
Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 1

Context Switching Accounting Mechanism

T. Castillo Girona
<toni.castillo@uoc.edu>

Miquel Angel Senar Rosell

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 2

Context Switching Basis

• Every single process p

runs either in Ring 0 or
Ring 3.
◦ Ring 0: low-level or

hardware tasks.
◦ Ring 3: user-space

tasks.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 2

Context Switching Basis

• Every single process p

runs either in Ring 0 or
Ring 3.
◦ Ring 0: low-level or

hardware tasks.
◦ Ring 3: user-space

tasks.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 2

Context Switching Basis

• Every single process p

runs either in Ring 0 or
Ring 3.
◦ Ring 0: low-level or

hardware tasks.
◦ Ring 3: user-space

tasks.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 2

Context Switching Basis

• Every single process p

runs either in Ring 0 or
Ring 3.
◦ Ring 0: low-level or

hardware tasks.
◦ Ring 3: user-space

tasks.
• p runs only for a

measurable time t.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 2

Context Switching Basis

• Every single process p

runs either in Ring 0 or
Ring 3.
◦ Ring 0: low-level or

hardware tasks.
◦ Ring 3: user-space

tasks.
• p runs only for a

measurable time t.
• The GNU/Linux

Scheduler is in charge of
making p yield the cpu.
◦ Modern GNU/Linux

Kernels implements the
CFS scheduler.

◦ The Kernel executes
schedule() to call the
Scheduler.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 2

Context Switching Basis

• Every single process p

runs either in Ring 0 or
Ring 3.
◦ Ring 0: low-level or

hardware tasks.
◦ Ring 3: user-space

tasks.
• p runs only for a

measurable time t.
• The GNU/Linux

Scheduler is in charge of
making p yield the cpu.
◦ Modern GNU/Linux

Kernels implements the
CFS scheduler.

◦ The Kernel executes
schedule() to call the
Scheduler.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 2

Context Switching Basis

• Every single process p

runs either in Ring 0 or
Ring 3.
◦ Ring 0: low-level or

hardware tasks.
◦ Ring 3: user-space

tasks.
• p runs only for a

measurable time t.
• The GNU/Linux

Scheduler is in charge of
making p yield the cpu.
◦ Modern GNU/Linux

Kernels implements the
CFS scheduler.

◦ The Kernel executes
schedule() to call the
Scheduler.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.
◦ Involuntary :

◦ p has been preempted by an Interrupt Handler.
◦ p has exhausted its processor’s time proportion.
◦ p has been preempted in favour of a recently waken up

task with a higher priority.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.
◦ Involuntary :

◦ p has been preempted by an Interrupt Handler.
◦ p has exhausted its processor’s time proportion.
◦ p has been preempted in favour of a recently waken up

task with a higher priority.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.
◦ Involuntary :

◦ p has been preempted by an Interrupt Handler.
◦ p has exhausted its processor’s time proportion.
◦ p has been preempted in favour of a recently waken up

task with a higher priority.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.
◦ Involuntary :

◦ p has been preempted by an Interrupt Handler.
◦ p has exhausted its processor’s time proportion.
◦ p has been preempted in favour of a recently waken up

task with a higher priority.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.
◦ Involuntary :

◦ p has been preempted by an Interrupt Handler.
◦ p has exhausted its processor’s time proportion.
◦ p has been preempted in favour of a recently waken up

task with a higher priority.
• Modern GNU/Linux operating systems does not have

counters for all these particular Context Switching
sub-types.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 3

Context Switching Basis

• Whenever p yields the processor, there is a Context
Switch.
◦ Voluntary :

◦ p has issued a System Call, and now the Kernel is
returning from it.

◦ p has issued an explicit call to schedule(), by means
of calling sched_yield().

◦ p has ended its execution.
◦ Involuntary :

◦ p has been preempted by an Interrupt Handler.
◦ p has exhausted its processor’s time proportion.
◦ p has been preempted in favour of a recently waken up

task with a higher priority.
• Modern GNU/Linux operating systems does not have

counters for all these particular Context Switching
sub-types.

• Our project does add these new counters.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 4

Tools, APIs & ABIS

• Tools
◦ Based on the /proc interface.
◦ Gather cumulative statistics for total amount of

Voluntary and Involuntary Context Switches.
◦ atsar, reads /proc/stat
◦ pidstat, reads /proc/PID/stat, works with

averages.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 4

Tools, APIs & ABIS

• Tools
◦ Based on the /proc interface.
◦ Gather cumulative statistics for total amount of

Voluntary and Involuntary Context Switches.
◦ atsar, reads /proc/stat
◦ pidstat, reads /proc/PID/stat, works with

averages.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 4

Tools, APIs & ABIS

• Tools
◦ Based on the /proc interface.
◦ Gather cumulative statistics for total amount of

Voluntary and Involuntary Context Switches.
◦ atsar, reads /proc/stat
◦ pidstat, reads /proc/PID/stat, works with

averages.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 4

Tools, APIs & ABIS

• Tools
◦ Based on the /proc interface.
◦ Gather cumulative statistics for total amount of

Voluntary and Involuntary Context Switches.
◦ atsar, reads /proc/stat
◦ pidstat, reads /proc/PID/stat, works with

averages.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 4

Tools, APIs & ABIS

• Tools
◦ Based on the /proc interface.
◦ Gather cumulative statistics for total amount of

Voluntary and Involuntary Context Switches.
◦ atsar, reads /proc/stat
◦ pidstat, reads /proc/PID/stat, works with

averages.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 4

Tools, APIs & ABIS

• Tools
◦ Based on the /proc interface.
◦ Gather cumulative statistics for total amount of

Voluntary and Involuntary Context Switches.
◦ atsar, reads /proc/stat
◦ pidstat, reads /proc/PID/stat, works with

averages.

• Kernel ABIs
◦ /proc/PID/sched interface.
◦ taskstats facility, using Netlink infrastructure.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 4

Tools, APIs & ABIS

• Tools
◦ Based on the /proc interface.
◦ Gather cumulative statistics for total amount of

Voluntary and Involuntary Context Switches.
◦ atsar, reads /proc/stat
◦ pidstat, reads /proc/PID/stat, works with

averages.

• Kernel ABIs
◦ /proc/PID/sched interface.
◦ taskstats facility, using Netlink infrastructure.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 4

Tools, APIs & ABIS

• Tools
◦ Based on the /proc interface.
◦ Gather cumulative statistics for total amount of

Voluntary and Involuntary Context Switches.
◦ atsar, reads /proc/stat
◦ pidstat, reads /proc/PID/stat, works with

averages.

• Kernel ABIs
◦ /proc/PID/sched interface.
◦ taskstats facility, using Netlink infrastructure.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 5

Tools, APIs & ABIS

• Advantages of using the taskstats interface.
◦ Easy to communicate with the GNU/Linux Kernel.
◦ There is no need to develop a Linux Kernel Module.
◦ A client tool written in C running in user-space,
getcw.c.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 5

Tools, APIs & ABIS

• Advantages of using the taskstats interface.
◦ Easy to communicate with the GNU/Linux Kernel.
◦ There is no need to develop a Linux Kernel Module.
◦ A client tool written in C running in user-space,
getcw.c.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 5

Tools, APIs & ABIS

• Advantages of using the taskstats interface.
◦ Easy to communicate with the GNU/Linux Kernel.
◦ There is no need to develop a Linux Kernel Module.
◦ A client tool written in C running in user-space,
getcw.c.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 5

Tools, APIs & ABIS

• Advantages of using the taskstats interface.
◦ Easy to communicate with the GNU/Linux Kernel.
◦ There is no need to develop a Linux Kernel Module.
◦ A client tool written in C running in user-space,
getcw.c.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 5

Tools, APIs & ABIS

• Advantages of using the taskstats interface.
◦ Easy to communicate with the GNU/Linux Kernel.
◦ There is no need to develop a Linux Kernel Module.
◦ A client tool written in C running in user-space,
getcw.c.

• Extending the taskstats interface...

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 5

Tools, APIs & ABIS

• Advantages of using the taskstats interface.
◦ Easy to communicate with the GNU/Linux Kernel.
◦ There is no need to develop a Linux Kernel Module.
◦ A client tool written in C running in user-space,
getcw.c.

• Extending the taskstats interface...
• ... and reading it back from user-space.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 5

Tools, APIs & ABIS

• Advantages of using the taskstats interface.
◦ Easy to communicate with the GNU/Linux Kernel.
◦ There is no need to develop a Linux Kernel Module.
◦ A client tool written in C running in user-space,
getcw.c.

• Extending the taskstats interface...
• ... and reading it back from user-space.
• The task_struct data structure has to be altered

accordingly.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 6

Design & Implementation

• We have added new counters to the GNU/Linux Kernel.
• We have extended the task_struct and taskstats

data structures to implement them.
• In order to read their data, we have implemented a client C

program communicating with the Kernel via NetLink, called
getcsw.c.

• Our counters can ...
◦ account the total amount of syscalls per task.
◦ account the total amount of calls to the sched_yield()

function.
◦ account the total feasible amount of context switches

whilst returning from a system call.
◦ account preemption due to Interrupts.
◦ account preemption due to try_to_wake_up().
◦ determine whether p has ended its execution on its own

accord or not.
• To enable these counters, a patch has to be applied to the

GNU/Linux Kernel.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 7

Execution Examples

• Our main interface to the Kernel is getcsw.c.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 7

Execution Examples

• Our main interface to the Kernel is getcsw.c.

Having a peak at the counters

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 7

Execution Examples

• Our main interface to the Kernel is getcsw.c.

Reading the Involuntary Context Switches extended counters

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 7

Execution Examples

• Our main interface to the Kernel is getcsw.c.

Reading the counters at infinite intervals of time t = 10

seconds.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 7

Execution Examples

• Our main interface to the Kernel is getcsw.c.

Waiting for a task to end

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 7

Execution Examples

• Our main interface to the Kernel is getcsw.c.

• We have written some trivial scripts to add more
functionality:

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 7

Execution Examples

• Our main interface to the Kernel is getcsw.c.

• We have written some trivial scripts to add more
functionality:
◦ fschedyield.sh, in charge of looking for running

tasks that are calling the sched_yield() function.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 7

Execution Examples

• Our main interface to the Kernel is getcsw.c.

• We have written some trivial scripts to add more
functionality:
◦ fschedyield.sh, in charge of looking for running

tasks that are calling the sched_yield() function.
◦ fcalltable.sh, in charge of building a table of calls to

the scheduler per each system call during their return.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 8

Generating Hardware Interrupts at will

• An Interrupt always preempts p.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 8

Generating Hardware Interrupts at will

• An Interrupt always preempts p.
• Whenever an Interrupt is raised, the GNU/Linux Kernel

handles it by calling do_IRQ().

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 8

Generating Hardware Interrupts at will

• An Interrupt always preempts p.
• Whenever an Interrupt is raised, the GNU/Linux Kernel

handles it by calling do_IRQ().
• Most Interrupts are maskable: they can be ignored.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 8

Generating Hardware Interrupts at will

• An Interrupt always preempts p.
• Whenever an Interrupt is raised, the GNU/Linux Kernel

handles it by calling do_IRQ().
• Most Interrupts are maskable: they can be ignored.
• NMIs cannot be ignored; they are ideal to test our project.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 8

Generating Hardware Interrupts at will

• An Interrupt always preempts p.
• Whenever an Interrupt is raised, the GNU/Linux Kernel

handles it by calling do_IRQ().
• Most Interrupts are maskable: they can be ignored.
• NMIs cannot be ignored; they are ideal to test our project.

• To generate NMIs at will, we need to alter the Kernel IDT,
so that int $0x2 can be executed with DPL = 3.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 9

Preliminary Results

• By accounting preemption due to do_IRQ(), we can
determine whenever there is an external problem
affecting p’s throughput.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 9

Preliminary Results

• By accounting preemption due to do_IRQ(), we can
determine whenever there is an external problem
affecting p’s throughput.

• As IRQS −→ ∞, the time spent by p increases.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 9

Preliminary Results

• By accounting preemption due to do_IRQ(), we can
determine whenever there is an external problem
affecting p’s throughput.

• As IRQS −→ ∞, the time spent by p increases.
• IRQ-balance can help to diminish this time by reducing

the number of interrupts preempting p.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 9

Preliminary Results

• By accounting preemption due to do_IRQ(), we can
determine whenever there is an external problem
affecting p’s throughput.

• As IRQS −→ ∞, the time spent by p increases.
• IRQ-balance can help to diminish this time by reducing

the number of interrupts preempting p.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 10

Preliminary Results

• Whenever there is a hardware malfunction, the data
starts being chaotic.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 10

Preliminary Results

• Whenever there is a hardware malfunction, the data
starts being chaotic.

• It’s proved that, whenever p yields the processor due to a
raised interrupt, at some measurable intervals of time ti,
its time spent in doing its job increases.

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 11

Future Work

• Architecture-independent,
• Re-ran the experiments

adding some entropy for
larger values of n,

• Extend getcsw to
integrate it with plot
facilities,

• Analyse the real impact of
our counters inside the
Scheduler,

• ...

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 11

Future Work

• Architecture-independent,
• Re-ran the experiments

adding some entropy for
larger values of n,

• Extend getcsw to
integrate it with plot
facilities,

• Analyse the real impact of
our counters inside the
Scheduler,

• ...

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 11

Future Work

• Architecture-independent,
• Re-ran the experiments

adding some entropy for
larger values of n,

• Extend getcsw to
integrate it with plot
facilities,

• Analyse the real impact of
our counters inside the
Scheduler,

• ...

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 11

Future Work

• Architecture-independent,
• Re-ran the experiments

adding some entropy for
larger values of n,

• Extend getcsw to
integrate it with plot
facilities,

• Analyse the real impact of
our counters inside the
Scheduler,

• ...

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 11

Future Work

• Architecture-independent,
• Re-ran the experiments

adding some entropy for
larger values of n,

• Extend getcsw to
integrate it with plot
facilities,

• Analyse the real impact of
our counters inside the
Scheduler,

• ...

file:toni.castillo@upc.edu

•Context Switching Basis

•Tools, APIs & ABIS

•Design & Implementation

•Execution Examples

•Generating Hardware

Interrupts at will
•Preliminary Results

•Future Work

•Thanks for coming!

Context Switching Accounting Mechanism 2012 Toni Castillo Girona - <toni.castillo@uoc.edu> - p. 12

Thanks for coming!

toni.castillo@uoc.edu

file:toni.castillo@upc.edu

	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis

	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis
	Context Switching Basis

	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS

	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS
	Tools, APIs & ABIS

	Design & Implementation
	Design & Implementation
	Design & Implementation
	Design & Implementation
	Design & Implementation
	Design & Implementation
	Design & Implementation
	Design & Implementation
	Design & Implementation
	Design & Implementation
	Design & Implementation

	Execution Examples
	Execution Examples
	Execution Examples
	Execution Examples
	Execution Examples
	Execution Examples
	Execution Examples
	Execution Examples

	Generating Hardware Interrupts at will
	Generating Hardware Interrupts at will
	Generating Hardware Interrupts at will
	Generating Hardware Interrupts at will
	Generating Hardware Interrupts at will

	Preliminary Results
	Preliminary Results
	Preliminary Results
	Preliminary Results

	Preliminary Results
	Preliminary Results

	Future Work
	Future Work
	Future Work
	Future Work
	Future Work

	Thanks for coming!

