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Abstract

Purpose MRI is integral to the diagnosis of multiple sclerosis (MS) and is important for clinical prognostication. Quantita-
tive volumetric reporting tools (QReports) can improve the accuracy and objectivity of MRI-based assessments. Several
QReports are commercially available; however, validation can be difficult to establish and does not currently follow a com-
mon pathway. To aid evidence-based clinical decision-making, we performed a systematic review of commercial QReports
for use in MS including technical details and published reports of validation and in-use evaluation.

Methods We categorized studies into three types of testing: technical validation, for example, comparison to manual segmen-
tation, clinical validation by clinicians or interpretation of results alongside clinician-rated variables, and in-use evaluation,
such as health economic assessment.

Results We identified 10 companies, which provide MS lesion and brain segmentation and volume quantification, and 38
relevant publications. Tools received regulatory approval between 2006 and 2020, contextualize results to normative reference
populations, ranging from 620 to 8000 subjects, and require T1- and T2-FLAIR-weighted input sequences for longitudinal
assessment of whole-brain volume and lesions. In MS, six QReports provided evidence of technical validation, four com-
panies have conducted clinical validation by correlating results with clinical variables, only one has tested their QReport by
clinician end-users, and one has performed a simulated in-use socioeconomic evaluation.

Conclusion We conclude that there is limited evidence in the literature regarding clinical validation and in-use evaluation
of commercial MS QReports with a particular lack of clinician end-user testing. Our systematic review provides clinicians
and institutions with the available evidence when considering adopting a quantitative reporting tool for MS.
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Abbreviations
MRI Magnetic resonance imaging
Key points : :
o A PROSPERO-registered systematic review identified 10 M5 Multlple ?Cl@rOSlS . .
FDA- and/or CE-approved quantitative volumetric reporting QReport Quantitative volumetric reporting tool
tools (QReports) for the assessment of multiple sclerosis (MS). FLAIR Fluid-attenuated inversion recovery
o All tools identified provide longitudinal assessment of whole- QNI Quantitative Neuroradiology Initiative
brain volume and lesions with contextualization of results to PRISMA Preferred Reporting Items for System-
normative reference populations. . .
o A total of 38 peer-reviewed studies covered technical (30 papers) atic Reviews and Meta-Analyses
and clinical validation (7 papers) and in-use evaluation (1 paper) PROSPERO Prospective Register of Systematic
of QReports in MS. Reviews
e Only one company has conducted a clinical validation study in FDA Food and Drug Administration
which their QReport is tested by clinicians as end-users. . B
o There is limited evidence regarding clinical validation and in-use CE Conformité Européenne (French for
evaluation of commercial MS QReports, particularly involving “European conformity”)
clinician end-user testing. EDSS Expanded Disability Status Scale
SDMT Symbol Digit Modalities Test
P4 Zoe Mendelsohn . . .
2 mendelsohn @ucl.ac.uk WMH White matter hyperintensity
SPM Statistical parametric mapping
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LST Lesion Segmentation Tool

samseg Sequence Adaptive Multimodal
SEGmentation

SIENA(X) Structural Image Evaluation, using Nor-
malisation, of Atrophy

BaMoS Bayesian Model Selection

Lesion-TOADS Lesion TOpology-preserving Anatomi-

cal Segmentation

BIANCA Brain Intensity AbNormality Classifica-
tion Algorithm

T25FT Timed 25-foot walk test

9HPT 9-Hole Peg Test

NICE National Institute for Health and Care
Excellence

Introduction

Multiple sclerosis (MS) is a chronic inflammatory and neu-
rodegenerative disease of the central nervous system char-
acterized by demyelinating lesions and atrophy [1, 2]. Brain
atrophy is accelerated in MS compared to the healthy popu-
lation [3]. Both lesion evolution and brain volume loss over
time correlate with clinical disability [3, 4].

Structural MRI is routinely used in the diagnostic workup of
MS and to assess and monitor demyelinating lesions [5]. MRI-
based measurement of brain atrophy is becoming increasingly
recognized as an important clinical prognostication tool [3, 6, 7].
Brain and lesion volumes measured using image segmentation
have become established biomarkers for determining treatment
efficacy in research studies and clinical trials [8—11]. Previous
research has shown that brain atrophy [12] and lesion
volumes [13] significantly predict long-term disability in all
MS phenotypes, especially when used in combination [4, 9].
Manual segmentation of the brain and lesions is time-consuming
and can also be prone to imprecision and error [14—16]. The
development and use of automated and semi-automated brain
and lesion segmentation methods, such as in quantitative
volumetric reporting tools (QReports), has increased in recent
years [11, 17]. These tools aim to improve the objectivity of
image interpretation by increasing the sensitivity of MRI
analysis [18, 19], the accuracy[20-25] and reproducibility of
results [22, 26], and potentially decreasing reporting time [18].
QReports can facilitate cross-sectional diagnosis [20, 26-30],
longitudinal assessment [20, 22, 23, 31], and therapy response
monitoring [32] via user-friendly graphical displays. QReports
may also offer automatic contextualization of an individual
patient’s volumetric results against a relevant reference
population [33], which could assist clinicians in disease course
prognostication and deciding on therapeutic strategies. Various
QReports for MS have been developed for use in the clinical
setting, and many of these tools are commercially available
having received regulatory approval.
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Currently, the application of QReports in the clinic is limited
[11, 12]. Clinical institutions may not have adequate resources
to assess how tools have been tested and validated, despite
commercialization for medical use. To encourage evidence-
based use and to aid clinicians in deciding how and whether to
adopt these tools, the validity of results and the impact on clini-
cal management should be established. Technical and clinical
validation and evaluation of quantitative reporting tools do not
currently follow standardized methods. The quantitative neu-
roradiology initiative (QNI) addresses this issue and provides
a six-step translational pathway for quantitative reporting tools
[34]. The QNI model distinguishes three types of testing: techni-
cal validation of tool performance, for example, comparison to
manual segmentation or other segmentation techniques; clinical
validation by clinicians or by interpretation of results alongside
clinician-rated variables; and finally in-use evaluation, such as
health economic assessment [34].

Our previous work demonstrated a lack of technical and
notably clinical validation of commercial QReports in demen-
tia [35]. In the current paper, we replicated this methodology
and performed a systematic review of the literature aiming to
validate or evaluate commercial QReports for use in MS. We
(1) presented the range of tools, including details of their tech-
nical features and characteristics and (2) provided a descriptive
synthesis of the evidence published regarding their validation.
We assessed the literature according to the QNI framework,
categorizing studies into technical and clinical validation and
in-use evaluation. The aim is to increase transparency and help
clinicians to make informed decisions about whether to adopt
commercial QReports into clinical routine for the assessment
of patients with MS and provide an overview of the features of
each commercially available tool.

Methods

This review was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) guidelines [36-38] and is registered with the
Prospective Register of Systematic Reviews (PROSPERO)
database under number CRD42021286139.

Vendor and product search
Product inclusion and exclusion criteria

The inclusion criteria for QReports are as follows: (1) FDA
or CE clearance; (2) target disorder MS or a population with
suspected MS (specified on the company website or in the
literature); (3) uses structural-MRI-based input (4) to gen-
erate brain and lesion volumetric results; (5) incorporates
normative reference data for single-subject comparison; (6)
presents results in a structured report format.
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Search methodology: FDA-cleared product identification
1. Keyword screening

The FDA medical device databases were used (last access:
28 January 2022) to find FDA-cleared automated quantitative
MRI reporting tools in MS (https://www.fda.gov/medical-
devices/device-advice-comprehensive-regulatory-assistance/
medical-device-databases). A total of 83,556 premarket 510(k)
FDA notification clearances dating from 1996 to present were
downloaded in a text file from https://www.fda.gov/medical-
devices/510k-clearances/downloadable-510k-files. The text file
was searched using the keywords listed below and 821 “medical
devices” were identified for further review. Terms with an * use
“wild-cards,” covering relevant suffixes of each word stem, for
example, “Radiolog*” covers “Radiology,” “Radiologist,” and
“Radiological”:

o Neuro* o Cortex o Structur*®

e Brain e Dementia e Segment™

o Quant* e Volume e Automat*

e MRI o Multiple o Spinal

e Hippocamp* o Sclerosis e Cord

e Radiolog* e Lesion o MS

o Atroph* e Lobar e Demyelinat*®

e Cortical e Lobe

2. Eligibility screening

Manual checks were performed to verify the com-
pany name, product name, approval date, and descrip-
tion on the FDA database. Tools considered hardware
were excluded at this stage. The websites of all remain-
ing companies were searched to further investigate the
intended use of their products. Seven companies that had
not specified MS as the target disorder were excluded
from further review. Two quantitative reporting tools
that were acquisition dependent were also excluded at
this stage. After manual checks and searching company
websites, four companies were identified as meeting our
inclusion criteria (see Fig. 1 for PRISMA flowchart out-
lining search for companies).

Search methodology: CE-marked product identification

As there was no freely available, searchable database
of CE-marked products, the websites of relevant medi-
cal imaging conferences (ISMRM, ESMRMB, RSNA,
ECR, ESR AIX, ASNR, SIIM, and ESNR) were searched
to identify companies that exhibited their products in
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2019-2021. The websites of identified companies were
searched in detail to find CE-marked quantitative report-
ing tools. Sixty-three tools were excluded after screening
the company and product name and intended use. Results
were cross-checked using the following website: https://
grand-challenge.org/aiforradiology/. Two companies
that had not specified MS as the target disorder were
excluded from further review. Finally, six companies
with CE-marked tools were identified that fit our inclu-
sion criteria.

Each company was directly contacted to verify the prod-
uct name, date of approval, description, and intended use of
the product. The companies were informed of their inclu-
sion in the review and given the opportunity to add to and
correct information gathered from company websites and
the literature. Excluded companies are summarized in the
“Results” section.

Company and product features

The following technical details of the 10 tools included in
the review were extracted from company websites, publica-
tions identified in the literature search, and by direct vendor
contact:

FDA/CE approval

Date of approval

Target disorder

Input sequences

Brain and lesion segmentation and volumetry method
Lesion filling

Brain atrophy data

Cross-sectional or longitudinal analysis available
Details of normative reference populations
Provision of segmentation overlays

Strategies to account for inter-scanner variability
Image quality control method(s)

Report deployment procedure

Literature search on technical and clinical validation
of identified products

A literature search was conducted independently by two
authors according to PRISMA guidelines [36-38]. The
results were checked and verified by a third author; any
inclusion or exclusion discrepancies were settled by con-
sensus. The 10 company names and their associated prod-
uct names were used as search terms. Both company and
product names were used to ensure the identification of
studies published before product branding. Searches were
simultaneously conducted in PubMed, Ovid Medline “All
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fields” and Scopus (latest search: 29 March 2022). Com-
pany and product names comprising several words are
bracketed to indicate single search terms. Companies were
directly contacted to verify company and product names.
The search terms were as follows:

1. AIRAmed OR (AIRAscore)

2. Combinostics OR (cNeuro cMRI)

(CorTechs Labs) OR (NeuroQuant MS) OR Lesion-
Quant

Icometrix OR MSmetrix OR (icobrain ms)
(Jung diagnostics) OR Biometrica

mediaire OR mdbrain

Pixyl OR Pixyl.Neuro.MS OR Pixyl.Neuro.BV
Quibim OR (Quibim Precision)

Qubiotech OR (Neurocloud VOL)

Qynapse OR QyScore

e

=N SR

References in identified publications, papers listed
under “similar articles” in PubMed, and all publications
listed on company websites were also searched to identify
additional relevant validation studies. Companies were
given the opportunity to provide further relevant studies.

Study inclusion criteria

The study inclusion criteria used in this review are based
on the QNI framework for the translation of quantitative
reporting tools into the clinic. Studies were included in the
review on the basis that they met the following inclusion
criteria: (1) published in English as original research in
academic peer-reviewed journals or conference proceed-
ings (conference abstracts and posters excluded), (2) which
involve automated lesion, or brain and lesion, segmentation
and volumetry computed from structural MR images (3) in
an MS population and/or healthy controls, and (4) fit either:

Technical validation

Papers validating the technical performance of lesion or
brain and lesion segmentation methods. For example,
test-retest studies or comparison to manual segmentation
and/or other state-of-the-art brain volumetry tools, such
as FreeSurfer [39], SPM (www.fil.ion.ucl.ac.uk/spm),
SIENA(X) [40], and lesion segmentation tools, for exam-
ple, LST [41, 42], nicMSlesions [43], and samseg [44],
and testing for robustness to different input data. Papers
focusing only on brain segmentation were not included
unless conducted in an MS population.
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Clinical validation

1. Testing of the tool by clinicians on an MS population
focusing on one of more of the following: (a) determin-
ing diagnostic accuracy, confidence, and differential
diagnoses vs. “ground truth” clinician-rated diagnoses,
i.e., using receiver operating characteristics; (b) assess-
ing the tool’s effect on clinical management (usability,
prognostic value); (c) inter-rater reliability metrics or
percent agreement.

2. Clinical trials in MS using the tool’s results as an out-
come measurement.

3. Interpretation of results alongside clinician-rated vari-
ables, such as the Expanded Disability Status Scale
(EDSS) and Symbol Digit Modalities Test (SDMT),
as measures of physical and cognitive disability in MS,
respectively.

In-use evaluation

Studies assessing any of (1) benefit to patients, (2) the effect
on reporting time in the context of normal clinical routine,
(3) clinical and population perception, or (4) socioeconomic
impact of using QReports in the clinic.

Data extraction

Two raters independently categorized all studies that met our
inclusion criteria into technical validation, clinical valida-
tion, or in-use evaluation. A third researcher checked the
results, and a consensus was reached on any discrepancies.

Results
Company and product search

Following the systematic search outlined above, 10 compa-
nies were identified that produce tools meeting our inclusion
criteria; see Fig. 1 for a research flow diagram summarizing
the search for relevant products.

Excluded tools

According to PRISMA guidelines, inclusion criteria were
decided on in advance (see “Methods” section). The results
of the eligibility screening are presented below.

MS brain and lesion segmentation and volumetry tools
were excluded if they were not FDA or CE approved, such
as SegPlus by Neurophet (https://www.neurophet.com),
which has conducted technical validation [45], and Ten-
sorMedical (https://www.tensormedical.ai) that developed
and uses the nicMSlesions software and has evidence of

technical validation in MS [43]. Research tools that did
not have FDA or CE approval, such as FreeSurfer [39],
SPM (www.fil.ion.ucl.ac.uk/spm) or SIENA(X) [40] and
LST [41, 42], samseg [44], or BaMoS [46], were excluded.

QReports that, according to the literature and the com-
pany websites, did not conduct brain and MS lesion seg-
mentation, including Childmetrix by Icometrix (a pedi-
atric non-MS-related QReport) (http://icometrix.com),
Quantib ND by Quantib (https://www.quantib.com), neu-
roreader by Brainreader (https://brainreader.net), THINQ
by Corticometrics (https://www.corticometrics.com),
tools by JLK Inc (https://www.jlkgroup.com), and Cor-
insights MRI by ADM diagnostics (https://admdx.com),
VUNO Med-DeepBrain by Vuno (https://www.vuno.co),
Al-Rad Companion Brain by Siemens Health (https://
www.siemens-healthineers.com), AQUA by Neurophet
(https://www.neurophet.com), and DIADEM by Brain-
miner (https://www.brainminer.co.uk), were excluded.
Our research group has conducted a systematic review
including several of these tools for other indications [35].

Acquisition-dependent quantitative neuroimaging tools
were also excluded, including SyMRI Neuro by Synthet-
icMR (https://syntheticmr.com/) and STAGE by SpinTech-
MRI (https://spintechmri.com), which include dedicated
quantitative MRI-based reporting tools that can be used
in the setting of MS. SyMRI Neuro is an FDA- and CE-
approved tool providing brain and myelin segmentation
and has been technically and clinically validated in MS
populations [47-50]. STAGE (strategically acquired gra-
dient echo) is an FDA-approved quantitative MRI-based
reporting tool providing atrophy and MS lesion charac-
terization using susceptibility-weighted images. STAGE
has been validated on healthy subjects and several MS
cases [51, 52].

Included tools

The 10 companies and their QReports identified using the
search strategy described in the “Methods” section and
illustrated in Fig. 1 are presented in Table 1 along with key
technical details.

Company and product features

Table 1 is a structured database of the technical features
and characteristics of the QReports. Company and product
features are summarized below. Report processing times
were not included, as measurement and comparison should
be conducted independently by the authors using the same
cases and resources, which was not possible without access
to the software packages.
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CE/FDA approval status

All 10 companies have obtained either CE class I/II or FDA
510(k) clearance, as “software as a medical device.”

Date of approval

CorTechs.ai was the first company to receive FDA clearance
in 2006. The most recent of the 10 companies to receive CE
or FDA regulatory approval was AIRAmed in 2020.

Target disorder

All companies produced a report for the assessment of MS
lesions and brain atrophy. For some tools, the MS QReport
was an extension of a previously established brain volume
quantification tool.

Input sequences

Most companies required 3D T1 and 2D or 3D T2-FLAIR
input sequences for brain and lesion segmentation. Two
tools also provided the option to use a 2D or 3D gadolinium-
enhancing T1-weighted sequence for contrast-enhancing T1
lesion detection.

Brain/lesion segmentation/volumetry method

All companies used proprietary methods developed “in
house,” of which four claimed to use deep learning. Two
companies reported using modified versions of research
methods, including SIENA(X)[40] and SPM (www.fil.ion.
ucl.ac.uk/spm). Brain and lesion segmentation software
was commercialized as a single package or as two different
tools (which is the case for two companies, see Table 1).

Lesion data

All tools reported longitudinal lesion volume. Nine out of
ten tools reported longitudinal lesion count. Nine out of ten
QReports provided the spatial distribution of lesions accord-
ing to the McDonald criteria [53] categorized into periven-
tricular, juxtacortical, deep white matter, and infratentorial.
Companies that have not yet included lesion count and spa-
tial distribution of lesions claimed to be working to provide
this information in upcoming updates and releases of the
tools.

Lesion filling
Lesion filling is commonly used to accurately compute brain

volumes in MS [54]. Eight out of ten companies used either
automatic lesion filling or deep learning approaches, which

did not require lesion filling. The approaches used for lesion
filling are outlined in Table 1.

Brain atrophy data

Brain atrophy was reported in milliliters, as a percentage of
the total intracranial volume (TIV), as a normative percen-
tile, or as a z-score.

Cross-sectional and longitudinal brain volumetry analysis

All 10 companies provided both cross-sectional and longitu-
dinal analyses of lesions and whole brain atrophy. Longitudi-
nal analysis approaches were indirect for four QReports, i.e.,
the difference in volume/percentile per structure between two
visits and direct for six QReports, such as using SIENA [40].

Details of a normative reference population

The normative reference populations of all tools comprised
a large age range, typically from 20 to 90 years with a sex
balance, and were compiled from public and/or private data-
sets. Nine out of ten companies used datasets with a range
of scanner types and field strength. The size of the datasets
varied between 620 and ~8000 subjects.

Segmentation/atrophy visual overlays

All QReports provided visual lesion and brain segmentation
overlays.

Image quality control method

All tools used image quality control (QC) processes. The
methods used varied and were mainly automatic, including
checks for artifacts and acquisition parameters, computing
of standard measures of image quality, such as signal-to-
noise ratio (SNR) (comparing the level of the target signal
to background noise), and automatic flagging of the need
for manual QC.

Strategies to account for inter-scanner variability

All companies claimed to use strategies to account for
diverse input data, including a mix of scanner type and
field strength in the normative reference population,
algorithm training, using independent validation data-
sets, accounting for vendor-specific acquisition param-
eters, implementing Al-based augmentation to anticipate
the variability between images, and using site qualifica-
tion procedures.

@ Springer
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PACS integration/report deployment procedure

All companies claimed to provide PACS integration either
using a cloud-based solution and/or local virtualization
and/or local hardware.

Peer-reviewed technical and clinical validation

All companies had conducted internal validation pro-
cesses, including the necessary steps for CE and/or FDA
clearance. Also, all companies claimed to be carrying out
further peer-reviewed validation studies. It is of note that
several companies had conducted studies validating their
tools in other disease areas [55-64]. These papers have
only been included if lesion, or brain and lesion, quanti-
fication techniques were under investigation in MS and
if the tool is commercialized for use in MS either on the
company website or in publications.

The number and category of studies identified in the
literature search are presented in Fig. 2 and described
below in the “Literature search” section.

@ Springer

Literature search

The results of the literature search are outlined in the
PRISMA workflow diagram in Fig. 2 and documented fur-
ther below. A total of 38 peer-reviewed publications cover-
ing technical (n = 30), clinical (n = 7) validation, or in-use
evaluation (n = 1) were identified. In total, 6 companies
have conducted technical validation, 4 have published clini-
cal validation, 1 has conducted an in-use evaluation, and 3
have not published studies meeting our inclusion criteria.
The distribution of studies identified is presented in Fig. 3.

Validation studies identified

To remain unbiased, a narrative synthesis of the studies
identified for each company is provided and referenced below
(in alphabetical order). All publications were conducted in
MS and/or healthy control populations. In summary, technical
validation mainly consisted of comparison with manual lesion
counting, manual segmentation, or state-of-the-art automated
brain volumetry and lesion segmentation tools, including
SIENA(X) [40], Freesurfer [39], SPM (www.fil.ion.ucl.ac.uk/
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spm), FIRST [65], Cascade [66], LST [41, 42], Lesion-TOADS
[67], lesionbrain [68], BIANCA [69], and nicMSlesions [43].
Technical validation was also conducted as repeatability studies
and by testing different acquisition protocols. Clinical validation
mainly comprised correlation of the tool’s results with clinical
variables, such as EDSS scores. Only one clinical validation
study incorporates clinician end-user testing [18]. Validation
studies conducted by each company are summarized below.

Combinostics

Clinical: The cNeuro cMRI results were correlated with
EDSS scores [70].

CorTechs Labs

Technical: NeuroQuant MS has been tested for longitudinal
consistency [20] and compared to visual radiological assess-
ment [20], icobrain ms [28], and established brain and lesion
segmentation methods (FIRST [71], LST [71], SIENA(X)
[28], FreeSurfer [20], and Cascade [20]).

Clinical: NeuroQuant MS results were correlated with
clinical variables, including EDSS and timed 25-foot walk
test (T25FT) and 9-Hole Peg Test (9HPT) scores as meas-
ures of MS-related physical disability [20].

lcometrix
Technical: icobrain ms has been tested for robustness to dif-

ferent input data [26, 31, 33, 72-74], reproducibility [26, 31,
72, 74], repeatability [73, 74], and consistency over time [19,

73]. The tool has been compared to manual segmentation
[19, 21, 26, 31, 74, 75], LesionQuant [28], and automated
established brain and lesion segmentation and atrophy quan-
tification methods, such as SIENA(X) [28, 72-74, 76, 77],
LST [26, 31], Lesion-TOADS [26], FreeSurfer [77], and
SPM [74, 77] and has been included in a longitudinal MS
lesion segmentation challenge [21]. Earlier or other versions
of the tool have been compared to the current version [31,
75]. An automated method to decrease the effect of inter-
scanner variability on results has been tested [78, 79].

Clinical: The tool has been tested by clinicians as end-
users investigating the impact on intra- and inter-rater
variability, reporting time (outside of their normal clinical
routine), and detection of disease activity in comparison to
visual radiological assessment [18]. The ability of the tool
to differentiate MS clinical phenotypes has been investigated
[18]. The tool’s results were correlated with EDSS [18, 76,
80, 81] and SDMT scores [81] and the number of relapses
[80].

In-use evaluation: Icometrix has investigated the health-
economic impact of icobrain ms in a microsimulation study
with a decision analytical model based on a hypothetical
cohort of MS patients testing for disease detection, treatment
decision-making, patient quality of life, and costs using the
tool in comparison to clinical and visual radiological assess-
ment [32].

Jung diagnostics

Technical: Jung diagnostics have compared the current
method to earlier versions of the tool (which included LST)

@ Springer


http://www.fil.ion.ucl.ac.uk/spm

18

Neuroradiology (2023) 65:5-24

[22, 27, 82, 83] and to manual segmentation [22, 27, 82].
The tool has been tested for repeatability [27, 84, 85], repro-
ducibility [22, 27], and robustness to different input data
[22, 27, 86]. Jung diagnostics has compared two methods
for brain atrophy data adjustment for head size and age [86].

Clinical: Biometrica results were correlated with clinical
variables, including EDSS and SDMT scores, disease dura-
tion, and MS phenotypes [87].

Mediaire

Technical: The tool has been tested for robustness to differ-
ent input data [88] and was compared to manual segmenta-
tion and other lesion segmentation tools in a longitudinal
MS lesion segmentation challenge [23].

Pixyl

Pixyl.Neuro.MS is an MS lesion segmentation tool and
Pixyl.Neuro.BV can be used for brain volumetry. Techni-
cal: The lesion segmentation method has been compared to
manual segmentation [24, 29, 89] and to older established
automated methods [24, 29, 89], including in an MS lesion
segmentation challenge [24]. Newer improved versions of
the tool have been compared to previous versions [90] and
to manual segmentation [90].

Qynapse

Technical: Qynapse has compared the current method for
lesion segmentation to a previous method, to state-of-the-
art lesion segmentation methods (including LST, Lesion-
TOADS, lesionBrain, BIANCA, and nicMSlesions), and to
manual segmentation [25, 30]. QyScore has been tested for
robustness to different input data [30].

Discussion

This systematic review identified 10 companies currently
offering FDA- and CE-cleared QReports for use in MS.
Most tools identified in this review have obtained regulatory
approval in the last 5 years. By reviewing commercial QReports
in MS and previously in dementia [35], we aimed to provide
the information needed by clinicians to navigate the rapidly
developing market for quantitative reporting tools. Studies
identified in this review have been categorized according to the
QNI model framework to encourage the adoption of a common
translational pathway with rigorous and structured testing. We
have identified 38 relevant validation and evaluation studies: 30
technical validation studies, 7 clinical validation studies, and 1
in-use evaluation. In total, 6 QReports have evidence of technical
validation, 4 companies have conducted clinical validation, and

@ Springer

1 has conducted in-use evaluation. The date of approval of tools
did not always correlate with the number of validation studies
identified. For example, CorTechs.ai, which received FDA
approval in 2006, began developing and validating their tools in
MS after validation in other diseases, such as dementia. Clinical
validation studies were more prevalent for companies that had
received regulatory approval earlier. All companies claimed to
be conducting (further) validation studies.

Previous reviews of MS QReports compare both the
methodologies used in research and commercially available
tools without naming vendors—mainly due to publication
prior to their branding [11, 17, 91-95]. In this paper, we
review all identified commercial MS QReports that offer a
combination of lesion and brain segmentation and volume-
try. We aimed to remain unbiased by synthesizing and cat-
egorizing papers avoiding direct comparison and evaluation.
There is little scope and evidence to recommend one com-
mercial MS QReport over another, as the needs of purchas-
ers may vary and tools have mainly not been tested under
the same conditions using the same database (other than in
one study identified in this review, which directly compares
the performance of two commercial MS QReports) [28].

Our review has highlighted a lack of clinical validation
of MS QReports and in particular testing of tools by clini-
cians. Only four out of ten vendors had conducted clinical
validation in an MS population and three of these companies
correlated QReport results with clinical variables without
directly involving clinicians in the use of the tool. Correla-
tion with clinical variables, such as EDSS, is a first clinical
exploration only and can be successful without demonstrat-
ing clinical utility. Only one company has tested the tool by
clinician end-users investigating reporting time (outside of
normal clinical routine), diagnostic accuracy, and intra- and
inter-observer variability [18]. We have demonstrated that
testing by clinicians in a clinical context is extremely scarce.
In 2021, Pemberton et al also demonstrated a lack of clini-
cal validation of dementia QReports [35]. Clinical valida-
tion is part of step 4 of the QNI model framework, which
encourages studying the impact of QReports on intra- and
inter-rater reliability, diagnostic confidence and accuracy,
and clinical management, such as reporting time within the
context of normal clinical routine, to promote user-confi-
dence and evidence-based care [34]. The collaboration of
clinicians and vendors is key for refining these tools, increas-
ing their clinical uptake, and aiding future developments.

This review has demonstrated a lack of in-use evaluation,
which is set out as step 6 of the QNI framework [34]. Only
one in-use evaluation study was identified, which is a
microsimulation investigating the health economic impact
of a QReport in a hypothetical cohort of MS patients [32].
Socioeconomic validation may encourage clinical translation,
as the added value for stakeholders such as insurers should
be demonstrated to encourage reimbursement for widespread
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clinical use. The effect of an MS QReport on treatment choice
and escalation was explored in the simulated in-use evaluation
study; however, this should be further explored in a real-life
clinical context [32]. The patient perspective on their digital
MS care pathway has been investigated by the same company
[18]. Patient-reported outcome measures (PROMs) could be
incorporated into in-use evaluation, especially if patients
have access to results. Several companies claimed that patient
access can be provided in the form of a simplified patient-
oriented report and icometrix has developed the icompanion
patient app, which provides access to their MRI scans. It is of
note that seven out of ten companies have received regulatory
approval in the last 5 years and clinical use of commercial
QReports is still limited; therefore, in-use evaluation may
become more prevalent over time. Presenting the evidence
as we have done in this review is important for informed
implementation in clinical settings, which in turn may
facilitate an increase in opportunities for in-use evaluation.
Conducting clinical validation and in-use evaluation
could help companies optimize their tools for application
in different clinical settings using diverse input data. Step
5 of the QNI framework focuses on workflow integration,
including overcoming barriers to generalizability [34]. All
companies provided some form of PACS integration and
DICOM standard data format. QReports should be tested
for robustness to different scanners and field strengths and
the normative reference data provided for contextualization
of results should be generalizable, as input data can vary.
Vendors had mostly compiled large datasets of normative
reference values; however, only one company had compared
their control population dataset intercontinentally [33]. The
tools identified typically rely on 3D MRI input sequences,
which are becoming increasingly available (as recommended
by imaging guidelines [96, 97]) but may not yet be used in
many clinical settings. Furthermore, there is a discrepancy
between the MRI sequences used in standard clinical
routine and in commercial QReports for use in MS, as most
identified QReports rely on both T1-weighted and T2-FLAIR
sequences; however, non-contrast T1-weighted images are
not routinely included in the imaging guidelines for MS
[5]. Companies should continue to be transparent about the
generalizability of their tools and clinical usability should be
studied to address translational barriers. Table 1, the database
of technical features and characteristics, demonstrates the
variation in generalizability measures and can help clinicians
select the most appropriate tool for a specific clinical setting.
Structured validation and evaluation procedures could
facilitate comparison between tools and their improvement.
The QNI framework can provide a structure and guidelines
for future studies, especially by highlighting the need for
the testing of tools by clinicians [34]. In January 2021,
the FDA published a regulatory framework action plan
for artificial intelligence/machine learning as a medical

device [98] and in October 2021, the FDA, Health Canada,
and the UK’s Healthcare products Regulatory Agency
(MHRA) defined 10 guidelines for Good Machine Learning
Practices (GMLP) [99], which reference testing in a clinical
setting and validation of robustness and generalizability.
The EU has recently introduced new clinical evaluation
requirements for regulatory-approved medical devices
[100, 101] and in April 2021, the European Commission
published the Artificial Intelligence Act to stimulate the
development of Al and ensure its trustworthiness focusing
on investment and policy [102]. Furthermore, in March
2022, Icometrix received the first Medtech Innovation
Briefing in MS by NICE, which provides advice on use
and a summary of the evidence (https://www.nice.org.uk/
advice/mib291/chapter/summary). By addressing the testing
of QReports and providing guidance for use, regulatory
bodies could support transparency and encourage structured
validation and evaluation procedures.

Limitations

Different search strategies were required to identify FDA-
and CE-cleared tools. Without a fully searchable database
of CE-marked tools, it is possible that tools could have been
missed. It is possible that a tool may have been granted FDA
or CE regulatory approval or a company published relevant
studies during the publication process of this review. The
conclusion remains unchanged that there is a lack of clini-
cal validation and in-use evaluation of MS QReports. Some
technical information on tools was provided by the compa-
nies and could not be independently verified by the authors
without access to the software packages.

Conclusion

This review has identified 10 commercially available MS
QReports. We have summarized validation and evaluation
studies and provided a database of technical details of the
tools to increase transparency and aid evidence-based deci-
sion-making in the clinic. We used the QNI framework to
classify validation and evaluation studies to promote a com-
mon, structured pathway for clinical translation. We revealed
an evidence gap in the clinical validation and in-

use evaluation of QReports for use in MS, especially in
studies testing the use of the tool by clinicians. In total, 10
companies producing commercial MS QReports were iden-
tified, of which 4 have conducted clinical validation (only
one study involving clinician end-user testing), and 1 in-use
evaluation. With this review, we aim to encourage rigorous,
structured testing of QReports to elucidate how these tools
can be integrated into clinical workflow for the assessment
of MS.
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