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Chapter 1

Introduction

1.1 Preamble

Every single process that is running on a GNU/Linux computer can be either executing
code in Ring 0 or Ring 3. A running process is just some code that is being executed
at one measurable time by some processor installed on the system. Every time a pro-
cess needs to do some low-level tasks, the operating system must be called. That is so
because the system must remain stable at any time, to avoid crashes. Therefore, the
operating system is the only one capable of executing code in Ring 0, where some low-
level instructions are permitted. Whenever a running process does not need to call the
operating system, then its code is executed in Ring 3, where some very simple low-level
instruction-set is available. It seems fairly obvious that a process cannot run forever, not
even in those computers where there is more than one processor. This is called preemp-
tion. Preemption allows different processes to run on the same computer as if there was
only one process being executed all the time. Whenever a preemption occurs, there is a
Context Switch. A Context Switch saves the current task’s context and loads another
one’s, so that a new task - a previous preempted one or just a new one being executed
for the very first time - could be run. This is time-consuming. A Context Switch can
possibly occur by means of calling an operating system function called schedule(). Nor-
mally, this function will be called directly by an operating system’s component called
the scheduler at certain events. This scheduler decides whether a running task must
be preempted or not, and in order to do so it does use certain algorithms. In nowa-
days GNU/Linux kernels, this algorithm is known as the Completely Fair Schedule
Algorithm, or CFS [1].

Next sections introduce some background concerning the GNU/Linux scheduler, the
CFS, the concept of Context Switching and the different ways it can happen. To conclude
this introduction, this first chapter describes the importance of the Context Switching
and this project’s goals.

1.2 Preemption

Let p be a non real-time process running on a GNU/Linux computer. Let’s assume p’s
state is TASK RUNNING. Let ci be any available core on the system where p is running
on. As long as p owns a given computed proportion of ci, no context-switching occurs.
Thus, we can infer from this that p is actually running. Let’s assume the system’s
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CHAPTER 1. INTRODUCTION

scheduler is CFS. Then, the total cpu-proportion assigned to any given process, including
p, theoretically, would be 1/n, where n is the total number of runnable processes.

At any moment, in that previous state, a Context Switch can possibly occur. Whether
voluntary or involuntary, it is feasible to nail it down for future analysis. In the next
section we will discuss briefly about the different ways this Context Switch can happen.
So far, the concept of Context Switching is clearly remarkable because there is an im-
portant computational cost whenever it happens. Thus, we want p not to be preempted
for the best part of its own ci proportion. This way, we could ensure an actual fair
time-slice for p. As the next section will discuss, not every time a Context Switch occurs
is p-related.

1.2.1 Context Switching Mechanism

Our project will focus on either voluntary or involuntary context-switching [2]. Thus,
as briefly explained in the Goals section, we will be able to detect otherwise unnoticed
issues.

Voluntary Context Switching

Voluntary Context Switching occurs anytime p needs to do so, either whilst running in
Ring 3 or in Ring 0. Our project’s main goal is to intercept and store any system call
issued by p and which processor-core ran that call. However, p can preempt itself by
issuing a call to schedule() explicitly, whilst running in Ring 0. This is not the usual
case, where a certain process p will be programmed to run in Ring 3 most of the time.
Usually, the only voluntary Context Switch that can occur would be that one involving
system calls. Below, a list of three different situations when p could explicitly demand
a Context Switch:

• p issued a System Call, and the kernel is now returning from it. Because the Kernel
is now returning to Ring 3, it assumes it is safe to preempt p if needed.

• p issues an explicit schedule() call - in Ring 0 mode. -

• p exits - whether explicitly calling exit() or returning from the main function -.
This happens in Ring 3 as well.

Involuntary Context-Switching

Involuntary Context Switching will occur suddenly. Whenever this happens, p will be
preempted. Thus, our project has to be capable of tracing and detecting such cases.
This will be primordial in order to determine how many times p has been preempted in-
voluntarily. This way, we would study the proportion of involuntary Context Switching
and thus determine if we can infer there is an issue on our system. A large proportion of
involuntary Context Switching could obviously reduce our process throughput consider-
ably. Below, a list of situations when involuntary Context Switching can happen:

• p is preempted because of an Interrupt Handler.

• p has exhausted its processor time proportion.

• p has been preempted in favour of a recently waken up task with a higher priority.

Toni Castillo Girona 8



CHAPTER 1. INTRODUCTION

1.3 Motivation

How many times a given process p preempts, either voluntarily or involuntarily, is an
important threat to computer’s processes throughput. Whenever running cpu-bound
processes on a multi-core system without an actual system grid engine as commonly
found on Grid Clusters, their performance and stability are directly related to their
accurate implementation and the system reliability which is, to an extend, an important
caveat most of the times so difficult to detect.

Context Switching is time-consuming. Thus, if we could develop a tool capable of
detecting it and gather data from every single performed Context Switch, we would be
able to study this data and present some results that should pin-point at whatever their
main cause could be.

1.4 Goals

Being able to gather statistical information about any Context Switch for a given process
p on a GNU/Linux box using the CFS scheduler, we will be able to determine whether our
process is taking advantage of our processor’s capabilities or just the opposite. Studying
how many times p has been preempted, and splitting it among voluntary and involuntary
preemption, we will possible be quite accurate in determining whether our computer is
behaving normally or, on the contrary, there are certain issues we would have to explore
and take care of. Particularly, our specific goals will be:

• To have a deep insight into the GNU/Linux Kernel CFS scheduler.

• To analyse existing tools dealing with per-task statistics, focusing on Context
Switching accounting.

• To study different techniques in order to develop a new tool for dealing with
this sort of statistical data, such as Loadable Kernel Modules (LKM) [3], Ker-
nel TaskStats ABI [11], Linux KProbes [5], and so on.

• To develop a new tool, capable of gathering either voluntary or involuntary Context
Switching data, so that some statistical information can be analysed and plotted.

• To learn about R language [6], a powerful OpenSource statistical programming
language, deriving from S language, that we will use to analyse and infer some
statistical data from our new tool.

• To determine, using statistical criteria, whether a given process p is working fine
or, on the contrary, a defect seems to be affecting its execution.

• To frame this defect-to-be, in order to fathom if it exists because of an external
issue or a bad p’s implementation.

1.5 Work Plan

Below, we will present a detailed work plan in order to complete our project. It is divided
in five main tasks, all of them containing more specific sub-tasks. Every single task is

Toni Castillo Girona 9



CHAPTER 1. INTRODUCTION

designed so that it does focus on a precise point. A whole Data-Gathering task has also
been included:

1. PAC1: Project description and tasks.

2. PAC2: Available tools analysis.

3. PAC3: Design and Implementation.

4. PAC4: Data-Gathering.

5. Final Report and Video.

1.5.1 PAC1 : Project description and tasks.

The first task is to provide a coherent work plan scheme. It defines our project and
describes some basic steps to be done before attempting any further one. According to
the project’s classroom dates, it is called PAC1, or more specifically Work Plan. It
also includes a sub-task to setup a minimal development environment, relying mostly on
Virtual Machines via Virtual Box [7].

PAC1: Work Plan
Task Dates

Project Description 29/02 - 09/03
Bibliography 09/03 - 09/03

Work Plan elaboration 10/03 - 16/03
Work Plan report 10/03 - 18/03
Framework setup 17/03 - 18/03

PAC1 submit 18/03 - 18/03

1.5.2 PAC2 : Available tools analysis.

Before going any further, this task analyses existing tools concerning per-task account-
ing, focusing obviously on Context Switching accounting, like PAPI [8]. Moreover, it
includes nowadays techniques and Linux Kernel ABIs to be considered as candidates
for developing a new tool capable of gathering Context Switching statistical data. It is
called PAC2.

PAC2: Tools analysis
Task Dates

Accounting tools analysis 19/03 - 25/03
Kernel ABIs analysis 26/03 - 31/03

PAC2 Report 21/03 - 01/04
PAC2 submit 01/04 - 01/04

1.5.3 PAC3 : Design and Implementation.

The third task is in charge of designing and implementing the new piece of software.
It applies all sorts of previous related analysed material and Kernel-programming tech-
niques so that a reliable utility could be completed. During this process, a complete
Voluntary Context Switching accounting system will be fully implemented. It is called
PAC3.
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CHAPTER 1. INTRODUCTION

PAC3: Tool Design and implementation
Task Dates

Design 02/04 - 10/04
Implementation Part I 1 11/04 - 19/04

Testing & debugging 19/04 - 21/04
PAC3 Report 02/04 - 21/04
PAC3 submit 22/04 - 22/04

1.5.4 PAC4 : Data-Gathering.

This project is related to statistical data up to a point. The main goal, in fact, is to
gather an important amount of data from running processes, in order to analyse them
using a statistical programming language, that is, R. Thus, this task involves running
the new recently developed tool to gather and store data to be analysed. It is called
PAC4.

PAC4: Data Gathering
Task Dates

Implementation Part II 2 23/04 - 29/04
Testing & debugging 30/04 - 04/05

Data Gathering 05/05 - 15/05
R language study 23/04 - 15/05

Data Analysis 15/05 - 20/05
PAC4 Report 23/04 - 20/05
PAC4 submit 20/05 - 20/05

1.5.5 Final report

The last task concerns writing the final report and presenting some results and conclu-
sions after analysing all the gathered data from the previous task. It adapts and corrects,
whenever necessary, any setbacks. Setbacks are common when working on a project of
any sort. This last task enforces coherency.

Final Report & Presentation Video
Task Dates

Final Report 21/05 - 08/06
Presentation Video 09/06 - 15/06

Final Report submit 08/06 - 08/06
Video submit 15/06 - 15/06

1Voluntary Context Switching accounting only.
2Involuntary Context Switching accounting.
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Figure 1.1: Context Switching Accounting: Gantt Chart
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Chapter 2

Tools, APIs & ABIs analysis

2.1 Introduction

This chapter analyses different tools, APIs and Kernel ABIs originally designed for
gathering statistical information concerning tasks, above all those ones involving Context
Switching accounting. As reported by our work plan, this chapter is divided into six
main sections. The first one deals primarily with tools, like atsar [9]. The second and
third one focus on APIs and Kernel ABIs, that is, routines and frameworks we could
use during the task design of our Context Switching Data Gathering tool, like PAPI

and Kernel taskstats [11]. Whilst elaborating these sections, we will perform a trivial
experiment to illustrate the way we can make use of the taskstats interface in order
to fulfill our purposes: by extending it - see Section 2.4.2 -. Then, a section describing
our framework, focusing on particular software-vendor versions, utilities, compilers, and
so on has been included in order to frame our project. Finally, the last section provides
some preliminary conclusions.

Whilst analysing these tools, some in-deep breakdown has taken place whenever
feasible or necessary, so that a perfect understanding of how they come to work was
forfeit. This way, our chances of engineering a new tool will increase considerably.

A Gantt chart concerning this pre-analysis task is shown in Figure 2.1.

Figure 2.1: Context Switching Accounting: Tools & ABIs analysis Gantt Chart

2.2 Tools

The GNU/Linux Kernel exports part of its internal data structures as user-readable files
under the /proc directory. Thus, writing a user-space tool capable of reading those files
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and report statistical data is an easy task to do. Thus, a bunch of tools of the sort do
exist. Below, this section provides a thorough analysis of a few of them.

2.2.1 atsar

atsar can be installed on any GNU/Linux distribution flavour. It is a simple tool written
purely in C that reads data from the /proc/stat file, and presents it in a more human-
like form. It can be used to gather cumulative data at n intervals of time t. According
to its man page,

The program atsar(1) can be used to deliver statistics. The design of this
program can be compared with the standard sadc(1) and sar(1) programs
being delivered for other UNIX-implementations.

Figure 2.2: atsar: Gathering cumulative Context Switching data; n = 5, t = 1s

Running atsar with the flag -P will show cumulative amount of Context Switches
occurring at n intervals of t seconds, as shown in Figure 2.2. The second column in
figure 2.2, pswch/s, involves all processors and runnable tasks on the system. Thus, it
is far from being of service in our case. Its source is the field ctxt, which can be simply
read by issuing:

$ cat / proc / s t a t | grep c txt

A similar behaviour can be easily achieved by writing a trivial shell script, as shown
in Figure 2.3. Its execution is shown in Figure 2.4.

2.2.2 pidstat

pidstat belongs to the sysstat [10] package. This tool deals with per-task statistics.
Whereas atsar reads data from the /proc/stat file, pidstat uses the per-task statistical
files located at /proc/PID /. Some of these files are exported by the GNU/Linux Kernel
using the Kernel TaskStats interface [11], in consonance to [13]. Section 2.4.2 discusses
about this GNU/Linux Kernel ABI widely.

By running pidstat with flags -p PID and -w, we can obtain the total amount of
voluntary and involuntary context switches per second for that particular process. It
simply reads statistical data, exported by the TaskStats infrastructure as briefly intro-
duced earlier, from the /proc/PID/status file. A trivial example of pidstat’s execution
is shown in Figure 2.5.

2.3 PAPI

PAPI can be used to access modern processors’ counter registers from user-space pro-
grams. A counter register is architecture-dependent. Thus, PAPI provides abstraction,
though it allows low-level calls in order to access counter registers not widely available
for other platforms. Unluckily, as stated in its own reference:
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Figure 2.3: A trivial bash-script reading /proc/stats’s ctxt field

Figure 2.4: Gathering cumulative Context Switches by running the script in Figure 2.3;
n = 5, t = 1

PAPI only tracks ’hardware events’, the occurrence of signals on-board the
microprocessor. It does not count system calls, software interrupts or other
software events. The user should remember that by default, PAPI only mea-
sures events that occur in User Space.

Our project deals precisely with System Calls - a particular type of Software Interrupt
-. Therefore, we can not rely on PAPI. Moreover, there is no explicit Context-Switching
per-processor’s counter registers, as shown in [17]. Another approach is required.

2.4 Kernel ABIs

This section describes some important GNU/Linux Kernel ABIs involved in Context
Switching accounting mechanisms. Any available user-space tool in charge of reading
and presenting this data is heavily based on the /proc directory interface. As we have
demonstrated in the previous sections, these tools read what the GNU/Linux Kernel
provides through the /proc directory, albeit they do so by presenting this data in a
more suitable human form.

First of all, this section focuses on an important GNU/Linux Kernel data structure,
that is, the task struct data structure. Then, it describes the Kernel TaskStats ABI
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Figure 2.5: pidstat: Gathering voluntary and involuntary Context-Switches per second
for a given task

and establishes a direct relationship between them.

2.4.1 task struct data structure

This data structure is defined in include/linux/sched.h. As far as the GNU/Linux
Kernel is concerned, any process on the system is described using this data structure.
Two fields are particularly interesting for our purposes: nvcsw and nivcsw. Both fields,
being defined as unsigned long, store the number of voluntary and involuntary Context
Switches any given task has underwent, respectively.

Figure 2.6: Reading the /proc/PID /sched file directly

Thus, the GNU/Linux Kernel does differentiate among voluntary and involuntary
Context Switching accounting per task. This information can be read without using
existing user-space tools but by reading the /proc/PID /sched file directly instead, as
shown in Figure 2.6. In order to do so, the CONFIG SCHED DEBUG kernel option must be
set. Even more statistical data can be obtained and presented by the GNU/Linux Kernel
if the CONFIG SCHEDSTATS kernel option is previously enabled, also. The code-snippet
in Figure 2.7 shows how the Kernel exports the nvcsw and nivcsw accounting fields to
the /proc directory interface.

Figure 2.7: Code-Snippet: kernel/sched debug.c

So, the GNU/Linux Kernel does offer a trivial way of gathering the total amount
of Context Switches occurred to a particular process since its creation. It does account
the number of voluntary and involuntary context switches and exports it to the /proc

directory interface for any normal user to read. However, this approach is not fairly ac-
curate and thus does not serve our purposes completely. Our project needs to determine
the exact cause for any either voluntary or involuntary Context Switch, according to our
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previous discussion concerning the Context Switching mechanisms, as described briefly
in [14].

2.4.2 Kernel TaskStats

As reported by the GNU/Linux Kernel Documentation, Kernel TaskStats is meant
to be the best way to gather and report statistical data from any existing GNU/Linux
task, even when this same task is exiting, that is, finishing its execution calling exit()

or just returning from the main() function. Current Kernel Taskstats’s implementa-
tion accounts the number of voluntary and involuntary Context Switches per task, as
described in [13].

In order to Kernel TaskStats to be enabled, the CONFIG TASKSTATS kernel op-
tion must be set. Additional statistics per task can be obtained by setting another
Kernel TaskStats-related option: CONFIG TASK DELAY ACCT, conforming to [11]. The
GNU/Linux Kernel source contains a sample C program that uses the Kernel TaskStats

ABI to gather some statistical information per task [12]. Next section presents the
Kernel TaskStats interface, focusing only on those parts directly related to our project.
It follows another section that provides an exhaustive analysis of getdelays.c, paying
special attention to the Netlink ABI and the way it gets the nvcsw and nivcsw fields.
To conclude, the last section establishes a relationship between the task struct data
structure, discussed in section 2.4.1 and the Kernel TaskStats interface.

The GNU/Linux Kernel TaskStats interface

As stated in its Documentation,

Taskstats is a netlink-based [15] interface for sending per-task and per-
process statistics from the kernel to user-space. Taskstats was designed for
the following benefits:

• Efficiently provide statistics during lifetime of a task and on its exit.

• Unified interface for multiple accounting subsystems.

• Extensibility for use by future accounting patches.

A netlink-based interface is another method of communicating with the GNU/Linux
Kernel from user-space processes. It works both ways; that is, it allows the GNU/Linux
Kernel to send messages to user-space processes as well. Other well-known one-way
methods are: ioctl, syscalls and the /proc directory interface.

Figure 2.8: The GNU/Linux Kernel TaskStats: taskstat data structure

Thus, Kernel TaskStats consists basically on a well-designed data-structure storing
statistics for every single process on the system and its interface to be called from user-
space processes in order to obtain them. As described in its documentation, this data
structure can also be extended. This is the main point in our project.
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In accordance with [16], fields nvcsw and nivcsw contain the total amount of vol-
untary and involuntary Context Switches per task, respectively. These are exactly the
same fields as described earlier, in section 2.4.1. This is shown in Figure 2.8. The way
they are related to each other is described in Section 2.4.2.

Analysing getdelays.c

getdelays.c is a sample C program written to illustrate the netlink and Kernel

TaskStats interfaces. It can easily be compiled by issuing the command:

$ gcc ge tde l ay s . c −o ge tde l ay s

By running getdelays with flags -p PID and -q, we can read the nvcsw and nivcsw

fields, as described in Section 2.4.2. This is shown in Figure 2.9.

Figure 2.9: The GNU/Linux Kernel TaskStats: Reading nvcsw and nivcsw with
getstats sample code

This code uses the netlink interface to communicate with the GNU/Linux Kernel.
It creates an AF NETLINK socket - Figure 2.10 -, sends a TASKSTATS CMD GET message to
the GNU/Linux Kernel - Figure 2.12 - and waits until it receives a Kernel’s response
- Figure 2.13 -. Then, it simply prints the process’s statistics - Figure 2.14 -. Before
sending the actual message to the kernel, getdelays gets the process’s pid from the
command line and sets the variable cmd type to TASKSTATS CMD ATTR PID, as shown in
Figure 2.11. In consonance with [11], this is the usual way of sending a message from
user-space processes to the GNU/Linux Kernel, in order to get statistics for a given
process.

Figure 2.10: getdelays: Creating an AF NETLINK socket

Figure 2.11: getdelays: Obtaining the process’s pid from the cli and setting up the
command to be sent: TASKSTATS CMD ATTR PID

Altering getdelays.c’s behaviour is easy. First of all, we don’t need to deal with all
the sort of Netlink or TaskStats messages received from the Kernel. Our project needs to
focus only on Context Switching accounting. In order to achieve that, getdelays.c has
been easily converted into another simple user-space tool, that is, getcsw.c. We have
removed any pointless piece of code, and made some small changes on it. Its execution is
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Figure 2.12: getdelays: Sending a netlink message to the GNU/Linux Kernel

Figure 2.13: getdelays: Receiving a netlink message from the GNU/Linux Kernel

shown in Figure 2.15. We can get the total amount of voluntary and involuntary context
switches per-task at intervals of t seconds by running getcsw this way:

$ . / getcsw −p PID −v − l −d t

where t is the delay in seconds among subsequent Netlink messages sent to the kernel.

Extending TaskStats

Let ∗s be a pointer to a taskstats data structure. Let’s consider a certain netlink
message, m, being of type TASKSTATS CMD ATTR PID, that has been sent to the kernel.
In line with [11], a response will contain the whole data structure, that is, ∗s, as long
as its version is paired with that one specified by m. Bearing this is mind, it is feasible
to extend the taskstats data structure by two different ways, as stated in [11]. Our
project uses the first approach:

Adding more fields to the end of the existing struct taskstats. Backward com-
patibility is ensured by the version number within the structure. Userspace
will use only the fields of the struct that correspond to the version its using.

This first experiment deals with this idea. A certain dummy field, of type u64, has
been added to the taskstats data structure, defined in linux/taskstats.h. This field
has been added at the end of the data structure, accordingly. The u16 version field
has been incremented by one, pursuant to:

To add new fields:

• Bump up TASKSTATS VERSION.

• Add comment indicating new version number at end of struct.

• Add new fields after version comment; maintain 64-bit alignment.

This is shown in Listing 2.1.

Listing 2.1: Extending the taskstats data structure

1 #d e f i n e TASKSTATS VERSION 8
2 . . .
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Figure 2.14: getdelays: Printing per-task statistics

Figure 2.15: getcsw: Getting per-task Context Switches

3 s t r u c t t a s k s t a t s {
4 . . .
5 /∗ New ve r s i on : 8∗/
6 u64 dummy;
7 }

As discussed in Section 2.4.2, the function fill pid() has also been modified in
order to initialize dummy to a default numeric value of 666, as shown in Listing 2.2.

Listing 2.2: Setting dummy’s default value to 666

1 /∗ Let ’ s f i l l ”dummy” : ∗/
2 s ta t s−>dummy = 666 ;

Finally, getcsw.c has been slightly altered so that this new field can be read and
printed, as shown in Listing 2.3. Its execution is shown in Figure 2.16.

Listing 2.3: Reading dummy’s value selectively

1 #d e f i n e MIN VERSION 8
2 . . .
3 /∗ Get dummy i f we do have the r i g h t v e r s i on . . . ∗/
4 ( t−>vers ion>=MIN VERSION)? t−>dummy: 0
5 ) ;
6 . . .

task struct and Kernel TaskStats relationship

As shown in Figure 2.17, their relationship is truly simplistic. The GNU/Linux Kernel
does account the total amount of voluntary and involuntary Context Switches per-task as
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Figure 2.16: getcsw.c: Reading dummy’s value from the Kernel

previously introduced in Section 2.4.1. In line with Figure 2.17, the Kernel TaskStats

infrastructure copies both task struct nvscw and nivcsw fields into the correspondent
ones pointed by *stats. The function fill pid() applies whenever statistics for a single
task are required. This function is implemented in the kernel/taskstats.c source file.

2.5 Setup framework

Dealing with the GNU/Linux Kernel in an experimental manner implies risks. Any sort
of misconducted step can possibly end up triggering a Kernel OOPS or even a Kernel
Panic. Thus, framing it inside a Virtual Machine is mandatory. This project will
design and implement a tool capable of differentiating the type of Context Switch a
certain process has just endeavoured. Thus, our first approach will focus just on that,
without paying too much attention to other aspects like performance issues which are,
to an extend, of a paramount importance on a real environment.

Below, an enumeration of our setup framework is provided:

• VirtualBox 4.1. Our tests will be conducted all the time inside a Virtual Ma-
chine. This vm does have all sorts of utilities, compilers and debuggers. In favour
of pragmatism, we access this vm through a secure shell connection from our actual
GNU/Linux box.

• Debian GNU/Linux Squeeze 6.0.4 X86 64. This is the GNU/Linux dis-
tribution installed on the vm. We chose a 64 bit architecture because most of
nowadays GNU/Linux computers run this kind of GNU/Linux flavour, due to
modern processors. We forcibly avoided 32 bit architectures, albeit this project
will use, whenever feasible, the GNU/Linux Kernel ABIs facilities so as to guar-
antee architecture-independence.

• GNU/Linux Kernel 2.6.32.5 X86 64. The stable GNU/Linux Kernel release
distributed by default with Debian GNU/Linux Squeeze 6.0.4. Its sources have
been installed using the apt-get package manager under the /usr/src/linux-

source-2.6.32. Our project will study this GNU/Linux kernel sources and will
make use of its ABI intensely. Thus, whenever a code snippet is provided or a
certain data structure discussed, it will always refer to this particular version.

• Vim 7.2.445. Our text editor program.

• gcc 4.4.5. All the code will be compiled using this version of the GNU C Com-
piler. Portability is an important feature of this project. Thus, our code will be
implemented mainly in C.

• cscope 15.7a. Browsing the entire GNU/Linux Kernel source is tiresome. In
order to find a particular data structure or function quickly, cscope will be used.
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Figure 2.17: The GNU/Linux Kernel TaskStats: filling per-task statistics

Right after decompressing the GNU/Linux Kernel source files, the command make

cscope was executed to create cscope’s database and cross-reference information.

• GNU binutils 2.20.1-16.

• gdb 7.0.1-debian. Whenever a debugging session is required, gdb will be used.
Debugging the GNU/Linux Kernel is tricky. We will use gdb only for user-space
programs debugging purposes.

• R-language 2.11.1. In order to analyse and plot all the data gathered from
the execution of our new Context Switching Accounting utility, we will use the
R-language, as presented in [14].
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Chapter 3

Design & Implementation

3.1 Introduction

The GNU/Linux Kernel does account Voluntary and non-Voluntary Context Switches
per-task, as we have demonstrated in [18]. However, we have also demonstrated that
there are no actual mechanisms to split these context switches in further categories.
This chapter puts forward a stable yet experimental method to achieve precisely that.
This technique and implementation does apply to Voluntary and Involuntary Context
Switching.

This chapter is structured as follows: Section 3.2 provides background information on
Voluntary and Involuntary Context Switching, respectively. Section 3.3 conducts a deep
insight into the GNU/Linux Kernel so that a clear picture of the way it does increment
both counters, that is, nvcsw and nivcsw [19], can be achieved. Section 3.4 describes in
depth our Context Switching Accounting mechanism’s implementation. Finally, Section
3.5 demonstrates the way our tool can be applied to the GNU/Linux Kernel mainstream.

This task has been conducted according to the gantt chart shown in Figure 3.1.

Figure 3.1: Context Switching Accounting: Design & Implementation Gantt Chart

3.2 Background

Voluntary Context Switching

Let p be a process running on a GNU/Linux box, so that (p→ state)←− TASK RUN
NING. In such scenario, Voluntary Context Switching can only happen whenever p is
waiting for some event to occur or some hardware to be ready. In this particular case, p
removes itself from the active run queue and puts itself into the proper wait queue.
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Thus, we have stated that Voluntary Context Switching implies, for any given process
pi in a processor’s run queue, and provided that (pi → state)←− TASK RUNNING
applies, yielding the processor by self-calling the schedule() function.

Let’s assume p is a user-space application. p can relinquish the processor voluntarily
only whilst the GNU/Linux Kernel is in process context or whenever returning from
a System Call. Whenever a user-space program issues a System Call, the GNU/Linux
kernel is in process context. That is so because the GNU/Linux Kernel is running
on behalf of p. So, Voluntary Context Switching can happen either in Ring 0 or in
returning to Ring 3 from Ring 0. p cannot relinquish the processor where it is running
on otherwise; that would be Involuntary Context Switching. Therefore, p could only be
preempted itself due to issued system calls. Table 3.1 summarizes these situations.

Mode Resource Cause

User-Mode - Returning from a System Call
User-Mode - An explicit call to sched yield()

Process Context Any An issued System Call that can block

Table 3.1: Voluntary Context Switching events

Our project takes into account some particularities from Table 3.1. Let vc be the
total amount of Voluntary Context Switches during p’s life cycle; let rs be the total
amount of Context Switches taking place whilst returning from a system call; let vb be
the calls to schedule() in process context, that is, voluntary blocking; let ve be
the total amount of calls to schedule() during p’s exit. Then, it immediately follows
that:

vc = rs+ vb+ ve (3.1)

Equation 3.1 applies if we do consider p to relinquish the processor by itself whilst
returning from a System Call, as long as schedule() is called. That is so because any
probable call to schedule() will be performed by the current task, that is, p. As next
sections will prove, it can be stated that rs � vb and that ve = 1 as long as p is not
io-bounded or, if it is, it is not issuing a huge amount of system calls. Thus, we can
rewrite 3.1 as follows:

vc ≈ vb (3.2)

given any pi which is not io-bounded or is not issuing a large number of System
Calls.

As described in section 3.4.5, our GNU/Linux Kernel patch does add some code
so that rs can be accounted. Whenever p exits, our patch can also determine if the
subsequent call to schedule() has been issued by p itself or not. If p has issued a call
to exit(), it is considered as Voluntary Context Switching- p wants to exit, so it does
yield the processor by calling the exit() function -.

Involuntary Context Switching

Let’s consider a certain process, that is, p2, whose state is either TASK INTERRUPTIBLE

or TASK UNINTERRUPTIBLE. This task is in a wait queue, therefore it is waiting for
some event to occur. Whenever p2 awakes, whether this is so due to the fact that the
awaited event has finally happened or p2 has been signaled, the consequences are quite
the same: the current task, let’s say p1, can possibly be preempted, thus allowing p2 to
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be executed in a near or immediate future. If p2 is meant to be executed immediately,
p1 is said to relinquish the processor involuntarily as long as p2 had a higher priority.
Otherwise, p2 would still be removed from its wait queue and put in a run queue, but
could not possibly be executed immediately, thus allowing p1 to exhaust its processor’s
time proportion.

Apart from exhausting its time slice or being preempted because of another awaking
task with a higher priority, p1 can still yield the processor because of an Interrupt
Handler. An Interrupt Handler is triggered whenever a piece of hardware requires
processor’s attention. This is clearly an Involuntary Context Switch, because p1 has
nothing to do with the fired interrupt. However, let’s suppose this scenario: a certain
process, p, calls read(). Somehow or other, this call to the read() function can provoke a
hardware interrupt, because the hard disk has to tell the processor it does have that data
ready to be read. Then it immediately follows that p can possibly be preempted because
of the execution of an interrupt handler that has been fired as a direct consequence of
p’s behaviour. Our project does track every single hardware interrupt. Whenever a
piece of hardware issues an interrupt, the GNU/Linux Kernel has to deal with it. Thus,
p can yield the processor if that same processor is the one in charge of running the
Interrupt Handler associated with the interrupt line that has just been triggered. The
GNU/Linux Kernel is said to be in Interrupt Context whilst processing a hardware
interrupt. Table 3.2 summarizes these situations.

Mode Cause

Process Context or User Mode A higher priority task has been awakened
Process Context or User-Mode Time-Slice exhaustion

Interrupt Context A piece of hardware has triggered an interrupt

Table 3.2: Involuntary Context Switching events

3.3 The GNU/Linux schedule() implementation

The GNU/Linux Kernel scheduler is invoked directly or in a deferred way. In conso-
nance with the cscope command, there are about 561 direct calls to the schedule()

function for the 2.6.32 GNU/Linux Kernel version. A direct call to the scheduler is
easy to understand: whenever a part of the GNU/Linux Kernel needs to block, typically
inside drivers, an explicit call to the schedule() function is made, thus invoking the
GNU/Linux scheduler in doing so.

Deferred calls to the GNU/Linux scheduler are consequence of setting the TIF NEED

RESCHED flag of the thread info data structure for a given process, that is, thread info

->flags. The GNU/Linux Kernel always checks this flag whilst trying to resume user-
processes’ execution, so whenever it is set, the GNU/Linux Kernel Scheduler will be
invoked in a certainly near future.

As far as Voluntary Context Switching is concerned, a given process p can voluntar-
ily relinquish the processor where it is running on by calling the GNU/Linux scheduler
in a direct way. However, as this section will prove, we do consider Voluntary Con-
text Switching any explicit issued call to schedule() by the current task whereas the
GNU/Linux Kernel does not. Thus, whilst returning from a System Call, current al-
ways refers to the actively running process. Then it immediately follows that current

checks its own TIF NEED RESCHED flag, and if it is set, it does self-call the schedule()

function.
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The GNU/Linux scheduler is also in charge of incrementing the nvcsw and nivcsw

fields. According to Listing 3.1, it does increment either nvcsw or nivcsw depending on
what condition the current task meets. Line 7 shows that, by default and whenever
executing this call, a primary supposition is made: that is, that the Context Switch that
is about to happen is due to Involuntary Context Switching. This is done by making
the switch count pointer point at the prev->nivcsw’s address.

Listing 3.1: The GNU/Linux schedule()’s implementation.
1 need resched :
2 preempt d i sab l e ( ) ;
3 cpu = smp proce s so r id ( ) ;
4 rq = cpu rq ( cpu ) ;
5 r cu s ched qs ( cpu ) ;
6 prev = rq−>curr ;
7 swi tch count = &prev−>nivcsw ;
8 . . .
9 i f ( prev−>s t a t e && ! ( preempt count ( ) & PREEMPT ACTIVE) ) {

10 i f ( u n l i k e l y ( s i g n a l p e n d i n g s t a t e ( prev−>s ta te , prev ) ) )
11 prev−>s t a t e = TASK RUNNING;
12 else
13 d e a c t i v a t e t a s k ( rq , prev , 1 ) ;
14 swi tch count = &prev−>nvcsw ;
15 }
16 . . .
17 i f ( l i k e l y ( prev != next ) ) {
18 . . .
19 rq−>n r s w i t c h e s++;
20 rq−>curr = next ;
21 ++∗swi tch count ;
22 . . .
23 }

Lines 9-15 are the ones related to Voluntary Context Switching. The GNU/Linux
Kernel is preemptive, that means not only user-space tasks can be preempted but the
kernel itself. That can only happen whenever a particular task that is running in kernel-
space does not hold any lock. In listing 3.1, line 9, only when the task is not runnable
and it has not been preempted in kernel-space, does the Kernel suppose it is a Voluntary
Context Switch, thus pointing the switch count at the nvcsw field - as shown in Line 14
-. Whenever the task has been preempted in Kernel Space, the scheduler does consider
it an Involuntary Context Switch. According to Listing 3.1, the bit PREEMPT ACTIVE

is checked by a trivial bit-wise and operation over the thread info->preempt count

task field, by means of calling the function preempt count(). Whenever this bit is
set, this task has been preempted whilst being in kernel-space, thus the kernel does
infer there is an Involuntary Context Switch involved. TASK RUNNING is defined as 0,
according to the include/linux/sched.h header file. Thus, whenever prev->state

matches 0, the conditional branch in line 9 does not resolve to true, that is, ≥ 1. Only
a state that complies to > 0, that is, prev->state!=TASK RUNNING, and provided that
PREEMPT ACTIVE has not been set, can provoke a Voluntary Context Switch. Previous
versions of the GNU/Linux Kernel tended to write this branched piece of code as shown
in Listing 3.2. Both conditional branches are equivalent.

When a certain process p voluntarily relinquishes the processor where it is running
on, it deactivates itself from the run queue and puts itself on the proper wait queue.
In doing so, it does update its own state so that it can be inferred that p->state !=

TASK RUNNING. That is how the code-snippet shown in Listing 3.1 comes to work - Lines
9-15 -. Despite this reasonable approach, our project does consider any explicit call
to the schedule() function issued by the current task as a Voluntary one. Thus,
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our nvcsw ext[0] counter is incremented whilst returning from a system call and it is
attached to the Voluntary Context Switching accounting.

Finally, as it is shown in Listing 3.1, lines 17 and 21, if the next task to be executed
is different from the previous one, the GNU/Linux Scheduler increments the number
of Context Switches by using the previously referenced pointer, that is, switch count.
This is quite remarkable in itself, because it does prove that not all the calls to the
schedule() function end up in an actual Context Switch. Therefore, our nvcsw ext[0]

counter has to be considered as the total probable amount of Context Switches
whilst returning from a System Call. Not all of them, although most of them,
will be performed.

Listing 3.2: The GNU/Linux schedule() Voluntary Context Switch branch’s old way
implementation.

1 i f ( prev−>s t a t e != TASK RUNNING && ! ( preempt count ( ) & PREEMPT ACTIVE) ) {
2 i f ( u n l i k e l y ( s i g n a l p e n d i n g s t a t e ( prev−>s ta te , prev ) ) )
3 prev−>s t a t e = TASK RUNNING;
4 else
5 d e a c t i v a t e t a s k ( rq , prev , 1 ) ;
6 swi tch count = &prev−>nvcsw ;
7 }
8 . . .

3.4 Extending the counters

Our main goal is to extend the nvcsw and nivcsw counters so that a more accurate
accounting of every single Context Switch can be performed. This section describes in
depth the way we have altered the GNU/Linux Kernel sources in order to do so.

3.4.1 Extending some Kernel Data Structures

As previously introduced in [20], it is feasible to extend the taskstats data structure in
order to access a series of new counters per-task. However, the task struct structure,
described briefly in [21], has to be extended accordingly. That is so because all the
statistics from which the GNU/Linux Kernel TaskStats interface fills its own fields in
come directly from the task struct data structure for any given process. Therefore,
we have extended both data structures, as shown in Listings 3.3 and 3.4. Table 3.3
summarizes the meaning and purpose of these new extended fields.

Listing 3.3: Extending the task struct data structure, include/linux/sched.h

1 struct t a s k s t r u c t {
2 . . .
3 unsigned long n s y s c a l l s ;
4 unsigned long nvcsw ext [ 3 ] ;
5 atomic64 t n ivcsw ext [ 2 ] ;
6 unsigned long n i v c s w e x t e x i t ;
7 unsigned long n s y s c a l l s s c h e d u l e [ NR sysca l l max +1] ;
8 . . .
9 }

Listing 3.4: Extending the taskstats data structure, include/linux/taskstats.h

1 #d e f i n e TASKSTATS VERSION 8
2

3 struct t a s k s t a t s {
4 . . .
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5 u64 n s y s c a l l s ;
6 u64 nvcsw ext [ 3 ] ;
7 u64 n ivcsw ext [ 2 ] ;
8 u64 n i v c s w e x t e x i t ;
9 }

Counter Index Description

nsyscalls - Total amount of issued syscalls

nvcsw ext[]

0 Calls to schedule() at ret from sys call.
1 Voluntary task’s exit. 1

2 Calls to the sched yield() system call.
nsyscalls schedule[] - Number of calls to schedule() per syscall.

nivcsw ext[]

0 Calls to schedule() during try to wake up().
1 Calls to schedule() during do irq().

nivcsw ext exit - Involuntary task’s exit. 1

Table 3.3: Per-task’s extended counters

Some of the functions and macros to be used all along this section can be located in
the include/kernel/tcg.h header file, shown in Listing 3.5.

Listing 3.5: The include/linux/tcg.h header file containing macros and function pro-
totypes

1 #d e f i n e TCG NSYSCALLS t c g n s y s c a l l s
2 #d e f i n e TCG NSYSCALLS SCHEDULE t c g n s y s c a l l s s c h e d u l e
3 #d e f i n e TCG SCHED YIELD t c g s c h e d y i e l d
4 #d e f i n e TCG NVCSW 0 tcg nvcsw 0
5

6 #i f n d e f NR sysca l l max
7 #d e f i n e NR sysca l l max 298
8 #e n d i f

3.4.2 Initializing the counters

Whenever a new process is created, a call to do fork() is made. Thus, it seems quite
feasible to initialize our new counters precisely in the do fork() function. In agreement
with the kernel/fork.c source file, the nvcsw and nivcsw counters are initialized to 0
inside the function copy mm(), called from the do fork() one, as shown in Listing 3.6,
line 8.

Listing 3.6: Initializing the nvcsw and nivcsw counters

1 stat ic int copy mm(unsigned long c l o n e f l a g s , struct t a s k s t r u c t ∗ t sk )
2 {
3 struct mm struct ∗ mm, ∗oldmm ;
4 int r e tva l , i ;
5

6 tsk−>m i n f l t = tsk−>m a j f l t = 0 ;
7

8 tsk−>nvcsw = tsk−>nivcsw = 0 ;
9 . . .

10 }

1This is not a proper counter; as described in section 3.2, there is typically one Context Switch
whenever a task is ending its execution. Maybe it could be changed by a bit field this way: nvcsw exit:1.
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We have modified line 8 in Listing 3.6 in order to initialize our nsyscalls counter
as well. Besides, we have inserted a pair of trivial calls to memset() in order to initialize
the rest of our counters right after this code line, as it is clearly shown in Listing 3.7,
lines 8 and 10-14.

Listing 3.7: Initializing the rest of our extended counters

1 stat ic int copy mm(unsigned long c l o n e f l a g s , struct t a s k s t r u c t ∗ t sk )
2 {
3 struct mm struct ∗ mm, ∗oldmm ;
4 int r e tva l , i ;
5

6 tsk−>m i n f l t = tsk−>m a j f l t = 0 ;
7

8 tsk−>nvcsw = tsk−>nivcsw = tsk−>n s y s c a l l s = 0 ;
9

10 memset(&tsk−>nvcsw ext , 0 , s izeof ( tsk−>nvcsw ext ) ) ;
11 atomic64 se t (&tsk−>nivcsw ext [ 0 ] , 0 ) ;
12 atomic64 se t (&tsk−>nivcsw ext [ 1 ] , 0 ) ;
13 tsk−>n i v c s w e x t e x i t = 0 ;
14 memset(&tsk−>n s y s c a l l s s c h e d u l e , 0 , s izeof ( tsk−>n s y s c a l l s s c h e d u l e ) ) ;
15 . . .
16 }

3.4.3 Accounting the total number of System Calls per-task

Whenever a certain process p issues a System Call, it does so by using the libc wrapper
routines. This way, there is no need to know in advance the exact system calls’ addresses.
Moreover, the wrapper library is in charge of calling a system call either by using the
old-way int $0x80 instruction or the more recent sysenter, widely available on most
of nowadays X86-based processors. All the code dealing with the System Call interface
resides in the arch/x86/kernel/entry 64.S file, written purely in assembler. There
are two entry points particularly interesting for our purposes; the first one applies to
the sysenter instruction and the other one is for the old int $0x80 instruction. Then,
it immediately follows that we needed to add some code in both of them, apparently.
Because the GNU/Linux Kernel has been developed to spare redundant code whenever
feasible, the entry point for the sysenter ends up calling part of the low-level instructions
executed in the old-days by the int $0x80 instruction, that is, the system call entry
point. As shown in Listing 3.8, lines 4-5 check for a valid issued system call. Our counter
is called a few lines later, thus it does not account any erroneous call to an unknown
or not implemented system call. Right before executing the system call in line 12, the
rax register is saved before calling our high-level implemented counter TCG NSYSCALLS,
and then it is immediately restored, as clearly shown in lines 8-11. This register has
to be saved before calling our high-level C-routine in order to prevent rax from being
thrashed. The value stored in rax is the system call number to be executed in line 12;
should rax be thrashed, the entire system would probably collapse.

Our high-level C-routine, tcg nsyscalls(), is implemented in a new file added to
the GNU/Linux Kernel mainstream, that is, arch/x86/kernel/tcg.c. It is shown in
Listing 3.9. As discussed in section 3.4.8, modular arithmetic has been used to avoid
overflows. TCG NSYSCALLS has been defined as a macro in the include/linux/tcg.h

header file, as shown in Listing 3.10.

Listing 3.8: Calling the tcg nsyscalls() high-level function

1 ENTRY( s y s t e m c a l l )
2 . . .
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3 s y s t e m c a l l f a s t p a t h :
4 cmpq $ NR syscal l max ,%rax
5 ja badsys
6 . . .
7 movq %r10 ,% rcx
8 push %rax
9 mov %rax , s y s c a l l i d

10 ca l l TCG NSYSCALLS
11 pop %rax
12 ca l l ∗ s y s c a l l t a b l e ( ,%rax , 8 ) # XXX: r i p r e l a t i v e
13 . . .

Listing 3.9: Accounting the total amount of issued System Calls per-task, C-function
1 asmlinkage void t c g n s y s c a l l s (void ){
2 current−>n s y s c a l l s += ( 1 % ULONG MAX ) ;
3 }

Listing 3.10: The TCG NSYSCALLS macro’s definition
1 #d e f i n e TCG NSYSCALLS t c g n s y s c a l l s

3.4.4 Accounting the total amount of calls to the sched yield() system
call

The system call sched yield() is implemented in the kernel/sched.c source file. It
is the only way a user-space program can explicitly ask for relinquishing the processor
without waiting for a particular hardware to be ready or for an event to occur. That
means this is still Voluntary Context Switching, but not due to voluntary blocking,
and it is always issued whilst the process is running in user-mode. Our project does
account any call to this particular system call and stores them in the nvcsw ext[2] field,
as summarized in Table 3.3. Listing 3.11 shows the sched yield()’s implementation.
It is quite obvious any call to this function ends up in an actual call to the GNU/Linux
Scheduler - line 10 -. Our GNU/Linux Kernel patch adds some code to the system call

entry in order to determine whether the issued system call is NR sched yield by means
of comparing the value stored in the rax register or not. If the value of rax is equal to
the one shown in Listing 3.12, that is, NR sched yield, then we save rax’s value before
calling our high-level C-routine TCG SCHED YIELD counter. Finally, we restore its value
and the entry point continues normally - lines 4-8 - . As it is clearly shown in Listing 3.13,
this call to sched yield is also accounted calling our TCG NSYSCALLS routine, so that we
can have an accurate accounted number of issued system calls, including sched yield()

- lines 9-13 -. The tcg sched yield() C-routine is shown in Listing 3.15.
TCG SCHED YIELD has been defined as a macro in the include/linux/tcg.h header

file, as shown in Listing 3.14.

Listing 3.11: The sched yield system call’s implementation, kernel/sched.c
1 SYSCALL DEFINE0( s c h e d y i e l d )
2 {
3 struct rq ∗ rq = t h i s r q l o c k ( ) ;
4 s c h e d s t a t i n c ( rq , y ld count ) ;
5 current−>s c h e d c l a s s−>y i e l d t a s k ( rq ) ;
6 r e l e a s e ( rq−>l o ck ) ;
7 s p i n r e l e a s e (&rq−>l o ck . dep map , 1 , THIS IP ) ;
8 raw sp in un lock (&rq−>l o ck ) ;
9 preempt enab le no resched ( ) ;

10 schedu le ( ) ;
11 return 0 ;
12 }
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Listing 3.12: The sched yield system call’s number,
arch/x86/include/asm/unistd 64.h

1 #d e f i n e NR sched y i e ld 24
2 SYSCALL( NR sched y ie ld , s y s s c h e d y i e l d )

Listing 3.13: Accounting the total amount of calls to the sched yield() system call

1 s y s t e m c a l l f a s t p a t h :
2 cmpq $ NR syscal l max ,%rax
3 ja badsys
4 cmp $ NR sched y ie ld ,%rax
5 jnz tcg normal account
6 push %rax
7 ca l l TCG SCHED YIELD
8 pop %rax
9 tcg normal account :

10 movq %r10 ,% rcx
11 push %rax
12 ca l l TCG NSYSCALLS
13 pop %rax
14 ca l l ∗ s y s c a l l t a b l e ( ,%rax , 8 ) # XXX: r i p r e l a t i v e

Listing 3.14: The TCG SCHED YIELD macro’s definition

1 #d e f i n e TCG SCHED YIELD t c g s c h e d y i e l d

Listing 3.15: The tcg sched yield() high-level routine

1 asmlinkage void t c g s c h e d y i e l d (void ){
2 current−>nvcsw ext [2]+=(1%ULONG MAX) ;
3 }

3.4.5 Accounting the total amount of Context Switches whilst return-
ing from a System Call

As stated in section 3.2, the GNU/Linux Kernel can preempt a process whilst return-
ing from a system call. Our approach is slightly different than the one taken by the
GNU/Linux Kernel. Instead of considering any call made to the GNU/Linux scheduler
at ret from sys call as Involuntary Context Switching, we do assume it is Voluntary
Context Switching because it is the own task that has issued the system call the one in
charge of checking its own TIF NEED RESCHED flag, as shown in Listing 3.16, lines 9-11.
If there are not any flags in the flags field for the current task already set, that is,
if line 10 evaluates to 0, then the task can be resumed in user-space and continue its
execution normally. Otherwise, a jump to the sysret careful label is made. Our high-
level C-counter is placed right after checking for pending signals to be attended, lines
14-15. If there are some, a jump to the sysret signal label is made. If there aren’t
any, our high-level counter TCG NVCSW 0 will be called, lines 23-25. The actual call to
the GNU/Linux Scheduler is made in line 26. Our high-level C-routine counter is shown
in Listing 3.17. TCG NVCSW 0 has been defined as a macro in the include/linux/tcg.h

header file, as shown in Listing 3.18.

Listing 3.16: Calling the tcg nvcsw 0() high-level function

1 r e t f r o m s y s c a l l :
2 movl $ TIF ALLWORK MASK,%edi
3 /∗ edi : f lagmask ∗/
4 s y s r e t c h e c k :
5 LOCKDEP SYS EXIT
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6 GET THREAD INFO(%rcx )
7 DISABLE INTERRUPTS(CLBR NONE)
8 TRACE IRQS OFF
9 movl T I f l a g s (%rcx ) ,%edx

10 andl %edi ,%edx
11 jnz s y s r e t c a r e f u l
12 . . .
13 s y s r e t c a r e f u l :
14 bt $TIF NEED RESCHED,%edx
15 jnc s y s r e t s i g n a l
16 TRACE IRQS ON
17 ENABLE INTERRUPTS(CLBR NONE)
18 pushq %r d i
19 CFI ADJUST CFA OFFSET 8
20 push %rax
21 ca l l TCG NSYSCALLS SCHEDULE
22 pop %rax
23 push %rax
24 ca l l TCG NVCSW 0
25 pop %rax
26 ca l l schedu le
27 . . .

Listing 3.17: accounting the total calls to the scheduler whilst returning from a System
Call

1 asmlinkage void tcg nvcsw 0 (void ){
2 current−>nvcsw ext [ 0 ] += ( 1 % ULONG MAX ) ;
3 }

Listing 3.18: The TCG NVCSW 0 macro’s definition

1 #d e f i n e TCG NVCSW 0 tcg nvcsw 0

Building the per-syscall table

As shown in Table 3.3, our patch can also account the total amount of calls to schedule()
issued per System Call, thanks to the nsyscalls schedule[] counter. This counter is
just an immediate index matching any valid system call to its accounting information.
This matching is implemented as follows: let si be a particular System Call, then it is
quite obvious that nsyscalls schedule[si] will contain the total amount of calls to the
scheduler whilst returning to user-space from si’s process context. According to Listing
3.8, line 9, we store the system call id in the high-level C-variable syscallid, so that it
can be used later on. This variable is defined in the arch/x86/kernel/tcg.c source file.
When a probable call to the GNU/Linux scheduler is about to happen, as is shown in
Listing 3.16, our high-level C-routine tcg nsyscalls schedule() is called, lines 20-22.
This routine is shown in Listing 3.19 and it is truly simplistic: it does use the previously
stored syscallid variable as an index inside the nsyscalls schedule[] array in order
to increment the right slot by 1.

Listing 3.19: Constructing the per-syscall calls to the GNU/Linux Scheduler table

1 . . .
2 unsigned int s y s c a l l i d ;
3 . . .
4 asmlinkage void t c g n s y s c a l l s s c h e d u l e (void ) {
5 i f ( s y s c a l l i d <= NR sysca l l max )
6 current−>n s y s c a l l s s c h e d u l e [ s y s c a l l i d ]+=(1%ULONG MAX) ;
7 else

Toni Castillo Girona 32



CHAPTER 3. DESIGN & IMPLEMENTATION

8 pr in tk (KERN ERR ”TCG: %d , s y s c a l l i d has been thrashed : %d\n” ,
9 current−>pid , s y s c a l l i d ) ;

10 }

3.4.6 Accounting involuntary preemption due to interrupts

When a hardware interrupt is triggered, the processor stops whatever code could be
executing and jumps to a predefined memory address where the entry point for handling
interrupts is located. This particular entry point is set by the GNU/Linux Kernel, and
it is in charge of saving the registers’ values and the interrupt line number just before
calling do IRQ(). Our main concern is to deal directly with the do IRQ() function. As
previously introduced, the GNU/Linux Kernel is running in Interrupt Context, and
therefore any piece of code is not allowed to sleep. Any possible operation must be
performed atomically. Thus, we cannot increase a variable which is not atomic. We
do know that any single call to do IRQ() does interrupt the task that was previously
running. Then it immediately follows that the current macro does point at the previous
running task. So, it is safe to suppose that we can increase its counter by one, as long as
we do that atomically. That is why we have implemented this counter as an atomic64 t.
This is shown in Listing 3.20, lines 13-14.

Listing 3.20: Accounting preemption due to interrupts atomically

1 unsigned int i r q e n t r y do IRQ ( struct p t r e g s ∗ r eg s )
2 {
3 struct p t r e g s ∗ o l d r e g s = s e t i r q r e g s ( r eg s ) ;
4

5 unsigned vec to r = ˜ regs−>o r i g a x ;
6 unsigned i r q ;
7

8 e x i t i d l e ( ) ;
9 i r q e n t e r ( ) ;

10

11 i r q = 0 g e t c p u v a r ( v e c t o r i r q ) [ vec to r ] ;
12

13 atomic64 se t (&current−>nivcsw ext [ 1 ] ,
14 ( atomic64 read(&current−>nivcsw ext [1])+1)%ULONG MAX) ;
15 . . .
16 }

3.4.7 Accounting involuntary preemption due to try to wake up()

This project focus explicitly on the CFS GNU/Linux scheduler algorithm. Thus, when a
process that has been sleeping in a wait queue does awake, the CFS can determine that it
does have a higher priority than the one that is running. This ends up in an involuntary
context switch because the current task is forced to yield the processor and the recently
awakened one is put to run instead. Not all the awakened tasks are suitable for running
immediately because of their priority. In these cases, they are inserted in the red-black
tree for the active run queue, if feasible, so that they could be executed in a near future.
The CFS algorithm is in charge of doing precisely so, and all the code can be found in the
C-source file kernel/sched fair.c. The function dealing with tasks’ priorities is called
check preempt wakeup(). This function does call resched task() whenever necessary,
thus setting the TIF NEED RESCHED flag for the current macro. Our extended counter is
incremented right here, as long as a call to resched task() is made. For example, let’s
consider that the just recently awakened task p is real-time. According to the Listing
3.21, this new task is meant to be executed always, thus preempting the current one.
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Therefore, we can increase our extended counter here, as clearly shown in lines 3-4. In
consonance with the check preempt wakeup function, there are other parts in its code
where the awakened task can provoke a re-schedule of the current one. Our counter is
incremented there too, accordingly. Because a re-schedule can occur concurrently, we
have to implement our extended counter as an atomic64 t.

Listing 3.21: Accounting re-schedules due to awakened tasks having a higher priority

1 . . .
2 i f ( u n l i k e l y ( r t p r i o (p−>pr i o ) ) ) {
3 atomic64 se t (&curr−>nivcsw ext [ 0 ] ,
4 ( atomic64 read(&curr−>nivcsw ext [0])+1)%ULONG MAX) ;
5 r e s c hed ta sk ( curr ) ;
6 return ;
7 }
8 . . .

3.4.8 Avoiding overflows

Our new counters are defined as unsigned long numeric values. In two cases these
counters have been defined as atomic64 t in order to increase their values atomically.
This applies to our Involuntary Context Switching counters, that is, nivcsw ext[0] and
nivcsw ext[1]. That is so because both fields are read and altered in functions that
can certainly run concurrently: do IRQ() and check preempt wakeup(). Whatever the
case, incrementing a counter in kernel-space is tricky and dangerous, as long as there is
no mechanism to detect and avoid overflows. An overflow in kernel-space can trigger a
Kernel OOPS or even a Kernel PANIC. Stability is mandatory; thus, we have to keep
track of overflows-to-be and avoid them. As defined in the include/linux/kernel.h

header file, we do know how huge an unsigned long numeric value could be, that is,
ULONG MAX. The exact value depends on the processor’s architecture. Therefore, the way
we increment any single counter is by applying modular operations:

counter ←− ((counter + 1) mod ULONG MAX) (3.3)

This is shown in Listings 3.9, 3.15, 3.17 , 3.19, 3.20 and 3.21 respectively.

3.4.9 Extending the /proc/PID/sched file

Whenever the CONFIG SCHED DEBUG kernel option is set, the GNU/Linux Kernel exports
some per-task statistical information on /proc/PID/sched. Our kernel-patch adds the
nsyscalls, nvcsw ext[0], nvcsw ext[2], nivcsw ext[0] and nivcsw ext[1] counters
to these stats, so that they can be easily read by issuing a simple cat command, as
described in section 3.5.4.

As shown in Listing 3.22, we have added some lines in order to export our coun-
ters’ values whenever a read over /proc/PID/sched is required. As analyzed in [19],
the GNU/Linux Kernel performs these operations in the linux/kernel/sched debug.c

source file, in the proc sched show task() function. According to Listing 3.22, our
counters are added in lines 4-7 and 10-21.

Listing 3.22: Adding the nsyscalls, nvcsw ext[0] and nvcsw ext[2] counters to the
Debug Sched interface

1 P ( n r s w i t c h e s ) ;
2 SEQ printf (m, ”%−35s :%21Ld\n” ,
3 ” n r v o l u n t a r y s w i t c h e s ” , ( long long )p−>nvcsw ) ;
4 SEQ printf (m, ”%−35s :%21Ld\n” ,
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5 ” n r v o l s w i t c h e s d u e t o s y s c a l l s ” , ( long long )p−>nvcsw ext [ 0 ] ) ;
6 SEQ printf (m, ”%−35s :%21Ld\n” ,
7 ” n r v o l s w i t c h e s s c h e d y i e l d ” , ( long long )p−>nvcsw ext [ 2 ] ) ;
8 SEQ printf (m, ”%−35s :%21Ld\n” ,
9 ” n r i n v o l u n t a r y s w i t c h e s ” , ( long long )p−>nivcsw ) ;

10 SEQ printf (m, ”%−35s :%21Ld\n” ,
11 ” nr invo lunta ry sws t ry to wakeup ” ,
12 ( long long ) atomic64 read(&p−>nivcsw ext [ 0 ] ) ) ;
13 SEQ printf (m, ”%−35s :%21Ld\n” ,
14 ” nr invo luntary sws do IRQ ” ,
15 ( long long ) atomic64 read(&p−>nivcsw ext [ 1 ] ) ) ;
16 ” n r i s s u e d s y s t e m c a l l s ” , ( long long )p−>n s y s c a l l s ) ;
17 for ( i =0; i<= NR sysca l l max ;
18 s e q p r i n t f (m, ” TCG. t ab l e .%−21d:%21Ld\n” ,
19 i , ( long long )p−>n s y s c a l l s s c h e d u l e [ i ] ) ,
20 ++i
21 ) ;

The GNU/Linux Scheduler Debugging information does have another function, that
is, proc sched set task(), to initialize all the values for most of the task struct fields
related to the scheduling mechanism. Whenever the CONFIG SCHEDSTATS kernel option
is set, as previously discussed, this function sets all the fields to initial values of 0. Thus,
our patch adds three trivial calls to the memset() function so that our counters could
be initialized properly, as shown in Listing 3.23.

Listing 3.23: Initializing our counters in order to extend the Kernel Scheduler

Debugging Information accordingly

1 p−>n s y s c a l l s = 0 ;
2 memset(&p−>nvcsw ext , 0 , s izeof (p−>nvcsw ext ) ) ;
3 atomic64 se t (&p−>nivcsw ext [ 0 ] , 0 ) ;
4 atomic64 se t (&p−>nivcsw ext [ 1 ] , 0 ) ;
5 p−>n i v c s w e x t e x i t = 0 ;
6 memset(&p−>n s y s c a l l s s c h e d u l e , 0 , s izeof (p−>n s y s c a l l s s c h e d u l e ) ) ;

3.4.10 Determining whenever a process ends its own execution volun-
tarily

Let p be a process that is ending its execution. The GNU/Linux Kernel facilities allow
us to determine whether this exit is caused by a normal operation or not. The exit status
code for a given task is always passed to the do exit() function during p’s termination
as a parameter. The GNU/Linux Kernel adds an error value to this integer parameter
whenever an unusual event has forced the task to end its execution. That uncommon
event could be a signal sent by another process, a segmentation fault or whatever makes
p exit abnormally. In fact, whenever a process is due to cease its own existence, there is
always a signal involved. Thus, we can determine whether p has just been killed because
of a signal by checking if the WIFSIGNALED flag has been set to the code parameter.
This is shown in Listing 3.24, line 692. In line with include/bits/waitstatus.h,
WIFSIGNALED is a macro defined as shown in Listing 3.25. Therefore, whenever code &

0x7 resolves to 0, p has ended its own execution in an ordered, thus voluntary manner,
and so the nvcsw ext[1] is set to 1.

Listing 3.24: Accounting p’s exit event; either voluntary or not

1 i f ( u n l i k e l y ( ! tsk−>pid ) )
2 panic ( ”Attempted to k i l l the i d l e task ! ” ) ;
3 i f ( ( code & 0 x7f ) == 0)
4 tsk−>nvcsw ext [ 1 ] = 1 ;
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5 else
6 tsk−>=n i v c s w e x t e x i t =1;

Listing 3.25: Accounting p’s exit event; WIFSIGNALED’s definition
1 #d e f i n e WIFSIGNALED( s t a t u s ) \
2 ( ( ( signed char ) ( ( ( s t a t u s ) & 0 x7f ) + 1) >> 1) > 0)

3.4.11 Altering the GNU/Linux Taskstats interface

Our project uses the GNU/Linux Taskstats interface in order to gather these new coun-
ters from user-space applications. Our main user-space tool is getcswc, a program
written in C derived from getdelays.c, as widely discussed in [22]. To allow this pro-
gram to access these new counters, the function fill pid() in kernel/taskstats.c

has been updated accordingly, as shown in Listing 3.26. It is truly simplistic: we simply
copy all the counters from the task struct data structure into the taskstats one for
the desired task by means of calling the memcpy() function.

Listing 3.26: Filling p’s stats accordingly in the fill pid() function
1 . . .
2 s ta t s−>n s y s c a l l s = tsk−>n s y s c a l l s ;
3

4 memcpy(& sta t s−>nvcsw ext ,& tsk−>nvcsw ext , s izeof ( tsk−>nvcsw ext ) ) ;
5 s ta t s−>nivcsw ext [ 0 ] = atomic64 read(&tsk−>nivcsw ext [ 0 ] ) ;
6 s ta t s−>nivcsw ext [ 1 ] = atomic64 read(&tsk−>nivcsw ext [ 1 ] ) ;
7 s ta t s−>n i v c s w e x t e x i t = tsk−>n i v c s w e x t e x i t ;
8 . . .

3.4.12 Side-effects of altering the task struct and taskstats data struc-
tures

This is an experimental approach. That means this sort of altered GNU/Linux Kernel
mainstream is not meant to be used as a regular one. This entire project tries to show
the way the GNU/Linux scheduler works. As previously described, we do not care about
performance at all. Thus, altering certain kernel data structures immediately provokes
changing the way the whole system works plus injecting some setbacks. One obvious
setback is the total amount of memory the kernel needs to allocate when creating a new
process, because the task struct data structure now is larger. Listing 3.27 shows a
simple call to the printk() function, placed in the init/main.c source file, so that a
precise new size for both structures can be determined.

Listing 3.27: Showing both modified structures’ new size
1 stat ic int i n i t k e r n e l i n i t (void ∗ unused )
2 {
3 . . .
4 pr in tk (KERN INFO ”%s \ nTask struct s i z e : %l i , t a s k s t a t s s i z e : %l i \n” ,
5 TCG MESSAGE ,
6 s izeof ( struct t a s k s t r u c t ) ,
7 s izeof ( struct t a s k s t a t s )
8 ) ;
9 . . .

10 }

Table 3.4 summarizes these sizes for a patched and a non-patched GNU/Linux Ker-
nel, respectively. It is obvious that both GNU/Linux Kernels does have the same config-
uration file. That is extremely important, due to the fact some additional per-structure
fields are dynamically compiled depending on the number of previously set options.
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non-patched patched ∆

task struct 1808 4248 2432
taskstats 336 384 48

Table 3.4: GNU/Linux Kernel data structures sizes comparison, in bytes

task struct’s size does affect allocated buffers everywhere in the GNU/Linux Kernel
sources, obviously. Let’s consider, for example, the call to fill tgid() in the TaskStats
interface. In order to be able to get a valid netlink message when a certain process p
ends its execution, we need to instruct Taskstats not to allocate memory for gathering
per-tgid stats. Otherwise, we would get an ENOBUFF errno code by running our getcsw

program with flags -m CPUMASK .
Whenever our routines are executed, they can possibly affect p’s time-slice. Thus, p

could relinquish the processor whilst executing our high-level C-routines, due to the fact
that they do not hold any lock. That means p→ (preempt count()&PRREMPT AC
TIV E) would resolve to 1. As previously stated, the GNU/Linux Kernel is preemptive,
so every single process can be preempted even when it is running in kernel mode. That
includes our routines. However, this situation can not affect our Voluntary Context
Switching counters. If any, it would be our Involuntary Context Switching counters
the ones being affected. Even if p has been preempted due to time-slice exhaustion
whilst executing any of our high-level C-counters routines, before that a certain call to
the GNU/Linux Kernel Scheduler would have been performed. Therefore, this call to
schedule() is still to be accounted.

3.5 Deploying & Using our Context Switching Accounting
tool

Our project is kernel-related. Thus, all the code involved in extending the nvcsw and
nivcsw counters is meant to be mainly found in the GNU/Linux Kernel source main-
stream. Thus, the best way to deploy all the code-changes inside the GNU/Linux kernel
is by writing a patch-file. This patch could be then easily applied later on by running
the patch command over an unaltered GNU/Linux kernel source tree.

3.5.1 Creating the patch-file

After modifying the GNU/Linux Kernel sources, and assuming that /usr/src/linux

is our altered tree, to create our patch-file we ran the diff utility, as shown in Listing
3.28.

Listing 3.28: Creating the patch-file using the diff command
# cd /usr / s r c
# d i f f −urN l inux−source −2.6.32/ l i nux / > p a t c h f i l e

3.5.2 Applying the patch

The patch has to be applied to an unaltered GNU/Linux Kernel source tree in order to
get access to our counters. As introduced in [21], our changes can only be applied to a
2.6.32.5 GNU/Linux Kernel version. More specifically, this patch-file will only work for
a 2.6.32 41 GNU/Linux Kernel version, see linux-source-2.6.32/version.Debian.

The way to patch a GNU/Linux Kernel source tree is well-documented. See listing
3.5.3 for details.
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Listing 3.29: Applying the patch-file and installing the new kernel and modules
# cd /usr / s r c / l inux −2.6.32/
# cp /boot/ con f i g −2.6.32−5−amd64 . c on f i g
# make o l d c on f i g
# patch −p1 < . . / p a t c h f i l e
# make −jn && make −jn modules
# make modu l e s i n s t a l l
# cp arch /x86 64 /boot/bzImage /boot/vmlinuz −2.6.32
# cp System .map /boot/System .map−2.6.32
# cp . c on f i g /boot/ con f i g −2.6.32
# mkinitramfs −o /boot/ i n i t r d . img−2.6.32 2 . 6 . 3 2
# update−grub

After rebooting the computer and loading into the new kernel, access to these coun-
ters is guaranteed.

3.5.3 Compiling and using getcsw.c

getcsw.c is the user-space tool in charge of communicating with the GNU/Linux Kernel
via NetLink sockets, taking advantage of the GNU/Linux TaskStats ABI. To compile
it, just run:

$ gcc −I / usr / s r c / l inux−source−2.6.32/ inc lude getcsw . c −o getcsw

This command can be used to:

• Gather statistical information about a running process.

• Gather statistical information about a process that is ending its execution.

As previously discussed, whenever a process exits, we need a way to obtain its statis-
tics and, more importantly, to be able to read its nvcsw ext[1] field. The GNU/Linux
Kernel TaskStats interface allows us to do precisely so. Thus, getcsw can be instructed
to listen to a particular process’s exit. Table 3.5 summarizes all the flags and options
that can be applied to the getcsw program.

Flag Description Sample

-p PID Mandatory. Gets process PID’s stats. ./getcsw -p 2345

-i Shows Involuntary Context Switches extended counters. ./getcsw -p 2345 -i

-l Gets process PID’s stats at infinite intervals of 1s. ./getcsw -p 1 -l

-d t Alters the default -l’s delay of 1s to t seconds. ./getcsw -p 45 -l -d 10

-m mask Sets which cpu(s) we are listening to finishing tasks. ./getcsw -p 1 -m "0,3"

-v Enables verbosity. ./getcsw -p 2345 -l -v

Table 3.5: getcsw’s program flags

3.5.4 Execution examples

This section shows some trivial examples of data output obtained by running the getcsw
command on a patched GNU/Linux Kernel. In order to run the command, root privi-
leges are required. It also presents another way of gathering such data without needing
to become root: by reading the file /proc/PID/sched, that has been updated with our
new per-task counters, as described in section 3.4.9.
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Having a peak at the process’s counters

At any time, getcsw can be executed to have a quick look at any desired process’s
counters’ values. In this example, we ran getcsw in order to determine the total amount
of calls to the schedule() function during ret from sys call for the scp command,
whilst copying 1GB of data over the Internet. This is shown in Listing 3.30.

Listing 3.30: Obtaining the current scp’s counter values during a file-copy over the
Internet

. / getcsw −p ‘ps −C scp | t a i l −1| cut −d” ” −f2 ‘
Task vo luntary nonvoluntary s y s c a l l s r e t . s y s c a l l s vo l . sched vo l . exit
2880 1035 32 9266 19 1016 −

Reading the Involuntary Context Switches extended counters

By default, getcsw does not show the extended Involuntary Context Switches coun-
ters. In order to do so, getcsw has to be executed with the -i flag. This way, it is
feasible to read how many times a particular task has been preempted due to hard-
ware interrupts or high-priority tasks recently awakened. It is of the utmost importance
to bear in mind that, whenever the second case does apply, we have to consider these
figures as possible preemption due to re-schedule calls, for not all the calls to
the GNU/Linux Scheduler, that is, schedule(), end up in an actual context switch, as
previously demonstrated. This is shown in Listing 3.31.

Listing 3.31: init’s involuntary switches due to IRQs and awakened tasks after 4 days.
. / getcsw −p 1 − i
Task vo luntary nonvoluntary wake up IRQS

1 71586 142 139 64

Reading the process’s counters at infinite intervals of time t =10 seconds.

Whenever a constant tracing of the counters’ values is required for a given process,
getcsw can be executed with flags -l and -d t, as shown in Table 3.5. This time, we
traced ping’s execution at intervals of t =10 seconds. The results are shown in Listing
3.32.

Listing 3.32: Tracing ping’s counters at intervals of t =10 seconds
. / getcsw −p ‘ps −C ping | t a i l −1| cut −d” ” −f2 ‘ − l −d 10
Task voluntary nonvoluntary s y s c a l l s r e t . s y s c a l l s vo l . sched vo l . exit
1417 42 3 473 2 40 −
1417 191 5 1667 4 187 −
1417 281 5 2221 4 277 −
. . .

Waiting for a task to end

Our project does account whenever a process has been killed or has ended its execution
in an ordered manner by calling the exit() function on its own or whilst returning from
the main() function. This counter can be read neither using the getcsw command in
the usual way nor by reading the /proc/PID/sched file because the process is ending
its execution. To solve this problem, getcsw can wait for a particular task to end. As we
know, a task can be executed on any processor available. Thus, we can set the -m flag
in order to listen to any given process to terminate that is running on a particular cpu.
In this example, we ran the getcsw command in order to wait for the scp command to
complete the file-copy process on any processor available. Because our computer had
four cores, we used the mask: "0-3", as shown in Listing 3.33.
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Listing 3.33: Waiting for the scp’s command to end
. / getcsw −p ‘ps −C ping | t a i l −1| cut −d” ” −f2 ‘ −m ”0−3”
Task voluntary nonvoluntary s y s c a l l s r e t . s y s c a l l s vo l . sched vo l . exit
3315 96 2 901 1 95 y

Obtaining process’s stats by reading /proc/PID/sched.

We can obtain the process’s counters at any time without executing the getcsw com-
mand. Our GNU/Linux Kernel patch does add these counters to the scheduler debugging
information, exported by the kernel through the /proc directory facility as long as the
CONFIG SCHED DEBUG option is set. In this example, we used a simple cat command
to get the total amount of Epiphany Internet Browser’s issued system calls, as clearly
shown in Listing 3.34.

Listing 3.34: Getting the total amount of issued system calls made by Epiphany Web
Browser

cat /proc / ‘ps −C epiphany−browser | t a i l −1| cut −d” ” −f2 ‘ / sched | grep i s su ed
n r i s s u e d s y s t em c a l l s : 84799

Looking for tasks calling sched yield

We can write a trivial shell-script in order to look for tasks issuing sched yield() system
calls. All we need is to read /proc/PID/sched file and get the nvcsw ext[2] counter
that has been exported using our patch, as described in section 3.4.9. A sample script
file is shown in Listing 3.35, and its output is shown in figure 3.2.

Listing 3.35: Looking for tasks executing sched yield(), sample bash-script
1 #!/ bin /bash
2 echo −ne ”Task \ t Ca l l s \ t Command \n”
3

4 for p in /proc /∗ ;
5 do
6 # TCG: take care not to look at our own pid !
7 i f [ −d $p −a ”$p” != ”/proc /$$” ] ; then
8 i f [ −r $p/ sched ] ; then
9 y i e l d =‘cat $p/ sched | grep y i e l d | cut −d” : ” −f 2 | t r −d ’ ’ 2>/dev/ nul l ‘

10 # We do have some sched y i e l d s , show them :
11 i f [ ! −z ” $y i e l d ” −a ” $y i e l d ” != ”0” ] ; then
12 echo −ne ” ‘ basename $p ‘ \ t $ y i e l d \ t ‘ cat $p/cmdline ‘ \n”
13 f i
14 f i
15 f i
16 done

Figure 3.2: Two programs have been detected calling the sched yield() system call

Summarizing per-System Call calls to the GNU/Linux Kernel Scheduler

This is another example of our kernel patch possibilities. A trivial bash-script has been
developed in order to summarize every single call to the GNU/Linux Scheduler whilst
returning to user-space mode per system call. The entire script is shown in Listing 3.36.
Its execution is shown in figure 3.3.
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Listing 3.36: Running fcalltable.sh to summarize wget calls to schedule() per syscall
1 #!/ bin /bash
2 #
3 # f c a l l t a b l e . sh
4 #
5 # Shows the per−s y s c a l l c a l l s to the schedu le ( ) func t i on
6 # ge t t i ng i t s data from the /proc /PID/ sched f i l e . In
7 # order to get the system c a l l s ’ names , i t does need to
8 # read arch /x86/ / header f i l e .
9 #

10 # 2012 by Toni C a s t i l l o Girona
11 # <t on i . c a s t i l l o@ f a . upc . edu>
12 #
13 #
14 #se t −x
15

16 LINUXSOURCE=”/usr / s r c / l inux−source −2.6.32 ” # Kernel source t r e e
17 SYSCALLNAMES=”arch /x86/ inc lude /asm/ un i s td 64 . h” # Sy s c a l l d e f i n e s , C−header f i l e
18 NSYSCALLMAX=299 # nsysca l l max + 1
19

20 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 # get sy s c a l l n ame
22 # Return the name f o r a p a r t i c u l a r system c a l l id .
23 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 ge t s y s c a l l n ame ( ) {
25 i f [ −r $LINUXSOURCE/$SYSCALLNAMES ] ; then
26 # Get a l l the s y s c a l l names , ordered by index , so the f i r s t one i s index=0,
27 # the next one index=1, and so on
28 index=‘expr $1 + 1 ‘ # f i r s t 0 + 1 = 1 . . .
29 sname=‘cat $LINUXSOURCE/$SYSCALLNAMES | grep −E ”ˆ#de f i n e NR ” | t r \
30 ’\ t ’ ’ ’ | cut −d” ” −f 2 | head −$index | t a i l −1‘
31 echo ”${sname :5} ”
32 else
33 echo ”” # Empty s t r i n g
34 return 1 # e r r o r
35 f i
36 }
37

38 #
39 # We need the pid to get the c a l l t ab l e f o r
40 #
41 i f [ $# − l t 1 ] ; then
42 echo ”Usage : ‘ basename $0 ‘ PID [− s ]\n”
43 exit 1
44 f i
45

46 # Be ca r e f u l , the pid must e x i s t :
47 i f [ −r / proc /$1/ sched ] ; then
48

49 c l e a r
50 DATA=””
51

52 # pr in t task ’ s pid and name :
53 echo −ne ”Task : $1\nCommand : ‘ cat / proc /$1/cmdline ‘\ nTotal c a l l s : \
54 ‘ cat /proc /$1/ sched | grep n r v o l sw i t c h e s d u e t o s y s c a l l s | t r −d ’ ’ \
55 | cut −d” : ” −f2 ‘\n”
56 echo ””
57

58 #Header :
59 test ”$2” != ”−s ” && printf ”%−25s %15s \n” ”System Cal l ” ” Ca l l s to schedu le ( ) ”
60

61 # Get tab le ’ s va lue s :
62 t ab l e=‘cat /proc /$1/ sched | grep −E ”TCG. tab l e . ” | t r −d ’ ’ | \
63 cut −d” : ” −f 2 | t r ’\n ’ ’ ’ ‘
64 i t b l=0
65 for row in $ tab l e ;
66 do
67 test ”$2” != ”−s ” && printf ’%−25s %15d \n ’ ” ‘ g e t s y s c a l l n ame $ i t b l ‘ ” ”$row”
68 # Get rows with >0
69 i f [ $row −ge 1 ] ; then
70 r s=‘printf ’%−25s %15d \n ’ ” \ ‘ g e t s y s c a l l n ame $ i t b l \ ‘ ” ”$row” ‘
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71 DATA=”$DATA\n$rs ”
72 f i
73 i t b l =‘expr $ i t b l + 1 ‘
74 done
75 # Print the summary :
76 i f [ ! −z ”$DATA” ] ; then
77 echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
78 echo ”Summary”
79 echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
80 printf ”%−25s %15s ” ”System Cal l ” ” Ca l l s to schedu le ( ) ”
81 echo −ne ”$DATA\n”
82 f i
83 # Print the c a l l s a c t u a l l y i s s u i n g c a l l s to the schedu le ( ) func t i on :
84 else
85 echo ”Error : / proc /$1/ sched does not e x i s t . ”
86 exit 1
87 f i

Figure 3.3: Running our fcalltable.sh script to summarize per-call calls to schedule
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Chapter 4

Generating Hardware Interrupts
at will

4.1 Introduction

Hardware Interrupts happen any time during the lifetime of a system. As we have de-
scribed earlier, a certain process that is running can be preempted as soon as a hardware
interrupt is raised. Then, as previously introduced, a call to the do IRQ() function is
made to deal with that particular interrupt request. Some of those interrupts can be
masked so that they will be ignored. Our main concern is to determine whenever a
certain running task, say p, yields the processor due to a hardware interrupt request.
Sometimes these interrupts will be caused by normal hardware operations: the hard disk
has the data it was previously asked for; a network packet has just come in; etcetera.
However, not all the interrupt requests will follow this pattern: sometimes a Non Mask-
able Interrupt or NMI will be issued, generally pinpointing at hardware errors, such
as memory parity error or an unknown hardware malfunction. This chapter describes
how the GNU/Linux Kernel deals with Hardware Interrupts, focusing principally on the
way we can force NMI interrupts to simulate hardware errors. This technique will allow
us to gather some Involuntary Context Switching statistics.

4.2 The GNU/Linux Kernel IDT

In order to process interrupts, the GNU/Linux kernel keeps a table called The Inter-
rupt Descriptor Table, IDT. This table maps an IRQ line to its handler. In our
particular case, we need to focus on Hardware Interrupts. A hardware interrupt is
handled by the kernel as long as there is an IRQ handler in charge of doing so. As
previously stated, a call to the do IRQ() function is always performed whenever an IRQ
is requested. This function adopts that role of a hub; it calls the right IRQ handler
according to the IDT table so that the last interrupt can be handled properly. It seems
fairly coherent that only a certain piece of hardware, say an ECC memory module, can
issue an interrupt. And, more specifically, that only a certain hardware that has a mal-
function can raise a NMI interrupt. During the GNU/Linux Kernel start up process,
the IDT is initialized right before enabling interrupts. In the X86 64 architecture, that
is left to the native init IRQ() function, as shown in Listing 4.1.

Listing 4.1: Initializing the The GNU/Linux IDT
1 for ( i = FIRST EXTERNAL VECTOR; i < NRVECTORS; i++) {
2 /∗ IA32 SYSCALL VECTOR could be used in t r a p i n i t a l r eady . ∗/
3 i f ( ! t e s t b i t ( i , u s ed ve c t o r s ) )
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4 s e t i n t r g a t e ( i , i n t e r r up t [ i−FIRST EXTERNAL VECTOR ] ) ;
5 }

set intr gate() inserts an Interrupt Gate at the nth IDT position. Every single
hardware interrupt is handled by the GNU/Linux Kernel using Interrupt Gates. They
are not accessible from user-land processes.

4.3 Allowing user-land processes to send Hardware Inter-
rupts

Our project needs to send Hardware Interrupts. That is so because we don’t want to
provoke real hardware failures in order to prevent the computer from being damaged.
Moreover, stability is mandatory: we cannot gather statistics if the system crashes. As
previously introduced in section 4.2, a user-land process cannot issue interrupts. The
only exception is INT 0x80, the old way of issuing a system call. The IDT at the 128th
position is handled by a special handler, and it is considered as a Software Interrupt.
Because we do know that every single interrupt is going to call do IRQ() and preempting
the current process on the same processor handling that very same interrupt in doing
so, we have to find a suitable way to force them. Then, the gathering of statistical
information concerning Involuntary Context Switching due to IRQs would be easy to
reproduce.

Every single Interrupt Gate has a special field called DPL, that is two bit long. This
field defines the priority level for that particular Interrupt Gate. User-land processes
run in Ring 3 mode, whereas Kernel-space processes run in Ring 0 mode. Because
Hardware Interrupts cannot be issued from user-land, the GNU/Linux Kernel initializes
all the Interrupt Gates in the IDT to DPL = 0, but the 128th entry, which DPL is
3. The Current Privilege Level for that particular process is compare to the DPL,
according to Equation 4.1, thus granting or denying access to that particular interrupt.
As shown in Listing 4.1, the function setting the DPL for a particular Interrupt Gate
is set intr gate(), line 4. This function, in turn, call set gate(), where the DPL
for that given Interrupt Gate is actually set, as shown in Listing 4.2, fourth parameter.
Thus, a small change is required in order to allow user-land processes to send Hardware
Interrupts. In our particular case, we need to simulate hardware errors; that involves
NMI interrupts, that are located at IDT[2]. So, the call to pack gate() has been
modified slightly, as shown in Listing 4.3, to accomplish that.

CPL ≥ DPL ? −→ OK : SEGFAULT (4.1)

Listing 4.2: Setting the DPL field for every single Interrupt Gate
1 stat ic i n l i n e void s e t i n t r g a t e (unsigned int n , void ∗addr )
2 {
3 BUGON((unsigned )n > 0xFF ) ;
4 s e t g a t e (n , GATE INTERRUPT, addr , 0 , 0 , KERNEL CS ) ;
5 }

Listing 4.3: Allowing user-land processes to issue NMI interrupts
1 stat ic i n l i n e void s e t g a t e ( int gate , unsigned type , void ∗addr ,
2 unsigned dpl , unsigned i s t , unsigned seg )
3 {
4 ga t e de s c s ;
5 pack gate (&s , type , (unsigned long ) addr , ( gate==2)?3: dpl , i s t , seg ) ;
6 wr i t e i d t e n t r y ( i d t t ab l e , gate , &s ) ;
7 }
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4.3.1 Generating hardware errors at will

A trivial C-code has been written in order to issue an INT 0x2 interrupt request.
Because this IRQ line is the one associated with NMI interrupts, the GNU/Linux Kernel
will process every single call to INT 0x2, thus preempting the current process in doing
so. This interrupt can be balanced among all the available cores on the system, thus at
any given time ti, a certain process pi could relinquish processor ci, as long as pi was
originally running on ci at time ti. This user-land program is shown in Listing 4.4.

Listing 4.4: Allowing user-land processes to issue NMI interrupts
1 /∗
2 int nmi . c
3 2012 by Toni C a s t i l l o Girona
4 <t on i . c a s t i l l o@ f a . upc . edu>
5

6 This t r i v i a l C−program i s s u e s a INT $0x2 in t e r rupt , that i s ,
7 i t does s imulate the re i s a NMI in t e r r up t r eque s t i ng OS a t t en t i on .
8 NMI stands f o r ”Non Maskable I n t e r r up t s ” , and they are used to
9 take care o f hardware−r e l a t e d problems , l i k e memory pa r i t y e r r o r s and

10 the s o r t .
11

12 Our main purpose i s to provoke a c a l l to do IRQ ( ) and thus making
13 cur rent to y i e l d the p ro c e s s o r ( as long as p i s running on the SAME
14 proc e s s o r tak ing care o f the unknwon NMI in t e r r up t ) .
15

16 NOTE: This i n t e r r up t cannot be i s su ed from user−space un l e s s the
17 IDT has been p r ev i ou s l y a l t e r e d so i t s DPL=3.
18

19 USAGE: . / int nmi −n NUMBER
20

21 I f NUMBER = −1, i t l oops f o r e v e r sending NMI i n t e r r up t s .
22

23 ∗/
24 #include <s t d i o . h>
25 #include <s t d l i b . h>
26 #include <un i s td . h>
27

28 void send nmi (void ) ;
29

30 int main ( int argc , char ∗∗ argv ){
31

32 int c , number , i ;
33

34 /∗ Get the argument from the c l i : ∗/
35 c = getopt ( argc , argv , ”n : ” ) ;
36 i f ( c <0 | | ( c>0 && c!= ’n ’ ) ){
37 p r i n t f ( ”Usage : int nmi −n number .\n” ) ;
38 e x i t (−1);
39 }
40

41 number = a t o i ( optarg ) ;
42

43 /∗ Send some NMI in t e r r up t r eque s t s to the GNU/Linux Kernel ∗/
44 for ( i =0;
45 (number>0)? i<number : i==i ;
46 send nmi ( ) , /∗ This i s the ac tua l NMI ∗/
47 ( ( number==−1)?0:++ i )
48 ) ;
49

50 /∗ This i s not going to be executed , t h i s p roce s s i s k i l l e d ∗/
51 return 0 ;
52

53 }
54

55 /∗
56 This func t i on does send a INT 0x2 NMI in t e r r up t
57 ∗/
58 void send nmi ( ) {
59 asm v o l a t i l e (
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60 ” i n t $0x2\n”
61 ) ;
62 }

Because our NMI does not alter any sort of kernel data structure or write a certain
value into a hardware general-purpose register, it is safe to run the previous program
at any time during the lifetime of the system. Listing 4.5 shows how the GNU/Linux
Kernel handles a NMI interrupt after executing the program shown in listing 4.4.

Listing 4.5: Forcing a NMI interrupt from user-land
/ int nmi −n 1
root@t fc : ˜#
Message from sys logd@t fc at May 9 12 : 19 : 41 . . .
k e rne l : [ 1 4 6 5 0 . 6 7 2 3 36 ] Uhhuh . NMI r e c e i v ed for unknown reason 00 on CPU 2 .

Message from sys logd@t fc at May 9 12 : 19 : 41 . . .
k e rne l : [ 1 4 6 5 0 . 6 7 2 3 39 ] Do you have a s t range power sav ing mode enabled ?

Message from sys logd@t fc at May 9 12 : 19 : 41 . . .
k e rne l : [ 1 4 6 5 0 . 6 7 2 3 41 ] Dazed and confused , but t ry ing to continue

It is proved that, whenever n −→ ∞, and provided that the nmi watchdog is
enabled, the GNU/Linux Kernel does kill the process issuing the NMI interrupts.

4.4 IRQ affinity among SMP systems

The GNU/Linux Kernel associates all the IRQ lines to the processor that has booted up
the system, that is, processor 0. That is clearly shown in Listing 4.6. This output is
taken from a workstation running Debian Squeeze with four processors. Some software
has been implemented to aid the kernel so that interrupts can be balanced among all the
available processors in the system [23]. Yet, it is feasible to redirect any single interrupt
to a certain processor by means of using the /proc interface, in consonance with [24].
Our main goal is to assign all the IRQ lines to one processor, thus being able to gather
some Involuntary Context Switching statistics.

Listing 4.6: IRQ lines per-processor distribution
CPU0 CPU1 CPU2 CPU3

0 : 47 0 0 0 IO−APIC−edge t imer
1 : 7 0 0 0 IO−APIC−edge i8042
8 : 0 0 0 0 IO−APIC−edge r t c0
9 : 0 0 0 0 IO−APIC−f a s t e o i acp i

12 : 105 0 0 0 IO−APIC−edge i8042
14 : 70 0 0 0 IO−APIC−edge a t a p i i x
15 : 0 0 0 0 IO−APIC−edge a t a p i i x
16 : 68465 0 0 0 IO−APIC−f a s t e o i eth1
19 : 69469 0 0 0 IO−APIC−f a s t e o i ehc i hcd : usb1
21 : 19705 0 0 0 IO−APIC−f a s t e o i ahc i
22 : 186 0 0 0 IO−APIC−f a s t e o i ohc i hcd : usb2

NMI: 0 0 0 0 Non−maskable i n t e r r up t s

In order to divert all the interrupts to another processor at will, we have written a
trivial shell script in bash, as shown in Listing 4.7.

Listing 4.7: A trivial shell script to divert interrupts
1 #!/ bin /bash
2 #
3 # i r q d i v e r t . sh
4 # 2012 by Toni C a s t i l l o Girona
5 # <t on i . c a s t i l l o@ f a . upc . edu>
6 #
7 # This s c r i p t d i v e r t a l l IRQ l i n e s accord ing to processor mask
8 # NOTE: not a l l the IRQS can be e a s i l y d iv e r t ed . In t h i s case ,

Toni Castillo Girona 46



CHAPTER 4. GENERATING HARDWARE INTERRUPTS AT WILL

9 # the old a f f i n i t y wouldn ’ t change .
10 #
11 # USAGE: . / i r q d i v e r t . sh <new cpu mask>
12 #
13 #
14 IRQS=”/proc / i r q ”
15

16 # Mask from the CLI
17 i f [ ! $# −eq 1 ] ; then
18 echo ”Usage : ‘ basename $0 ‘ processor mask ”
19 exit 1
20 f i
21

22 cu rd i r =‘pwd‘
23

24 cd $IRQS | | exit 2
25 echo ”Trying to s e t new a f f i n i t y : $1”
26 for i r q in ∗ ; do
27 # Avoid ” d e f au l t . . . ” :
28 i f [ ” $ i r q ” != ” d e f a u l t smp a f f i n i t y ” ] ; then
29 # Divert t h i s i r q :
30 oa f=‘cat $ i r q / smp a f f i n i t y ‘ # old a f f i n i t y
31 echo ”$1” > $ i r q / smp a f f i n i t y 2>/dev/ nu l l
32 echo −ne ”IRQ l i n e : [ $ i r q ]\ t ” \
33 ”Old a f f i n i t y : [ $oa f ]\ t ” \
34 ”New a f f i n i t y : [ ‘ cat $ i r q / smp a f f i n i t y ‘ ] \ n”
35 f i
36 done
37

38 cd $curd i r
39 exit 0

Listing 4.8 shows the way we ran our script to divert all the interrupts to processor
CPU = 2. The argument passed to the script via the CLI acts as a processor-mask. After
executing the script, processor 2 was the one handling all the interrupts but interrupt
line 0, as clearly shown in Listing 4.9. Not all the interrupt lines can be easily diverted
once the system is up.

Listing 4.8: Diverting all the interrupts to processor 2
. / i r q d i v e r t . sh 4
IRQ l i n e : [ 0 ] Old a f f i n i t y : [ f ] New a f f i n i t y : [ f ]
IRQ l i n e : [ 1 ] Old a f f i n i t y : [ 2 ] New a f f i n i t y : [ 4 ]
IRQ l i n e : [ 1 0 ] Old a f f i n i t y : [ 2 ] New a f f i n i t y : [ 4 ]
IRQ l i n e : [ 1 1 ] Old a f f i n i t y : [ 2 ] New a f f i n i t y : [ 4 ]
. . .

Listing 4.9: All the interrupts have been diverted to processor 2, but IRQ = 0
0 : 47 0 0 0 IO−APIC−edge t imer
1 : 7 0 0 0 IO−APIC−edge i8042
8 : 0 0 0 0 IO−APIC−edge r t c0
9 : 0 0 0 0 IO−APIC−f a s t e o i acp i

12 : 105 0 0 0 IO−APIC−edge i8042
14 : 70 0 0 0 IO−APIC−edge a t a p i i x
15 : 0 0 0 0 IO−APIC−edge a t a p i i x
16 : 69790 180 314 0 IO−APIC−f a s t e o i eth1
19 : 70104 11 188 0 IO−APIC−f a s t e o i ehc i hcd : usb1
21 : 19784 13 0 0 IO−APIC−f a s t e o i ahc i
22 : 186 0 0 0 IO−APIC−f a s t e o i ohc i hcd : usb2

NMI: 0 0 0 0 Non−maskable i n t e r r up t s
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Chapter 5

Data Gathering

5.1 Introduction

This chapter provides some statistical information previously gathered by means of using
getcsw or the /proc/PID/sched interface over a sort of tools and programs. The main
goal is to demonstrate how an unexpected amount of interrupt requests can affect any
task’s performance. Firstly, some statistics have been gathered concerning Voluntary
Context Switching. This first section proves that a cpu-bound process does not yield
the processor on purpose, as well as that the proportion of calls to the GNU/Linux Kernel
Scheduler during ret from sys call is really small. Secondly, a section discussing how
Involuntary Context Switching alters a process’s throughput has also been provided.

The procedures applied to this task are shown in Figure 5.1.

Figure 5.1: Context Switching Accounting: Data Gathering Gantt Chart

5.2 Voluntary Context Switching stats

getcsw has been executed over different sort of programs in order to gather some pre-
liminary data at n intervals of time t. Voluntary Context Switching does occur, as
demonstrated in section 3.2, by issuing system calls. Thus, a certain process p that is
not issuing system calls at all is not likely to be preempted voluntarily. In order to prove
that, we ran cpu-bound 2 and io-bound programs. Tables 5.1 to 5.4 present some
results gathered with getcsw, in line with equation 3.2.

Table 5.2 shows a really small number for rs. Apparently, the proportion of Context
Switches occurring during ret from sys call after t = 5s, that is, rs/syscalls, is really
inappreciable: 3.93× 10−5 %. To determine whether this is a common situation or not,

2burnMMX, available by issuing # apt-get install cpuburn.
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ti vc non-voluntary syscalls rs vb

1 0 231 43 0 0
2 0 236 43 0 0
3 0 241 43 0 0
4 0 246 43 0 0
5 0 251 43 0 0

Table 5.1: Voluntary Context Switching stats for a cpu-bound process; t=1s, n=5

ti vc non-voluntary syscalls rs vb

1 773 171 90663589 41 732
2 775 176 94704425 41 734
3 776 182 98770112 41 735
4 778 187 102819031 42 736
5 780 192 106866597 42 738

Table 5.2: Voluntary Context Switching stats for an io-bound process; t=1s, n=5

we ran two more programs: wget and ping. The former was executed in order to get an
iso-image file from the Internet; the latter was run infinitely times pinging a reachable
Internet host. Tables 5.3 and 5.4 present their results. The proportions of Context
Switches after t = 5s are 0.051 % and 0.419 %, respectively. By running these same
programs a bit longer, we have determined that these proportions still apply. Tables
5.5 and 5.6 summarize these values after t = 1min and t = 10min, respectively. This
time, we did not run the burnMMX program because it has been already stated that
only processes issuing a remarkable amount of system calls are likely to be voluntarily
preempted.

ti vc non-voluntary syscalls rs vb

1 849 4 3812 1 848
2 1327 5 5772 2 1325
3 1806 8 7738 4 1802
4 2284 9 9700 5 2279
5 2762 10 11660 6 2756

Table 5.3: Voluntary Context Switching stats for the wget command; t=1s, n=5

Table 5.6 seems to show a higher number of Context Switches occurring at ret from sys

call for the io-bound program io. Its value for rs starts to be remarkable. Thus,
we ran io a bit longer. Table 5.7 shows io’s stats after t = 10h. Despite the fact the
proportion of rs in respect to the total amount of system calls performed by p is still
less than 1%, as previously demonstrated, the number of Context Switches happening
precisely whilst the kernel is returning from a system call is quite considerable. As dis-
cussed in section 3.3, the GNU/Linux Kernel considers any call to schedule() during
ret from sys call as Involuntary Context Switching. That explains the negative value
for vb in table 5.7.

Therefore, it has been proved that the proportion of context switches happening
during ret from sys call is really small in regard to the total amount of Voluntary
Context Switches during process context, as long as p is not heavily io-bounded or
p is not issuing a large number of system calls.
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ti vc non-voluntary syscalls rs vb

1 42 3 473 2 40
2 57 3 593 2 55
3 72 3 713 2 70
4 87 4 833 3 84
5 102 5 953 4 98

Table 5.4: Voluntary Context Switching stats for the ping command; t=1s, n=5

Program vc non-voluntary syscalls rs vb Proportion

burnMMX 2 78 43 0 0 0 %
io 17 80 58543968 102 5 0.0017 %

wget 6538 28 27196 10 6528 0.036 %
ping 217 2 1889 5 216 0.26 %

Table 5.5: Voluntary Context Switching stats after t = 1min

5.3 Involuntary Context Switching stats

Our main goal is to track every single call to do IRQ() for a given process, p, so that we
can determine whenever p’s throughput is somehow affected by raised interrupts being
fired all of a sudden. So, a particular task has been chosen: gzip. The experiment
includes running gzip several times in order to compress a 2GB-avi file. This is called
a sample, and some statistical data has been gathered from it and plotted using a
simple regression test by means of using the R language, as previously introduced in
1.5.4. To clarify this regression test, we repeated the same experiment for a larger
number of times. In all cases the process has been executed on processor cpu = 0, being
cpu = 0 the processor handling all the raised interrupts, without any sort of irq balancing
mechanism. Of course, some of the raised interrupts preempting our test process are
not fired because of this particular test program, but others. It is remarkable then how,
without a proper irq-balancing mechanism, even on a normal computer one process’s
throughput can possibly be reduced considerably by other non-related processes. Our
experiment is shown in Listing 5.1.

Listing 5.1: Involuntary Context Switching shell-script experiment
1 #!/ bin /bash
2 ITERATIONS=200
3 COMMAND=” gz ip −9 mov i e t e s t . av i ”
4 CPU=”0”
5 CPUIRQ=”0”
6 STATSFILE=./ s t a t s . out
7 CPUMASK=”0−3”
8

9 . / i r q d i v e r t . sh $CPUIRQ >/dev/ nu l l
10

11 test −r mov i e t e s t . gz \
12 && gunzip mov i e t e s t . gz
13

14 test −r $STATSFILE && rm −r f $STATSFILE
15 touch $STATSFILE
16 i t=0
17

18 while [ $ i t − l t $ITERATIONS ] ; do
19 echo ”ITERATION NUMBER: $ i t ” >> $STATSFILE
20 s t=‘date +%s ‘
21 / usr / bin / t a s k s e t −c ”$CPU” ‘echo $COMMAND‘ &
22 . / getcsw − i −m ”$CPUMASK” −p $ ! >> $STATSFILE
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Program vc non-voluntary syscalls rs vb Proportion

io 15379 56144 131231999 3505 11874 0.0026 %
wget 58346 191 239787 82 58264 0.034 %
ping 3214 47 25266 35 3179 0.1385 %

Table 5.6: Voluntary Context Switching stats after t = 10min

Program vc non-voluntary syscalls rs vb Proportion

io 17465 2121110 4806052284 122225 -104760 0.0025 %

Table 5.7: io’s Voluntary Context Switching stats after t = 10h

23 et=‘date +%s ‘
24 echo ”Elapsed time : ‘ expr $et − $st ‘ ” >> $STATSFILE
25 test −r mov i e t e s t . gz && gunzip mov i e t e s t . gz
26 i t =‘expr $ i t + 1 ‘
27 done

5.3.1 Statistical data without erratic hardware

time(sec) IRQS#

69 3430
84 4170
81 4829
80 4324
84 4088
79 4976
80 4167
81 4104
83 4457
79 4032
... ...

Table 5.8: Involuntary Context Switching stats due to IRQS; normal hardware behaviour

Our main tool getcsw has been executed over a cpu-bound program n times; n >
30. We have annotated the total amount of time spent on finishing its job, that is, to
compress a 2GB-avi file. Thus, it is quite obvious that our program wrote, from time
to time, chunks of data to the hard disk among cpu-intensive calculations. Thus, some
of the raised interrupts that affected this program’s throughput were, in fact, caused by
itself, as long as this task ran precisely on the same processor handling the interrupts.
Table 5.8 shows the first 10 iterations of our experiment, that is, n = 10. We wrote a
trivial bash-script in charge of running the same experiment on the same computer n
times.

Apparently, table 5.8 does not seem to show us coherent data. Our main project
tries to demonstrate that, as the number of raised interrupts affecting any given process
increases, so does its elapsed time. Thus, we ran a first experiment 200 times, that
is, n = 200, and we used the trivial R-script shown in Listing 5.2 to plot the data
and compute a simple regression test. The regression line is shown in Figure 5.2. Two
observations seem to be misplaced in figure 5.2; they occurred due to some out-of-the-
blue events that positively altered the process’s behaviour, in spite of the number of
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issued interrupts, such as: playing some video, rendering flash, etc. That is so because,
apart from the evident fact of raising an interrupt, any running process can yield the
processor as described in 1.2.1.

According to the statistical data gathered using getcsw, we can state that 69 ≤ t ≤
167 and that 3430 ≤ IRQS# ≤ 9422 for any given execution of gzip. In addition, as
shown in Figure 5.2, IRQS = 9422 and t = 162s , t = 169s are not common values.
Therefore, it immediately follows that for any given standard computer running without
hardware malfunctions, there is not much dispersion among iterations. We have com-
puted the mean and the standard deviation excluding the misplaced values described
earlier: t̄ = 88, 13s, Ī = 5395.77 , σt = 6.76s , σI = 880.23 . Thus, the number of
raised interrupts do affect any given running process’s throughput, even on a normal
computer without erratic hardware involved. irq balance [23] can soften this problem
considerably.

Figure 5.2: Regression of Raised Interrupts on Elapsed Time; n = 200

Listing 5.2: R-script Regression test to plot Figure 5.2
1 # Read data from f i l e :
2 mydata <− read . table ( ” t ab l e .R” , header=TRUE, sep=” ” )
3 # Set time ( f i r s t column ) and IRQS ( second column )
4 t <− mydata [ , 1 ]
5 I <− mydata [ , 2 ]
6 # Plot the graph on d i sk :
7 png ( ” r e g r e s s i o n . png” )
8 plot ( t , I )
9 # Draw the r e g r e s s i o n l i n e ; how In t e r rup t s a f f e c t e l apsed time

10 #ab l i n e ( lm( I˜ t ) )
11 t i t l e (main=”Raised In t e r rup t s on Elapsed Time , n=600 ” ,
12 xlab=”Elapsed Time ( sec ) ” , ylab=”Raised In t e rup t s#” )
13 dev . of f ( )

In consonance with figure 5.2, as IRQS# approaches a high value, so does the elapsed
time spent by the process to complete its job. Figure 5.3 really proves that the regression
test does apply; we ran our experiment for a bit longer, that is, n = 600. We have also
computed the mean and the standard deviation for this new values: t̄ = 131.30s, Ī =
12169.41 , σt = 11.65s , σI = 421.40 . However, as clearly shown in Figure 5.3, as long as
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Figure 5.3: Raised Interrupts on Elapsed Time; n = 600

the number of iterations increases, so does the amount of misplaced data, that is, those
values which time and raised interrupts do coincide with other tasks affecting them.

5.3.2 Statistical data with irq balance

irq-balance [23] can be installed on any flavour of GNU/Linux operating system. Its
main purpose is to distribute every single interrupt among the different processors on the
system, to increase its performance. Its design is heavily based on the /proc/ interface,
as described in 4.4. Running irq-balance on systems with more than just one core is
recommended. Our previous experiment has been run on the same computer, this time
with the irq-balance daemon taking care of the interrupt requests automatically. Figure
5.4 shows the test gathered data after running gzip 200 times, that is, n = 200.

Although the number of raised interrupts preempting our process are really small,
there are a higher number of raised interrupts that seem to be misplaced on the regres-
sion chart. According to the data, irq-balance does minimize the number of interrupts
affecting our process, because it does distribute them among all the available proces-
sors installed on the system, but not all the time. It appears to be a higher number
of interrupts at some instant during gzip’s execution that clearly come to reveal that
irq-balance can provoke a great dispersion, its proportion being 10%. We have also com-
puted the mean and the standard deviation for this new data, skipping the misplaced
value of t = 887s and the ones with higher IRQ# values: t̄ = 127.14s, Ī = 2274.79 , σt =
7.01s , σI = 310.12 . Table 5.9 summarizes these values for our experiment with and
without the presence of irq-balance, for n = 200.

- irq-balance

σt (s) 6.71 7.01

σI 880.23 310.12

Table 5.9: Mean and standard deviation comparison with and without irq-balance; n =
200
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Figure 5.4: Raised Interrupts on Elapsed Time with irq-balance; n = 200

In consonance with table 5.9, the number of raised interrupts provoking gzip to
relinquish the processor due to a do IRQ() call are almost half the ones without running
irq-balance. However, and despite that, the standard deviation associated with the time
spent to finish its job is not quite as good as that. The problem relies on the ground that
the system can be occupied in doing some other tasks at the time we ran our experiment.
That means the number of interrupts do affect any running process, but there are other
variables to consider.

5.3.3 Statistical data with erratic hardware without irq-balance

Whenever a running task behaves erratically, we have to determine whether this is
due to the fact there is something wrong directly related to that particular task or,
on the contrary, whatever is affecting its normal execution has nothing to do with it.
Let’s consider a computer where our task is running on that is behaving fine, and that
there are no other cpu-bound or even io-bound tasks running. In such scenario, it
would be fairly feasible to believe that our task is going to run optimally. After an
unknown amount of time, this particular computer starts working erratically because of
an unknown hardware malfunction. In spite of the kernel log messages, the user sending
jobs is not concerned at all about such matters; the only abnormal thing the user is
actually aware of is basically the time elapsed for that particular task to complete its
job.

Our Involuntary Context Switching counters can detect such anomalies. Whereas
the GNU/Linux Kernel only includes generic interrupt counters for all the running tasks
on the system, we can track every single interrupt request that is preempting our traced
process, as previously and profusely detailed.

Listing 5.3: Shell-script to generate N ×MAX NMIs
1 P=./ i n t nmi
2 N=30
3 MAX=10
4 i=0
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5 WAITSECS=30s
6 while [ true ] ; do
7 $P −n $N
8 i =‘expr $ i + 1 ‘
9 i f [ $ i −eq $MAX ] ; then

10 i=0
11 s l e e p $WAITSECS
12 f i
13 done
14

15 exit 0

In order to demonstrate this, we have executed the same experiment, but this time
provoking hundreds of NMIs in a loop, as described in 4.3.1. We ran the script shown
in Listing 5.3 whilst gzip was running, with n = 200. We have computed the mean and
the standard deviation for this new data: t̄ = 387.27s, Ī = 8769.72 , σt = 107.27s , σI =
4355.14 . Figure 5.6 shows this new gathered data.

Figure 5.5: Raised Interrupts on Elapsed Time; hardware malfunction; n = 200

We ran the same experiment 600 times, that is, n = 600. As it is clearly shown in
Figure 5.6, the number of interrupts preempting the process do provoke this very same
task to increase its execution time considerably. There is some dispersion among the
data, also.

Normal irq-balance NMIs

t(s) 17779 26214 75132
IRQs# 1082867 659144 1701326

Table 5.10: Total time spent and number of raised interrupts summary; n = 200

Table 5.10 summarizes the total amount of time spent and raised interrupts for
n = 200 in each one of those previous cases. These figures do include all those ap-
parently misplaced values, because they represent the real time spent after executing
the experiment 200 times. Although the total amount of time spent in finishing gzip’s
job should be smaller whilst distributing the interrupts among all the cores available

Toni Castillo Girona 55



CHAPTER 5. DATA GATHERING

Figure 5.6: Raised Interrupts on Elapsed Time; hardware malfunction; n = 600

on the system by means of running irq-balance, that is not precisely accurate in real
environments. That is so, as previously stated, because we have executed every single
experiment during normal workload times, that is, whilst displaying a video on you tube
or writing this final report. All tests have been conducted this way. Thus, in spite of
having less interrupts preempting gzip, it is still feasible to increase its execution time.
However, figures related to the unusual amount of NMIs do emphasize that there is an
abnormal or even erratic behaviour being involved in the system, if one could compare
these times with the ones in the first column or even the second one in table 5.10.
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Conclusions

Context Switching has a real impact on any running process’ throughput. The ways a
context switch come to happen are either voluntary or involuntary. Although modern
operating systems - in fact, not only GNU/Linux - do include some sort of measuring
tools to account them, there were no actual mechanisms to differentiate among their own
subtype. Thus, our project has implemented a sort of counters to gather and then plot
dot graphs that allow us to determine whether the time spent in doing some particular
task is being affected by an unknown number of external events to the process or, on
the contrary, we have to perfect its implementation.

Our Context Switching Mechanism does alter the entire system’s behaviour. It does
have a cost in time and resources, such as memory, because it directly deals with internal
data-structures. Therefore, this approach is merely experimental and it has to be put to
test in real environments. All the work has been conducted on a Virtual Machine, thus
the figures can possibly vary on actual computers running the operating system natively.

6.1 Future Work

The way these counters are implemented are architecture-dependant. Thus, it has to
be mandatory to develop a newer solution capable of implementing a good-layer of
abstraction. Instead of altering internal data structures and hooking some low-level
kernel code, another approach would consist on deploying Loadable Kernel Modules
and make use of the GNU/Linux Kprobes facility. Besides, our getcsw gathering tool
has to be improved so that it can not only get some statistical data, but plot it as well
in real-time. This way it would be feasible to trace a particular task constantly from the
very beginning by means of graphical data. Our experiments must be re-considered by
adding some entropy, and then being re-run for larger values of n.
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