getopts parameters, help messages, 

code commentary, and other improvements to ease-of-use and reproducibility. 
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As part of these improvements, I started using Git for version control and I 

uploaded the project to GitHub. Next, before the final execution, I fine-tuned the 

parameters of both pre-processing and downstream analysis. I changed the 

metric used to identify marker genes and I changed the identification of 

barcodes for certain pipelines. Finally, I executed the code on its last version 

with all datasets to produce the results. 

 

1.6. Summary of obtained products 
 

The products obtained are the code I have written, and the data obtained, along 

with the GitHub page and this memory. The code is divided between the pre-

processing bash pipelines and the RMarkdown notebooks for the downstream 

analysis. The pipelines are four scripts written in bash and a module file that 

stores utility functions. The purpose of these scripts is to pre-process single-cell 

RNA sequencing raw data into a cell by gene counts matrix. The downstream 

notebooks are RMarkdown files, with its code chunks written in R. Their 

purpose is to perform the downstream analysis on the counts matrices. The 

data obtained is comprised by the count matrices, the records of the pre-

processing performance and the reports produced by the notebooks. 

 

1.7. Brief description of the chapters  
 

State of the art: I describe the current methods to perform single cell RNA 

sequencing and I describe the relevant methods to process and analyse the 

data. 

 

Materials and methods: In materials I describe the hardware, software, and data 

that I used in this work. In methods I describe the process to obtain the results 

and I describe, step by step, the workflow of each pipeline and of the 

downstream notebooks. 

 

Results: Here I present the comparisons among the pre-processing tools. I 

compare the computational speed and efficiency, the raw and filtered count 

matrices obtained and the biological significance of the analysed results against 

the ground truth. 

 

Conclusions: Summary and discussion of the obtained results, evaluation of the 

success in the objectives and possible future lines of work.  
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2. State of the art 
 

2.1. Cell isolation and RNA sequencing 
 

Every single-cell RNA-seq protocol is based in four fundamental stages: (i) 

individual cell isolation, (ii) mRNA retro transcription (RT), (iii) cDNA 

amplification, and (iv) preparation of next-generation sequencing libraries. 

Methods for obtaining DNA libraries from the transcriptome of single cells, were 

pioneered by Brady and colleagues in 1990 and Eberwine and colleagues in 

1992, as methods of DNA amplification had recently become available [11], 

[12]. The former, isolated a cell on which they performed retro-transcription and 

amplification, while the latter microinjected the necessary enzymes into an 

isolated neuron. Initially, these libraries were then analyzed through microarray 

chips [13]. Later, as early as 2009, the methods were adapted to be used with 

next generation sequencing methods [14].  

 

These methods, however, rely on isolating cells through high dilutions or 

micromanipulation with specialized pipettes. As such, they have a very low 

throughput and are very time-consuming. A common solution is Fluorescence 

Activated Cell Sorting (FACS), which allows to record phenotype data of each 

cell while also separating them into wells onto which the rest of stages can be 

performed [15], [16]. This method requires a higher volume of cells but offers 

higher sensitivity, and the phenotype data it gathers can be useful for several 

purposes [17]. 

 

Another predominant technology is nanodroplet encapsulation, developed and 

provided commercially by 10x Genomics Inc. The key step of this technology is 

the encapsulation of isolated cells in gel beads. The gel beads contain 

oligonucleotides and primers while the necessary enzymes are added along the 

cells. After encapsulation cell lysis and retro transcription happen and library 

preparation can start. The final library structure depends on the brand of 10x 

Genomics protocol and the purpose of the experiment, although the 

constituents are common. Libraries will always include: (i) adapters for paired 

end sequencing, (ii) two sequencing primers, one per each read, (iii) a cell 

barcode, unique to the cell, (iv) a unique molecular identifier (UMI), unique to 

each transcript, (v) the transcript sequence (vi) a poly-T sequence, which 

hybridizes with the poly-A sequence added by the reverse transcriptase and 

(vii) a sample barcode, to allow running more than one sample. The specific 

library structure of the 10x protocol used to obtain the data of this work is 

described in Figure 3. Once the library is ready, it is amplified and sequenced 

[18], [19]. 
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Figure 3: Specific library structure used in the data of this work.  

 

The product of this protocol is two fastq files: One storing the UMI and barcode, 

read 1, and another storing the read itself, read 2. From this point, the pre-

processing can start with the objective of obtaining the counts matrix from these 

files. 

 

2.2. Pre-processing 
 

All existing single cell RNA sequencing pre-processing methods, generally, 

follow a common structure. The first step is identifying the cell barcodes of the 

sample, usually saving them to a whitelist file. Second is the deduplication of all 

reads with the same UMI. Since all molecules with a shared UMI will have 

originated in amplification from a single transcript, only one transcript should be 

counted for that gene. The next process is assigning each read to the gene it 

was transcribed from. The most common method for this step is aligning the 

reads to a genome through mapping algorithms, as with bulk RNA sequencing. 

The last step is to quantify the gene counts per cell in a matrix.  

 

In 2017 Smith T. and colleagues published UMI-tools, an open-source software 

tool written in python that performed deduplication of scRNA-Seq data, although 

it does not perform mapping and instead relies in other software [5]. In their 

work, the authors demonstrated that miscallings in the sequencing of UMIs are 

common, which leads to false UMIs being counted as genuine. The UMI-tools 

deduplication function can correct these errors by building networks of UMIs of  

the same genetic loci. Similarly, UMI-tools can correct miscallings in cell 

barcodes to ensure that no artificial cells are counted. UMI-tools has been used 

extensively and the publication has over a thousand citations [5], [20]. Many 

other tools developed ideas presented by UMI-tools and used it for 

benchmarking [21], [22]. 

 

Along with droplet-based technologies, 10X Genomics also developed Cell 

Ranger, a tool to preprocess scRNA-Seq data [18]. Cell Ranger identifies UMIs 

and barcodes by correcting both to a hamming distance of one and uses the 

STAR aligner. Its advantages are that the pipeline can be run through a single 

integrated function, its ease of use and that it is well maintained by 10X 

Genomics. However, it can only process sequences obtained through 10X 

Genomics protocols and it is not as fast as other available tools. 
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In 2019, Srivastava A. and colleagues published Alevin an open-source 

software tool written in C++ that performed all pre-processing steps [8]. It works 

within the Salmon framework, which is a tool developed for bulk RNA 

sequencing. It integrates whitelisting, mapping, deduplication and counting [23]. 

Salmon utilizes a lightweight mapping algorithm that the authors claim is much 

faster than other aligners. The authors of alevin implemented a novel 

deduplication algorithm that uses transcript level information and that considers 

multimapping reads to identify the correct UMIs. Transcript level information 

such as isoforms is kept by building equivalence classes using the method 

described by Turro E. and colleagues in 2011 [24]. Using these classes, reads 

with similar UMIs that map to the same gene may not be collapsed if the 

transcripts are distinct. Also, on deduplication, the authors identified that other 

tools discarded reads that map to more than one gene (multimapped) and 

proved that this approach lost information. In Alevin’s algorithm these reads are 

kept, and their counts are distributed through an expectation maximization (EM) 

algorithm [25].  

 

In 2021, Melsted P and collegues presented the Kallisto Bustools pipeline, 

which is focuses on computational speed and efficiency [7]. This pipeline uses 

Kallisto to assign reads to genes, but instead of aligning the reads traditionally, 

Kallisto uses pseudo-alignment [26]. Pseudoalignment is a technology 

developed with the objective of reducing the computational resources that 

traditional alignment needs. Instead of aligning all bases of a sequence to a 

reference, it breaks the read into “k-mers” (sub-sequences of length k) and finds 

which transcripts it is compatible with. Then, the algorithm builds a De Brujin 

graph of the compatible transcripts and keeps those that are valid for all k-mers 

as an equivalence class. The key to the efficiency of this algorithm is that it 

does not care about read orientation nor exact per base alignment. 

Furthermore, it can skip the evaluation of most k-mers since the authors show 

that two are often enough to determine the original transcript. Thus, Kallisto 

outputs a “Barcode, UMI, Set” (bus) file that contains the UMI, barcode and 

equivalence class of each read. The authors developed both the file type and 

Bustools, a software meant to manipulate bus files [27]. Through Bustools, then, 

the counts of multimapped reads are distributed with EM. Furthering the focus 

on computational speed, the authors of alevin deem the miscallings in UMIs to 

be negligible, only correcting those that are a Hamming distance of 1 away. 

Kallisto Bustools has shown to be a very efficient tool and has already been 

used in multiple studies [28], [29]. 

 

STARsolo is an integration to the STAR aligner developed to quantify single cell 

data [6]. The design is meant to be a “drop-in” replacement for CellRanger. It 

claims to be the fastest tool among those that have a higher accuracy and 

presents a tight pipeline that does not use intermediary files.  
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3. Materials and methods 
 

3.3. Materials 
 

3.3.1. Hardware 

 

The hardware that I used in this work is my personal computer with the 

following specifications: 

 

- CPU:    AMD Ryzen 5 2600X Six-Core Processor 

- RAM:   16 GB DDR4 + 40GB of swap RAM  

- Disk:   WD Blue SN570 500GB 

- Storage:  ST1000DM010-2EP102 - 1TB 

 

3.3.2. Software 

 

The operating system used was Ubuntu 22.04.1 LTS with release 5.1.16(1) of 

bash. The software tools used for pre-processing were: 

 

- UMI tools:  umi_tools 1.1.4, STAR 2.7.10a, samtools 1.16.1, 

featureCounts 2.0.3  

- Salmon Alevin: Salmon 1.9.0 

- Kallisto Bustools: kb_python 0.27.3, bustools 0.39.3 

- STARsolo:  STAR 2.7.10a 

Other tools used in designing the pipelines include time and getopts from GNU. 

 

For the downstream analysis, I used R 4.2.2 on RStudio 2022.07.02. The 

libraries used are: 

 

- dplyr   v1.0.10  

- dropletUtils  v1.16.0 

- ggplot2  v3.4.0 

- knitr   v1.40 

- Matrix   v1.5-1 

- Seurat  v4.3.0 

- tidyverse  v1.3.2 

 

Also, to obtain certain gene lists I used biomaRt v2.52.0. 
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3.4. Methods 
 

3.4.1. Data obtention 

 

All data utilized was originated from the Tabula Muris Project. Tabula Muris 

provides the already pre-processed data in a repository, available in their 

website [30]. The count matrices generated by Tabula Muris can be found in 

this repository, along with the corresponding R objects that can be loaded into R 

to obtain the downstream results obtained by Tabula Muris. The raw data, 

however, is only available through the Sequence Read Archive (SRA), under 

Gene Expression Omnibus (GEO) series accession GSE109774. The data in 

this study is categorized into various sample formats, and for this particular 

work, the selected formats were GEO accessions GSM3040906 (derived from 

lung tissue) and GSM3040917 (derived from trachea tissue). Data is also 

available in various formats, and the one downloaded was the original 10X 

Genomics bam file. Once downloaded, bedtools provides a tool, “bamtofastq”, 

that allowed me to obtain the original FASTQ files. These files are divided into 

read 1 (UMI and barcode), read 2 (real read) and indexes 1 and 2. 

 

Other external data needed was the reference genome of Mus musculus 

(assembly GRCm39 or mm39), gene annotation files (GRCm39 from ensemble 

and M32 from Gencode) and lists obtained through BioMart (ensemble id of 

mouse mitochondrial genes, transcript to gene id associations and gene 

description). The whitelist, which is a list of the barcodes used in the 

experimental part, is identical for all experiments done with the same version of 

the chemistry. In our case it is the whitelist used for V2 chemistry. It is available 

for download in the github of Cell Ranger.  

 

3.4.2. Genome indexes 

 

Mouse (Mus musculus) genome indexes were built for each aligner, STAR, 

Kallisto and Salmon. Indexes are generated with built-in functions of the 

aligners and are one-time processes since the same index can be used for 

every execution of an aligner. The methods used to generate the indexes were 

those provided in the documentation of the aligners. STAR and kallisto used the 

genome fasta sequence and the annotation file from Ensembl (GRCm39). 

Kallisto also used the transcript to gene dictionary. To build the Salmon index I 

used the approach of using the entire genome as a decoy sequence, also 

following the documentation. It used both the transcriptome the genome from 

Gencode (M32). 
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3.4.3. Pre-processing 

 

All pre-processing pipelines are written in bash and are meant to be executed 

as: 

 
$ bash <path-to-script> [options] 

 

There are parts of the code that are common to all pipelines. As a first step, all 

pipelines load these functions, described latter, that perform common 

processes. Then, using getopts, the script stores the required parameters in 

variables. These parameters are the paths to various files, including the raw 

data directory, aligner-specific index files, the barcode whitelist and the 

transcript-to-gene mapping file. Also, the path where the user wants to store the 

output files must be indicated. If any necessary option is not provided, the script 

then returns a help message and indicates to the user what is missing. 

Likewise, the help message is shown if a file or directory at the indicated paths 

is missing. 

 

After saving the paths, all pipelines run a function called merge. This function 

first asks for the number of files. If its four, then they correspond to read 1, read 

2, index 1 and index 2. The function then saves the path to reads 1 and 2 in two 

variables. If more than 4 files are found in the directory, it means that reads are 

separated into lanes. If that is the case, the files of reads 1 (R1) and 2 (R2) are 

concatenated by category. The resulting files are saved in the output directory 

and their path is saved to variables. These files will be the ones used in the rest 

of the functions. 

 

After this step, the pipelines differ from each other. The Kallisto Bustools 

requires a transcript to gene file, a Kallisto index file and the cell isolation 

technology name, as well as the raw reads. After that, the files are directed to 

“kb count” a wrapper function provided by the authors. It performs sequentially 

“kallisto bus”, “bustools correct”, “bustools sort” and “bustools count”. This 

function produces de counts matrix directly. 

 

The STARsolo pipeline takes the reads, the STAR index directory and the 

whitelist. After merging, the pipeline unzips the FASTQ files. Then the inputs 

are passed to STAR, with the parameter “--soloType" set to “CB_UMI_Simple”. The 

number of threads I used for this function is 6. It also produces the counts 

matrix directly. 

 

The Salmon Alevin script requires the transcript to gene file, the salmon index 

file and the whitelist. After that, the files are directed to “salmon alevin” which 

performs the pre-processing and saves a counts matrix. 
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Last, the UMI tools pipeline takes the STAR index directory, the transcript to 

gene file and the gene annotation file. First, “umi_tools whitelist” takes the R1 

file and the structure of the UMI and barcode and it finds the valid barcodes of 

the dataset, saving them to a new whitelist file. The rest of the pipeline can use 

a whitelist provided externally, but the UMI correction methodology of UMI tools 

requires a specific format. I have chosen to use this function to obtain the valid 

barcodes to test this feature. After that, the reads and the whitelist are passed 

to “umi_tools extract” to append the barcode to the read names, which is 

necessary for subsequent steps. Then, the extracted reads along with the 

STAR index are used to align the reads to the genome with STAR. I used 6 

cores to run this function and I discarded all multimapping reads with the flag “-

-outFilterMultimapNmax 1”. After this step we need to assign each read to a 

gene because we aligned the reads to the genome and because fragmentation 

happens after PCR amplification. This means that two reads with different 

mapping locations may still be duplicates. To do this I used featureCounts, from 

the subread package, which returns a bam file with the gene assignment in the 

XS tag. After using featureCounts, however, the reads are not sorted which is 

needed for quantification. To sort the bam file this I used samtools sort followed 

by samtools index, which take the bam file as input and return it sorted. This 

bam file can then be passed to umi_tools count, which deduplicates and 

quantifies the transcripts by gene and cell (using --per-gene and --per-cell). 

 

All the functions used that are related to the pre-processing, were benchmarked 

and timed using time -v -a -o and the output was saved to a text file for latter 

comparison. Additionally, I redirected the output printed to terminal to a text file 

to help with debugging and development. 

 

I executed the pipelines with both the dataset of trachea cells and of lung cells. 

 

3.4.4. Downstream analysis 
 

Downstream analysis was written in R into an RMarkdown notebook with the 

purpose of performing the downstream analysis and comparing the biological 

significance of each counts matrix. I designed two notebooks: One to perform 

the analysis on the count matrices provided by Tabula Muris and save its 

results to files, and another to perform the analysis on the count matrices that I 

obtained. The notebooks take as inputs the count matrices, a list of the 

ensemble IDs of mitochondrial genes and, in some cases, a list of genes and 

barcodes. 

 

The notebook starts by loading all libraries, saving the path to the count matrix 

to be analysed and saving the tool used to pre-process it as a pre-determined 

string. The second part is loading the counts matrix to R as a sparse matrix. As 

the output formats vary slightly, I used conditionals to be able to use the correct 
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functions to load the data. Next, mitochondrial genes needed a tag on their 

name so that I could use the proportion of mitochondrial transcripts as a quality 

control measure. To do so, I loaded the mitochondrial gene list and I iterated 

over the present genes to add “MT-“ before the corresponding ensembl ID in 

the sparse matrix. After this, the sparse matrix is used to create a Seurat object. 

While creating the object, I filtered: Genes that appear in less than 5 cells and 

cells that have less than 5 genes. This is a small filter that removes data points 

that would be remover later and speeds up computations. 

 

The first part of the analysis itself is the quality control. I have applied quality 

control by setting thresholds on certain per-cell metrics: Number of unique 

genes, total count of molecules and percentage of mitochondrial cells. The 

percentage of mitochondrial transcripts was set to less than 5% in all cases. To 

choose the other thresholds, I plotted the metrics as violin plots as well as the 

number of molecules against the number of genes in a dispersion graph. The 

thresholds were set, then, such that no obvious outliers remained after the plot 

and such that the dispersion graph was approximately linear.  

 

The second part of the analysis was normalizing the data, selecting the most 

variable genes, and scaling the data. The purpose of normalization is so that 

the expression values of cells can be compared among themselves. Each value 

(expression A of gene i and cell j is divided by the total expression in its cell, 

multiplied by a scale factor and then log transformed (Equation 1). After 

normalizing, we select the most variable genes with the purpose of focusing the 

analysis on the genes that differentiate the cells. The metric used for this 

purpose is the standardized log dispersion, as described in Equation 2. 

Following Tabula Muris approach, I selected as highly variable those genes that 

had: di > 0.1 AND mi > 0.5. To end the second part of the analysis, I scaled the 

data so that the mean across cells would be 0 and the variance across cells 1. 

The formula applied is that of Equation 3. While scaling the data the percentage 

of mitochondrial counts is regressed out, to minimize its impact. 

 
Equation 1: Scaling of expression value A from gene i and cell j into normalized expression value N. 

𝑁𝑖𝑗 = log (1 + 104
𝐴𝑖𝑗

∑ 𝐴𝑖𝑗𝑗
) 

 

 
Equation 2: Standarized log dispersion of gene i with mean m and variance v. 

𝑑𝑖 = log (
𝑣𝑖
𝑚𝑖

) 

 

 
Equation 3: Scaled value X of gene i in cell j with normalized value N,and cell mean and standard 

deviation m and s 

𝑋𝑖𝑗 = (𝑁𝑖𝑗 −𝑚𝑖)/𝑠𝑖 
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The next section carries out the dimensional reduction and clustering of cells. I 

performed dimensional reduction through principal component analysis. Cells 

have thousands of genes expressed so I needed to reduce the dimensions to 

proceed with the rest of the analysis while keeping as much variance as 

possible. After computing the components, I plotted the cumulative variance 

and, in each analysis, I selected the number of components before the elbow. 

With the components, then, I clustered the cells through shared nearest 

neighbours. Crucially, the cluster label of each cell is saved in the metadata of 

the Seurat object. I also computed the t-distributed stochastic neighbour 

embedding dimensional reduction from the principal components to mimic the 

graphics obtained by Tabula Muris. 

 

The last part of the downstream analysis is the differential expression analysis 

to identify the marker genes of each cluster. The metric I used is the area under 

the curve (AUC). To calculate it, a Seurat function, FindAllMarkers, constructs a 

classifier for every pairing of gene and cluster. This classifier uses the gene as 

the sole predictor and differentiates between the cluster and the remaining cells 

as the two distinct classes. To evaluate each classifier, the function computes 

the area under the receiver operating characteristic curve (ROC). This curve 

built from the true positive rate against the false positive rate. Essentially, it 

measures how well a gene discriminates between the cells of a cluster and the 

rest of the cells. An AUC value of 1 means that expression values for this gene 

alone can perfectly classify the two groupings. This means that each of the cells 

in the evaluated cluster exhibit a higher expression level of the evaluated gene 

than in the cells of the rest of clusters. An AUC value of 0 also signifies perfect 

classification. However, I only evaluated genes that are more expressed than 

average in the cluster, as I want to find marker genes and not build a classifier. 

The function kept all marker genes with an AUC of over 0.7. However, I kept the 

top 10 markers of each cluster. 

 

The analysis was identical in both notebooks with a few exceptions. The 

notebook designed to analyse the data from Tabula Muris takes as input an robj 

file, which contains the counts matrix in a seuratObject. These objects are in 

Seurat’s version 3 of the class while the version I used is the number 4. As such 

the objects had to be updated. Also, the objects contain data from two different 

samples of the same tissue, therefore, only the data of the sample I used in the 

pre-processing was used. Another difference in the notebooks is that the main 

notebook carries out the comparison while the one designed for Tabula muris 

data saves key data for the biological comparison. The data saved, to a text file, 

was the cluster identity of each cell, and a table that detailed the top 10 marker 

genes of each cluster. The latter included: (i) The name of the marker gene, (ii) 

the cluster it was a marker gene for, (iii) the AUC metric, (iv) the log fold change 

between its expression and the mean and (v) the description of the gene 
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provided by Mouse Genome Informatics (MGI). Hence, I produce two of each of 

these files, one for each dataset. 

 

3.4.5. Comparisons 
 

To directly compare the results of each pre-processing I compared, among the 

pipelines: (i) The number of barcodes identified as correct, (ii) the total number 

of counts, (iii) the mean and median number of counts per barcode, (iv) the 

mean and median number of genes per barcode. And again, the same values, 

after applying the quality control filters.  

 

I based the biological evaluation of the pipeline in comparisons between the 

results of the downstream analysis and the same analysis applied to the Tabula 

Muris-provided counts matrix. To compare the clusters directly, I computed the 

number of cells from a given cluster that coincide in identity in both analyses. 

 

In another biological comparison, I first produced a table of the top marker 

genes as described in the las section of the downstream analysis and I loaded 

the corresponding file. Then, I inner-joined the tables by description, so that 

genes that were found to be marker genes in both analyses were joined. The 

information provided by this resulting table is how many, out of 10 marker genes 

per cluster, are common in both analyses. 
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4. Results 
 

4.1. Computational speed and efficiency 
 

I benchmarked the time each pipeline needed to run with GNU’s time function. I 

measured the real time elapsed and the time the processes spent in the CPU, 

both in user and kernel mode. The time spent in CPU is in every case higher 

than the time elapsed because of parallelization, where a process can be 

undertaken by more than one CPU core at the same time. This way the time 

needed to execute the full pipeline in a single core is the user time plus the 

kernel time. To measure the grade of parallelization, we can calculate the 

percentage of time spent in CPU of the time elapsed to execute with Equation 

4. 

 
Equation 4: Formula of the percentage of CPU used by a pipeline. Used to measure parallelization. 

%ofCPUused =
𝑈𝑠𝑒𝑟𝑡𝑖𝑚𝑒 + 𝐾𝑒𝑟𝑛𝑒𝑙𝑡𝑖𝑚𝑒

𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑡𝑖𝑚𝑒
∗ 100 

 

Since the time spent in CPU is higher than the elapsed time, this value indicates 

if a pipeline uses the available resources efficiently. This is heavily affected by 

the number of cores used, which can be set as an argument for all pipelines 

except UMI Tools. However, using a higher number of cores requires loading 

more data into RAM, which was the limiting factor in the STARSolo and Salmon 

Alevin pipelines. The number of cores, the maximum memory load used and the 

rest of the data is presented in Table 1, for the trachea dataset and Table 4 for 

the lung dataset. 

 
Table 1: Table 2: Technical benchmark results of the preprocessing of the lung cell data set.  

Umi Tools STARSolo Kallisto 

Bustools 

Salmon 

Alevin 

Elapsed (hh:mm:ss) 02:08:50 00:28:21 14:32.0  00:39:39 

User time (hh:mm:ss) 03:33:06 02:44:56 01:26:28  01:17:12 

Kernel time (hh:mm:ss) 00:02:22 00:01:38 00:00:32 00:00:41 

% of CPU used % 167,1 % 587,6  % 598.6 % 196,4 

Maximum memory used (Gb) 14,70 11,55 4,29 14,26 

Cores 1 (6 for STAR) 6 8 4 

 

As expected, UMI tools was the slower pipeline, taking over 2 hours to 

preprocess the trachea dataset, more than twice as long as next slower 

pipeline. There are several reasons for this. First, being written in python is a 

handicap when compared to other, more efficient, languages. Second it is fully 

modular and relies in intermediary files: umi_tools extract produces 

intermediary FASTQ files equal in length to the inputs, and STAR, featureCounts, 
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samtools sort and umi_tools count each produce an intermediary bam file. 

Lastly, the UMI Tools pipeline has no parallelization except for the read 

mapping which is done with STAR and for the read assignment. A detailed per-

function summary of the pipeline is presented in Table 3. 

 

 
Table 3: Per-function breakdown of the UMI Tools pipeline 

 Trachea dataset Lung Dataset 

Function Elapsed CPU time Elapsed CPU time 

umi_tools whitelist 00:25:14 00:25:14 00:15:19 00:15:19 

umi_tools extract 00:53:52 00:53:52 01:59:10 01:59:07 

STAR 00:24:32 01:46:39 00:44:29 04:22:23 

featureCounts 00:00:31 00:05:03 0:01:32 00:15:43 

samtools sort 00:10:31 00:10:30 00:30:55 00:30:50 

samtools index 00:00:54 00:00:54 00:02:22 00:02:22 

umi_tools count 00:13:16 00:13:16 0:25:15 00:25:15 

 

The elapsed time and the CPU time are almost identical in every function, which 

means that it had no parallelization. The exception is the STAR aligner that 

used 434% and 589% of the CPU respectively. This allowed the pipeline to 

finish 1h22min and 3h37min faster. The read assignment with featureCounts 

also had a high parallelization of 977% and 1020%, which is possible because it 

is a lightweight tool that could use as much memory as it needed. However, it 

only accelerated the process by 4 min and 14 min respectively. 

 
Table 4: Technical benchmark results of the preprocessing of the lung cell data set. 

 

Also expected was that Kallisto Bustools was the fastest pipeline and the one 

that used the least memory. It finished the process in 14 min and 10 min for the 

trachea and lung datasets respectively and used only 4 Gb. I was able to run 

this pipeline with any number of cores and, as such, it had the highest 

parallelization. The next fastest tool, STARSolo took twice as much time for the 

trachea dataset and 5.5 times more for the lung dataset. STARSolo and Salmon 

Alevin were close to each other, with the former being 10 to 20 minutes faster 

and the latter using less memory. However, STARSolo required over twice the 

 
Umi Tools STARSolo Kallisto 

Bustools 

Salmon 

Alevin 

Elapsed (hh:mm:ss) 3:59:02 0:55:56 00:10:30 01:20:24 

User time (hh:mm:ss) 07:48:13 05:25:46 00:39:34 02:36:12 

Kernel time (hh:mm:ss) 00:02:47 00:02:50 00:00:45 00:00:39 

% of CPU used  % 197,0 % 587,5 % 383,9 % 195,1 

Maximum memory used (Gb) 11,49 11,62 4,20 14,51 

Cores 1 (6 for STAR) 6 8 4 
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amount of CPU time, as it relies on traditional genome aligning. Despite this, it 

still outperformed Salmon Alevin with a 587% of CPU usage. 

 

 

4.2. Count Matrices 
 

To evaluate the result produced by the pipelines I compared the number of 

transcripts, cells, and genes of each count matrix, including those provided by 

Tabula Muris. I also show the number of barcodes that passed the quality 

control filters that also passed the quality control filters in the Tabula Muris 

analysis. The data is presented in Table 5 and Table 6. The quality control 

filters applied were: (i) More than 2000 molecules per cell and less than 12000 

molecules per cell (ii) more than 500 genes per cell and less than 3700 genes 

per cell (iii) less than 5% of counts of mitochondrial origin.  

 
Table 5: Number of counts, cells and genes in the count matrices obtained from the trachea dataset., 

before and after the application of filters. Also shown, the number of cells after filtering that coincide by 

barcode with the Tabula Muris analysis.   
TabulaMuris UMITools KallistoBustools Salmon alevin STARSolo 

Unfiltered 

Counts 22,334,002  23,855,028 28,364,583  1,897,657  8,020,154  

Cells 4,643  11,975 86,415  5,398  75,097  

Genes 23,341  21,534 23,309  9,521  6,728  

Filtered 

Counts 17,965,131  18,063,628 18,227,971  1,703,939  2,212,169  

Cells 4,306  3,633 3,694  3,849  764  

Genes 23,341 21,534 23,309  9,521  6,728  

Coinciding   3,139 3,191  3,217  216 

 
Table 6: Number of counts, cells and genes in the count matrices obtained from the lung dataset., before 

and after the application of filters. Also shown, the number of cells after filtering that coincide by barcode 

with the Tabula Muris analysis. 

   
TabulaMuris UMITools KallistoBustools Salmon alevin STARSolo 

Unfiltered 

Counts  3,873,187  5,847,402  7,737,860   472,031   7,448,203  

Cells  621  5,982  111,480   868   113,172  

Genes  23,341  18,157  19,657   7,134   19,023  

Filtered 

Counts  2,072,285  3,108,475  3,160,955   418,749   2,978,967  

Cells  461  558  493   602   494  

Genes  23,341  18,157  19,657   7,134   19,023  

Coinciding   411  420   442   411  

 

UMI Tools produced the most similar results to Tabula Muris on all three 

accounts before filtering. After filtering all matrices were similar in magnitude of 

these values, with a few exceptions. As can be seen in both tables, the count 

matrices of Salmon alevin appear to be filtered beforehand, according to the 

number of cells. Furthermore, the per-cell values of counts and genes followed 
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a different distribution than in the other matrices as can be seen in Figure 4. 

Thus, different filters were used for Salmon Alevin: 100 to 2000 counts per cell, 

100 to 750 genes per cell and less that 5% of mitochondrial counts per cell. 

With these filters, the count matrices of Salmon Alevin were very similar to the 

other filtered matrices, albeit with significantly less unique genes. 

 

 

 
Figure 4: Distribution of the counts per cell, the genes per cell and the percentage of mitochondrial genes 
per cell in the matrices obtained from the trachea data set before filtering. 

 
In figure 4 it can also be observed the relevance of filtering barcodes with a high 

proportion of mitochondrial genes. Kallisto Bustools and STARSolo 

overestimated the number of cells by as much as 22 times. After applying 

filtering, Kallisto Bustools yielded the anticipated values, whereas STARSolo 

exhibited a considerably reduced cell count in the trachea dataset, due to the 

application of the mitochondrial percentage filter. 

 

Following the application of filters, the barcodes that remained had a 

percentage of coincidence with the ground truth ranging from 73% to 96%. The 

analysis with the most coinciding barcodes was salmon Alevin in the lung 

dataset.  
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4.3. Biological significance 
 

To compare the cell clusters obtained with those from the ground truth dataset I 

generated a joint table that matched the cluster identities of each cell barcode 

across the two datasets. In the clustering of the Tabula Muris trachea dataset, 7 

clusters were identified. The results of these analyses can be found in Figure 5 

and Figure 6.  

 

 
Figure 5: Cell flow diagram showing where the trachea cells from a given cluster are found in the ground 
truth clustering. 
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Figure 6: Cell flow diagram showing where the lung cells from a given cluster are found in the ground truth 
clustering. 

 
To evaluate if the clusters of each analysis match with the ground truth I 
counted the number of cells that are in a correct cluster equivalence. For 
example, from the UMI Tools counts matrix analysis, the cells of the cluster 
number 1 are divided between clusters 0 and 2 of the ground truth. Therefore, 
that is set as an equivalence, since it is arguable that they belong to a distinct 
type of cell. However, there are 66 cells of the cluster number 2 of the analysis 
that are also found in the cluster number 2 of the ground truth. Since the ground 
truth cluster number 2 better matches cluster 1 and UMI tools cluster 2 better 
matches ground truth cluster 1, these 66 cells are wrongly assignedError! 
Reference source not found.. The proportion of correctly assigned cells for 
each analysis is shown in Table 7        Table 7. 
 

        Table 7: Percentage of cells with a consistent assignation, per tool and dataset 

 Trachea Lung 

UMI Tools 97,61% 87,10% 

Kallisto Bustools 97,01% 77,61% 

Salmon Alevin  90,02% 88,64% 

STARSolo 100% 82,24% 

 
The results were better for the trachea dataset. Most of the error in all analyses 
of the trachea dataset originates from a number of cells from the second cluster 
of ground truth being found in the second cluster of the analysis. In the analyses 
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of the lung dataset, the cells of the biggest Tabula Muris cluster are found 
distributed on various clusters, which produces error. The clustering of the 
STARSolo matrix produced results that perfectly matched the ground truth, 
though this analysis had a lower number of cells. Overall, the best results in this 
aspect are those obtained from the UMI Tools matrix. 
 

In another approach to compare the biological significance of the results I 

compared the marker genes obtained in each analysis with those obtained from 

the ground truth matrix. The top ten marker genes by AUC of each cluster were 

considered. Then, similarly to the previous comparison, I traced how many 

markers for a cluster were also found in the ground truth and if they were found 

together. These results are summarized in Figure 7 and Figure 8. 

 

 
Figure 7: Flow chart of marker genes found in each analysis of the trachea dataset that were also 
found to mark a cluster of the Ground truth. 

 
In the trachea dataset, for UMI Tools 53 out of 70 markers matched, for Kallisto 
Bustools 50 out of 60 markers matched and for STARSolo 19 out of 40 markers 
matched. No markers matched for Salmon Alevin. I found a consensuated 
cluster identified by Cytl1, Chad, Coll11a and Wif1 among others. Nine out of 
ten top markers found in the UMI Tools and Kallisto Bustools matrices coincide 
with those found in the Tabula Muris Matrix. This cluster is the largest in all 
cases and these are genes related to cartilaginous tissue. Therefore, the cells 
belonging to this tissue are likely the structural part of the endoderm of the 
trachea. The second largest cluster for all cases, is marked by collagen and 
collagen related genes as well as cell matrix related genes. These results are 
consistent with the cell identity correspondence of the previous comparison. 
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Figure 8: Flow chart of marker genes found in each analysis of the lung dataset that were also 
found to mark a cluster of the Ground truth. 

 
In the lung dataset, less markers coincided with the ground truth. For UMI 
Tools, 13 out of 50 markers matched, for Kallisto Bustools 11 out of 50 markers 
matched, for Salmon Alevin 13 out of 40 markers matched and for STARSolo 
12 out of 50 markers matched. A cluster with 8 markers that coincide with those 
of a ground truth cluster were found in the UMI Tools, Salmon Alevin and 
STARSolo matrices. The coinciding markers are Chi3l3, Abcg1, Cd44, Hebp1, 
Mrc1 and Ear2. The gene Lst1 was found to mark the second largest cluster in 
all analyses. In the Salmon Alevin analysis, however, it is a false coincidence 
since the cells of the cluster are not the same as the cells of the ground truth 
cluster. Overall, this comparison in the lung dataset is less useful because all 
pipelines found a low proportion of coinciding markers with the ground truth, 
although it also is consistent with the results of the cell identity comparison. 
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5. Conclusions and future works 
 

As expected, UMI Tools was the slowest and least efficient pre-processing tool, 

while also being the hardest to implement. Kallisto Bustools was the fastest and 

most memory efficient tool which is also expected due to the implementation of 

pseudo-alignment and the compromises made in its design. STARSolo was 

faster than Salmon Alevin, which was unexpected, since Salmon does not fully 

align the reads to the genome unlike STAR. The key to the speed of STAR is its 

parallelization, because even though it spent more time being processed in the 

CPU than Salmon, it needed less real time to complete the process. 

 

In the count matrices produced, UMI Tools and Kallisto Bustools produced 

matrices that were consistent with the ground truth in number of molecules, 

genes, and cells. Salmon Alevin needed to use less strict quality control filters 

due to having a different distribution in the metrics that were considered. 

STARSolo, unexpectedly, produced a very low-quality count matrix for the lung 

dataset due to high mitochondrial gene count proportions. This resulted in a low 

number of cells remaining after filtering, which affected latter results. 

 

In the biological significance comparison, the clusterization of cells was found to 

be consistent, with over 75% of cells being clustered together both in the 

analysis of my count matrices and the Tabula Muris matrices. The marker 

genes were consistent with the ground truth, although less so in the lung cell 

dataset, likely due to being smaller in size. However, no marker genes of the 

Salmon alevin trachea matrix matched any marker gene in the Tabula Muris 

matrix. This is possibly due to the different distribution and lesser filters applied. 

 

Thus, the first objective of comparing and benchmarking the pre-processing 

tools was successful. As for the second objective, it is clear that pre-processing 

has improved substantially in the las half decade in terms of computational 

efficiency. All tools performed significantly faster than UMI Tools, were easier to 

implement and used equal or less memory. However, in terms of matrix quality 

and biological results, the matrix produced by UMI Tools produced good results 

when compared to the ground truth in all accounts. Kallisto Bustools also 

produced good results in all accounts while STARSolo and Salmon Alevin 

showed inconsistencies. Since Kallisto Bustools was the fastest software, 

according to this work, it should be the superior option for general purpose 

single cell RNA sequencing preprocessing. 

 

To further the objectives of this work, other tools could be easily evaluated 

within this workflow as well as other datasets. With more data volume and 

comparing more software, more certain conclusions could be extracted. Another 



26   

possible implementation would be a system to assign a cell type to clusters, 

which would improve the biological significance comparison.  
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6. Glossary 
 

- AUC     Area Under the Curve 

- BAM     Binary Alignment and Map 

- BUS      Barcode, UMI, Set 

- CPU     Central Processing Unit 

- DNA     DeoxyriboNucleic Acid 

- EM     Expectation Maximization 

- FACS     Fluorescence-Activated Cell Sorting 

- GEO     Gene Expression Omnibus 

- mRNA    messenger RiboNucleic Acid 

- NGS     Next Generation Sequencing 

- PCR     Polymerase Chain Reaction 

- RAM     Random Access memory 

- RNA     RiboNucleic Acid 

- ROC     Receiver Operating Characteristic (curve) 

- RT      Retrotranscription 

- scRNA-Seq    single-cell RNA Sequencing 

- SDG     Sustainable Development Goals 

- SRA     Sequence Read Archive 

- UMI     Unique Molecular Identifier 
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