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Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.
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Tools, APIs & ABIS

• Tools
◦ Based on the /proc interface.
◦ Gather cumulative statistics for total amount of

Voluntary and Involuntary Context Switches.
◦ atsar, reads /proc/stat
◦ pidstat, reads /proc/PID/stat, works with

averages.
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Tools, APIs & ABIS

• Advantages of using the taskstats interface.
◦ Easy to communicate with the GNU/Linux Kernel.
◦ There is no need to develop a Linux Kernel Module.
◦ A client tool written in C running in user-space,
getcw.c.
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• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own
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◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.
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• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.
• To enable these counters, a patch has to be applied to the

GNU/Linux Kernel.
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Execution Examples

• Our main interface to the Kernel is getcsw.c.

Having a peak at the counters
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Execution Examples

• Our main interface to the Kernel is getcsw.c.

Reading the counters at infinite intervals of time t = 10

seconds.
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Execution Examples

• Our main interface to the Kernel is getcsw.c.

Waiting for a task to end
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Execution Examples

• Our main interface to the Kernel is getcsw.c.

• We have written some trivial scripts to add more
functionality:
◦ fschedyield.sh, in charge of looking for running

tasks that are calling the sched_yield() function.
◦ fcalltable.sh, in charge of building a table of calls to

the scheduler per each system call during their return.
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Generating Hardware Interrupts at will

• An Interrupt always preempts p.
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Generating Hardware Interrupts at will

• An Interrupt always preempts p.
• Whenever an Interrupt is raised, the GNU/Linux Kernel

handles it by calling do_IRQ().
• Most Interrupts are maskable: they can be ignored.
• NMIs cannot be ignored; they are ideal to test our project.

• To generate NMIs at will, we need to alter the Kernel IDT,
so that int $0x2 can be executed with DPL = 3.
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Preliminary Results

• By accounting preemption due to do_IRQ(), we can
determine whenever there is an external problem
affecting p’s throughput.
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• By accounting preemption due to do_IRQ(), we can
determine whenever there is an external problem
affecting p’s throughput.

• As IRQS −→ ∞, the time spent by p increases.
• IRQ-balance can help to diminish this time by reducing

the number of interrupts preempting p.
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Preliminary Results

• Whenever there is a hardware malfunction, the data
starts being chaotic.
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Preliminary Results

• Whenever there is a hardware malfunction, the data
starts being chaotic.

• It’s proved that, whenever p yields the processor due to a
raised interrupt, at some measurable intervals of time ti,
its time spent in doing its job increases.
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Future Work

• Architecture-independent,
• Re-ran the experiments

adding some entropy for
larger values of n,

• Extend getcsw to
integrate it with plot
facilities,

• Analyse the real impact of
our counters inside the
Scheduler,

• ...
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Thanks for coming!

toni.castillo@uoc.edu
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