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Abstract
Purpose  MRI is integral to the diagnosis of multiple sclerosis (MS) and is important for clinical prognostication. Quantita-
tive volumetric reporting tools (QReports) can improve the accuracy and objectivity of MRI-based assessments. Several 
QReports are commercially available; however, validation can be difficult to establish and does not currently follow a com-
mon pathway. To aid evidence-based clinical decision-making, we performed a systematic review of commercial QReports 
for use in MS including technical details and published reports of validation and in-use evaluation.
Methods  We categorized studies into three types of testing: technical validation, for example, comparison to manual segmen-
tation, clinical validation by clinicians or interpretation of results alongside clinician-rated variables, and in-use evaluation, 
such as health economic assessment.
Results  We identified 10 companies, which provide MS lesion and brain segmentation and volume quantification, and 38 
relevant publications. Tools received regulatory approval between 2006 and 2020, contextualize results to normative reference 
populations, ranging from 620 to 8000 subjects, and require T1- and T2-FLAIR-weighted input sequences for longitudinal 
assessment of whole-brain volume and lesions. In MS, six QReports provided evidence of technical validation, four com-
panies have conducted clinical validation by correlating results with clinical variables, only one has tested their QReport by 
clinician end-users, and one has performed a simulated in-use socioeconomic evaluation.
Conclusion  We conclude that there is limited evidence in the literature regarding clinical validation and in-use evaluation 
of commercial MS QReports with a particular lack of clinician end-user testing. Our systematic review provides clinicians 
and institutions with the available evidence when considering adopting a quantitative reporting tool for MS.

Keywords  Systematic review · Multiple sclerosis · MRI · Quantitative volumetric reporting tools · Validation

Abbreviations
MRI	� Magnetic resonance imaging
MS	� Multiple sclerosis
QReport	� Quantitative volumetric reporting tool
FLAIR	� Fluid-attenuated inversion recovery
QNI	� Quantitative Neuroradiology Initiative
PRISMA	� Preferred Reporting Items for System-

atic Reviews and Meta-Analyses
PROSPERO	� Prospective Register of Systematic 

Reviews
FDA	� Food and Drug Administration
CE	� Conformité Européenne (French for 

“European conformity”)
EDSS	� Expanded Disability Status Scale
SDMT	� Symbol Digit Modalities Test
WMH	� White matter hyperintensity
SPM	� Statistical parametric mapping

Key points   
• A PROSPERO-registered systematic review identified 10 
FDA- and/or CE-approved quantitative volumetric reporting 
tools (QReports) for the assessment of multiple sclerosis (MS).
• All tools identified provide longitudinal assessment of whole-
brain volume and lesions with contextualization of results to 
normative reference populations.
• A total of 38 peer-reviewed studies covered technical (30 papers) 
and clinical validation (7 papers) and in-use evaluation (1 paper) 
of QReports in MS.
• Only one company has conducted a clinical validation study in 
which their QReport is tested by clinicians as end-users.
• There is limited evidence regarding clinical validation and in-use 
evaluation of commercial MS QReports, particularly involving 
clinician end-user testing.
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LST	� Lesion Segmentation Tool
samseg	� Sequence Adaptive Multimodal 

SEGmentation
SIENA(X)	� Structural Image Evaluation, using Nor-

malisation, of Atrophy
BaMoS	� Bayesian Model Selection
Lesion-TOADS	� Lesion TOpology-preserving Anatomi-

cal Segmentation
BIANCA	� Brain Intensity AbNormality Classifica-

tion Algorithm
T25FT	� Timed 25-foot walk test
9HPT	� 9-Hole Peg Test
NICE	� National Institute for Health and Care 

Excellence

Introduction

Multiple sclerosis (MS) is a chronic inflammatory and neu-
rodegenerative disease of the central nervous system char-
acterized by demyelinating lesions and atrophy [1, 2]. Brain 
atrophy is accelerated in MS compared to the healthy popu-
lation [3]. Both lesion evolution and brain volume loss over 
time correlate with clinical disability [3, 4].

Structural MRI is routinely used in the diagnostic workup of 
MS and to assess and monitor demyelinating lesions [5]. MRI-
based measurement of brain atrophy is becoming increasingly 
recognized as an important clinical prognostication tool [3, 6, 7]. 
Brain and lesion volumes measured using image segmentation 
have become established biomarkers for determining treatment 
efficacy in research studies and clinical trials [8–11]. Previous 
research has shown that brain atrophy [12] and lesion 
volumes [13] significantly predict long-term disability in all 
MS phenotypes, especially when used in combination [4, 9]. 
Manual segmentation of the brain and lesions is time-consuming 
and can also be prone to imprecision and error [14–16]. The 
development and use of automated and semi-automated brain 
and lesion segmentation methods, such as in quantitative 
volumetric reporting tools (QReports), has increased in recent 
years [11, 17]. These tools aim to improve the objectivity of 
image interpretation by increasing the sensitivity of MRI 
analysis [18, 19], the accuracy[20–25] and reproducibility of 
results [22, 26], and potentially decreasing reporting time [18]. 
QReports can facilitate cross-sectional diagnosis [20, 26–30], 
longitudinal assessment [20, 22, 23, 31], and therapy response 
monitoring [32] via user-friendly graphical displays. QReports 
may also offer automatic contextualization of an individual 
patient’s volumetric results against a relevant reference 
population [33], which could assist clinicians in disease course 
prognostication and deciding on therapeutic strategies. Various 
QReports for MS have been developed for use in the clinical 
setting, and many of these tools are commercially available 
having received regulatory approval.

Currently, the application of QReports in the clinic is limited 
[11, 12]. Clinical institutions may not have adequate resources 
to assess how tools have been tested and validated, despite 
commercialization for medical use. To encourage evidence-
based use and to aid clinicians in deciding how and whether to 
adopt these tools, the validity of results and the impact on clini-
cal management should be established. Technical and clinical 
validation and evaluation of quantitative reporting tools do not 
currently follow standardized methods. The quantitative neu-
roradiology initiative (QNI) addresses this issue and provides 
a six-step translational pathway for quantitative reporting tools 
[34]. The QNI model distinguishes three types of testing: techni-
cal validation of tool performance, for example, comparison to 
manual segmentation or other segmentation techniques; clinical 
validation by clinicians or by interpretation of results alongside 
clinician-rated variables; and finally in-use evaluation, such as 
health economic assessment [34].

Our previous work demonstrated a lack of technical and 
notably clinical validation of commercial QReports in demen-
tia [35]. In the current paper, we replicated this methodology 
and performed a systematic review of the literature aiming to 
validate or evaluate commercial QReports for use in MS. We 
(1) presented the range of tools, including details of their tech-
nical features and characteristics and (2) provided a descriptive 
synthesis of the evidence published regarding their validation. 
We assessed the literature according to the QNI framework, 
categorizing studies into technical and clinical validation and 
in-use evaluation. The aim is to increase transparency and help 
clinicians to make informed decisions about whether to adopt 
commercial QReports into clinical routine for the assessment 
of patients with MS and provide an overview of the features of 
each commercially available tool.

Methods

This review was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) guidelines [36–38] and is registered with the 
Prospective Register of Systematic Reviews (PROSPERO) 
database under number CRD42021286139.

Vendor and product search

Product inclusion and exclusion criteria

The inclusion criteria for QReports are as follows: (1) FDA 
or CE clearance; (2) target disorder MS or a population with 
suspected MS (specified on the company website or in the 
literature); (3) uses structural-MRI-based input (4) to gen-
erate brain and lesion volumetric results; (5) incorporates 
normative reference data for single-subject comparison; (6) 
presents results in a structured report format.
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Search methodology: FDA‑cleared product identification

1.	 Keyword screening

The FDA medical device databases were used (last access: 
28 January 2022) to find FDA-cleared automated quantitative 
MRI reporting tools in MS (https://​www.​fda.​gov/​medic​al-​
devic​es/​device-​advice-​compr​ehens​ive-​regul​atory-​assis​tance/​
medic​al-​device-​datab​ases). A total of 83,556 premarket 510(k) 
FDA notification clearances dating from 1996 to present were 
downloaded in a text file from https://​www.​fda.​gov/​medic​al- 
devices/510k-clearances/downloadable-510k-files. The text file 
was searched using the keywords listed below and 821 “medical 
devices” were identified for further review. Terms with an * use 
“wild-cards,” covering relevant suffixes of each word stem, for 
example, “Radiolog*” covers “Radiology,” “Radiologist,” and 
“Radiological”:

• Neuro* • Cortex • Structur*
• Brain • Dementia • Segment*
• Quant* • Volume • Automat*
• MRI • Multiple • Spinal
• Hippocamp* • Sclerosis • Cord
• Radiolog* • Lesion • MS
• Atroph* • Lobar • Demyelinat*

• Cortical • Lobe

2.	 Eligibility screening

Manual checks were performed to verify the com-
pany name, product name, approval date, and descrip-
tion on the FDA database. Tools considered hardware 
were excluded at this stage. The websites of all remain-
ing companies were searched to further investigate the 
intended use of their products. Seven companies that had 
not specified MS as the target disorder were excluded 
from further review. Two quantitative reporting tools 
that were acquisition dependent were also excluded at 
this stage. After manual checks and searching company 
websites, four companies were identified as meeting our 
inclusion criteria (see Fig. 1 for PRISMA flowchart out-
lining search for companies).

Search methodology: CE‑marked product identification

As there was no freely available, searchable database 
of CE-marked products, the websites of relevant medi-
cal imaging conferences (ISMRM, ESMRMB, RSNA, 
ECR, ESR AIX, ASNR, SIIM, and ESNR) were searched 
to identify companies that exhibited their products in 

Fig. 1   PRISMA flow diagram 
outlining a systematic search for 
CE- and FDA-approved QRe-
ports. The FDA medical device 
databases and lists of all com-
panies that exhibited at relevant 
medical imaging conferences 
(ISMRM, ESMRMB, RSNA, 
ECR, ESR AIX, ASNR, SIIM, 
and ESNR) were searched and 
the website https://​grand-​chall​
enge.​org/​aifor​radio​logy/ was 
used to cross-check results
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2019–2021. The websites of identified companies were 
searched in detail to find CE-marked quantitative report-
ing tools. Sixty-three tools were excluded after screening 
the company and product name and intended use. Results 
were cross-checked using the following website: https://​
grand-​chall​enge.​org/​aifor​radio​logy/. Two companies 
that had not specified MS as the target disorder were 
excluded from further review. Finally, six companies 
with CE-marked tools were identified that fit our inclu-
sion criteria.

Each company was directly contacted to verify the prod-
uct name, date of approval, description, and intended use of 
the product. The companies were informed of their inclu-
sion in the review and given the opportunity to add to and 
correct information gathered from company websites and 
the literature. Excluded companies are summarized in the 
“Results” section.

Company and product features

The following technical details of the 10 tools included in 
the review were extracted from company websites, publica-
tions identified in the literature search, and by direct vendor 
contact:

•	 FDA/CE approval
•	 Date of approval
•	 Target disorder
•	 Input sequences
•	 Brain and lesion segmentation and volumetry method
•	 Lesion filling
•	 Brain atrophy data
•	 Cross-sectional or longitudinal analysis available
•	 Details of normative reference populations
•	 Provision of segmentation overlays
•	 Strategies to account for inter-scanner variability
•	 Image quality control method(s)
•	 Report deployment procedure

Literature search on technical and clinical validation 
of identified products

A literature search was conducted independently by two 
authors according to PRISMA guidelines [36–38]. The 
results were checked and verified by a third author; any 
inclusion or exclusion discrepancies were settled by con-
sensus. The 10 company names and their associated prod-
uct names were used as search terms. Both company and 
product names were used to ensure the identification of 
studies published before product branding. Searches were 
simultaneously conducted in PubMed, Ovid Medline “All 

fields” and Scopus (latest search: 29 March 2022). Com-
pany and product names comprising several words are 
bracketed to indicate single search terms. Companies were 
directly contacted to verify company and product names. 
The search terms were as follows:

	 1.	 AIRAmed OR (AIRAscore)
	 2.	 Combinostics OR (cNeuro cMRI)
	 3.	 (CorTechs Labs) OR (NeuroQuant MS) OR Lesion-

Quant
	 4.	 Icometrix OR MSmetrix OR (icobrain ms)
	 5.	 (Jung diagnostics) OR Biometrica
	 6.	 mediaire OR mdbrain
	 7.	 Pixyl OR Pixyl.Neuro.MS OR Pixyl.Neuro.BV
	 8.	 Quibim OR (Quibim Precision)
	 9.	 Qubiotech OR (Neurocloud VOL)
	10.	 Qynapse OR QyScore

References in identified publications, papers listed 
under “similar articles” in PubMed, and all publications 
listed on company websites were also searched to identify 
additional relevant validation studies. Companies were 
given the opportunity to provide further relevant studies.

Study inclusion criteria

The study inclusion criteria used in this review are based 
on the QNI framework for the translation of quantitative 
reporting tools into the clinic. Studies were included in the 
review on the basis that they met the following inclusion 
criteria: (1) published in English as original research in 
academic peer-reviewed journals or conference proceed-
ings (conference abstracts and posters excluded), (2) which 
involve automated lesion, or brain and lesion, segmentation 
and volumetry computed from structural MR images (3) in 
an MS population and/or healthy controls, and (4) fit either:

Technical validation

Papers validating the technical performance of lesion or 
brain and lesion segmentation methods. For example, 
test-retest studies or comparison to manual segmentation 
and/or other state-of-the-art brain volumetry tools, such 
as FreeSurfer [39], SPM (www.​fil.​ion.​ucl.​ac.​uk/​spm), 
SIENA(X) [40], and lesion segmentation tools, for exam-
ple, LST [41, 42], nicMSlesions [43], and samseg [44], 
and testing for robustness to different input data. Papers 
focusing only on brain segmentation were not included 
unless conducted in an MS population.
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Clinical validation

1.	 Testing of the tool by clinicians on an MS population 
focusing on one of more of the following: (a) determin-
ing diagnostic accuracy, confidence, and differential 
diagnoses vs. “ground truth” clinician-rated diagnoses, 
i.e., using receiver operating characteristics; (b) assess-
ing the tool’s effect on clinical management (usability, 
prognostic value); (c) inter-rater reliability metrics or 
percent agreement.

2.	 Clinical trials in MS using the tool’s results as an out-
come measurement.

3.	 Interpretation of results alongside clinician-rated vari-
ables, such as the Expanded Disability Status Scale 
(EDSS) and Symbol Digit Modalities Test (SDMT), 
as measures of physical and cognitive disability in MS, 
respectively.

In‑use evaluation

Studies assessing any of (1) benefit to patients, (2) the effect 
on reporting time in the context of normal clinical routine, 
(3) clinical and population perception, or (4) socioeconomic 
impact of using QReports in the clinic.

Data extraction

Two raters independently categorized all studies that met our 
inclusion criteria into technical validation, clinical valida-
tion, or in-use evaluation. A third researcher checked the 
results, and a consensus was reached on any discrepancies.

Results

Company and product search

Following the systematic search outlined above, 10 compa-
nies were identified that produce tools meeting our inclusion 
criteria; see Fig. 1 for a research flow diagram summarizing 
the search for relevant products.

Excluded tools

According to PRISMA guidelines, inclusion criteria were 
decided on in advance (see “Methods” section). The results 
of the eligibility screening are presented below.

MS brain and lesion segmentation and volumetry tools 
were excluded if they were not FDA or CE approved, such 
as SegPlus by Neurophet (https://​www.​neuro​phet.​com), 
which has conducted technical validation [45], and Ten-
sorMedical (https://​www.​tenso​rmedi​cal.​ai) that developed 
and uses the nicMSlesions software and has evidence of 

technical validation in MS [43]. Research tools that did 
not have FDA or CE approval, such as FreeSurfer [39], 
SPM (www.​fil.​ion.​ucl.​ac.​uk/​spm) or SIENA(X) [40] and 
LST [41, 42], samseg [44], or BaMoS [46], were excluded.

QReports that, according to the literature and the com-
pany websites, did not conduct brain and MS lesion seg-
mentation, including Childmetrix by Icometrix (a pedi-
atric non-MS-related QReport) (http://​icome​trix.​com), 
Quantib ND by Quantib (https://​www.​quant​ib.​com), neu-
roreader by Brainreader (https://​brain​reader.​net), THINQ 
by Corticometrics (https://​www.​corti​comet​rics.​com), 
tools by JLK Inc (https://​www.​jlkgr​oup.​com), and Cor-
insights MRI by ADM diagnostics (https://​admdx.​com), 
VUNO Med-DeepBrain by Vuno (https://​www.​vuno.​co), 
AI-Rad Companion Brain by Siemens Health (https://​
www.​sieme​ns-​healt​hinee​rs.​com), AQUA by Neurophet 
(https://​www.​neuro​phet.​com), and DIADEM by Brain-
miner (https://​www.​brain​miner.​co.​uk), were excluded. 
Our research group has conducted a systematic review 
including several of these tools for other indications [35].

Acquisition-dependent quantitative neuroimaging tools 
were also excluded, including SyMRI Neuro by Synthet-
icMR (https://​synth​eticmr.​com/) and STAGE by SpinTech-
MRI (https://​spint​echmri.​com), which include dedicated 
quantitative MRI-based reporting tools that can be used 
in the setting of MS. SyMRI Neuro is an FDA- and CE-
approved tool providing brain and myelin segmentation 
and has been technically and clinically validated in MS 
populations [47–50]. STAGE (strategically acquired gra-
dient echo) is an FDA-approved quantitative MRI-based 
reporting tool providing atrophy and MS lesion charac-
terization using susceptibility-weighted images. STAGE 
has been validated on healthy subjects and several MS 
cases [51, 52].

Included tools

The 10 companies and their QReports identified using the 
search strategy described in the “Methods” section and 
illustrated in Fig. 1 are presented in Table 1 along with key 
technical details.

Company and product features

Table 1 is a structured database of the technical features 
and characteristics of the QReports. Company and product 
features are summarized below. Report processing times 
were not included, as measurement and comparison should 
be conducted independently by the authors using the same 
cases and resources, which was not possible without access 
to the software packages.

9Neuroradiology (2023) 65:5–24

https://www.neurophet.com
https://www.tensormedical.ai
http://www.fil.ion.ucl.ac.uk/spm
http://icometrix.com
https://www.quantib.com
https://brainreader.net
https://www.corticometrics.com
https://www.jlkgroup.com
https://admdx.com
https://www.vuno.co
https://www.siemens-healthineers.com
https://www.siemens-healthineers.com
https://www.neurophet.com
https://www.brainminer.co.uk
https://syntheticmr.com/
https://spintechmri.com


1 3

Ta
bl

e 
1  

A
 d

at
ab

as
e 

of
 th

e 
Q

Re
po

rts
 a

nd
 th

ei
r k

ey
 te

ch
ni

ca
l d

et
ai

ls
 p

re
se

nt
ed

 in
 a

lp
ha

be
tic

al
 o

rd
er

 o
f v

en
do

r n
am

e

Ve
nd

or
Pr

od
uc

t 
na

m
e

C
E/

FD
A

 
st

at
us

A
pp

ro
va

l 
re

ce
iv

ed
Ta

rg
et

 
di

so
rd

er
(s

)
In

pu
t 

se
qu

en
ce

s
B

ra
in

/le
si

on
 

se
gm

en
-

ta
tio

n/
vo

lu
m

et
ry

 
m

et
ho

d

Le
si

on
 fi

lli
ng

B
ra

in
 a

tro
ph

y 
da

ta
C

ro
ss

 se
c-

tio
na

l +
 lo

ng
i-

tu
di

na
l b

ra
in

 
vo

lu
m

et
ry

 
an

al
ys

is

N
or

m
at

iv
e 

re
fe

re
nc

e 
da

ta
ba

se

Se
gm

en
-

ta
tio

n 
O

ve
rla

ys

M
et

ho
ds

 to
 

ac
co

un
t f

or
 

in
te

r-s
ca

nn
er

 
va

ria
bi

lit
y

Im
ag

e 
qu

al
ity

 
co

nt
ro

l
D

ep
lo

ym
en

t 
pr

oc
ed

ur
e

A
IR

A
m

ed
w

w
w.

​ai
ra

m
​

ed
.​d

e

A
IR

A
sc

or
e

C
E 

– 
cl

as
s I

A
ug

-2
02

0
A

ll 
ne

ur
od

e-
ge

ne
ra

tiv
e 

di
se

as
es

 
w

ith
 b

ra
in

 
vo

lu
m

e 
re

du
c-

tio
n,

 e
.g

., 
de

m
en

tia
 

an
d 

M
S

3D
 T

1,
 3

D
 

T2
-F

LA
IR

In
-h

ou
se

 
an

d 
C

N
N

-
ba

se
d

N
ot

 re
qu

ire
d

m
l, 

%
 T

IV
 a

nd
 

no
rm

at
iv

e 
pe

rc
en

til
e

B
ot

h,
 in

di
re

ct
 

lo
ng

itu
di

na
l 

co
m

pa
ris

on

80
00

 +
 he

al
th

y 
su

bj
ec

ts
 

fro
m

 p
riv

at
e 

an
d 

pu
bl

ic
 

da
ta

se
ts

, 
m

ix
 o

f fi
el

d 
str

en
gt

h 
an

d 
sc

an
ne

r 
ve

nd
or

s

B
ra

in
 a

nd
 

le
si

on
 

se
gm

en
-

ta
tio

n 
ov

er
la

ys

M
ix

 o
f fi

el
d 

str
en

gt
h 

an
d 

sc
an

ne
r 

ve
nd

or
s 

in
 th

e 
no

rm
at

iv
e 

re
fe

re
nc

e 
da

ta
. F

or
 

lo
ng

itu
di

na
l 

co
m

pa
ri-

so
ns

, i
t i

s 
re

co
m

-
m

en
de

d 
to

 
on

ly
 u

se
 

im
ag

es
 

fro
m

 th
e 

sa
m

e 
sc

an
ne

r 
se

qu
en

ce
 

co
m

bi
na

-
tio

n

A
ut

om
at

ic
 

ch
ec

ks
 fo

r 
te

ch
ni

ca
l 

im
ag

e 
pa

ra
m

-
et

er
s i

n 
th

e 
D

IC
O

M
 

he
ad

er
, 

im
ag

e 
Q

C
 fo

r 
m

ov
em

en
t 

ar
tif

ac
ts

 
sh

ou
ld

 b
e 

pe
rfo

rm
ed

 
by

 th
e 

re
ad

in
g 

ph
ys

ic
ia

n

C
lo

ud
-b

as
ed

 
PA

C
S 

in
te

gr
a-

tio
n

C
om

bi
no

s-
tic

s
w

w
w.

​
cn

eu
ro

.​
co

m

cN
eu

ro
 

cM
R

I
C

E 
– 

cl
as

s 
II

a
FD

A
 –

 
51

0(
k)

 
cl

ea
re

d,
 

cl
as

s I
I

Se
p-

20
16

D
em

en
tia

, 
M

S 
an

d 
ot

he
r 

di
se

as
es

 
w

he
re

 
an

al
ys

is
 o

f 
at

ro
ph

y 
or

 
W

M
H

s a
re

 
of

 in
te

re
st

3D
 T

1 
an

d 
2D

 o
r 3

D
 

T2
-F

LA
IR

In
-h

ou
se

D
id

 n
ot

 
di

sc
lo

se
m

l, 
no

rm
at

iv
e 

pe
rc

en
til

e 
fo

r c
ro

ss
-

se
ct

io
na

l 
da

ta
 +

 an
nu

-
al

iz
ed

 a
tro

-
ph

y 
ra

te
 a

nd
 

its
 p

er
ce

nt
ile

 
fo

r l
on

gi
tu

-
di

na
l d

at
a 

fro
m

 T
1

B
ot

h,
 d

ire
ct

 
lo

ng
itu

di
na

l 
co

m
pa

ris
on

  ~
 20

00
 

su
bj

ec
ts

 
fro

m
 p

riv
at

e 
an

d 
pu

bl
ic

 
U

S/
Eu

ro
pe

 
da

ta
se

ts
, 

18
–9

4 
y,

 
m

ix
 o

f fi
el

d 
str

en
gt

h 
an

d 
sc

an
ne

r 
ve

nd
or

s

B
ra

in
 a

nd
 

le
si

on
 

se
gm

en
-

ta
tio

n 
ov

er
la

ys

M
ix

 o
f fi

el
d 

str
en

gt
h 

an
d 

sc
an

ne
r 

ve
nd

or
s 

in
 th

e 
no

rm
at

iv
e 

re
fe

re
nc

e 
da

ta

A
ut

om
at

ed
 

Q
C

 fo
r 

C
N

R
, 

ab
no

rm
al

 
si

gn
al

 
in

te
ns

i-
tie

s a
nd

 
ac

qu
is

iti
on

 
pa

ra
m

et
er

 
ch

ec
ks

C
lo

ud
-b

as
ed

 
PA

C
S 

in
te

gr
a-

tio
n

10 Neuroradiology (2023) 65:5–24

http://www.airamed.de
http://www.airamed.de
http://www.cneuro.com
http://www.cneuro.com
http://www.cneuro.com


1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ve
nd

or
Pr

od
uc

t 
na

m
e

C
E/

FD
A

 
st

at
us

A
pp

ro
va

l 
re

ce
iv

ed
Ta

rg
et

 
di

so
rd

er
(s

)
In

pu
t 

se
qu

en
ce

s
B

ra
in

/le
si

on
 

se
gm

en
-

ta
tio

n/
vo

lu
m

et
ry

 
m

et
ho

d

Le
si

on
 fi

lli
ng

B
ra

in
 a

tro
ph

y 
da

ta
C

ro
ss

 se
c-

tio
na

l +
 lo

ng
i-

tu
di

na
l b

ra
in

 
vo

lu
m

et
ry

 
an

al
ys

is

N
or

m
at

iv
e 

re
fe

re
nc

e 
da

ta
ba

se

Se
gm

en
-

ta
tio

n 
O

ve
rla

ys

M
et

ho
ds

 to
 

ac
co

un
t f

or
 

in
te

r-s
ca

nn
er

 
va

ria
bi

lit
y

Im
ag

e 
qu

al
ity

 
co

nt
ro

l
D

ep
lo

ym
en

t 
pr

oc
ed

ur
e

C
or

Te
ch

s.a
i

w
w

w.
​co

rte
​

ch
s.​a

i

N
eu

ro
Q

ua
nt

 
M

S 
(a

ls
o 

kn
ow

n 
as

 
Le

si
on

-
Q

ua
nt

)

C
E 

– 
cl

as
s 

II
a,

 F
D

A
 

– 
51

0(
k)

 
cl

ea
re

d,
 

cl
as

s I
I

A
ug

-2
00

6
M

ul
tip

le
 

sc
le

ro
si

s
3D

 T
1 

an
d 

2D
 o

r 3
D

 
T2

-F
LA

IR

In
-h

ou
se

U
si

ng
 n

ei
gh

-
bo

rh
oo

d 
in

fo
rm

at
io

n

m
l, 

%
 c

ha
ng

e,
 

%
 T

IV
 a

nd
 

no
rm

at
iv

e 
pe

rc
en

til
e

B
ot

h,
 d

ire
ct

 
lo

ng
itu

di
na

l 
co

m
pa

ris
on

 ~
 50

00
 

su
bj

ec
ts

 
fro

m
 p

riv
at

e 
an

d 
pu

bl
ic

 
da

ta
se

ts
—

ag
e 

ra
ng

e 
3–

10
0 

y,
 

eq
ua

l m
al

e/
fe

m
al

e 
ra

tio
, 

ac
qu

ire
d 

us
in

g 
Si

e-
m

en
s, 

G
E,

 
an

d 
Ph

ili
ps

 
M

R
I s

ca
n-

ne
rs

 w
ith

 
bo

th
 1

.5
 T

 
an

d 
3 

T 
fie

ld
 

str
en

gt
h

Le
si

on
 a

nd
 

br
ai

n 
se

g-
m

en
ta

tio
n 

ov
er

la
ys

Sc
an

ne
r-

sp
ec

ifi
c 

3D
 

gr
ad

ie
nt

 
fie

ld
 d

ist
or

-
tio

n 
co

rr
ec

-
tio

n;
 v

ox
el

 
in

te
ns

ity
 

no
rm

al
iz

a-
tio

n;
 c

us
to

m
 

dy
na

m
ic

 
at

la
s–

ba
se

d 
co

nt
ra

st 
ad

ju
st-

m
en

t b
y 

an
at

om
ic

al
 

re
gi

on
 to

 
co

rr
ec

t t
he

 
m

ea
su

re
d 

co
nt

ra
st 

va
ria

bi
lit

y 
in

 p
at

ie
nt

s

A
ut

om
at

ed
 

Q
C

 c
he

ck
s 

fo
r a

cq
ui

si
-

tio
n 

pa
ra

m
-

et
er

, a
tla

s 
fit

, a
tla

s 
tis

su
e 

cl
as

s 
co

nt
ra

st,
 

sc
an

 n
oi

se
 

es
tim

at
io

n 
an

d 
im

ag
e 

qu
al

ity

PA
C

S 
in

te
gr

at
io

n 
vi

a 
lo

ca
l 

ha
rd

w
ar

e,
 

lo
ca

l v
ir-

tu
al

iz
at

io
n 

or
 c

lo
ud

 
ba

se
d

Ic
om

et
rix

w
w

w.
​ic

om
e​

tr i
x.

​co
m

ic
ob

ra
in

 m
s 

(p
re

vi
-

ou
sly

 
M

Sm
e-

tri
x)

C
E 

– 
cl

as
s 

I, 
FD

A
 

– 
51

0(
k)

 
cl

ea
re

d,
 

cl
as

s I
I

Ju
l-2

01
5

M
ul

tip
le

 
sc

le
ro

si
s

3D
 T

1 
an

d 
2D

 o
r 3

D
 

T2
-F

LA
IR

In
-h

ou
se

G
au

ss
ia

n 
sm

oo
th

ed
 

m
ea

n 
W

M
 

va
lu

es

m
l, 

%
 c

ha
ng

e,
 

no
rm

at
iv

e 
pe

rc
en

til
e

B
ot

h,
 d

ire
ct

 
lo

ng
itu

di
na

l 
co

m
pa

ris
on

19
03

 h
ea

lth
y 

su
bj

ec
ts

 
(1

06
9 

fe
m

al
e 

an
d 

83
4 

m
al

e 
su

bj
ec

ts
) 

av
ai

la
bl

e 
fro

m
 se

ve
ra

l 
pu

bl
ic

 
co

lle
ct

io
ns

, 
6–

96
 y

, 
m

ix
 o

f fi
el

d 
str

en
gt

h 
an

d 
sc

an
ne

r 
ve

nd
or

s

Le
si

on
 a

nd
 

br
ai

n 
se

g-
m

en
ta

tio
n 

ov
er

la
ys

C
ro

ss
-

se
ct

io
na

l 
re

po
rt 

ha
s 

be
en

 te
ste

d 
ac

ro
ss

 
m

ul
tip

le
 

sc
an

ne
rs

. 
Lo

ng
i-

tu
di

na
l 

co
m

pa
ri-

so
ns

 re
qu

ire
 

sa
m

e 
sc

an
ne

r a
nd

 
ac

qu
is

iti
on

 
pr

ot
oc

ol
 fo

r 
ac

cu
ra

cy

A
ut

om
at

ed
 

fla
gg

in
g 

fo
r m

an
ua

l 
Q

C
: i

nc
om

-
pl

et
e 

he
ad

 
co

ve
ra

ge
, 

in
su

ffi
ci

en
t 

C
N

R
 o

r 
di

sto
rti

on
s 

be
tw

ee
n 

se
qu

en
ce

s 
or

 ti
m

e 
po

in
ts

C
lo

ud
-b

as
ed

 
PA

C
S 

in
te

gr
a-

tio
n,

 
op

tio
na

l 
EM

R
 in

te
-

gr
at

io
n

11Neuroradiology (2023) 65:5–24

http://www.cortechs.ai
http://www.cortechs.ai
http://www.icometrix.com
http://www.icometrix.com


1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ve
nd

or
Pr

od
uc

t 
na

m
e

C
E/

FD
A

 
st

at
us

A
pp

ro
va

l 
re

ce
iv

ed
Ta

rg
et

 
di

so
rd

er
(s

)
In

pu
t 

se
qu

en
ce

s
B

ra
in

/le
si

on
 

se
gm

en
-

ta
tio

n/
vo

lu
m

et
ry

 
m

et
ho

d

Le
si

on
 fi

lli
ng

B
ra

in
 a

tro
ph

y 
da

ta
C

ro
ss

 se
c-

tio
na

l +
 lo

ng
i-

tu
di

na
l b

ra
in

 
vo

lu
m

et
ry

 
an

al
ys

is

N
or

m
at

iv
e 

re
fe

re
nc

e 
da

ta
ba

se

Se
gm

en
-

ta
tio

n 
O

ve
rla

ys

M
et

ho
ds

 to
 

ac
co

un
t f

or
 

in
te

r-s
ca

nn
er

 
va

ria
bi

lit
y

Im
ag

e 
qu

al
ity

 
co

nt
ro

l
D

ep
lo

ym
en

t 
pr

oc
ed

ur
e

ju
ng

 d
ia

g-
no

sti
cs

 
G

m
bH

w
w

w.
​ju

ng
-​

di
ag

n​
os

tic
s.​d

e

B
io

m
et

ric
a

C
E 

– 
cl

as
s I

Ju
n-

20
09

M
ul

tip
le

 
sc

le
ro

si
s, 

de
m

en
tia

, 
ne

ur
od

e-
ge

ne
ra

tiv
e 

di
se

as
es

2D
/3

D
 

M
PR

A
G

E 
an

d
2D

/3
D

 
T2

-F
LA

IR
 

an
d 

2D
/3

D
 

G
d 

en
ha

nc
-

in
g 

T1

In
-h

ou
se

, 
C

N
N

-
ba

se
d 

an
d 

SI
EN

A
 

fo
r l

on
-

gi
tu

di
na

l 
co

m
pa

ri-
so

n

U
si

ng
 n

ei
gh

-
bo

rh
oo

d 
in

fo
rm

at
io

n

z-
sc

or
e 

us
in

g 
re

si
du

al
s 

m
et

ho
d

B
ot

h,
 d

ire
ct

 
lo

ng
itu

di
na

l 
co

m
pa

ris
on

 ~
 20

00
 su

b-
je

ct
s f

ro
m

 a
 

pr
op

rie
ta

ry
 

da
ta

se
t 

us
in

g 
a 

si
ng

le
 

sc
an

ne
r a

nd
 

pr
ot

oc
ol

, 
18

–9
9 

y

Le
si

on
 a

nd
 

br
ai

n 
se

g-
m

en
ta

tio
n 

ov
er

la
ys

Si
te

 q
ua

li-
fic

at
io

n 
pr

oc
es

s—
pr

ot
oc

ol
 

se
t-u

p 
us

in
g 

30
 h

ea
lth

y 
sc

an
s f

or
 

ea
ch

 in
di

-
vi

du
al

 sc
an

-
ne

r u
si

ng
 

th
e 

se
rv

ic
e.

 
M

an
ua

l 
ch

ec
ks

 fo
r 

gl
ob

al
 o

ffs
et

 
be

tw
ee

n 
ea

ch
 

si
te

 a
nd

 
pr

op
rie

ta
ry

 
no

rm
at

iv
e 

da
ta

ba
se

Si
te

 q
ua

lifi
ca

-
tio

n 
pr

oc
es

s 
an

d 
ex

pe
rt 

m
an

ua
l Q

C
/

Q
A

 c
he

ck
s 

by
 v

en
do

r

C
lo

ud
-b

as
ed

 
PA

C
S 

in
te

gr
a-

tio
n

m
ed

ia
ire

w
w

w.
​m

ed
ia

​
ire

.​d
e

m
db

ra
in

C
E 

– 
cl

as
s I

Ja
n-

20
19

M
ul

tip
le

 
sc

le
ro

si
s, 

de
m

en
tia

, 
N

PH
, 

ne
ur

od
e-

ge
ne

ra
tiv

e 
di

se
as

es
, 

va
sc

ul
ar

 
de

m
en

tia
, 

br
ai

n 
an

eu
-

ry
sm

, b
ra

in
 

tu
m

or

2D
 o

r 3
D

 
T1

 a
nd

 
T2

-F
LA

IR

In
-h

ou
se

N
ot

 re
qu

ire
d

m
l a

nd
 

no
rm

at
iv

e 
pe

rc
en

til
e 

(in
 %

)

B
ot

h,
 d

ire
ct

 
lo

ng
itu

di
na

l 
co

m
pa

ris
on

 ~
 80

00
 sc

an
s 

fro
m

 m
ai

nl
y 

pr
iv

at
e 

da
ta

se
ts

, 
18

–9
3 

y,
 

m
ix

 o
f fi

el
d 

str
en

gt
h 

an
d 

sc
an

ne
r 

ve
nd

or
s

Le
si

on
 a

nd
 

br
ai

n 
se

g-
m

en
ta

tio
n 

ov
er

la
ys

M
ix

tu
re

 
of

 fi
el

d 
str

en
gt

h 
an

d 
sc

an
ne

r 
ve

nd
or

s i
n 

th
e 

se
g-

m
en

ta
tio

n 
al

go
rit

hm
 

tra
in

in
g 

da
ta

A
ut

om
at

ed
 

ch
ec

ks
 fo

r 
ac

qu
is

iti
on

 
pa

ra
m

et
er

s 
an

d 
ar

tif
ac

t

PA
C

S 
in

te
gr

at
ed

 
vi

a 
lo

ca
l 

ha
rd

w
ar

e 
or

 lo
ca

l 
vi

rtu
al

iz
a-

tio
n

12 Neuroradiology (2023) 65:5–24

http://www.jung-diagnostics.de
http://www.jung-diagnostics.de
http://www.jung-diagnostics.de
http://www.mediaire.de
http://www.mediaire.de


1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ve
nd

or
Pr

od
uc

t 
na

m
e

C
E/

FD
A

 
st

at
us

A
pp

ro
va

l 
re

ce
iv

ed
Ta

rg
et

 
di

so
rd

er
(s

)
In

pu
t 

se
qu

en
ce

s
B

ra
in

/le
si

on
 

se
gm

en
-

ta
tio

n/
vo

lu
m

et
ry

 
m

et
ho

d

Le
si

on
 fi

lli
ng

B
ra

in
 a

tro
ph

y 
da

ta
C

ro
ss

 se
c-

tio
na

l +
 lo

ng
i-

tu
di

na
l b

ra
in

 
vo

lu
m

et
ry

 
an

al
ys

is

N
or

m
at

iv
e 

re
fe

re
nc

e 
da

ta
ba

se

Se
gm

en
-

ta
tio

n 
O

ve
rla

ys

M
et

ho
ds

 to
 

ac
co

un
t f

or
 

in
te

r-s
ca

nn
er

 
va

ria
bi

lit
y

Im
ag

e 
qu

al
ity

 
co

nt
ro

l
D

ep
lo

ym
en

t 
pr

oc
ed

ur
e

Pi
xy

l
w

w
w.

​pi
xy

l.​
ai

Pi
xy

l.N
eu

ro
.

M
S

Pi
xy

l.N
eu

ro
.

BV

C
E 

– 
cl

as
s 

II
a

N
ov

-2
01

9
M

ul
tip

le
 

sc
le

ro
si

s, 
ne

ur
od

e-
ge

ne
ra

tiv
e 

di
se

as
es

, 
de

m
en

tia
s, 

A
lz

he
i-

m
er

’s
 

di
se

as
e,

 
Pa

rk
in

so
n’

s 
di

se
as

e

Pi
xy

l.N
eu

ro
.

M
S:

 2
D

 
or

 3
D

 T
2 

FL
A

IR
; 

3D
 T

1 
an

d 
3D

 T
1 

w
ith

 
co

nt
ra

st 
op

tio
na

l
Pi

xy
l.N

eu
ro

.
BV

: 3
D

 T
1

In
-h

ou
se

, 
de

ep
 

le
ar

ni
ng

-
ba

se
d

T1
 w

hi
te

 m
at

-
te

r h
yp

o-
in

te
ns

ity
 

se
gm

en
ta

-
tio

n 
is

 
in

co
rp

o-
ra

te
d 

as
 

w
hi

te
 m

at
-

te
r l

ab
el

s

Pi
xy

l.N
eu

ro
.

BV
: m

l a
nd

 
in

 %

B
ot

h,
 in

di
re

ct
 

lo
ng

itu
di

na
l 

co
m

pa
ris

on

Pi
xy

l.N
eu

ro
.

BV
:

 ~
 30

00
 

su
bj

ec
ts

 
fro

m
 p

riv
at

e 
an

d 
pu

bl
ic

 
da

ta
se

ts
, 

18
–9

7 
y,

 
m

ul
ti-

ce
nt

er
 

an
d 

m
ul

ti-
co

un
try

 
(m

ix
 o

f fi
el

d 
str

en
gt

h 
an

d 
sc

an
ne

r 
ve

nd
or

s)

Le
si

on
s 

la
be

le
d 

ac
co

rd
in

g 
to

 th
ei

r 
in

di
vi

du
al

 
ev

ol
ut

io
n

D
at

a 
au

gm
en

-
ta

tio
n 

us
in

g 
pr

op
ri-

et
ar

y 
3D

T1
 

lib
ra

ry
 w

ith
 

cl
in

ic
al

ly
 

re
le

va
nt

 
M

R
I a

nd
 

pa
tie

nt
 

va
ria

bi
lit

y 
(n

oi
se

, 
co

nt
ra

st,
 

ar
tif

ac
ts

, 
di

sto
r-

tio
ns

, s
ty

le
 

tra
ns

fe
r)

A
ut

om
at

ed
 

Q
C

 b
as

ed
 

on
 v

ox
el

 
si

ze
, 

D
IC

O
M

 
he

ad
-

er
s, 

an
d 

ac
qu

is
iti

on
 

pa
ra

m
et

er
s. 

Th
e 

us
er

 
is

 w
ar

ne
d 

w
he

n 
in

su
f-

fic
ie

nt
 in

pu
t 

im
ag

e 
qu

al
-

ity
 c

ou
ld

 
im

pa
ct

 
qu

al
ity

 o
f 

re
su

lts

PA
C

S 
in

te
gr

at
io

n 
vi

a 
lo

ca
l 

ha
rd

w
ar

e 
or

 lo
ca

l 
vi

rtu
al

-
iz

at
io

n.
 

St
an

d-
al

on
e 

w
eb

 
ba

se
d;

 
In

te
gr

at
io

n 
vi

a 
A

I 
m

ar
ke

t-
pl

ac
e 

an
d 

di
str

ib
u-

tio
n 

pl
at

fo
rm

s

Q
ui

bi
m

w
w

w.
​

qu
ib

im
.​

co
m

Q
ui

bi
m

 
Pr

ec
is

io
n:

 
(w

hi
te

 
m

at
te

r 
le

si
on

s;
 

at
ro

ph
y 

sc
re

en
in

g)

C
E 

– 
cl

as
s 

II
a

D
ec

-2
01

8
N

eu
ro

de
-

ge
ne

ra
tiv

e 
di

se
as

es
, 

m
ul

tip
le

 
sc

le
ro

si
s, 

de
m

en
tia

 
Pa

rk
in

so
n’

s 
di

se
as

e,
 

ep
ile

ps
y,

 
am

yo
-

tro
ph

ic
 

la
te

ra
l 

sc
le

ro
si

s 
(A

LS
)

W
hi

te
 m

at
te

r 
le

si
on

s:
 

2D
 o

r 3
D

 
FL

A
IR

; 
at

ro
ph

y 
sc

re
en

in
g:

 
3D

 T
1

In
-h

ou
se

, 
le

si
on

s:
 

C
N

N
-

ba
se

d;
 

at
ro

ph
y:

 
at

la
s-

ba
se

d

N
ot

 d
on

e 
or

 
no

t a
pp

lie
d

A
tro

ph
y 

sc
re

en
in

g:
 

m
l, 

%
TI

V,
 

no
rm

at
iv

e 
pe

rc
en

til
e

B
ot

h,
 in

di
re

ct
 

lo
ng

itu
di

na
l 

co
m

pa
ris

on

62
0 

C
au

ca
-

si
an

s f
ro

m
 

pr
iv

at
e 

an
d 

pu
bl

ic
 

da
ta

se
ts

, 
20

–8
6 

y,
 

m
ix

 o
f fi

el
d 

str
en

gt
h 

an
d 

sc
an

ne
r 

ve
nd

or
s

Le
si

on
 a

nd
 

br
ai

n 
se

g-
m

en
ta

tio
n 

ov
er

la
ys

O
nb

oa
rd

in
g 

w
ith

 sa
m

pl
e 

of
 n

ew
 

si
te

 d
at

a,
 

am
en

d-
m

en
ts

 to
 

da
ta

 p
re

-
pr

oc
es

si
ng

/
ac

qu
is

iti
on

 
pr

ot
oc

ol
s 

w
he

re
 

ne
ce

ss
ar

y

A
ut

om
at

ed
 

Q
C

 c
he

ck
s 

on
 re

qu
ire

d
ac

qu
is

iti
on

 
pa

ra
m

et
er

 
ra

ng
es

PA
C

S 
in

te
gr

at
ed

 
vi

a 
lo

ca
l 

ha
rd

w
ar

e,
 

lo
ca

l v
ir-

tu
al

iz
at

io
n 

or
 c

lo
ud

-
ba

se
d

Q
ub

io
te

ch
w

w
w.

​qu
bi

o​
te

ch
.​c

om

N
eu

ro
cl

ou
d 

V
O

L
C

E 
– 

cl
as

s I
Ja

n-
20

19
M

ul
tip

le
 

sc
le

ro
si

s, 
ep

ile
ps

y,
 

de
m

en
tia

, 
A

lz
he

i-
m

er
's 

di
se

as
e,

 
Pa

rk
in

so
n'

s 
di

se
as

e

C
ro

ss
-s

ec
-

tio
na

l: 
3D

 
T1

 re
co

m
-

m
en

de
d 

(3
D

 
T2

-F
LA

IR
 

al
so

 p
os

-
si

bl
e)

Lo
ng

itu
di

na
l: 

m
ul

ti-
se

qu
en

ce
 

on
ly

 (3
D

 
T1

 a
nd

 T
2 

FL
A

IR
) 

an
al

ys
es

In
-h

ou
se

 
an

d 
SP

M
-

ba
se

d

U
si

ng
 n

ei
gh

-
bo

rh
oo

d 
in

fo
rm

at
io

n

m
l, 

%
TI

V
 a

nd
 

no
rm

at
iv

e 
pe

rc
en

til
e

B
ot

h,
 d

ire
ct

 
lo

ng
itu

di
na

l 
co

m
pa

ris
on

 ~
 85

2 
su

bj
ec

ts
 

fro
m

 p
riv

at
e 

da
ta

se
t, 

ag
e 

19
–9

4 
y 

(3
75

 m
al

e,
 

47
7 

fe
m

al
e)

, 
m

ix
 o

f s
ca

n-
ne

r v
en

do
rs

 
an

d 
fie

ld
 

str
en

gt
h

Le
si

on
 a

nd
 

br
ai

n 
se

g-
m

en
ta

tio
n 

ov
er

la
ys

M
ix

tu
re

 
of

 fi
el

d 
str

en
gt

h 
an

d 
sc

an
ne

r 
ve

nd
or

s 
in

 th
e 

no
rm

at
iv

e 
re

fe
re

nc
e,

 
tra

in
in

g,
 

an
d 

va
lid

a-
tio

n 
da

ta

A
ut

om
at

ed
 

Q
C

 c
he

ck
s 

on
 re

qu
ire

d 
ac

qu
is

iti
on

 
pa

ra
m

et
er

s, 
D

IC
O

M
 

he
ad

er
s, 

an
d 

cr
os

s-
co

rr
el

at
io

n 
m

et
ric

s t
o 

ev
al

ua
te

 
im

ag
e 

co
-

re
gi

str
at

io
n 

re
su

lts

Lo
ca

lly
 

vi
rtu

al
iz

ed
 

or
 c

lo
ud

-
ba

se
d 

PA
C

S 
in

te
gr

a-
tio

n

13Neuroradiology (2023) 65:5–24

http://www.pixyl.ai
http://www.pixyl.ai
http://www.quibim.com
http://www.quibim.com
http://www.quibim.com
http://www.qubiotech.com
http://www.qubiotech.com


1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ve
nd

or
Pr

od
uc

t 
na

m
e

C
E/

FD
A

 
st

at
us

A
pp

ro
va

l 
re

ce
iv

ed
Ta

rg
et

 
di

so
rd

er
(s

)
In

pu
t 

se
qu

en
ce

s
B

ra
in

/le
si

on
 

se
gm

en
-

ta
tio

n/
vo

lu
m

et
ry

 
m

et
ho

d

Le
si

on
 fi

lli
ng

B
ra

in
 a

tro
ph

y 
da

ta
C

ro
ss

 se
c-

tio
na

l +
 lo

ng
i-

tu
di

na
l b

ra
in

 
vo

lu
m

et
ry

 
an

al
ys

is

N
or

m
at

iv
e 

re
fe

re
nc

e 
da

ta
ba

se

Se
gm

en
-

ta
tio

n 
O

ve
rla

ys

M
et

ho
ds

 to
 

ac
co

un
t f

or
 

in
te

r-s
ca

nn
er

 
va

ria
bi

lit
y

Im
ag

e 
qu

al
ity

 
co

nt
ro

l
D

ep
lo

ym
en

t 
pr

oc
ed

ur
e

Q
yn

ap
se

w
w

w.
​qy

na
p​

se
.​c

om

Q
yS

co
re

C
E 

– 
cl

as
s 

II
a,

 F
D

A
 

– 
51

0(
k)

 
cl

ea
re

d,
 

cl
as

s I
I

C
E 

20
17

FD
A

 2
01

9
A

ll 
ce

nt
ra

l 
ne

rv
ou

s 
sy

ste
m

 
di

se
as

es

3D
 T

1 
an

d 
2D

 
or

 3
D

 T
2 

FL
A

IR

Le
si

on
: 

in
-h

ou
se

; 
at

ro
ph

y:
 

op
en

 
so

ur
ce

N
ot

 d
on

e 
or

 
no

t a
pp

lie
d

m
l, 

%
IC

V,
 

z-
sc

or
e,

 
no

rm
at

iv
e 

pe
rc

en
til

e

B
ot

h,
 in

di
re

ct
 

lo
ng

itu
di

na
l 

co
m

pa
ris

on

20
–9

0 
y,

 m
ix

 
of

 fi
el

d 
str

en
gt

h 
an

d 
sc

an
ne

r 
ve

nd
or

s

Le
si

on
 a

nd
 

br
ai

n 
se

g-
m

en
ta

tio
n 

ov
er

la
ys

Sp
ec

ifi
c 

M
R

I 
pa

ra
m

et
er

s 
ar

e 
re

qu
ire

d 
w

hi
ch

 h
av

e 
be

en
 te

ste
d 

to
 p

ro
vi

de
 

go
od

 
Q

yS
co

re
 

re
su

lts
. 

Ea
rly

 
m

an
ua

l Q
C

 
ch

ec
ks

 b
y 

ve
nd

or
 fo

r 
ea

ch
 si

te

A
ut

om
at

ed
 

Q
C

 c
he

ck
s 

on
 re

qu
ire

d 
ac

qu
is

iti
on

 
pa

ra
m

et
er

s, 
SN

R
, C

N
R

PA
C

S 
in

te
gr

at
ed

 
vi

a 
lo

ca
l 

ha
rd

w
ar

e 
or

 c
lo

ud
-

ba
se

d

In
fo

rm
at

io
n 

ga
th

er
ed

 fr
om

 th
e 

lit
er

at
ur

e 
an

d 
di

re
ct

 c
on

ta
ct

 w
ith

 v
en

do
rs

 c
an

 b
e 

as
se

ss
ed

 a
cc

or
di

ng
 to

 in
di

vi
du

al
 n

ee
ds

. A
ll 

in
fo

rm
at

io
n 

w
as

 c
he

ck
ed

 a
nd

 c
on

fir
m

ed
 w

ith
 v

en
do

rs
 b

ef
or

e 
pu

bl
ic

a-
tio

n.
 It

 w
as

 n
ot

 p
os

si
bl

e 
fo

r t
he

 a
ut

ho
rs

 to
 in

de
pe

nd
en

tly
 v

er
ify

 te
ch

ni
ca

l d
et

ai
ls

 w
ith

ou
t a

cc
es

s t
o 

co
m

m
er

ci
al

 so
ftw

ar
e 

pa
ck

ag
es

M
S,

 m
ul

tip
le

 s
cl

er
os

is
; C

E,
 C

on
fo

rm
itè

 E
ur

op
ëe

nn
e;

 F
D

A,
 F

oo
d 

an
d 

D
ru

g 
A

dm
in

ist
ra

tio
n;

 F
LA

IR
, fl

ui
d-

at
te

nu
at

ed
 in

ve
rs

io
n 

re
co

ve
ry

; S
IE

NA
, S

tru
ct

ur
al

 Im
ag

e 
Ev

al
ua

tio
n,

 u
si

ng
 N

or
m

al
is

a-
tio

n,
 o

f 
A

tro
ph

y;
 S

PM
, s

ta
tis

tic
al

 p
ar

am
et

ric
 m

ap
pi

ng
; C

N
N

, c
on

vo
lu

tio
na

l n
eu

ra
l n

et
w

or
k;

 W
M

H
, w

hi
te

 m
at

te
r 

hy
pe

rin
te

ns
ity

; S
N

R,
 s

ig
na

l-t
o-

no
is

e 
ra

tio
; C

N
R,

 c
on

tra
st-

to
-n

oi
se

 r
at

io
; Q

C
, 

qu
al

ity
 c

on
tro

l; 
PA

C
S,

 p
ic

tu
re

 a
rc

hi
vi

ng
 a

nd
 c

om
m

un
ic

at
io

n 
sy

ste
m

; T
IV

, i
nt

ra
cr

an
ia

l v
ol

um
e;

 C
SF

, c
er

eb
ro

sp
in

al
 fl

ui
d;

 G
M

, g
re

y 
m

at
te

r; 
W

M
, w

hi
te

 m
at

te
r; 

D
IC

O
M

, D
ig

ita
l I

m
ag

in
g 

an
d 

C
om

m
un

ic
at

io
ns

 in
 M

ed
ic

in
e;

 Q
A,

 q
ua

lit
y 

as
su

ra
nc

e

14 Neuroradiology (2023) 65:5–24

http://www.qynapse.com
http://www.qynapse.com


1 3

CE/FDA approval status

All 10 companies have obtained either CE class I/II or FDA 
510(k) clearance, as “software as a medical device.”

Date of approval

CorTechs.ai was the first company to receive FDA clearance 
in 2006. The most recent of the 10 companies to receive CE 
or FDA regulatory approval was AIRAmed in 2020.

Target disorder

All companies produced a report for the assessment of MS 
lesions and brain atrophy. For some tools, the MS QReport 
was an extension of a previously established brain volume 
quantification tool.

Input sequences

Most companies required 3D T1 and 2D or 3D T2-FLAIR 
input sequences for brain and lesion segmentation. Two 
tools also provided the option to use a 2D or 3D gadolinium-
enhancing T1-weighted sequence for contrast-enhancing T1 
lesion detection.

Brain/lesion segmentation/volumetry method

All companies used proprietary methods developed “in 
house,” of which four claimed to use deep learning. Two 
companies reported using modified versions of research 
methods, including SIENA(X)[40] and SPM (www.​fil.​ion.​
ucl.​ac.​uk/​spm). Brain and lesion segmentation software 
was commercialized as a single package or as two different 
tools (which is the case for two companies, see Table 1).

Lesion data

All tools reported longitudinal lesion volume. Nine out of 
ten tools reported longitudinal lesion count. Nine out of ten 
QReports provided the spatial distribution of lesions accord-
ing to the McDonald criteria [53] categorized into periven-
tricular, juxtacortical, deep white matter, and infratentorial. 
Companies that have not yet included lesion count and spa-
tial distribution of lesions claimed to be working to provide 
this information in upcoming updates and releases of the 
tools.

Lesion filling

Lesion filling is commonly used to accurately compute brain 
volumes in MS [54]. Eight out of ten companies used either 
automatic lesion filling or deep learning approaches, which 

did not require lesion filling. The approaches used for lesion 
filling are outlined in Table 1.

Brain atrophy data

Brain atrophy was reported in milliliters, as a percentage of 
the total intracranial volume (TIV), as a normative percen-
tile, or as a z-score.

Cross‑sectional and longitudinal brain volumetry analysis

All 10 companies provided both cross-sectional and longitu-
dinal analyses of lesions and whole brain atrophy. Longitudi-
nal analysis approaches were indirect for four QReports, i.e., 
the difference in volume/percentile per structure between two 
visits and direct for six QReports, such as using SIENA [40].

Details of a normative reference population

The normative reference populations of all tools comprised 
a large age range, typically from 20 to 90 years with a sex 
balance, and were compiled from public and/or private data-
sets. Nine out of ten companies used datasets with a range 
of scanner types and field strength. The size of the datasets 
varied between 620 and ~8000 subjects.

Segmentation/atrophy visual overlays

All QReports provided visual lesion and brain segmentation 
overlays.

Image quality control method

All tools used image quality control (QC) processes. The 
methods used varied and were mainly automatic, including 
checks for artifacts and acquisition parameters, computing 
of standard measures of image quality, such as signal-to- 
noise ratio (SNR) (comparing the level of the target signal 
to background noise), and automatic flagging of the need 
for manual QC.

Strategies to account for inter‑scanner variability

All companies claimed to use strategies to account for 
diverse input data, including a mix of scanner type and 
field strength in the normative reference population, 
algorithm training, using independent validation data-
sets, accounting for vendor-specific acquisition param-
eters, implementing AI-based augmentation to anticipate 
the variability between images, and using site qualifica-
tion procedures.
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PACS integration/report deployment procedure

All companies claimed to provide PACS integration either 
using a cloud-based solution and/or local virtualization 
and/or local hardware.

Peer‑reviewed technical and clinical validation

All companies had conducted internal validation pro-
cesses, including the necessary steps for CE and/or FDA 
clearance. Also, all companies claimed to be carrying out 
further peer-reviewed validation studies. It is of note that 
several companies had conducted studies validating their 
tools in other disease areas [55–64]. These papers have 
only been included if lesion, or brain and lesion, quanti-
fication techniques were under investigation in MS and 
if the tool is commercialized for use in MS either on the 
company website or in publications.

The number and category of studies identified in the 
literature search are presented in Fig. 2 and described 
below in the “Literature search” section.

Literature search

The results of the literature search are outlined in the 
PRISMA workflow diagram in Fig. 2 and documented fur-
ther below. A total of 38 peer-reviewed publications cover-
ing technical (n = 30), clinical (n = 7) validation, or in-use 
evaluation (n = 1) were identified. In total, 6 companies 
have conducted technical validation, 4 have published clini-
cal validation, 1 has conducted an in-use evaluation, and 3 
have not published studies meeting our inclusion criteria. 
The distribution of studies identified is presented in Fig. 3.

Validation studies identified

To remain unbiased, a narrative synthesis of the studies 
identified for each company is provided and referenced below 
(in alphabetical order). All publications were conducted in 
MS and/or healthy control populations. In summary, technical 
validation mainly consisted of comparison with manual lesion 
counting, manual segmentation, or state-of-the-art automated 
brain volumetry and lesion segmentation tools, including 
SIENA(X) [40], Freesurfer [39], SPM (www.​fil.​ion.​ucl.​ac.​uk/​

Fig. 2   PRISMA flow diagram 
outlining the search and selec-
tion for publications included in 
the review

Records identified through 
database searching 

(n = 6747)
PubMed (n = 611) 
Scopus (n = 5546)

Ovid Medline (n = 590)
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ee
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Additional records identified
through other sourcese.g.,studies

published pre-branding
(n = 13)

Records after removing duplicates and studies only 
mentioning search terms in affiliations/disclosures

(n =5548)

Records screened
(n =5548)

Records excluded based 
on their abstract

(n = 5253)

Full-text articles assessed 
for eligibility

(n =295)

Full-text articles not
meeting inclusion criteria

(n =257)

Studies meeting inclusion criteria
(n =38)

Technical validation = 30 
Clinical validation = 7 

Workflow/in-use evaluation = 1 
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spm), FIRST [65], Cascade [66], LST [41, 42], Lesion-TOADS 
[67], lesionbrain [68], BIANCA [69], and nicMSlesions [43]. 
Technical validation was also conducted as repeatability studies 
and by testing different acquisition protocols. Clinical validation 
mainly comprised correlation of the tool’s results with clinical 
variables, such as EDSS scores. Only one clinical validation 
study incorporates clinician end-user testing [18]. Validation 
studies conducted by each company are summarized below.

Combinostics

Clinical: The cNeuro cMRI results were correlated with 
EDSS scores [70].

CorTechs Labs

Technical: NeuroQuant MS has been tested for longitudinal 
consistency [20] and compared to visual radiological assess-
ment [20], icobrain ms [28], and established brain and lesion 
segmentation methods (FIRST [71], LST [71], SIENA(X) 
[28], FreeSurfer [20], and Cascade [20]).

Clinical: NeuroQuant MS results were correlated with 
clinical variables, including EDSS and timed 25-foot walk 
test (T25FT) and 9-Hole Peg Test (9HPT) scores as meas-
ures of MS-related physical disability [20].

Icometrix

Technical: icobrain ms has been tested for robustness to dif-
ferent input data [26, 31, 33, 72–74], reproducibility [26, 31, 
72, 74], repeatability [73, 74], and consistency over time [19, 

73]. The tool has been compared to manual segmentation 
[19, 21, 26, 31, 74, 75], LesionQuant [28], and automated 
established brain and lesion segmentation and atrophy quan-
tification methods, such as SIENA(X) [28, 72–74, 76, 77], 
LST [26, 31], Lesion-TOADS [26], FreeSurfer [77], and 
SPM [74, 77] and has been included in a longitudinal MS 
lesion segmentation challenge [21]. Earlier or other versions 
of the tool have been compared to the current version [31, 
75]. An automated method to decrease the effect of inter-
scanner variability on results has been tested [78, 79].

Clinical: The tool has been tested by clinicians as end-
users investigating the impact on intra- and inter-rater 
variability, reporting time (outside of their normal clinical 
routine), and detection of disease activity in comparison to 
visual radiological assessment [18]. The ability of the tool 
to differentiate MS clinical phenotypes has been investigated 
[18]. The tool’s results were correlated with EDSS [18, 76, 
80, 81] and SDMT scores [81] and the number of relapses 
[80].

In-use evaluation: Icometrix has investigated the health-
economic impact of icobrain ms in a microsimulation study 
with a decision analytical model based on a hypothetical 
cohort of MS patients testing for disease detection, treatment 
decision-making, patient quality of life, and costs using the 
tool in comparison to clinical and visual radiological assess-
ment [32].

Jung diagnostics

Technical: Jung diagnostics have compared the current 
method to earlier versions of the tool (which included LST) 

Fig. 3   The distribution of pub-
lications included in the review 
for each company identified. 
The vendors are listed chrono-
logically according to the date 
of their first FDA/CE approval
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[22, 27, 82, 83] and to manual segmentation [22, 27, 82]. 
The tool has been tested for repeatability [27, 84, 85], repro-
ducibility [22, 27], and robustness to different input data 
[22, 27, 86]. Jung diagnostics has compared two methods 
for brain atrophy data adjustment for head size and age [86].

Clinical: Biometrica results were correlated with clinical 
variables, including EDSS and SDMT scores, disease dura-
tion, and MS phenotypes [87].

Mediaire

Technical: The tool has been tested for robustness to differ-
ent input data [88] and was compared to manual segmenta-
tion and other lesion segmentation tools in a longitudinal 
MS lesion segmentation challenge [23].

Pixyl

Pixyl.Neuro.MS is an MS lesion segmentation tool and 
Pixyl.Neuro.BV can be used for brain volumetry. Techni-
cal: The lesion segmentation method has been compared to 
manual segmentation [24, 29, 89] and to older established 
automated methods [24, 29, 89], including in an MS lesion 
segmentation challenge [24]. Newer improved versions of 
the tool have been compared to previous versions [90] and 
to manual segmentation [90].

Qynapse

Technical: Qynapse has compared the current method for 
lesion segmentation to a previous method, to state-of-the-
art lesion segmentation methods (including LST, Lesion-
TOADS, lesionBrain, BIANCA, and nicMSlesions), and to 
manual segmentation [25, 30]. QyScore has been tested for 
robustness to different input data [30].

Discussion

This systematic review identified 10 companies currently 
offering FDA- and CE-cleared QReports for use in MS. 
Most tools identified in this review have obtained regulatory 
approval in the last 5 years. By reviewing commercial QReports 
in MS and previously in dementia [35], we aimed to provide 
the information needed by clinicians to navigate the rapidly 
developing market for quantitative reporting tools. Studies 
identified in this review have been categorized according to the 
QNI model framework to encourage the adoption of a common 
translational pathway with rigorous and structured testing. We 
have identified 38 relevant validation and evaluation studies: 30 
technical validation studies, 7 clinical validation studies, and 1 
in-use evaluation. In total, 6 QReports have evidence of technical 
validation, 4 companies have conducted clinical validation, and 

1 has conducted in-use evaluation. The date of approval of tools 
did not always correlate with the number of validation studies 
identified. For example, CorTechs.ai, which received FDA 
approval in 2006, began developing and validating their tools in 
MS after validation in other diseases, such as dementia. Clinical 
validation studies were more prevalent for companies that had 
received regulatory approval earlier. All companies claimed to 
be conducting (further) validation studies.

Previous reviews of MS QReports compare both the 
methodologies used in research and commercially available 
tools without naming vendors—mainly due to publication 
prior to their branding [11, 17, 91–95]. In this paper, we 
review all identified commercial MS QReports that offer a 
combination of lesion and brain segmentation and volume-
try. We aimed to remain unbiased by synthesizing and cat-
egorizing papers avoiding direct comparison and evaluation. 
There is little scope and evidence to recommend one com-
mercial MS QReport over another, as the needs of purchas-
ers may vary and tools have mainly not been tested under 
the same conditions using the same database (other than in 
one study identified in this review, which directly compares 
the performance of two commercial MS QReports) [28].

Our review has highlighted a lack of clinical validation 
of MS QReports and in particular testing of tools by clini-
cians. Only four out of ten vendors had conducted clinical 
validation in an MS population and three of these companies 
correlated QReport results with clinical variables without 
directly involving clinicians in the use of the tool. Correla-
tion with clinical variables, such as EDSS, is a first clinical 
exploration only and can be successful without demonstrat-
ing clinical utility. Only one company has tested the tool by 
clinician end-users investigating reporting time (outside of 
normal clinical routine), diagnostic accuracy, and intra- and 
inter-observer variability [18]. We have demonstrated that 
testing by clinicians in a clinical context is extremely scarce. 
In 2021, Pemberton et al also demonstrated a lack of clini-
cal validation of dementia QReports [35]. Clinical valida-
tion is part of step 4 of the QNI model framework, which 
encourages studying the impact of QReports on intra- and 
inter-rater reliability, diagnostic confidence and accuracy, 
and clinical management, such as reporting time within the 
context of normal clinical routine, to promote user-confi-
dence and evidence-based care [34]. The collaboration of 
clinicians and vendors is key for refining these tools, increas-
ing their clinical uptake, and aiding future developments.

This review has demonstrated a lack of in-use evaluation, 
which is set out as step 6 of the QNI framework [34]. Only 
one in-use evaluation study was identified, which is a 
microsimulation investigating the health economic impact 
of a QReport in a hypothetical cohort of MS patients [32]. 
Socioeconomic validation may encourage clinical translation, 
as the added value for stakeholders such as insurers should 
be demonstrated to encourage reimbursement for widespread 
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clinical use. The effect of an MS QReport on treatment choice 
and escalation was explored in the simulated in-use evaluation 
study; however, this should be further explored in a real-life 
clinical context [32]. The patient perspective on their digital 
MS care pathway has been investigated by the same company 
[18]. Patient-reported outcome measures (PROMs) could be 
incorporated into in-use evaluation, especially if patients 
have access to results. Several companies claimed that patient 
access can be provided in the form of a simplified patient-
oriented report and icometrix has developed the icompanion 
patient app, which provides access to their MRI scans. It is of 
note that seven out of ten companies have received regulatory 
approval in the last 5 years and clinical use of commercial 
QReports is still limited; therefore, in-use evaluation may 
become more prevalent over time. Presenting the evidence 
as we have done in this review is important for informed 
implementation in clinical settings, which in turn may 
facilitate an increase in opportunities for in-use evaluation.

Conducting clinical validation and in-use evaluation 
could help companies optimize their tools for application 
in different clinical settings using diverse input data. Step 
5 of the QNI framework focuses on workflow integration, 
including overcoming barriers to generalizability [34]. All 
companies provided some form of PACS integration and 
DICOM standard data format. QReports should be tested 
for robustness to different scanners and field strengths and 
the normative reference data provided for contextualization 
of results should be generalizable, as input data can vary. 
Vendors had mostly compiled large datasets of normative 
reference values; however, only one company had compared 
their control population dataset intercontinentally [33]. The 
tools identified typically rely on 3D MRI input sequences, 
which are becoming increasingly available (as recommended 
by imaging guidelines [96, 97]) but may not yet be used in 
many clinical settings. Furthermore, there is a discrepancy 
between the MRI sequences used in standard clinical 
routine and in commercial QReports for use in MS, as most 
identified QReports rely on both T1-weighted and T2-FLAIR 
sequences; however, non-contrast T1-weighted images are 
not routinely included in the imaging guidelines for MS 
[5]. Companies should continue to be transparent about the 
generalizability of their tools and clinical usability should be 
studied to address translational barriers. Table 1, the database 
of technical features and characteristics, demonstrates the 
variation in generalizability measures and can help clinicians 
select the most appropriate tool for a specific clinical setting.

Structured validation and evaluation procedures could 
facilitate comparison between tools and their improvement. 
The QNI framework can provide a structure and guidelines 
for future studies, especially by highlighting the need for 
the testing of tools by clinicians [34]. In January 2021, 
the FDA published a regulatory framework action plan 
for artificial intelligence/machine learning as a medical 

device [98] and in October 2021, the FDA, Health Canada, 
and the UK’s Healthcare products Regulatory Agency 
(MHRA) defined 10 guidelines for Good Machine Learning 
Practices (GMLP) [99], which reference testing in a clinical 
setting and validation of robustness and generalizability. 
The EU has recently introduced new clinical evaluation 
requirements for regulatory-approved medical devices 
[100, 101] and in April 2021, the European Commission 
published the Artificial Intelligence Act to stimulate the 
development of AI and ensure its trustworthiness focusing 
on investment and policy [102]. Furthermore, in March 
2022, Icometrix received the first Medtech Innovation 
Briefing in MS by NICE, which provides advice on use 
and a summary of the evidence (https://​www.​nice.​org.​uk/​
advice/​mib291/​chapt​er/​summa​ry). By addressing the testing 
of QReports and providing guidance for use, regulatory 
bodies could support transparency and encourage structured 
validation and evaluation procedures.

Limitations

Different search strategies were required to identify FDA- 
and CE-cleared tools. Without a fully searchable database 
of CE-marked tools, it is possible that tools could have been 
missed. It is possible that a tool may have been granted FDA 
or CE regulatory approval or a company published relevant 
studies during the publication process of this review. The 
conclusion remains unchanged that there is a lack of clini-
cal validation and in-use evaluation of MS QReports. Some 
technical information on tools was provided by the compa-
nies and could not be independently verified by the authors 
without access to the software packages.

Conclusion

This review has identified 10 commercially available MS 
QReports. We have summarized validation and evaluation 
studies and provided a database of technical details of the 
tools to increase transparency and aid evidence-based deci-
sion-making in the clinic. We used the QNI framework to 
classify validation and evaluation studies to promote a com-
mon, structured pathway for clinical translation. We revealed 
an evidence gap in the clinical validation and in-

use evaluation of QReports for use in MS, especially in 
studies testing the use of the tool by clinicians. In total, 10 
companies producing commercial MS QReports were iden-
tified, of which 4 have conducted clinical validation (only 
one study involving clinician end-user testing), and 1 in-use 
evaluation. With this review, we aim to encourage rigorous, 
structured testing of QReports to elucidate how these tools 
can be integrated into clinical workflow for the assessment 
of MS.
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