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YSF: a 6TiSCH Scheduling Function
Minimizing Latency of Data Gathering in IIoT

Yasuyuki Tanaka, Pascale Minet, Mališa Vučinić, Member, IEEE Xavier Vilajosana, Senior Member, IEEE,
Thomas Watteyne, Senior Member, IEEE

Abstract—Data gathering systems in the Industrial IoT require
an end-to-end latency as low as one second with coverage of a few
hundred meters. The 6TiSCH standard is well suited for these
types of applications. A 6TiSCH network is a multi-hop wireless
IPv6 network which uses Time Slotted Channel Hopping (TSCH).
TSCH is a medium access mode of IEEE802.15.4 which provides
deterministic properties, and increases robustness against exter-
nal interference and multipath fading. A key component of TSCH
is its scheduling function that builds the communication schedule,
which greatly impacts network performance. Although there are
several proposed TSCH scheduling solutions in the literature,
most of them are not directly applicable to 6TiSCH for real-
world deployments because they fail to take into consideration
the dynamics of a network. Some of them assume a fixed routing
topology, which does not match 6TiSCH where the routing
topology dynamically changes with the radio environment. In this
article, we propose a full-featured 6TiSCH scheduling function
called YSF, that autonomously takes into account all aspects of
network dynamics, including network formation phase and par-
ent switching. YSF aims at minimizing latency and maximizing
reliability for data gathering applications. We evaluate YSF by
simulation, and compare it to MSF, the state-of-art scheduling
function being standardized by the IETF 6TiSCH working group.

Index Terms—Industrial IoT, 6TiSCH, Scheduling. TSCH

I. CONTEXT AND MOTIVATION

IEEE802.15.4 [1] is arguably the most used technology
in low-power wireless mesh networks. Time Slotted Channel
Hopping (TSCH) is a medium access mode of IEEE802.15.4.
TSCH has been standardized to meet end-to-end latency,
end-to-end reliability and network lifetime requirements of
industrial, city, home, building and environmental applications.

The core idea of TSCH is to combine Time Division
Multiple Access and Frequency Division Multiple Access.
The atomic resource for communication is a “cell” in the
communication schedule, defined as a slot offset and a channel
offset. The slot offset is the relative time within the slotframe
of that cell. The channel offset is used to compute the
communication frequency to use. The schedule tells each node
what to do at each timeslot: transmit, listen, or sleep. The
scheduling function is the algorithm that builds and main-
tains the communication schedule of the network. How the
schedule is built determines several key performance indicators
(KPIs) of the network, including end-to-end latency, end-to-
end reliability, and the battery lifetime of the nodes. The more
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collisions the schedule has, the more internal interference the
network would suffer, which impairs the KPIs.

The IETF 6TiSCH working group standardizes how to build
a secure multi-hop wireless IPv6 network that uses TSCH [2].
6TiSCH has standardized the 6top Protocol (6P) [3], a sig-
naling protocol allowing neighbor nodes to locally negotiate
changes to their schedule. 6TiSCH is now finalizing a secure
join mechanism [4] and a distributed scheduling function
called MSF [5].

MSF is the first full-featured standardized 6TiSCH schedul-
ing function that covers the following aspects, all of which are
vital for a real-world deployment:

• Network dynamics: the routing topology adapts to
changes in the radio environment.

• Security: the TSCH schedule is protected against unau-
thorized nodes including joining nodes and attackers.

• Control traffic handling: control traffic is in charge of
keeping the network operational and secure.

In addition, MSF adapts to traffic changes dynamically mod-
ifying the number of scheduled cells. One drawback of MSF
is that it cannot always yield low end-to-end latency because
MSF schedules cells at randomly selected slot offsets. This
means the MSF schedule is not collision-free, and not opti-
mized for low latency.

In this article, we propose (yet) another full-featured
6TiSCH scheduling function, YSF, optimized for multipoint-
to-point traffic, which is the communication pattern commonly
seen in data gathering applications. These applications require
an end-to-end latency as low as one second [6]. We show how
YSF achieves both an end-to-end latency and an end-to-end
reliability that outperform MSF. YSF further adapts to changes
in the amount of traffic and in the routing structure. YSF
is implemented on the top of the 6TiSCH protocol stack in
the 6TiSCH Simulator [7], which demonstrates YSF is ready
for actual implementation with an operating system such as
OpenWSN and Contiki-NG.

The remainder of this article is organized as follows. Sec-
tion II introduces related work. Section III describes how YSF
interacts with the 6TiSCH stack, and how it schedules cells.
Section IV shows through an extensive simulation campaign
how YSF outperforms MSF in terms of end-to-end latency and
end-to-end reliability. Section V discusses possible extensions
of YSF. Finally, Section VI concludes this paper.

II. RELATED WORK

The performance of a 6TiSCH network depends heavily
on its communication schedule. The role of the scheduling



function is to build a schedule in an automated way, meeting
system requirements such as latency and reliability. In this
section, we review related scheduling functions.

The state-of-the-art scheduling function is MSF [5]. MSF
is full-featured and takes into account all aspects of real-world
deployments, as discussed in Section I.

MSF implements a simpler version of OTF [8], which
schedules TX (i.e., Transmission) cells to the parent1 at
randomly selected slot offsets. MSF dynamically adds or
removes communication cells to adapt to traffic changes. In
addition, MSF relocates cells which are undergoing scheduling
collisions. MSF also introduces the autonomous cell, whose
position in the schedule is determined by the MAC address of
a corresponding node. The concept of autonomous cell was
first proposed in Orchestra [10]. Since the autonomous cell
does not require any negotiation between nodes, it is used
as a “rendez-vous” cell for the secure join process and for
the initial cell allocation of a pair of nodes. Thanks to the
autonomous cell, MSF can use the minimal shared cell [11]
only for broadcast frames such as Enhanced Beacons.

6TiSCH-MC [12] and DT-SF [13] take theoretical ap-
proaches to design 6TiSCH scheduling functions. 6TiSCH-
MC models the 6TiSCH join process using the Markov Chain
model. DT-SF models TSCH cell allocations to child nodes
a Mixed-Integer Convex Programming problem. The resulting
scheduling functions are distributed ones as MSF.

One weakness of distributed scheduling is that local de-
cisions allocate cells, which are not optimized for end-to-
end latency. To achieve low end-to-end latency, a node needs
to have a TX cell right after an RX cell. There are two
scheduling approaches found in the literature that minimize
the gap between TX and RX cells: bottom-up and top-down.

In the bottom-up approach, cell allocation is done from
the application source node toward the application destination
node, which is usually the root of the routing tree. Examples
are LLSF [14] and ReSF [15], which can be seen as variants
of OTF. They schedule a TX cell to the next hop node
right after the RX cell from the previous hop node. This
causes a packet to be forwarded immediately, reducing end-to-
end latency. The signaling protocol of bottom-up scheduling
functions tends to be simple and easy to implement. The major
drawback of this approach is that, the closer the node is to the
sink, the busier its schedule is, so the more likely it is that TX
cells cannot be scheduled at their optimal slot offsets.

In this sense, the top-down approach, where cell allocation
starts from the root, seems more appropriate when minimizing
end-to-end latency. Examples are DeTAS [16] and Morell et
al. [17]. Each node in the network sends a bandwidth request
to its parent aggregating traffic received from its children and
traffic generated by itself. Once the root receives requests from
all the nodes in the network, the root starts scheduling cells
with 1-hop nodes. Cell allocation then continues with 2-hop
nodes, 3-hop nodes, etc., until reaching the leaf nodes.

The problem when using these top-down scheduling func-
tions with 6TiSCH is that they do not adapt to network

1In 6TiSCH, the term of “parent” means the default router of a correspond-
ing node. In Fig. 2, node 1 is the parent of node 2. A parent is selected from
neighbors by an RPL Objective Function [9] based on link metrics.

Fig. 1: The 6TiSCH Protocol Stack, with YSF.

dynamics. DeTAS was evaluated using TelosB motes with the
OpenWSN stack in [16]. The authors used fixed topologies for
the evaluation: the double-chain topology and the binary-tree
topology. They assumed there is an explicit timing when the
root triggers a series of allocations. However, this is not the
case in 6TiSCH, which uses RPL (IPv6 Routing Protocol for
Low-Power and Lossy Networks) [9]. Each node in a 6TiSCH
network keeps evaluating links to its neighbors, and switches
its parent to another neighbor when it finds the link to the
new neighbor to be better than the current one. This means the
routing topology keeps changing with the radio environment
even when the number of nodes in the network do not change.
There are in particular many topology changes when a network
builds.

As discussed above, top-down scheduling is preferable to
minimize end-to-end latency. However, to the best of our
knowledge, no top-down scheduling functions in the literature
can handle the network dynamics observed in a 6TiSCH
network. Their use is more suited to fixed routing topology,
or when using a centralized path computing element. The
novelty of YSF is that it is a full-featured top-down scheduling
function which adapts to network dynamics while remaining
fully 6TiSCH compliant.

III. YSF

YSF is a scheduling function which minimizes end-to-
end latency while maintaining high end-to-end reliability. The
main target application of YSF is data gathering, traffic pattern
of which is multipoint-to-point [9]. Optimizations for point-
to-multipoint traffic and point-to-point traffic are outside the
scope of YSF.

We assume that the sink of a data gathering system is also
the root of the routing structure of the network. In this article,
we use the terms “sink” and “root” interchangeably. Each
non-root node is an ordinary 6TiSCH node [2], which knows
nothing about the network at the beginning. A node gets aware
of the network by receiving beacons, performs the join process,
and then becomes part of the routing structure.

A. YSF in a Nutshell

YSF is designed to run as part of the 6TiSCH protocol
stack [18]. As show in Fig. 1, YSF sits on top of 6P [3]. YSF
operates along the 6TiSCH minimal configuration [11]. YSF
interacts with 6P and the TSCH MAC layer, as well as IPv6
and RPL. Because YSF exclusively uses the protocols already
standardized by 6TiSCH, it is fully standards-compliant, which
we believe is an important quality to have for adoption.



In order to prevent a single routing change from causing a
global rebuild of the entire schedule, YSF avoids a schedule
which is tightly coupled with the whole routing topology.
Instead, YSF schedules cells on a per traffic flow basis.
Removing or adding cells for a given traffic flow does not
require any changes in cells for other flows.

In YSF, a traffic flow is defined as a sequence of packets
from a source node to the sink, with the same Quality of
Service (QoS). YSF proceeds per traffic flow by assigning a
set of cells to each node visited by the flow, in a top-down
approach. Without loss of generality, we explain only the case
where each node has a single traffic flow, even though a node
can have multiple traffic flows.

Fig. 2 shows a desired cell allocation for a traffic flow
sourced by node k. The left side of the figure shows the routing
path from node k to node 0. The box on the right side of each
node is the slotframe of that node. YSF schedules two TX
cells at each hop except for the sink, and an additional pair
of cells between node k and node k − 1. The number of TX
cells per hop is determined by parameter n. By definition, the
minimum value of n is 1. n can be set to larger than 1 to cope
with frame drops. In this example, n is set to 2.

The set of cells assigned on any node for a given traffic
flow are scheduled one after the other. These cells are called
permanent cells, which are optimized for application traffic to
the sink.

TX cells can be used for both application packets and
unicast control packets. The RX cell at the source node is
used mainly for 6P communication. Having a dedicated RX
cell from the parent immediately before a dedicated TX cell
enables the node and its parent to complete a 2-step 6P
transaction within two slots in the best case, which results
in faster 6P transactions.

Since 6P is a signaling protocol between one-hop neighbors,
the duration between the cell request and the cell assignment
can be long. To minimize network performance degradation
during this period, YSF introduces two additional types of
cells: the autonomous cell and the transient cell. Autonomous
cells are scheduled without involvement of 6P, and are aimed
at completing a 6P transaction quickly with a new neighbor.
Transient cells are mainly used for handling incoming traffic
until permanent cells are scheduled. Without these types of
cells, either a scheduling process cannot complete in time, or
the end-to-end reliability is severely degraded. The allocation
of these cells is detailed in Section III-D.

B. Scheduling Process
A node starts a scheduling process by sending a cell

allocation request to its parent. The scheduling process consists
of two phases: the request phase and the allocation phase. 2-
step 6P SIGNAL transactions are used in the request phase.
2-step 6P ADD transactions are used in the allocation phase.

Fig. 3 depicts a typical message sequence of the scheduling
process. At the beginning of the request phase, node k sends
a cell allocation request for its traffic flow. The cell allocation
request contains the corresponding traffic flow identifier, and
the hop count to the traffic flow source. The recipient, node k-
1, responds to node k and then sends a request to its parent.

Fig. 2: The desired cell allocation for the flow sourced by
node k. Here, n = 2 and node 0 is the sink.

Fig. 3: A typical message sequence of a cell allocation for the
flow sourced at node k.

The hop_count value is incremented at each hop. The
request phase continues until the sink receives a request for
that traffic flow. At the end of the request phase, the sink
knows how many hops away the traffic flow source is.

In the allocation phase, permanent cells are scheduled
hop-by-hop, starting from the sink. That is, YSF schedules
permanent cells “top down”. At the end of the allocation phase,
the traffic source (node k) gets permanent cells scheduled with
its parent. This hop-by-hop cell reservation is similar in nature
to the RSVP protocol [17].

C. Permanent Cell Allocation Algorithms

This section explains the cell allocation algorithms used
during the allocation phase. This results in a collision-free
schedule of permanent cells once the network has converged.

1) Slot Offset Selection: At the beginning of the allocation
phase, the sink selects slot offsets for a new set of permanent
cells for a given traffic flow, using Algorithm 1.

Three inputs are given to the algorithm. n is the num-
ber of TX permanent cells assigned per flow at each hop.
hop_count is the hop count from the sink to the traffic
flow source, computed by incrementing the hop count field
in the request at each hop. downward_neighbor is the
MAC address of the child from which the sink received a cell
allocation request for the traffic flow. In the case of Fig. 2,
n=2, downward_neighbor is the MAC address of node 1,
and hop_count=k.

The main part of the algorithm is to identify available slot
offsets. First, slot offset zero is excluded because this slot



Algorithm 1 Permanent cell slot selection
Input: n, hop count, downward neighbor
Output: slots

1: available slots = all slots in the slotframe
2: available slots.remove(0)
3: for all existing cell allocations do
4: slots = get slots(cell allocation.permanent cells)
5: busy slots = slots
6: if cell allocation.match(downward neighbor) then
7: if cell allocation.hop count == 2 then
8: busy slots += left slots(slots, n + 1)
9: else if cell allocation > 2 then

10: busy slots += left slots(slots, n)
11: end if
12: busy slots += right slots(slots, n + 1)
13: end if
14: available slots -= busy slots
15: end for
16: if hop count == 1 then
17: num slots = n + 1
18: else
19: num slots = n
20: end if
21: return consecutive slots(available slots, num slots)

offset is used for the minimal shared cell [11]. Then, slot
offsets already used for existing permanent cells are excluded.
If the set of existing permanent cells for a traffic flow is sched-
uled with the same neighbor as downward_neighbor,
some slot offsets immediately before the permanent cells are
excluded as well, because these slot offsets are expected to
be used by this neighbor with its child. In addition, some slot
offsets immediately after the existing permanent cells are also
excluded, in order to avoid a scheduling conflict with newly
scheduling permanent cells.

After that, the algorithms selects and returns consecutive
slot offsets out of the remaining available slot offsets, for a new
set of permanent cells scheduled with the downward neighbor.
The number of returned slot offsets depends on the value of
hop_count. If hop_count is equal to 1, the algorithm
returns n + 1 slots since the downward neighbor is the traffic
flow source, which needs an additional RX permanent cell.

Fig. 4 depicts an example of values returned by the func-
tions used in the algorithm. get_slots() takes a list of
cells and returns their slot offsets. left_slots() takes
a list of slots and a number of slots as its arguments, and
returns as many slot offsets immediately before the given
slots. right_slots() is similar to left_slots(), but
it returns slot offsets immediately after the given cells.

At an intermediate node, once the intermediate node sched-
uled permanent cells with its parent, it schedules a new set of
permanent cells scheduled with its child, using consecutive slot
offsets immediately before the permanent cells to its parent.

2) Channel Offset Selection: YSF assigns a single channel
offset to all permanent cells for a given traffic flow. In the
example of Fig. 5, the permanent cells for the traffic flow of
node 3 have channel offset X , while the permanent cells for

Fig. 4: Example of slots functions.

Fig. 5: An example of channel offset assignment.

the traffic flow for node 1 have channel offset Y .
The sink selects a channel offset for permanent cells of

a given traffic flow out of channel offsets reserved for the
permanent cell usage, following Algorithm 2. The channel
offsets from 1 to 13 are reserved for the permanent cells
in our implementation. The channel selection algorithm takes
as parameters slots_for_permanent_cells as well as
n and hop_count, which are the same definitions as for
Algorithm 1. slots_for_permanent_cells is the slot
offsets for permanent cells which the sink is going to schedule.
With the three inputs, the sink can deduce all the slot offsets
which will be scheduled along the routing path for permanent
cells of a given traffic flow. Similarly, the sink can deduce
all the slot offsets of the existing permanent cells along the
routing path for a traffic flow which the sink is aware of. If
there are common slot offsets between them, the channel offset
assigned for the existing permanent cell is considered busy.

Algorithm 2 Permanent cell channel offset selection
Input: slots for permanent cells, n, hop count
Output: channel offset

1: available channel offsets = permanent cell channel offsets
2: num slots = n × hop count + 1
3: right edge = right slots(slots for permanent cells, 1)
4: all slots on path = left slots(right edge, num slots)
5: for all cell allocations do
6: if cell allocation.has common slots(all slots on path)

then
7: permanent cells = cell allocation.permanent cell
8: busy one = channel offset(permanent cell)
9: available channel offsets.remove(busy one)

10: end if
11: end for
12: return pick one(available channel offsets)



After iterating this procedure for all the existing permanent
cells, the list of available channel offsets is obtained. The
channel selection algorithm picks one channel offset among
them.

3) Complexity: Complexity of Algorithm 1 is O(N), where
N is the number of nodes in a network, since the dominant
part is the for-all loop starting at line 3. The loop goes
through all the existing cell allocations, the number of which
is N at most. Similarly, complexity of Algorithm 2 is O(N)
because of the for-all loop starting at line 5. Any intermediate
node, after having scheduled permanent cells with its parent,
schedules a new set of permanent cells with its child, using
consecutive slot offsets immediately before the permanent
cells to its parent. This algorithm has a complexity in O(1).
As a consequence, the processing complexity is kept in the
sink, which, unlike the other nodes, is not limited in CPU and
memory capacity.

D. Handling Parent Switching

Whenever the RPL routing protocol selects a new parent,
the node triggers a new scheduling process.

If the node previously had a different parent, YSF removes
all the cells scheduled with the old parent silently. The
remaining cells on the old parent side are then removed
automatically by an expiration timer. That is, each permanent
cell has a lifetime, which is reset each time an IPv6 packet
of the corresponding traffic flow is processed. With this
mechanism, permanent cells for a traffic flow which has not
been used for a certain period are removed when the timer
expires. The lifetime should be longer than the packet interval
of the corresponding traffic. At the same time, the lifetime
should be reasonably short to handle cases when a traffic flow
stops, or the source of the flow leaves the network. In our
implementation, the lifetime is set to 300 s as default value,
which was confirmed by simulation to be long enough to cover
all the simulation settings in Section IV.

If the node had cells for traffic flows originating at its
descendants, the existing cells scheduled with downward
neighbors are kept. The node informs the new parent about
the other traffic flows as well as its own traffic flow in a
cell allocation request after the parent switch. The initial cell
allocation request have multiple pairs of traffic flow identifier
and hop count values. Cell allocations for all the traffic flows
are executed concurrently, and the message sequence remains
the same (see Fig. 3).

The further the node sending the initial cell allocation
request is from the sink, the longer the scheduling process of
YSF takes. This is critical especially for a node having many
descendants which generate application packets. To prevent
packet drops during the scheduling process, we introduce the
autonomous cell and the transient cell. The autonomous cell
(explained below) allows the scheduling process to complete
fast. The transient cell (explained below) is temporary band-
width assigned to a node to handle packets from its children
during the scheduling process. Note that they are not collision-
free unlike the permanent cell.

1) Autonomous Cell: YSF schedules autonomous cells over
which a new pair of parent and child nodes perform 6P
communication and keep-alive exchanges.

The autonomous cell is scheduled without the neighbor
nodes needing to communicate. Each node maintains one
autonomous cell to receive frames from its neighbors. Unlike
Orchestra, YSF selects a slot offset randomly among its unused
slot offsets for the autonomous cell. The autonomous cell of a
node is moved to another randomly selected slot offset when
a transient cell or a permanent cell is scheduled at the same
slot offset. The channel offset for the autonomous cell is pre-
defined and reserved. In our implementation, the channel offset
of 15 is reserved for the autonomous cell. The slot offset of the
autonomous cell is advertised in DIOs (Destination-Oriented
Directed Acyclic Graph Information Objects). Since DIOs are
link-layer encrypted, only joined nodes can learn the location
of the autonomous cells of their neighbors. Therefore, when
the RPL routing protocol selects a new parent, the node is
aware of both the new parent’s MAC address and where its
autonomous cell is in the schedule. The child node sends a
6P request over the autonomous cell of the parent, which
contains information about its own autonomous cell. This
allows the parent to send back a 6P response to the child, over
its autonomous cell. When transient cells are scheduled, the
child removes the parent’s autonomous cell from its schedule,
and vice versa.

2) Transient Cell: Just after switching to a new parent,
the node only has a single TX cell to its parent, which is
the autonomous cell. If the node has many RX cells from its
children, it would drop forwarding packets due to the shortage
of TX cells.

In order to handle the incoming traffic until permanent
cells are in place, transient cells are scheduled during the
request phase of the scheduling process. A child schedules
n transient TX cells to its parent per flow. If the child is the
source of a flow, it additionally schedules one transient RX
cell, which is used mainly for following 6P communication.
The channel offset of the transient cell is pre-defined and
reserved. In our implementation, the channel offset of 14
is reserved for the transient cell. When a parent receives a
cell allocation request, it randomly selects slot offsets for
transient cells among unused slot offsets. The parent responds
to the child with the transient cell information. At the end
of this request-response exchange, parents and child nodes
schedule the transient cells. The transient cells are removed
when permanent cells are scheduled.

E. Consideration of Joining Nodes

Every 6TiSCH node except the sink is a joining node just
after booting up. A joining node needs to perform a network
access authentication process, such as the secure join protocol
defined in [4], to obtain the link-layer security keys.

In order to protect the TSCH schedule and the network itself
from external attackers, YSF allows only nodes having the
right link-layer key to participate in YSF’s scheduling process.
All 6P communications must be encrypted at the link layer.
In addition, information about the autonomous cell must be



TABLE I: Simulation parameters.

Parameter Settings
Application packet interval 5 s, 15 s, 30 s, or 60 s
Application packet interval randomization ±5%
RPL DAO interval 60 s
TSCH slotframe length 101 slots
TSCH slot duration 10 ms
TSCH TX queue length 10 frames
TSCH keep-alive interval 10 s
TSCH EB transmission probability 0.33
TSCH max. number of retransmissions 5
Number of radio channels 16

conveyed in encrypted frames. As a result, a joining node
uses only the minimal cell [11] until it completes its network
access authentication process to get the link-layer key in use.

IV. PERFORMANCE EVALUATION

A. Simulation Settings

We compare YSF and MSF by simulation. We implement
them in v1.2.0 of the 6TiSCH Simulator [7] that supports all
the key protocols and simulates internal interference properly.

We used a random placement of 50 nodes for our evalua-
tion, where the x,y coordinates of the nodes are determined
randomly in a 2 km × 2 km space, for every simulation run.
We use the Pister-hack connectivity model [7]. Each node
has at least three links to neighbors whose link PDR (Packet
Delivery Ratio) values are above 50%. The deepest routing
tree observed in the simulations is 7-hop deep, the shallowest
is 4-hop deep, with a median of 5-hop.

One particular node, node 0, acts as the DODAG root; it
starts forming a 6TiSCH network at the beginning of each
simulation run. Node 0 is also the sink of the application.
Each other node sends an application packet with a config-
urable inter-packet period. When MSF is used, a node sends
application packets only when it has at least one dedicated TX
cell to its parent. When YSF is used, a node sends application
packets only when it has permanent cells to its parent.

In addition to the scheduling function, the RPL objective
function is another key factor affecting performance of a
6TiSCH network. To highlight performance differences only
due to the scheduling function in use, we used an objective
function called BestLinkPDR. BestLinkPDR keeps selecting
the best possible parent among the sources of received DIOs,
using the simulator’s internal data instead of evaluating them
by observed ETX (Expected Transmission Count) values. Even
when using BestLinkPDR, node A does not select node B as
its parent as long as it has not received a DIO message from
B. A node may change its parent multiple times during a
simulation run. While having instantaneous knowledge about
the PDR of a link is not realistic, we believe this method
is a good trade-off between realism and the ability to fairly
compare MSF to YSF.

We enable the join process [4]. All non-root nodes complete
a join process after getting synchronized with the network,
before joining the RPL routing structure.

For each combination of scheduling functions and applica-
tion packet intervals, we run each simulation 100 times with

Fig. 6: Average E2E Latency, indicated on Y-axis, in seconds
plotted in boxplots with outliers.

Fig. 7: Maximum E2E Latency, indicated on Y-axis, in seconds
plotted in boxplots with outliers.

different topologies. We take into account all the application
packets for latency and reliability calculation, from the be-
ginning of the simulation to the end, including the network
formation phase where many parent switches happen. The
duration of one simulation run is 6 h (360 min). Parameter
n is set to 1. Table I shows the simulation parameters.

B. End-to-End Latency

We call end-to-end latency the duration between the time
a source node sends an application packet, and the time the
sink receives that packet.

Fig. 6 shows the average end-to-end latency, each sample
is an average latency calculated over all messages received
by the root in a corresponding simulation run. YSF yields
low latency with a small variance regardless of the application
packet interval settings. In the case of a 5 s application packet
interval, the median is 0.66 s, and its interquartile range is
0.05. Comparing their median values, YSF reduces the end-
to-end latency of MSF by 30-60 %.

Fig. 7 shows the maximum end-to-end latency results,
each sample being the maximum of a simulation run. The
performance trends of YSF are almost the same as seen in the
average end-to-end latency shown in Fig. 6.

These results highlight differences between YSF and MSF.
YSF schedules cells for a given flow in a cascading manner,
which make application packets forwarded without delay. This
is not the case with MSF that schedules cells at randomly
selected positions. In addition, YSF has less chance for re-
transmissions to happen than MSF since a resulting schedule
of YSF is collision-free.

C. End-to-End Reliability

We compute the end-to-end reliability as the ratio between
number of application packets received by the sink, and the
number of application packets generated during the simulation.



Fig. 8: End-to-End Reliability, plotted in boxplots with out-
liers. Y-axis indicates reliability (%).

(a) TX Queue Overflow

(b) TX Failure

Fig. 9: Application Packet Drops, averaged over 100 simula-
tion runs and plotted with a 95 % confidence interval.

As shown in Fig. 8, YSF keeps high reliability with a small
variance regardless of the application packet interval. Even
with a 5 s application packet interval, YSF yields 99.97 % of
the highest reliability, and 99.36 % of the lowest reliability.
While MSF has 99.66 % in the best case, it has larger
variance and more outliers, especially with an application
packet interval of 5 s.

In Fig. 9, we plot the number of application packet drops
for each drop cause. If the TX queue is full when a new
packet arrives, the packet is dropped and counted as TX queue
overflow. If a node does not receive a MAC acknowledgement
after the maximum number of retransmissions (see Table I),
the corresponding packet is dropped and counted as TX failure.
According to Fig. 9a, MSF has many packet drops due to TX
queue overflows when the application packet interval is 5 s.
This is because MSF potentially schedules collision cells, and
because cells are not scheduled in order, resulting in fuller
queues. YSF addresses both these shortcomings.

Looking at Fig. 9b, MSF has more TX failures than YSF. As
the objective function of BestLinkPDR selects always the best
possible parent for a node, the number of TX failures due to
poor link quality is minimized regardless of the scheduling
function in use. Therefore, the difference seen in Fig. 9b
indicates that MSF has more collisions than YSF.

D. Resulting Schedule

Fig 11 shows example TSCH schedules built by MSF and
YSF at the end of the first simulation, using an application

Fig. 10: Network Performance of YSF over Time. Results
are taken from the first 60 min of a simulation run of the
application packet interval of 5 s.

packet interval of 5 sec.
In MSF, two cell allocation patterns are observed: au-

tonomous cells allocated diagonally in the schedule, and
dedicated cells allocated randomly. MSF has several TX
cells where potentially more than one transmission occurs
at the same time and cause collisions. Although MSF has a
mechanism to resolve collision cells by relocation, it is reactive
and takes time to detect them.

On the other hand, YSF yields a collision-free schedule of
sets of cells allocated contiguously. There are no cells found at
channel offset 14 and 15, which are reserved for the transient
cell and the autonomous cell, respectively. These cells are
meant to be used only during the scheduling process, and are
removed at the end of the process.

E. Performance Stability of YSF

As discussed in Section III, YSF is designed to deal with
network dynamics of 6TiSCH. Fig 10 shows average end-to-
end latency and average end-to-end reliability evolving over
time, during the first 60 min of a simulation run. Cumulative
numbers of parent switches are shown as well in Fig 10.

Despite topological changes during that period, the network
formation phase, YSF achieves over 99% reliability and sub-
second latency, constantly. Note that more control packets,
which could impede application performance, are generated
during the network formation phase than after the routing
topology converges.

V. DISCUSSION

One important property of YSF shown in Section IV is that
the performance of YSF is stable regardless of the topology.
The variance of each plot for YSF in Fig. 6 to Fig. 8 is small.
This is a critical property for industrial applications, as YSF’s
performance is highly predictable. The key for this is that
YSF builds a collision-free schedule in a cascading manner.
With a collision-free and cascading schedule, the TX queue
on a node can be kept short, which leads to stable low latency
and stable high reliability. In contrast, MSF allocates cells at



(a) MSF

(b) YSF

Fig. 11: Global view of resulting schedules of MSF and YSF, from the first simulation runs (run id 0). X-axis is the slot offset;
Y-axis is the channel offset. A gray cell represents a collision-free TX cell, where there is only one transmitter. A black cell
represents a TX cell, where there is more than one transmitter. In YSF, no cells are scheduled at channel offsets from 6 to 15.

randomly selected positions, which tends to cause packet drops
by collision and queue overflow as highlighted in Fig. 9.

YSF builds a collision-free schedule of permanent cells
without any assumption on routing topology. The existing top-
down scheduling functions introduced in Section II assume
that any node at depth h has no radio interference with any
other node at depth h+W on the routing path. For instance,
DeTAS has a variable W to control how frequently a channel
offset is reused on a routing path. DeTAS assigns the same
channel offset every W hops, however, there is no guarantee
that W is a safe distance to avoid radio interference in any
real network deployment.

Currently, YSF allocates the same number of permanent
TX cells at each hop regardless of QoS level of a traffic flow.
However, some traffic flow may need more permanent TX cells
than others, for reliability reasons or for higher transmission
rates. Additionally, it would be better to adapt parameter n to
the link quality, and take ETX into account. Introducing more
flexibility on n is one of the possible extensions to YSF.

As future work, we plan to implement YSF on an actual
6TiSCH stack such as OpenWSN and Contiki-NG.

VI. CONCLUSION

In this article, we propose a distributed 6TiSCH scheduling
function optimized for data gathering applications. Simulation
results show that YSF yields low end-to-end latency and high
end-to-end reliability, regardless of network topology. Cells
assigned by YSF minimize TX queue length at each node.
Unlike other top-down scheduling functions, YSF does not
rely on any assumption regarding network topology or traffic
load, and is therefore more robust in real network deployments.
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