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Resumen del Trabajo 

El cáncer es una enfermedad compleja y heterogénea que representa un 
importante problema de salud pública mundial debido a su creciente número 
de víctimas y a la ausencia de tratamientos eficaces. Se ha demostrado que 
las mutaciones y modificaciones del ARN desempeñan un papel crucial en el 
desarrollo y la progresión de los tumores. En este contexto, el estudio 
molecular de la biología del cáncer es de suma importancia, debido a su 
relevancia en la clasificación y comparación de múltiples tipos y subtipos de 
cáncer, permitiendo el desarrollo de terapias personalizadas y aumentando el 
éxito del tratamiento. Sin embargo, aunque las tecnologías RNA-seq, como la 
secuenciación Illumina Hiseq, han revolucionado la investigación médica, 
implican el análisis de cantidades extensas de complejos datos. Las técnicas 
de aprendizaje automático no supervisado pueden ser de gran ayuda para 
crear nuevas clasificaciones del cáncer, superando las limitaciones de las 
técnicas tradicionales. 
En este trabajo, se probaron diferentes enfoques de reducción de la 
dimensionalidad, como PCA y UMAP, y varios algoritmos no supervisados, 
incluidos algoritmos de partición, basados en la densidad, jerárquicos y 
basados en modelos, con el fin de identificar tipos y/o subtipos de cáncer 
según su expresión génica. Varios algoritmos, como k-means, PAM, CLARA 
y algoritmos jerárquicos aglomerativos utilizando la técnica UMAP para la 
reducción dimensional, demostraron la capacidad de clasificar los datos de 
expresión génica con un alto grado de precisión formando grupos bien 
separados. Estos resultados confirman el potencial de estos algoritmos para 
contribuir a la lucha contra el cáncer. 
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Abstract 

Cancer is a complex and heterogeneous disease that represents a major 
global public health concern due to its escalating casualty rates and the 
absence of effective treatments. RNA mutations and modifications have been 
shown to play a crucial role in the development and progression of tumors. In 
this context, the molecular study of the cancer biology is of paramount 
importance, due to its relevance in classifying and comparing multiple cancer 
types and subtypes, allowing the development of more personalized therapies 
and increasing the treatment success. However, although RNA-seq 
technologies, such as Illumina Hiseq sequencing, have revolutionized medical 
research, they involve the analysis of complex and extensive amounts of data. 
Unsupervised machine learning techniques can be of unparalleled help in 
creating novel cancer classifications, surpassing the limitations of traditional 
techniques. 

In the present work, different dimensionality reduction approaches, such as 
PCA and UMAP, and several unsupervised algorithms, including partitioning, 
density based, hierarchical and model based algorithms, were tested in order 
to identify types and/or subtypes of cancer according to their gene expression. 
Several algorithms, namely, k-means, PAM, CLARA and agglomerative 
hierarchical algorithms using the UMAP technique for dimensional reduction, 
demonstrated the ability to classify gene expression data with a high degree of 
accuracy forming well separated clusters. These results confirm the potential 
of these algorithms to contribute to the fight against cancer.  
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1. Introduction 
 
 
1.1. Context and justification of the work 
 
According to the 2020 World Cancer Report, cancer ranks as the second most 
prevalent cause of mortality on a global scale, responsible for approximately 9.6 
million fatalities in the year 2018 [1]. Lung, breast, colorectal and prostate cancer 
are amongst the most common cancer types in the world, all of them being 
expected to double their incidence by 2070 [1,2]   
RNA mutations and modifications have recently proven to have a key role in 
tumorigenesis, and tumor growth and progression, leading to the appearance of 
subtypes of cancers [3]. Understanding the underlying biology of cancer and the 
common and differential characteristics among cancers and cancer subtypes, 
can lead to the identification of targets for new therapies, more specific treatments 
for patients, as well as finding biomarkers which could enable a rapid and 
accurate detection of the type of tumour each individual is afflicted with [1].  
However, the analysis of RNA-seq data usually involves high amounts of complex 
and multidimensional data which can be difficult to extract conclusions from [4]. 
Thus, machine learning techniques can be employed to carry out a pan-cancer 
analysis, in order to find relevant mutation or mutation clusters capable of 
distinguishing between cancer types or potentially unveiling new disease 
subtypes, using RNA-seq data of cancer patients. Therefore, this tool could 
represent a significant milestone in improving the prognosis of cancer patients. 
 
 
1.2. Objectives of the work  
 

• General objectives: 
1. Develop an unsupervised machine learning methodology that enables 

to identify RNA expression patterns compatible with different cancer 
types and/or subtypes.  

 

• Specific objectives: 
 

1. Compare different techniques of feature selection genes. 
2. Identify the optimal clustering solution for the dataset. 
3. Compare the obtained clustering with the cancer classification found in 

the literature. 
 

 
1.3. Impact on sustainability, ethical-social aspects, and diversity  
 
The present work focuses on the development of an unsupervised machine 
learning model which leads to an accurate clustering of the RNA expression data 
in cancer patients through a pan-cancer approach. This goal involves the pre-
processing and processing of data, where it is important to be aware of the 
environmental and sustainability impact that this may entail. Hence, although this 
process was carried out by a personal computer and that the amount of data in 
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study is not significant compared to the amount of data that is being processed 
daily worldwide, data management and energy efficiency was taken into 
consideration at every step of the project. Moreover, one of the main objectives 
of this project is to establish an efficient clustering method and, consequently, of 
data processing, which can reduce the time required for data managing, and thus, 
positively improve the energy impact.  
 
In terms of ethical and social aspects, negative impacts are not directly related to 
this work. However, it is important to emphasise that any step into automatization 
or the adoption of new technologies may have an impact on the way data is 
managed, changing the nature of some current jobs, and therefore, being 
important that society is ready to adapt to these changes. Furthermore, the 
technical approach of this work does not have direct implications regarding 
gender, diversity or human rights, due to the anonymity of the data presented and 
that only RNA expression is taken into account to.  
 
In this context, it is important to mention that this work is helping to move a step 
closer to meet up with the UN sustainable Development 2030 Agenda which 
proposes to reduce the total premature mortality from noncommunicable 
diseases by one third by 2030 [1]. A good understanding of the cancer biology 
can help to identify new targets for effective treatments or an early diagnosis, 
among others. Additionally, concerning the Sustainable Development Goals, this 
work is contributing mainly to the Goal 3 (good health and well-being), and more 
indirectly to the Goal 9 (industry, innovation and infrastructure) by providing 
advanced technology for the biomedical research.  
 
 
1.4. Approach and methodology  
 
This work used the data from the UCI Machine Learning Repository [5] which was 
obtained from The Cancer Genome Atlas (TGCA) Pan-cancer analysis project 
[6], analysed in the paper “Identification of common and dissimilar biomarkers for 
different cancer types from gene expressions of RNA-sequencing data” by 
Venkataramana, Lokeswari et al. (2020) [7]. It consists of a collection of RNA-
Seq gene expression levels measured by Illumina HiSeq platform, including th 
data from 801 cancer patients suffering from five different types of cancer, and 
20531 genes. In contrast to Venkataramana, Lokeswari et al. (2020), whose main 
goal is to create a supervised machine learning algorithm to predict cancer 
classification, this work used clustering models to uncover and identify the 
connections between RNA expression patterns and cancer type and subtypes 
among these patients, rather than predicting the specific disease type for each 
patient. Thus, this work is focused on the development of an unsupervised 
machine learning model for creating accurate clusters for the RNA expression 
data.  
 
To carry out the project, the following strategy was followed:  
 

• Identifying the relevant data: since 20531 are considered in this study, it is 
important to remove the irrelevant and redundant data. For this porpoise, 
different methods were used to ensure a good selection of the data, such 
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as evaluating the genes with more variability in their expression and 
recursive feature elimination (RFE) techniques. 

• Determining the optimal number of clusters: different methods were 
performed to determine the optimal number of clusters for the model, 
including the elbow method, the silhouette method or the gap statistic 
method.  

• Apply different types of clustering algorithms: depending on the nature of 
the data, different types of algorithms may be ideal to cluster the data, 
thus, a number of algorithms were tested to determine the best option, 
such as k-Means, Partitioning Around Medoids, Clustering for Large 
Applications, Density-Based Spatial Clustering of Applications with Noise, 
Hierarchical and Gaussian Mixture algorithms. 

• Validating the results with the cancer classifications described in the 
literature.  

 
1.5. Work planification  
 
The work is divided into four principal tasks, which count with sub-tasks, that 
together allowed the completion and submission of all the PECs and deliveries. 
These tasks consist of: 
 

• Task 1. Definition and planification. 
1.1. Bibliographical research 
1.2. Data set selection 
1.3. Objectives outline.   
1.4. Work planification 

• Task 2. Data preparation and cleaning. 
1.1. Exploratory data analysis  
1.2. Identification of relevant genes 

• Task 3. Gene expression data clustering. 
3.1. Determine the optimal number of clusters 
3.2. Clustering algorithms implementation and optimization 
3.3. Results validation in the available literature  
3.4. Exploration of potential cancer subtypes according to the 

clusters obtained.  
 
The sub-tasks and the schedule for starting, completing and delivering each one 
of them, are shown in the calendar below.  
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Figure 1. Gantt diagram of the work tasks and subtasks. 
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Hence, the milestones to be achieved in each one of the PECs were: 
 

• PEC1 (due date 16/10/2023): after having selected a line of work and 
a database, the main and specific objectives of the work outline and a 
work planification schedule were detailed. 

• PEC 2 (due date 20/11/2023): for the first phase of the work 
development, data exploration was carried out. Furthermore, the 
preparation and cleaning were started, as well as the determination of 
the optimal number of clusters, the implementation and optimisation of 
clustering algorithms will be started.  

• PEC 3 (due date 23/12/2023): all the tasks started in the previous PEC 
were concluded. Moreover, the final clustering algorithm was selected, 
and the clusters were compared and validated with the data labels 
reported in the literature. The presence of cancer types and/or 
subtypes was also assessed.  

• Final manuscript (due date 14/01/2024): a final manuscript containing 
the chapters briefly described in section 1.7, was delivered.  

• Public defence (due date 22/01 – 02/02/2024): a PowerPoint 
presentation and its corresponding speech will be prepared. 

 
During the realisation of this work, there were different risks to consider: 

• There was a risk that the selected dataset may contain errors or noisy 
data, which could impact the accuracy of the results. Selecting the relevant 
data was an important part of the process to try to mitigate this risk. 
However, the process of selecting relevant genes also involved potential 
errors that may affect the data's ability to distinguish mutation patterns in 
different cancer types and subtypes. Different types of tests were used to 
select the relevant data in order to ensure a good selection. 

• The choice of clustering algorithms is crucial, and selecting suboptimal 
ones may result in lower-quality outcomes. It's important to ensure that the 
chosen algorithms are the most suitable for the project's objectives, so 
different algorithms were tested, comparing their results and selecting the 
optimal algorithms for this purpose.  

• Since a significant part of this project involves result interpretation, there 
is a risk of errors or misinterpretations of the clusters and their association 
with the existing literature. Proper validation throughout objective indices 
found in the literature were carried out to avoid this problem.  

• The tasks outlined in this project were suggested to encounter unexpected 
challenges, potentially causing delays in the work plan. Adjustments to the 
project's timelines were necessary to accommodate the challenge of 
selecting the best method of selecting the relevant genes.  

 
1.6. Summary of the obtained products 
 

• Final manuscript: the final manuscript consists of a document containing 
all the work developed during the Master’s thesis, including: 

- A contextualization of the main topic of this work (cancer disease 
and how a pan-cancer approach to study the effect on the 
transcriptome of patients with different types of cancer can help 
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to understand more about these diseases and potentially find 
new cancer subtypes). 

- The materials and methods followed to develop the work.  
- The results obtained, their discussion and comparison with the 

available literature, the conclusions, and future perspectives of 
the work.  

• Final presentation: a final PowerPoint presentation will be made in order 
to summarize, describe and justify the work developed during this project.  

 
1.7. Brief description of the chapters in the manuscript 
 

• State of art: this chapter will provide an overview of the context in which 
the work is situated (cancer, pan-cancer, unsupervised machine learning, 
etc), its significance, and the hypotheses formulated. 

• Materials and methods: a description of the materials (software, database) 
used throughout the work will be detailed in this section, as well as the 
methods for defining the relevant data, clustering number selection and 
clustering algorithms, among others.  

• Results: the results obtained in the different tasks of this project will be 
thoroughly presented, described 

• Discussion: interpretation of the results and their comparison with the 
literature. 

• Conclusion and future perspectives: this chapter will provide a summary 
of the key findings obtained, the implications and contributions that these 
findings may have, an evaluation of the success in the accomplishment of 
the objectives proposed and outline future research directions. 
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2. State of art 
 
2.1. Cancer 

Cancer is a disease in which abnormal cells divide uncontrollably and potentially 
spread to other tissues and organs [8]. The growing number of cancer patients 
represents a major concern for public health worldwide, since it is one of the most 
common causes of premature mortality, expecting to duplicate its already 
worrisome incidence by 2070 [1,2]. 

Cancer can be caused by various factors, such as genetic inheritance (5-10% of 
cancers) and environmental factors (90-95% of cancers), including chemicals, 
food, pollutants, radiations, among others. The multistep process by which a stem 
cell becomes an abnormal cell is called carcinogenesis [8]. This process requires 
a combination of different mutations involving the activation of protooncogenes 
(cell cycle related genes with important functions in proliferation regulation) and 
the inhibition of tumor suppressor genes, leading to a change of the normal 
balance between apoptosis and proliferation [8,9]. Therefore, the genetic 
complexity implied in cancer apparition and progression difficult the treatment and 
management of this multifactorial disorder [9].  
Seeking to accelerate the understanding of the molecular basis of cancer, 
projects such as The Cancer Genome Atlas (TCGA) have emerged. Within this 
project, the TCGA Pan-Cancer analysis tackles the challenge by examining 
different genomic samples across a variety of cancers, regardless of their origin 
(organ or tissue), in order to find similarities between types or subtypes of cancer. 
The molecular similarities between cancer types and subtypes can help to 
uncover the underlying biology of less studied cancers when compared to more 
extensively researched ones, as well as helping to select treatments based on 
successful cases of similar cancers [10]. 

2.2. RNA  

The transcriptome is the set of all transcripts produced in one or a population of 
cells in a particular moment, including ribosomal RNAs, messenger RNAs, 
transfer RNAs and regulatory noncoding RNAs [11]. Transcriptome facilitates the 
study of disorders in comparison with the use of the genome since the 
transcriptome is smaller and the impact of its modification or mutations is more 
likely to have a direct impact on the expression and function [12]. Alternative 
splicing, gene fusion, RNA editing, or nucleotide variation can have a crucial role 
in the development of cancer, its expansion, progression and differentiation in 
subtypes of cancer, promoting its diversity and complicating its management and 
study [3,12]. Thus, the study of RNA expression is of paramount importance for 
understanding cancer biology leading to the discovery of new targets for 
preventing, controlling and curing this disease as well as new effective therapies 
[1,3].  

In this context, RNA-seq is a next generation sequencing (second-generation) 
technique (NGS) which allows to identify and quantify all the transcripts or a 
selection of them extracted from a sample [13]. Although RNA and DNA 
sequencing dates back to the late 70's with the development of Sanger 
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sequencing, the emergence of NGS in the last decade, has opened up a whole 
new field of possibilities in science [12–14]. The NGS improves the Sanger 
method by allowing the simultaneous sequencing of large quantities of 
sequences instead of performing the process for one sequence at a time, with 
very high throughput and much lower cost [13,14].  
RNA-seq is based on the creation of a cDNA library through the reverse 
transcription of fragmented RNAs in the samples, facilitated by the action of 
reverse transcriptases. The preparation of the sequences for the sequencing 
process involves adding adaptors to the ends of the cDNA chains, which are 
necessary for binding to the flowcells. Additionally, 3’ adenylation of the 
sequences might be included to prevent them from overlapping. Following the 
amplification of the sequences by PCR to amplify the signals, the sequences are 
added to the flowcells where sequencing is performed by incorporating 
fluorescent dNTPs into the single-stranded cDNAs through complementation. 
Thanks to the fluorescently labelled nucleotides, high-resolution images are 
captured, allowing the obtention of the sequence [12,13]. Currently, one of the 
most widely adopted sequencing systems is Illumina (Illumina HiSeq and MiSeq 
sequencing), commanding over 70% of the market share. This system employs 
PCR bridge amplification across the flow cell to generate clusters of replicated 
DNA fragments. Furthermore, it incorporates fluorescently labelled reversible 
terminators during sequencing, contributing to cost-effectiveness [13].  
However, as mentioned before, the analysis of NGS technology data in general 
and RNA-seq in particular, often proves challenging due to the complexity and 
multidimensionality of the data involved [4]. Therefore, bioinformatics tools have 
been simultaneously developed to cope with the difficult analysis, allowing 
researchers to draw conclusions from the large masses of data [13]. 

2.3. Machine learning 

Machine learning focuses on developing algorithms and models to enable 
computers to learn from previous experience. These algorithms allow us to 
uncover patterns which might be overlooked by human operators. Among the 
different classes of machine learning, unsupervised machine learning identifies 
groups within unclassified or non-labelled data, allowing the algorithm to rely its 
choses only by the characteristics of the data and not on predefined features [15–
17]. In the context of cancer research, unsupervised machine learning can be a 
crucial tool for creating novel classifications, using its ability to reveal hidden 
types and subtypes of tumors through gene expression which surpasses the 
limitations of traditional morphological and histopathological classifications [18].  

Unsupervised classification or clustering algorithms typically address challenges 
posed by high dimensional, noisy or incomplete datasets, complicating the task 
of selecting the most accurate algorithm for each specific situation. Fortunately, 
a diverse range of clustering algorithms have been developed, facilitating the 
process of finding a suitable algorithm for datasets by comparing the results and 
quality of the clusters created [19]. Clusters can be defined as groups of data 
samples of similar natured, selected by different classification criterion [20]. 
Depending on how the cluster’s structures are formed, clustering algorithms are 
separated in different categories or techniques, some of them are: partitional, 
density, hierarchical and model-based [19,21].  
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2.3.1. Partitioning clustering 

Partitioning clustering methods create k cluster, being k a predefined parameter, 
following an objective function depending on the algorithm used. Each point of 
the data set must belong to a cluster and clusters must be formed by at least one 
point [20]. 

• K-means: each point in the dataset is initially randomly assigned to one of 

k clusters. Subsequently, centroids for each cluster are calculated as the 

average of the coordinates of all the points within that cluster. The 

algorithm then iterates through each data point, reassigning it to the cluster 

which centroid is closer (typically based on Euclidean distance). After, 

centroids are recalculated for the updated clusters. This process is 

repeated until a stable configuration is reached and no further 

modifications are observed in the points assignment [19,20].  

• Partitioning Around Medoids (PAM) or K-medoids: in this case, the 

iterative technique to improve the clusters remains the same, however, the 

clusters are formed based on medoids. Medoids are real data points, 

specifically, the points that have the smallest average distance to the other 

points within the cluster. Although this algorithm is more computationally 

expensive than K-means, however, it is less sensitive to outliers or noisy 

data [20].  

• Clustering for Large Applications (CLARA): this algorithm was designed to 

improve the PAM algorithm, facilitating the clustering for large data sets. 

The data set is first divided in random samples of 40+2k points. The PAM 

algorithm is then applied to each sample, identifying the medoids. The best 

medoids are selected based on the sample with the lowest sum of 

distances (typically Euclidean distance). These selected medoids are then 

applied to the whole data set, producing the final clustering results [19,20]. 

2.3.2. Density-Based clustering 

Density-based methods create clusters based on high-density areas in the 
feature space. These methods consider clusters as groups of high-density 
objects surrounded by regions of low-density objects [20,22]. They do not require 
a predefined number of clusters as input parameters and, in contrast to 
partitioning methods, they can create non-compact and non-spherical clusters 
[22,23].  

An example of these clustering methods is the Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) algorithm [20,22,23]. This algorithm is 
capable of finding clusters with random shapes while isolating noise from the data 
set under study.  To achieve the objective, the algorithm initially scans the 
dataset, looking for points with a minimum number of neighbours (MinPts) within 
a selected radius (Eps). If this criterion is reached, the element is considered as 
the core point. Following this selection, the algorithm starts expanding the 
clusters by adding those points that continue meeting the density threshold. The 
iteration process continues until no further points are unclassified. Those points 
that do not have the required number of MinPts within the marked radius are 
considered noise [23,24].  
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2.3.3. Hierarchical clustering 

Hierarchical methods organize the points of a data sets into a tree of clusters 
based on a proximity matrix (pairwise distances between data points) [21,25]. 
The results are represented in binary trees or dendrograms where the whole data 
set is shown as the root node and each data point, as leaf nodes. Furthermore, 
the intermediate nodes allow to visualize which points are closer or far from the 
one particular point and the height of the branches also gives useful information 
about the distance between points and between points and clusters [25].  

The nested partitions can be performed using two different techniques: 

• Agglomerative Hierarchical Clustering: in this case, the algorithm goes 

from singleton clusters (each data point is considered a separate cluster) 

to iteratively merge the closest clusters until a cluster including all the data 

points is reached [19,21,25].  

• Divisive Hierarchical Clustering: the clustering is oppositely made to the 

agglomerative. The algorithm starts from a single cluster that is iteratively 

divided into smaller clusters until singleton clusters are reached [19,21,25].  

2.3.4. Model-based clustering 

Model-based clustering assumes that the data set under study is divided into 
clusters following a specific probability distribution. These algorithms attempt to 
find the best fit between the data and the mathematical model defining the 
clusters [20,21,26]. 

An example of model-based algorithms is the Gaussian Mixture Model. This 
algorithm assumes that the data set is generated from a mixture of Gaussian 
distributions, each characterized by different means and covariances [26,27]. 
Means and covariances are randomly chosen to initialize the algorithm, as well 
as the weight for each distribution (initially the same for all the clusters). The 
algorithm calculates the probability of each data point belonging to each cluster 
based on these parameters. Subsequently, the model’s distributions are then 
updated, assigning each point to the distribution for which it has the highest 
probability of belonging. The parameters (mean, covariance, and weights) are 
then recalculated based on the new distributions. This iterative process is 
repeated until convergence is reached [26]. 
 
2.4. Related works  

In the recent years, the scientific community has become increasingly aware of 
the importance of machine learning in the medical research. The rapid 
development of the new technologies has enabled the exploration of diverse 
approaches to apply these algorithms into different fields [18,28–30]. Several 
authors have explored the use of machine learning to classify gene expression 
data from cancer patients, with the aim of achieving high levels of classification 
accuracy within reasonable computational times. Both supervised and 
unsupervised approaches have been investigated, but no consensus has been 
reached regarding the best method for identifying cancer types and subtypes 
[31,32].  
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Among the supervised machine learning algorithms, Support Vector Machines, 
have shown promising results in terms of classification accuracy for multiclass 
cancer datasets and in the identification of subtypes of cancers within individual 
cancer datasets [32–34]. Regarding the unsupervised algorithms, de Souto 
M.C.P. et al. (2008) compared seven different unsupervised algorithms, including 
hierarchical models, k-means, Gaussian mixture, spectral clustering and shared 
nearest neighbour clustering. The study concludes that the k-means algorithm 
had the best performance across several datasets [28]. Furthermore, Perera 
M.A.I. et al. (2020) analysed the potential of k-means, hierarchical and PAM 
algorithms in the identification of types and subtypes of cancers, where k-means 
was also highlighted [18]. However, only a few studies have been found 
comparing different unsupervised machine learning methods in cancer gene 
expression data. Other works have demonstrated the good performance of 
individual unsupervised algorithms mainly in breast cancer, such as hierarchical 
algorithms [35] and DBSCAN and k-means algorithms [36] for identifying patterns 
and clustering gene expression datasets.  
 
Therefore, the potential of unsupervised machine learning algorithms in cancer 
research needs to be further explored in order to determine the optimal method 
for classifying this type of data, focusing on the inherent structure of the data and 
not relying predefined labels. Furthermore, through pan-cancer or multiclass 
approaches, a deeper understanding of the molecular differences between 
various cancer types and subtypes can be gained while also testing the 
algorithms in a broader approach. In this context, this work contributes to this 
exploration by providing a comparative analysis between unsupervised machine 
learning algorithms based on several evaluation indices to assess their 
effectiveness and accuracy in the classification of different types and/or subtypes 
of cancer, taking a pan-cancer approach.  
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3. Materials and Methods 
 
This project is based on a random sample of an RNA sequencing dataset 
originally obtained from The Cancer Genome Atlas (TGCA) Pan-cancer analysis 
project [6]. This particular sample was obtained from the Machine Learning 
Library [5]. The dataset encompasses gene expression profiles of patients 
diagnosed with different cancer types, measured by the Illumina Hiseq platform. 
It comprises 801 observations (corresponding to each patient) and 20531 genes.  
 
This work was carried out using the R software (version 4.3.2.) within the RStudio 
environment. The corresponding code, packages and functions employed can be 
found on the Github link created for this purpose [37].  
 
3.1. Exploratory analysis  
 
The data structure is studied for the dataset under study. The mean, median, 
extreme values and standard deviation are also calculated for each variable.  
 
3.2. Feature subset selection 

Considering that the main objective of this thesis is to find a classification model 
with an unsupervised approach capable of distinguishing cancer types based on 
the gene expression data, the standard deviation is used to discard the variables 
with a standard deviation equal to zero, since no variation between cancer types 
could be explained by these features.  
With the dataset without the variables with zero standard deviation (sd0), three 
different dimensional reduction approaches were performed.  
 

3.2.1. Principal Component Analysis (PCA) selecting the variables that explain 
95% of the total variance 

 
Given that the data frame in the analysis still contained a considerable number of 
variables compared to the number of samples, it is important to select the most 
relevant variables for the clustering.  
For the purpose mentioned above, PCA based feature extraction is a method 
which has proven to be a good option for selecting relevant variables in datasets 
with a larger number of variables compared to the observations [38]. Therefore, 
this method was carried out in order to reduce the number of dimensions. 
Afterwards, an index which organizes the variables in order of importance was 
created. To do this, the importance of each variable was calculated by multiplying 
the contribution of each variable to each principal component (PC) and the 
percentage of variance explained for that particular PC. Then, the variables that 
explain the 95% of the variance were selected to create a new data frame that 
was used for the incoming steps (PCA95).   

3.2.2. PCA selection of the 800 most relevant variables 

In order to improve the computational efficiency and stability of the algorithms, 
the same PCA filtering of the data was performed, but in this case, only the first 
800 variables (PCA800) that explained the most variance were chosen. 
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3.2.3. Uniform Manifold Approximation and Projection  

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction 
technique, but differs from PCA in that it is designed to find non-linear structures 
in the data and preserves the local and global structure of the data [39,40]. This 
technique has been shown to be more sensible than PCA on transcriptome 
datasets [40]. Therefore, UMAP was used to perform an alternative variable or 
feature selection to PCA, with the aim of selecting the best one.  
 

 
Figure 2. Diagram of the different approaches used to perform dimensionality reduction of the 
gene expression data. 

 
3.3. Algorithm implementation 
 
Using the PCA95, PCA800 and UMAP datasets created, different types of 
unsupervised algorithms were applied, in particular, partitioning (k-means, PAM 
and CLARA), density-based (DBSCAN), hierarchical (agglomerative using 
complete, average, single and ward, and divisive models) and model based 
(Gaussian mixture) algorithms. The use of this variety of algorithms brings the 
possibility of selecting the algorithm that best fits the characteristics of the data 
due to the different strengths, weaknesses and assumptions that each algorithm 
has [18].  
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Figure 3. Diagram of the algorithms run on the different datasets obtained during the feature 
selection and the indices used to evaluate and compare the implemented models. 

 

3.3.1. Partitioning algorithms (k-means, PAM and CLARA) 

Before implementing the partitioning algorithms, different methods were used to 
select the optimal number of clusters. 

• Elbow method: this method assesses the intra-cluster variance for several 
values of k clusters. It is expected that as the number of clusters increases, 
the variance or heterogeneity within clusters decreases, until all 
observations are placed within their cluster, so increasing the number of 
clusters would not improve the model but may lead to overfitting. The 
optimal number of clusters is chosen by the elbow formed in the line 
resulting from representing the variance within clusters versus the number 
of clusters, as shown in Figure 3 [41]. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Figure 4. Example of a result plot of the elbow method, showing the internal variance of the 
clusters versus the number of clusters. The point where an elbow can be seen is indicated. 
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• Average Silhouette method: this method evaluates how well an object fits 
into its cluster by assessing the distance between that observation and the 
rest of the points in its cluster and comparing it to the neighbouring clusters 
[42]. Therefore, this method calculates the observation’s average 
silhouette for several k values. The optimal number of clusters is 
determined by the maximum average silhouette calculated [42].  

• Gap statistic method: unlike the Elbow and Average Silhouette method, 
which evaluate global clustering features, the Gap statistic method uses 
statistical analysis to calculate the optimal number of clusters. This method 
compares the internal variation within k clusters with the variance expected 
under a null reference distribution (which is created by randomly sampling 
the original dataset). The optimal number of clusters is chosen by the 
number of clusters that maximises the gap statistic [42]. 

 
Once the optimal numbers of clusters were selected, the k-means, PAM and 
CLARA algorithms were implemented. In the cases where different number of 
clusters were indicated by the three methods, all of them were tested. 
Furthermore, in some cases, the algorithms were run with a certain number of 
clusters in order to compare the results with previous ones.   
 

3.3.2. DBSCAN 

In this case, it is not necessary to select the number of clusters, but eps 
(maximum reachability distance) and minPts (minimum number of points required 
to define a cluster) must be defined beforehand. To select the eps parameter, the 
average distance to the k-nearest neighbours was calculated for each point and 
the eps was selected as the approximate point where the curve of the graph 
shows an elbow [42]. For the minPts, several values were tested with for the 
number of eps indicated by the k-nearest neighbours plot and the one with the 
better results was selected.  

3.3.3. Hierarchical 

A hierarchical approach was also tested. Both agglomerative and divisive 
methods were implemented and compared using the agglomerative and divisive 
coefficients. The hierarchical algorithm with the highest coefficient was selected 
for further analysis [42].  
In the case of the agglomerative model, several methods were evaluated: 

• Maximum or complete linkage: it calculates the distance between two 
clusters using the two most distant data points (one from each cluster). 
The two clusters with the shortest distance are then merged. This method 
tends to produce compact clusters.  

• Minimum or single linkage: it calculates the distance between two clusters 
using the two closest data points (one from each cluster). The two clusters 
with the shortest distance are then merged. This method tends to create 
long clusters.  

• Mean or average linkage: it calculates the distance between two clusters 
using the average distance of all the points between the two clusters. The 
two clusters with the shortest distance are then merged. 
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• Ward’s minimum variance method: in each iteration of the model, the 
clusters that when merged minimize less the intra-cluster variance, are 
combined [42].  

 
Once the approach (agglomerative or divisive) and the method (in the case of the 
agglomerative approach) is selected, the classified data is divided into k number 
of clusters. As suggested in the literature, the number of clusters obtained in the 
elbow method for the k-means algorithm was considered [43,44], except in the 
case of PCA95, in which because of the results of the elbow method and the 
background knowledge of the original data, it was decided to use k = 5 to ensure 
a better classification by the model.  
 

3.3.4. Gaussian mixture 

The Gaussian mixture model was also performed. A range from 1 to 9 clusters 
were tested with different covariance matrix parameterizations. To select the best 
parameters to carry out the model, the Bayesian Information Criterion is used, 
looking to maximize its value [42]. 
 
3.4. Algorithm evaluation 

After running all the described algorithms with the optimal parameters found, it is 
important to calculate objective measurements of the quality of the clusters since 
the plots shown in the results do not represent the whole data in most of the 
cases. An internal evaluation of the different algorithms was therefore carried out. 
Furthermore, since in this particular case, the real classification of the data is 
available, a comparison was made between the original labelled data and the 
algorithms classification. 
 

3.4.1. Internal evaluation 
 
For the six algorithms, the Calinski-Harabasz, Connectivity, Silhouette and Dunn 
indices were calculated. In addition, the Davies Bouldin index was only calculated 
for the kmeans, PAM and CLARA algorithms.  
The Davies Bouldin and Dunn indices provide an insight into the compactness 
and separation of clusters, while the Calinski-Harabasz assesses the ratio of 
inter-cluster variance to intra-cluster variance. The Connectivity measure, using 
clValid and internal metrics, provides a deeper understanding of how well defined 
and connected the clusters are. And the Silhouette analysis evaluates the 
cohesion and separation of clusters for individual data points [45–48]. 
 
All the indices calculated for the same algorithm using different parameters were 
then compared in order to choose the best parameters in each case. Afterwards, 
the best results for each algorithm were compared in order to classify the different 
algorithms according to the best internal structure of the clusters.  
 

3.4.2. Classification assessment 

In order to better understand the performance of the algorithms, the labels 
(cancer type) associated with the original data were used to assess the 
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classification accuracy of each algorithm. The original data counts with data of 
patients with five different types of cancers labelled as BRCA (breast cancer), 
COAD (colon cancer), KIRC (kidney cancer), LUAD (lung cancer) and PRAD 
(prostate cancer).  
For this purpose, a function was created in R to be able to know which patients 
are grouped together and how many of them belong to the same type of cancer 
according to the original labelled data. The function is explained and displayed in 
the Github link provided.  
 
This function also allows the identification of the type of cancer to which each 
cluster is associated. With this information a scoring system was created. All the 
algorithms start with a score of 801, which is the maximum number of 
observations to be classified and therefore, the maximum number of instances 
that can be correctly classified. Given that there is a predominant type of cancer 
in each cluster created, the observations of other cancer types that are classified 
in the same cluster of the predominant cancer type are considered as 
classification errors and treated as a penalty, so the number of errors is 
subtracted from 801. Those clusters with only one observation of each type of 
cancer are treated as penalties. Furthermore, the observations not classified by 
the DBSCAN algorithm are considered as errors. Therefore, the best parameters 
for each algorithm were selected according to the classification score and then 
used to compare between algorithms in order to find the best ones.  
 

3.4.3. Stability evaluation 

With the aim of finding another way to differentiate and evaluate the algorithms, 
the stability of the best algorithms found based on the internal and classification 
evaluations is compared. Also, the computational requirements for performing the 
algorithms were considered in order to select the best algorithms for this step.   
The stability evaluation assesses the robustness and reliability of a clustering 
classification by comparing the clusters given by the algorithm using the whole 
data, with the clusters created when a column or feature of the dataset is 
removed. The columns are deleted one by one [42].  
 
Several stability parameters were measured such as:  

• Average Proportion of Non-overlap (APN) which measures the average 
proportion of observations that change their cluster whether the full data 
is used or when a column is removed. 

• Average Distance (AD): represents the average distance values between 
the two conditions (whole data and data with removed columns).  

• Average Distance between Means (ADM) measures the average distance 
between the cluster centres in the two conditions (whole data and data 
with removed columns). 

• Figure of Merit (FOM) measures how the removal of a column or variable 
affects the intra-cluster variance [46]. 
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3.4.4. Comparison of the original data distribution separated within the clusters 
obtained by the best algorithm 

In order to study if it was possible to distinguish any differences between the 
clusters suggested by the best algorithm, the mean and median of the gene 
expression of each patient within the different clusters were calculated and the 
distribution was represented. The calculations were made using original data.  
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4. Results 
 
4.1. Exploratory analysis  
 
During the exploratory analysis of the dataset, it was possible to analyse its 
structure confirming that it contains information on 20532 features of 801 cancer 
patients. Among the variables, one is a character variable, corresponding to 
names of the samples (patients) and the rest are numeric variables, 
corresponding to the gene expression count matrix.  
 
In Figure 5 the results of the mean, median and extreme values of all the numeric 
variables present in the data are displayed. As we can see, the ranges of the four 
calculated parameters are similar, all of them going approximately from 0 to 15, 
except for the maximum values which go up to 20. Furthermore, all the variables 
are believed to be in the same units since they are expression levels of specific 
genes from cancer patient samples measured by Illumina Hiseq Platform. 
Therefore, the data were assumed to be on the same scale, so no normalization 
was carried out prior to feature selection.  
 

 
Figure 5. Representation of the frequencies of the mean (plot A), median (plot B), maximum (plot 
C) and minimum (plot D) values of the features contained in the dataset under study. 

 
Regarding the standard deviation, in Figure 6 it can be seen that there are 
variables with very low standard deviation (sd), including 267 variables with sd 
equal to zero.  
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Figure 6. Representation of the frequency of the Standard deviation results obtained for the 
different features present in the data. 

 
4.2. Feature subset selection 

As can be seen in Table 1, after removing the variables with a standard deviation 
equal to zero, 20264 features remained in the dataset. Furthermore, three 
different datasets were created after applying the methods and approaches 
selected for the dimensional reduction of the sd0 data. The PCA95 dataset 
showed that the 13357 most relevant genes allowed to explain the 95% of the 
variance. Moreover, the PCA800 dataset with 800 variables was created in order 
to have fewer variables than observation, but only the 25.18% of the total 
variance is explained by this dataset. Finally, the UMAP technique allowed to 
create a two-dimensional dataset. 
 
Table 1. Number of variables of the original data and the created datasets sd0, PCA95, PCA800 
and UMAP. 

Dataset Number of variables 

Original data 20531 

sd0 20264 

PCA95 13357 

PCA800 800 

UMAP 2 
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4.3. Algorithm implementation 

4.3.1. PCA95 

4.3.1.1. k-means 

As can be seen in Figure 7, all three methods (elbow, average silhouette and gap 
statistic) give different results. Thus, k-means algorithm was run with k = 3, k = 6 
and k = 8. 
 

 
Figure 7. Graphical results of the optimal number of clusters according to the elbow method (plot 
A), the average silhouette method (plot B) and the gap statistic method (plot C) for the k-means 
algorithm using the PCA95 dataset.  

 
As can be seen in the k-means algorithm plots in Figure 8, only the first two 
dimensions are represented. However, the amount of variance that can be 
explained is by these two dimensions is small since Dimension 1 (Dim1) explains 
only 12.7% of the variance and the second (Dim2) only 9.4%. Therefore, these 
graphs might not be a good representation of the performance of the algorithm. 
Nevertheless, considering only this percentage of explained variance, as can be 
observed in plots A, B and C of Figure 8, none of the k (k = 3, k = 6 and k = 8) 
produced separate and well-defined clusters.  
 
It is known that this dataset consists of samples from patients with five different 
cancers. Therefore, and taking into account the success of Venkataramana L. et 
al (2020) in classifying the data into five groups, the algorithm was re-run with k 
= 5 to see if any improvements were observed. As can be seen in the plot D of 
Figure 8, the result is similar to the ones seen before, with all the clusters partially 
or almost completely overlapping for the explained variance represented. 
However, as mentioned before, the graph may not be a good representation of 
the algorithm’s performance. 
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Figure 8. Graphical results of k-means algorithm using PCA95 dataset for k = 3 (plot A), k = 6 
(plot B), k = 8 (plot C) and k = 5 (plot D). 

 
 

4.3.1.2. PAM 
 

 
Figure 9. Graphical results of the optimal number of clusters according to the elbow method (plot 
A), the average silhouette method (plot B) and the gap statistic method (plot C) for the PAM 
algorithm using the PCA95 dataset. 

 
In this case, the graph of the elbow method (plot A in Figure 9) shows a small 
elbow in the curve that allows the identification of the optimal number of clusters 
as k = 5 according to this method. On the contrary, the average silhouette method 
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(plot B in Figure 9) and the gap statistic method (plot C in Figure 9) identify the 
same optimal number of clusters as in the k-means algorithm, 6 and 8 clusters, 
respectively. In addition to the results obtained, the algorithm using k = 3 was 
also performed for the PAM algorithm in order to be able to compare the results. 
 
As it can be seen in the plot A of Figure 10, the PAM algorithm with k = 3, which 
was carried out only for comparison with the results of the k-means algorithm, the 
division is worse performed than in the previous algorithm, since the cluster 1 
almost completely overlaps with the cluster 2, whereas in the k-means algorithm 
the distinction between these two clusters is better defined for the Dim 1 and Dim 
2. This was expected once neither of the methods used to calculate the optimal 
number of algorithms for this algorithm suggested k = 3. Regarding the results 
obtained for k = 5 and k = 6, they are visually almost identical or similar in the 
case of k = 8, to those obtained for the k-means algorithm.  
 

 
Figure 10. Graphical results of PAM algorithm using PCA95 dataset for k = 3 (plot A), k = 5 (plot 
B), k = 6 (plot C) and k = 8 (plot D). 

 

4.3.1.3. CLARA 

The elbow method graph for the CLARA algorithm (plot A of Figure 11) shows a 
slight elbow at 5 clusters. Regarding the average silhouette method (plot B of 
Figure 11), the same result was obtained as in this method of the previous 
algorithms (k = 6), while in the gap statistic method (plot C of Figure 11), seven 
clusters are chosen as the optimal number. Considering the results, the algorithm 
was implemented with the three obtained values of k = 5, k = 6 and k = 7. Also, k 
= 3 and k = 8 were run. 
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Figure 11. Graphical results of the optimal number of clusters according to the elbow method (plot 
A), the average silhouette method (plot B) and the gap statistic method (plot C) for the CLARA 
algorithm using the PCA95 dataset. 
 

 
Comparing the results obtained by the CLARA and PAM algorithms, the results 
obtained for k = 3 and k = 5, are the almost visually identical for Dim1 and Dim2. 
It is worth noting that CLARA is the only algorithm that has so far clearly 
suggested k = 5 as one of the optimal number of clusters methods (elbow), since 
although in PAM a small elbow can also be seen in k = 5, is much less 
pronounced that in the CLARA algorithm. However, the algorithm result is visually 
identical to the previous ones.  
Furthermore, there are differences in the graphs obtained for k = 6 and k = 8 
compared to the k-means and PAM results for the first two dimensions. In this 
case, for k = 6, the cluster 3 reaches higher points, while the cluster 2 is narrower. 
Moreover, the cluster 6 is almost completely defined within the cluster 2. For k = 
8, the cluster proposed in the other two models, which separates the data located 
on the right of the graph, is no longer present, while in this case, another cluster 
is observed in the upper centre of the graph. Also, the clusters 3 and 5 are almost 
identical. Moreover, for k = 7, while the cluster seven (6 in k=6 and 8 in k =8) is 
smaller than in k = 6 and k = 8, the cluster five which does not appear in k = 6, is 
defined as in k = 8, and overlaps almost completely with the clusters 2, 6 and 3.   
Overall, it is not possible to draw any conclusions since the graphical 
representations only allow the analysis of the first two dimensions of the data, 
which in this case, represent a small percentage of the total variance. Hence, a 
qualitative analysis of the clusters is needed in order to compare these 
algorithms.  
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Figure 12. Graphical results of CLARA algorithm using PCA95 dataset for k = 3 (plot A), k = 5 
(plot B), k = 6 (plot C), k = 7 (plot D) and k = 8 (plot E). 

 

4.3.1.4. DBSCAN 

Having established that eps will be around 200 for minPts = 5 as indicated by 
Figure 13, different values of eps were tried, in particular, eps = 174, 161 and 
171. Furthermore, different values of minPts were also applied, however, all of 
them worsen the results. The best results are displayed in Figure 14. 
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Figure 13. Representation of the average distance to the k-nearest neighbours plot for k = 5, using 
PCA95 dataset. A discontinuous line is shown around the point where the line forms an elbow, 
indicating the approximate best eps value.  

 
As shown in Figure 14 and Table 2, three different results from three different eps 
values are presented. The first case (plot A and eps = 174) is the one that shows 
the lowest number of values of unclassified points (cluster 0). It shows five 
clusters, three of which overlap considerably for Dim 1 and Dim 2 which explained 
12.7% and 9.4% of the variance, respectively. The second case (plot B and eps 
= 161) is the one with the highest number of unclassified points. It also shows 
five clusters, however, they are almost completely separated from each other. It 
is important to mention that out of 801 points, 354 were not assigned to any 
cluster. Finally, the third case (plot C and eps = 171), with an intermediate value 
of eps, also shows an intermediate value of unclassified points, but in this case 
six clusters are defined. Clusters 1 to 5 are almost the same as in the first two 
cases, but a sixth cluster is defined within the limits of the cluster four. This is 
reminiscent of the results obtained with the CLARA algorithm for k = 6. It is 
important to note that these plots might not reflect the reality of the clusters 
because they represent only a small part of the variance in the data.  
Furthermore, it can be seen that the shape of the clusters is almost the same as 
those obtained with the previous algorithms. The DBSCAN cluster is capable of 
designing non-spherical or ovoid clusters [49], however, in this case, we can 
observe that the shape of the clusters does not change much, suggesting that 
this algorithm might not bring any advantage. Further evaluation of the DBSCAN 
clusters is described in section 4.2 in order to provide more rigorous 
measurements of the cluster quality.  
 
Table 2. Number of observations classified in each cluster by the DBSCAN algorithm with minPts 
= 5 and eps = 174, eps = 161 and eps = 171, using the PCA95 dataset. The instances that could 
not be classified by the algorithm are indicated in cluster number 0.  
 

 Clusters 

eps 0 1 2 3 4 5 6 

174 199 129 200 125 80 68  

161 354 120 126 117 38 46  

171 238 125 177 125 68 61 7 
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Figure 14. Graphical results of DBSCAN algorithm using PCA95 dataset with minPts = 5 and eps 
= 174 (plot A), eps = 161 (plot B) and eps = 171 (plot C). 

 

4.3.1.5. Hierarchical 

In order to ensure the better classification strategy, and since partitioning and 
density classification methods have already been applied, the hierarchical 
method was implemented.  
 
As can be seen in Table 3, the best method was the Ward’s method, since it 
achieved the highest agglomerative coefficient among all the methods performed, 
being very close to 1. As mentioned before, this method minimizes the intra-
cluster variation and maximizes inter-cluster variation, and it was found to be less 
sensitive to noise than the other agglomerative methods [50]. Thus, this method 
was chosen for the following steps for the PCA95 data. 
 
Table 3. Agglomerative and divisive coefficients of the different hierarchical algorithms performed 
using PCA95 dataset. 

Method Average Single Complete Ward’s 

Agglomerative 
coefficient 

0.6203821 0.5045055 0.4189288 0.9451525 

Divisive coefficient 0.6082847    

 
Afterwards, although the elbow method for the k-means model suggested that 
the optimal number of clusters was 3, the data classified by the Ward’s 
agglomerative method, was divided into five clusters, based on the background 
knowledge of the original data in order to try to reach the best performance of this 
algorithm. In Figure 15, the five clusters created are represented in a 
dendrogram. It can be seen in the representation that there are two main divisions 
of clusters, where in the first division only one cluster is separated from the other 
four, suggesting that this cluster is the one with the most differences and the other 
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clusters have more similar gene expressions. However, to evaluate the accuracy 
of the classification, it is necessary to use different indices and parameters that 
allow to assess the performance of this algorithm.  
 

 
Figure 15. Dendrogram of the classification of the agglomerative hierarchical algorithm using 
Ward’s method on PCA95 data. 

 

4.3.1.6. Gaussian mixture 

Finally, the Gaussian mixture model was carried out to evaluate whether the 
classification of the data perform better when the distribution of the data is used 
as a criterion. Thanks to the Mclust function used and the subsequent comparison 
of the BIC values obtained using different parameters, the model was run with 
nine clusters and VEI (the volumes of the clusters vary, their shapes are equal 
and their orientation is equal to the coordinate axes) as the defined covariance 
parameterization.  
 
 

 
Figure 16. Representation of the BIC values obtained for the different numbers of clusters and 
the covariance parametrizations tested, particularly, EII (equal volume, equal shape, identical 
orientation), VII (varying volume, spherical covariance, identical orientation), EEI (equal volume, 
equal shape, identical orientation), VEI (varying volume, equal shape, identical orientation), EVI 
(equal volume, varying shape, identical orientation) and VVI (varying volume, varying shape, 
identical orientation) in the Gaussian mixture model using the PCA95 dataset. 
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Although only close to 20% of the variance of the data is represented in Figure 
17, it appears that the clusters created overlap. Nine clusters were created and, 
as can be seen, several points corresponding to each clusters are represented 
outside the boundaries of the outlined clusters, making vague the division 
between them. Furthermore, in Table 4 it can be seen that the cluster with the 
highest number of observations is the cluster 4, although it is not the visually the 
largest cluster. However, in Figure 17 it can be observed that many observations 
corresponding to cluster 4 are displayed in the surroundings of this cluster, 
overlapping with the neighbouring clusters. Moreover, it is worth mentioning that 
all the clusters have more than 50 observations.  
 
Table 4. Number of observations classified in each cluster by the VEI Gaussian Model algorithm 
with 9 clusters using PCA95 data. 

Clusters 

1 2 3 4 5 6 7 8 9 

51 68 119 215 52 52 93 78 73 

  

 

Figure 17. Graphical results of VEI Gaussian mixture algorithm using PCA95 dataset for 9 
clusters. 
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4.3.2. PCA800 

4.3.2.1. k-means 

 

 
Figure 18. Graphical results of the optimal number of clusters according to the elbow method (plot 
A), the average silhouette method (plot B) and the gap statistic method (plot C) for the k-means 
algorithm using the PCA800 dataset. 

 
As can be seen in Figure 18, the optimal number of clusters is 6 according to the 
elbow and average silhouette methods and 9 to the gap statistic method. 
However, the algorithm for k = 5 was also performed as it is known that there are 
5 cancer types in the original data. It is also important to mention that the optimal 
number of clusters obtained is different from the PCA95 data, except for k = 6 
(average silhouette method). 

In this case (Figure 19), the first two dimensions explain approximately the 42.8%, 
a higher value than in the PCA95, but still a low value to make assumptions about 
the performance of the classification algorithm based on the graphical 
representation of the algorithms. Nevertheless, compared to the PCA95 results, 
the clusters can be seen to be more differentiated, since although some of them 
might overlap in some points, the boundaries of the majority of the clusters seem 
to be well defined, except for k = 9. However, it should be noted that the explained 
variance represented in these plots and in the PCA95 plots is not the same, which 
may affect the accuracy of the comparison made between the results of the two 
feature extraction methods.  
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Figure 19. Graphical results of k-means algorithm using PCA800 dataset for k = 5 (plot A), k = 6 
(plot B) and k = 9 (plot C). 

 

4.3.2.2. PAM 

 
Figure 20. Graphical results of the optimal number of clusters according to the elbow method (plot 
A), the average silhouette method (plot B) and the gap statistic method (plot C) for the PAM 
algorithm using the PCA800 dataset. 
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In Figure 20, the results of the optimal number of clusters are represented. In this 
case, both the elbow and silhouette methods indicate that the optimal number of 
clusters is 5, however, the elbow in the elbow method is very small. Furthermore, 
the gap statistic method again indicates that 9 clusters is the best choice. 
However, k = 6 was also run in order to compare with the k-means algorithm 
results.  
 

 
Figure 21. Graphical results of PAM algorithm using PCA800 dataset for k = 5 (plot A), k = 6 (plot 
B) and k = 9 (plot C). 

 
In the plots of the PAM algorithm implementation for k = 5, k = 6 and k = 9 shown 
in Figure 21, it is possible to see that there seems to be more overlap between 
clusters in the case of k = 6 and k = 9. However, for k = 5, the graphical 
representation for this case and the one of the PCA95 dataset seems to be very 
similar.  
Compared to the results obtained for the PCA95 dataset, only the elbow method 
for calculating the optimal number of clusters gave the same results (k = 5). 
Regarding the graphical results, there are obvious differences between the 
clusters in the two datasets, as the size and shape of the clusters are completely 
different. However, as mentioned above, the explained variance shown in the plot 
is different. 
 

4.3.2.3. CLARA 

The elbow method for the CLARA algorithm using the PCA800 dataset does not 
give a clear elbow in the graph, but a soft elbow can be seen again in k = 5. 
Moreover, the silhouette method also indicates that the optimal number of 
clusters for this algorithm is 5, while the gap statistic suggests that k = 6 is the 
best choice. k = 9 was also run in order to compare with the previous results.  
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Figure 22. Graphical results of the optimal number of clusters according to the elbow method (plot 
A), the average silhouette method (plot B) and the gap statistic method (plot C) for the CLARA 
algorithm using the PCA800 dataset. 

 
 

 
Figure 23. Graphical results of CLARA algorithm using PCA800 dataset for k = 5 (plot A), k = 6 
(plot B) and k = 9 (plot C). 

 
The CLARA algorithm for k = 5 and k = 6 seems to give similar results to the k-
means algorithm for the same number of clusters respectively, with almost no 
overlapping clusters. However, in the case of k = 9, for this explained variance, it 
can be seen that all clusters, except cluster 4, are fully or partially overlapping.  
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Similarly to PAM, none of the results were alike to those obtained for the optimal 
number of clusters in the PCA95 dataset, except for k = 5 in the elbow method. 
Besides that, when comparing the results for k = 5 and k = 6, clear differences 
can be seen in the graphical representations, not only in the shape of the clusters 
but also in the in the size. However, these interpretations have to be considered 
with caution, as the variance explained is different in the two cases.  
 

4.3.2.4. DBSCAN 

 
Figure 24. Representation of the average distance to the k-nearest neighbours plot for k = 5, using 
PCA800 dataset. A discontinuous line is shown around the point where the line forms an elbow, 
indicating the approximate best eps value. 

 
As can be seen in Figure 25 and Table 5, in this case, three different results for 
three different values of eps are represented. All of them show five clusters to 
classify the data, but with different numbers of unclassified data. The first 
parameter combination was chosen due to the elbow shown in the average 
distance to the k-nearest neighbours’ plot (Figure 24).  
Although, the three options seem to be graphically resemblant (Figure 25), there 
might be differences that are not represented for this amount of explained 
variance. However, only two clusters appear to be partially overlap. Furthermore, 
it is also important to consider how the number of unclassified instances differs 
between the eps values, since in one of the cases it goes up to 71 (eps = 80). 
Although with eps = 97, this value is much lower than in with the other two eps 
values, this algorithm is still unable to classify 7 points which, in this context of 
cancer patients, could still be too high to be able to use this algorithm. 
However, it is worth to note that the number of classified points has decreased 
considerably compared to the results obtained with the PCA95 data, since in 
PCA95, the number of unclassified points was always higher than 199 out of 801. 
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Table 5. Number of observations classified in each cluster by the DBSCAN algorithm with minPts 
= 5 and eps = 85, eps = 80 and eps = 97 using the PCA800 dataset. The instances that could not 
be classified by the algorithm are indicated in cluster number 0. 

 Clusters 

eps 0 1 2 3 4 5 

85 36 135 123 289 141 77 

80 71 135 110 271 137 77 

97 7 136 137 300 143 78 

 
 

 
Figure 25. Graphical results of DBSCAN algorithm using PCA800 dataset with minPts = 5 and 
eps = 85 (plot A), eps = 80 (plot B) and eps = 97 (plot C). 

 

4.3.2.5. Hierarchical 

As with the hierarchical algorithm for the PCA95 data, the approach and method 
with the highest coefficient was the agglomerative with the Ward’s method (Table 
6). In this case, the classification was made into six different clusters, as 
suggested by the elbow method for the k-means algorithm, as can be seen in 
Figure 26. Moreover, it is worth mentioning that the agglomerative coefficient of 
the PCA800 dataset is higher than for the PCA95 dataset in each method and 
approach performed for the hierarchical algorithm.  
 
Table 6. Agglomerative and divisive coefficients of the different hierarchical algorithms performed 
using PCA95 dataset. 

 

Method Average Single Complete Ward’s 

Agglomerative 
coefficient 

0.6809188 0.6039179 0.4781062 0.9663623 

Divisive coefficient 0.6723683    
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Figure 26. Dendrogram of the classification of the agglomerative hierarchical algorithm using 
Ward’s method on the PCA800 dataset. 

 

4.3.2.6. Gaussian mixture 

In this case, as shown in Figure 27, the parameters that showed the best BIC for 
the Gaussian mixture model are seven clusters and EEI (the volumes of the 
clusters are equal, their shapes are equal, and their orientation is equal to the 
coordinate axes) as covariance parametrization.  
 

 
Figure 27. Representation of the BIC values obtained for the different number of clusters and the 
covariance parametrizations tested, particularly, EII (equal volume, equal shape, identical 
orientation), VII (varying volume, spherical covariance, identical orientation), EEI (equal volume, 
equal shape, identical orientation), VEI (varying volume, equal shape, identical orientation), EVI 
(equal volume, varying shape, identical orientation), VVI (varying volume, varying shape, identical 
orientation), EEE (equal volume, equal shape, orientation in p-dimensional space), VEE (varying 
volume, equal shape, p-dimensional space), EVE (equal volume, varying shape, p-dimensional 
space), VVE (varying volume, varying shape, p-dimensional space), EEV (equal volume, equal 
varying, varying orientation), VEV (varying volume, equal shape, varying orientation), EVV (equal 
volume, varying shape, varying orientation) and VVV (varying volume, varying shape, varying 
orientation) in the Gaussian mixture model using the PCA800 dataset. 
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In Table 7 it can be seen the distribution of the instances present in the PCA800 
dataset throughout the seven clusters considered by the model. Also, the 
graphical representation of the model is represented in Figure 28. In this context, 
it is worth mentioning that two of the clusters (clusters 6 and 7 in Table 7) have 
only one observation within their boundaries, suggesting that this algorithm does 
not capture well the differences between the different groups of data. Regarding 
the rest of the clusters, although there are observations that are far from the 
borders of the clusters, they generally do not overlap, with the exception of the 
clusters 2 and 3.  
 
In comparison with the result obtained for the PCA95 dataset, it can be noted that 
two fewer clusters are proposed as the best option for the model, but, as 
mentioned before, clusters 6 and 7 are only fill with one observation in 
contraposition with the PCA95 model in which all the clusters have more than 50 
observations.  
 
Table 7. Number of observations classified in each cluster by the EEI Gaussian Model algorithm 
with 7 clusters using the PCA800 dataset. 

Clusters 

1 2 3 4 5 6 7 

438 57 144 78 82 1 1 

 

 
Figure 28. Graphical results of EEI Gaussian mixture algorithm using the PCA800 dataset for 7 
clusters. 

4.3.3. UMAP 

As referred in Table 1, after performing the UMAP technique for feature subset 
selection, a bidimensional dataset is obtained. In Figure 29, a representation of 
the distribution of this dataset is shown. It can be seen that the data appears to 
be grouped into six distinct groups, which are widely separated throughout the 
space.  
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Figure 29. Representation of the distribution of the UMAP dataset. 

 

4.3.3.1. k-means 

As can be seen in Figure 30, the elbow method suggests that the best number of 
clusters is 5 clusters, while the silhouette and gap statistics suggest 7 clusters. 
Therefore, k-means was run for k = 5 and k = 7. Furthermore, k-means was also 
carried out with k = 6, as the plot with the UMAP output shows six differentiated 
groups of data, suggesting that 6 clusters might be a good parameter for the 
classification task.  
 

 
Figure 30. Graphical results of the optimal number of clusters according to the elbow method (plot 
A), the average silhouette method (plot B) and the gap statistic method (plot C) for the k-means 
algorithm using the UMAP dataset. 
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As expected, the number of clusters that better visually matches the groups of 
the UMAP data distribution, is k = 6 (plot B of Figure 31), with cluster 
corresponding to one group. This is also important to highlight since the algorithm 
was able to detect the differences between each group and separate them into 
different clusters. Although, all the UMAP data is represented in these graphs 
(Figure 31), it is important to have into account that it is a representation of the 
dimensional reduction which might not accurately represent the full data variance 
and information may be lost.  
 

 
Figure 31. Graphical results of k-means algorithm using UMAP dataset for k = 5 (plot A), k = 6 
(plot B), k = 7 (plot C). 

 

4.3.3.2. PAM 

As indicated in Figure 32, the optimal number of clusters suggested for this 
algorithm is k = 5 and k = 8. However, k = 6 and k = 7 were also performed in 
order to be able to compare the results with the previous algorithm. 
 
In Figure 33, the graphical results of the PAM algorithm implemented on the 
UMAP dataset for the different number of k clusters is shown. It can be observed 
that the results for k = 5 and k = 6 (plot A and B) are visually very similar to those 
of the k-means algorithm. However, when comparing the two algorithms 
performed for k = 7 (plot C), it can be seen that the group of data that is divided 
in two to create the seventh cluster is different between the k-means and the PAM 
algorithm. Furthermore, in this algorithm, the number of clusters that visually 
better adjust to the groups of data is also k = 6.  
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Figure 32. Graphical results of the optimal number of clusters according to the elbow method (plot 
A), the average silhouette method (plot B) and the gap statistic method (plot C) for the PAM 
algorithm using the UMAP dataset. 

 

 
Figure 33. Graphical results of PAM algorithm using PCA95 dataset for k = 5 (plot A), k = 6 (plot 
B), k = 7 (plot C) and k = 8 (plot D). 

4.3.3.3. CLARA 

As with the PAM algorithm, the optimal numbers of clusters according to the 
elbow method, silhouette, and gap statistic are k = 5 and k = 8 (Figure 34). 
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Therefore, the CLARA algorithm was also performed with k = 6 and k = 7 in order 
to compare the results between the algorithms. 
 

 
Figure 34. Graphical results of the optimal number of clusters according to the elbow method (plot 
A), the average silhouette method (plot B) and the gap statistic method (plot C) for the CLARA 
algorithm using the UMAP dataset. 

 
 

 
Figure 35. Graphical results of CLARA algorithm using UMAP dataset for k = 5 (plot A), k = 6 (plot 
B), k = 7 (plot C) and k = 8 (plot D).  
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As can be seen in Figure 35, the results are visually almost identical to those 
obtained for the PAM algorithm.   
 
With regard to the results of the partitioning models (k-means, PAM and CLARA) 
implemented on the UMAP dataset, the number of clusters that the graphical 
representation indicates as performing a better classification of the data is when 
k = 6 parameter is used, since, as mentioned before, each one of the clusters 
corresponds to one of the groups of data displayed in the data space. However, 
to confirm this hypothesis, several algorithm evaluation were performed (section 
4.4).  
 

4.3.3.4. DBSCAN 
The elbow of the curve of the k-nearest neighbours plot (Figure 36) shows that 
the approximate value of the optimal eps is 0.3, so different values around this 
number were used. Also, minPts was chosen to be 5, since this was the value 
chosen for the PCA95 dataset, and also coincides with the number of cancers 
types that are known to be represented in the original data.  

 
Figure 36. Representation of the average distance to the k-nearest neighbours plot for k = 5, using 
the UMAP dataset. A discontinuous line is shown around the point where the line forms an elbow, 
indicating the approximate best eps value. 

 
As can be seen in Table 8 and in the plots in Figure 37, the algorithm with eps = 
0.37 is the one that classifies the highest number of points, leaving only two 
unclassified. Furthermore, this parameter combination shows 6 clusters, which 
coincides with the data groups that can be visualized in the UMAP data 
distribution plot (Figure 29). In the case of the other two parameter combinations 
(eps = 0.3 and eps = 0.25), they classified the data into 7 and 9 clusters, leaving 
12 and 44 unclassified observations, respectively. Furthermore, with eps = 0.25,  
a cluster with only 5 observations is generated, which seems to be a very small 
number to be consider as a relevant subtype of cancer.  
 
Finally, it is worth noting that in comparison with the results of the DBSCAN 
algorithm in the PCA95 and PCA800 datasets, the number of unclassified data 
was reduced to 2 out of 801 in the case of eps = 37, while the minimum reached 
in the other two datasets were 199 and 7 respectively. Also, it is important to 
highlight that this algorithm was also able to detect the six main groups of data 
that can be distinguished in the UMAP data distribution plot.  
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Table 8. Number of observations classified in each cluster by the DBSCAN algorithm with minPts 
= 5 and eps = 0.3, eps = 0.25 and eps = 0.37, using the UMAP dataset. The instances that could 
not be classified by the algorithm are indicated in cluster number 0.  
 

 Clusters 

eps 0 1 2 3 4 5 6 7 8 9 

0.3 12 135 139 230 145 47 15 78   

0.25 44 5 106 123 221 140 46 15 77 24 

0.37 2 136 140 252 146 47 78    

 

 
Figure 37. Graphical results of DBSCAN algorithm using the UMAP dataset with minPts = 5 and 
eps = 0.3 (plot A), eps = 0.25 (plot B) and eps = 0.37 (plot C). 

 

4.3.3.5. Hierarchical 

As can be seen in Table 9, the method with the highest coefficient is again the 
agglomerative approach following the Ward’s method. Hence, this approach and 
method were used for the following analysis. It is important to note that this 
method was always the best in all cases (PCA95, PCA800 and UMAP). 
 
Table 9. Agglomerative and divisive coefficients of the different hierarchical algorithms performed 
using the UMAP dataset. 

Method Average Single Complete Ward’s 

Agglomerative 
coefficient 

0.9962865 0.9950505 0.9934537 0.999701 

Divisive coefficient 0.9958642    

 
Furthermore, to calculate the optimal number of clusters to separate the data, the 
elbow method for the k-means algorithm was used as a reference. Therefore, the 
separation was performed using five clusters, as can be seen in Figure 37. In this 
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case, the first division shown in the dendrogram separates the data into 4 groups, 
contrary to the PCA95 and PCA800 results where the first division was into 2 
groups. 
 

 
Figure 38. Dendrogram of the classification of the agglomerative hierarchical algorithm using 
Ward’s method on the UMAP dataset. 

 

4.3.3.6. Gaussian mixture 

 
Figure 39. Representation of the BIC values obtained for the different number of clusters and the 
covariance parametrizations tested, particularly, EII (equal volume, equal shape, identical 
orientation), VII (varying volume, spherical covariance, identical orientation), EEI (equal volume, 
equal shape, identical orientation), VEI (varying volume, equal shape, identical orientation), EVI 
(equal volume, varying shape, identical orientation), VVI (varying volume, varying shape, identical 
orientation), EEE (equal volume, equal shape, orientation in p-dimensional space), VEE (varying 
volume, equal shape, p-dimensional space), EVE (equal volume, varying shape, p-dimensional 
space), VVE (varying volume, varying shape, p-dimensional space), EEV (equal volume, equal 
varying, varying orientation), VEV (varying volume, equal shape, varying orientation), EVV (equal 
volume, varying shape, varying orientation) and VVV (varying volume, varying shape, varying 
orientation) in the Gaussian model using the UMAP dataset. 

 
As shown in Figure 39, the covariance parametrization that shown the highest 
BIC was VEV (the volumes of the cluster vary, their shapes are equal and their 
orientation also varies) with 6 clusters, which is the same number of data groups 
as in the UMAP data distribution representation (Figure 29).  
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In Table 10, the distribution of the observations into the different clusters created 
by the model is displayed. As mentioned above, 6 clusters were formed 
coinciding with the data groups of UMAP data, as shown in Figure 40. In 
comparison with the Gaussian mixture model representations obtained for the 
PCA95 and PCA800 datasets, in this case, the clusters seem to be more compact 
and adjusted to the data distribution.  
 
Table 10. Number of observations classified in each cluster by the VEV Gaussian Model algorithm 
with 6 clusters using the UMAP dataset. 

Clusters 

1 2 3 4 5 6 

136 140 254 146 47 78 

 

 
Figure 40. Graphical results of VEV Gaussian mixture algorithm using the UMAP dataset for 6 
clusters. 

4.4. Algorithm evaluation 

After performing all the algorithms presented in the previous sections, it is 
important to calculate objective measurements of the quality of the clusters, as 
the graphs shown do not represent the whole data in most of the cases.  Thus, 
an internal evaluation of the different algorithms was carried out (section 4.4.1). 
Furthermore, since in this particular case, the real classification of the data is 
available, a comparison between the real classification data and the algorithms’ 
results was performed (section 4.1.2). 
 

4.4.1. Internal evaluation 
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Table 11. Davies Bouldin index, Calinski-Harabasz index, connectivity, silhouette and Dunn index results for k-means, PAM, CLARA, hierarchical, Gaussian 
mixture and DBSCAN using the PCA95 dataset. The best results for each algorithm are highlighted in green and the best algorithm for each index is highlighted 
in bold. 

 k k-means PAM CLARA Hierarchical Gaussian DBSCAN 

Davies Bouldin 

k = 3 1.8002 1.6878 1.7168     

k = 5 1.8128 1.5689 1.5421     

k = 6 1.9397 1.6150 1.7908     

k = 7 / / 1.6531     

k = 8 2.5839 1.8783 1.8783     

Calinski-Harabasz 

k = 3 133.2549 127.3870 123.8122 / / eps = 161 356.6057 

k = 5 131.0755 129.8547 130.7383 130.2399 / eps = 165 340.6976 

k = 6 116.2632 115.6746 106.9693 / / eps = 171 450.3961 

k = 7 / / 98.1767 / / eps = 174 669.2802 

k = 8 91.0528 89.5897 87.6659 / / / / 

k = 9 / / / / 76.5445 / / 

Connectivity 

k = 3 13.2992 43.7369 96.7381 / / eps = 161 585.1968 

k = 5 25.2492 36.1155 15.0623 17.1571 / eps = 165 540.5052 

k = 6 25.5853 21.7171 211.6770 / / eps = 171 502.1655 

k = 7 / / 182.2599 / / eps = 174 439.8532 

k = 8 229.6496 243.2925 240.7889 / / / / 

k = 9 / / / /  / / 

Silhouette 

k = 3 0.1926 0.1731 0.1678 / / eps = 161 0.0914 

k = 5 0.2015 0.2025 0.2306 0.0787 / eps = 165 0.09355 

k = 6 0.2348 0.2338 0.1864 / / eps = 171 0.1315 

k = 7 / / 0.1927 / / eps = 174 0.1718 

k = 8 0.1764 0.1911 0.1777 / / / / 

k = 9 / / / /  / / 
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 k k-means PAM CLARA Hierarchical Gaussian DBSCAN 

Dunn 

k = 3 0.3533 0.3266 0.3421 0.5395 / eps = 161 0.6618 

k = 5 0.4369 0.4226 0.4776 / / eps = 165 0.6459 

k = 6 0.4662 0.4535 0.3597 / / eps = 171 0.6256 

k = 7 / / 0.4103 / / eps = 174 0.5922 

k = 8 0.3918 0.3335 0.4103 / /   

k = 9 / / / /    
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Table 12. Davies Bouldin index, Calinski-Harabasz index, connectivity, silhouette and Dunn index results for k-means, PAM, CLARA, hierarchical, Gaussian 
mixture and DBSCAN using the PCA800 dataset. The best results for each algorithm are highlighted in green and the best algorithm for each index is highlighted 
in bold. 
 

 k k-means PAM CLARA Hierarchical Gaussian DBSCAN 

Davies Bouldin 

k = 5 1.2221 1.2011 1.2037     

k = 6 1.4123 1.3469 1.3638     

k = 9 2.2048 1.7118 1.6167     

Calinski-Harabasz 

k = 5 290.1842 290.1842 289.6865 / / eps = 85 346.2119 

k = 6 258.5821 258.2977 258.2577 257.2931 / eps = 80 396.6218 

k = 7 / / / / 118.5451 eps = 97 304.0451 

k = 9 178.5634 177.3796 171.0974 / / / / 

Connectivity 

k = 5 50.5036 3.7123 3.7123 / / eps = 85 90.9441 

k = 6 50.5036 12.0948 14.2591 6.6413 / eps = 80 182.5829 

k = 7 / / / / 58.8198 eps = 97 21.3917 

k = 9 125.6694 240.0373 94.4385 / / / / 

Silhouette 

k = 5 0.2266 0.3656 0.3656 / / eps = 85 0.3497 

k = 6 0.2988 0.3348 0.3364 0.3520 / eps = 80 0.3285 

k = 7 / / / / 0.2326 eps = 97 0.3583 

k = 9 0.2374 0.1896 0.3639 / / / / 

Dunn 

k = 5 0.2798 0.6493 0.6493 / / eps = 85 0.7124 

k = 6 0.3002 0.4620 0.4620 0.6577 / eps = 80 0.7475 

k = 7 / / / / 0.3744 eps = 97 0.6905 

k = 9 0.3009 0.2904 0.2535 / / / / 

 
 
 
 



49 
 

Table 13. Davies Bouldin index, Calinski-Harabasz index, connectivity, silhouette and Dunn index results for k-means, PAM, CLARA, hierarchical, Gaussian 
mixture and DBSCAN using the UMAP dataset. The best results for each algorithm are highlighted in green and the best algorithm for each index is highlighted 
in bold. 
 

 k k-means PAM CLARA Hierarchical Gaussian DBSCAN 

Davies Bouldin 

k = 5 0.2458 0.2523 0.2523     
k = 6 0.2052 0.2040 0.2040     
k = 7 0.4059 0.3784 0.3786     
k = 8 / 0.5063 0.5087     

Calinski-Harabasz 

k = 5 8638.2440 8638.2440 8638.2440 8638.2440 / eps = 0.3 14876.7000 

k = 6 18010.2800 18010.2800 18010.2800 / 18010.2800 eps = 0.25 18262.1300 

k = 7 16330.9600 21395.3500 21366.0400 / / eps = 0.37 17253.4200 

k = 8 / 21433.4100 21078.9000 / / / / 

Connectivity 

k = 5 0 0 0 0 / eps = 0.3 42.6524 

k = 6 0 0 3.0718 / 0 eps = 0.25 120.9389 

k = 7 12.0476 13.7179 21.4313 / / eps = 0.37 5.0401 

k = 8 28.5917 35.4635 42.0718 / / / / 

Silhouette 

k = 5 0.8452 0.8452 0.8452 0.8452 / eps = 0.3 0.7132 

k = 6 0.8404 0.8404 0.8387 / 0.7656 eps = 0.25 0.4755 

k = 7 0.7695 0.7688 0.7530 / / eps = 0.37 0.6948 

k = 8 0.7555 0.6931 0.6885 / / / / 

Dunn 

k = 5 0.9606 0.9606 0.9606 0.9606 / eps = 0.3 0.1147 

k = 6 0.5337 0.5337 0.1493 / 0.0286 eps = 0.25 0.1015 

k = 7 0.0631 0.0330 0.0228 / / eps = 0.37 0.7589 

k = 8 0.0474 0.0234 0.0207 / / / / 
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4.4.1.1. PCA95 

The results of all the indices calculated for each algorithm run using the PCA95 
dataset are displayed in Table 11. Furthermore, a summary of the best results is 
displayed in Table 14. It can be seen that there is no algorithm that stands out 
from the others, since those that obtain the best results in more than one indices 
(k-means and DBSCAN), they do so with different parameters, either the number 
of clusters (k-means with k = 3 and k = 5) or eps (DBSCAN with eps = 174 and 
eps = 161). 
 
Table 14. Summary of the best results for each of the internal evaluation indices (Davies Bouldin 
index, Calinski-Harabasz index, connectivity, silhouette, and Dunn index) calculated using the 
PCA95 dataset. The number of clusters and eps value, in the case of DBSCAN, are given. 

 k-means CLARA DBSCAN 

Davies Bouldin  k = 5  
(1.5421) 

 

Calinski-Harabasz   eps = 174 
(669.2802) 

Connectivity 
k = 3 

(13.2992) 
  

Silhouette 
k = 6 

(0.2348) 
  

Dunn   eps = 161 
(0.6618) 

 

4.4.1.2. PCA800 

In both Table 12 (where the results of the internal evaluation indices for the 
PCA800 dataset are represented) and 15 (where the best results are shown), it 
can be observed that the PAM algorithm with k = 5 has the best results for each 
one of the indices. Although for some indices, there are other algorithms that 
reach the same value, the PAM with k = 5 is the only one that is highlighted in 
four out of five indices. Therefore, for PCA800 data the best algorithm in terms of 
internal validation, is PAM using k = 5.  

Table 15. Summary of the best results for each of the internal evaluation indices (Davies Bouldin 
index, Calinski-Harabasz index, connectivity, silhouette, and Dunn index) calculated using the 
PCA800 dataset. The number of clusters and eps value, in the case of DBSCAN, are given. 
 

 PAM CLARA DBSCAN 

Davies Bouldin k = 5 (1.2011)   

Calinski-Harabasz   eps = 80 
(396.6218) 

Connectivity k = 5 (3.7123) k = 5 (3.7123)  

Silhouette k = 5 (0.3656) k = 5 (0.3656)  

Dunn k = 5 (0.6493) k = 5 (0.6493)  
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4.4.1.3. UMAP 

In Table 13, the results of the internal validation for each algorithm and parameter 
used for the UMAP dataset are shown. In this case, it can be seen that several 
algorithms reached the same value for different indices, making it difficult to select 
the best algorithm in terms of the internal structure. 
Furthermore, in Table 16, which is a summary of the best results obtained can be 
seen, it can be confirmed that several algorithms are highlighted as the best for 
each parameter. However, it can be observed that all the algorithms with the best 
indix values were run with k = 5 or k = 6, with the exception of Calinki-Harabasz 
which shows the best value with PAM k = 8.   
 
Table 16. Summary of the best results for each of the internal evaluation indices (Davies Bouldin 
index, Calinski-Harabasz index, connectivity, silhouette, and Dunn index) calculated using the 
UAMP dataset. The number of clusters are given. 
 

 k-means PAM CLARA Hierarchical Gaussian 

Davies 
Bouldin 

 
k = 6 

(0.2040) 
k = 6 

(0.2040) 
  

Calinski-
Harabasz 

 
k = 8 

(21433.41) 
   

Connectivity 
k = 5  
and 

k = 6 (0) 

k = 5 
and 

k = 6 (0) 
k = 5 (0) 

k = 5 
and 

k = 6 (0) 
k = 6 (0) 

Silhouette 
k = 5 

(0.8452) 
k = 5 

(0.8452) 
k = 5 

(0.8452) 
k = 5 

(0.8452) 
 

Dunn 
k = 5 

(0.9606) 
k = 5 

(0.9606) 
k = 5 

(0.9606) 
k = 5 

(0.9606) 
 

 

4.4.1.4. Comparison between datasets 

Therefore, comparing the results of all the indices obtained for the PCA95, 
PCA800 and UMAP datasets, it can be seen that, except for Davies Bouldin, 
which is highest in the PCA800 dataset (Table 12) with 1.2010 for the PAM 
algorithm with k = 5, the rest of the indices are highest in the algorithms using the 
UMAP dataset. Although no particular algorithm or parameter can be chosen for 
the UMAP dataset as the best in terms of internal evaluation, since, as mentioned 
above, the same value is obtained in more than one algorithm (Table 13), the 
UMAP technique seems to have provided a simpler data layout that allows the 
algorithms to create compact and well-defined clusters among the data. In 
addition, it was noted during the code run that UMAP was much less 
computationally demanding, providing results in a much shorter time than the rest 
of the datasets obtained by PCA. 
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4.4.2. Classification assessment 

In order to assess the classification accuracy of the different models 
implemented, a scoring system was developed (described in section 3.4.2). This 
score system allowed to rank the algorithm according to the number of 
observations that were successfully classified into groups where the majority of 
the instances correspond to the same cancer type as that particular observation. 
Furthermore, this system permits the evaluation of algorithms with different 
numbers of clusters, since it does not take into account the number of clusters 
and only consider as errors those observations that are located in a cluster where 
the predominant type of cancer is different. In this way, this system does not 
penalize an algorithm that divides the data into more than five clusters, which is 
the number of groups in the labelled original data, allowing not to discard 
algorithms able to detect subtypes of cancers.  
 
Table 17. Classification score of all the algorithms performed using the PCA95, PCA800 and 
UMAP datasets. 

 PCA95 PCA800 UMAP 

Algorithm Parameters Score Parameters Score Parameters Score 

k-means 

k = 3 581 k = 5 798 k = 5 800 

k = 5 797 k = 6 797 k = 6 800 

k = 6 796 k = 9 797 k = 7 800 

k = 8 797     

PAM 

k = 3 220 k = 5 798 k = 5 800 

k = 5 790 k = 6 798 k = 6 800 

k = 6 797 k = 9 798 k = 7 800 

k = 8 797   k = 8 800 

CLARA 

k = 3 581 k = 5 800 k = 5 800 

k = 5 796 k = 6 796 k = 6 800 

k = 6 793 k = 9 791 k = 7 800 

k = 7 795   k = 8 800 

k = 8 796     

DBSCAN 

eps = 175 602 eps = 85 765 eps = 0.3 798 

eps = 161 447 eps = 80 730 eps = 0.25 787 

eps = 171 563 eps = 97 794 eps = 0.37 755 

eps = 165 490     

Hierarchical k = 5 792 k = 6 799 k = 5 800 

Gaussian mixture k = 9 775 k = 7 663 k = 6 800 

 
The output number of matches with the labels of the original data for each 
algorithm are available in the supplementary materials, along with the graphical 
representation of the classification carried out by the remaining algorithms which 
are not presented in the following pages [37]. In Table 17, the results of the 
penalty score system are presented. It can be observed that in the case of the 
PCA95 dataset, four algorithms reached the same maximum punctuation (797 
out of 801), particularly, k-means with k = 5 and k = 797 and PAM with k = 6 and 
k = 8. In the case of k-means, it can be seen in Figure 41, that for the algorithm 
with five clusters, all the BRCA patients are classified in the same cluster as well 
as all the PRAD patients. However, one KIRC and two LUAD are located in the 
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cluster corresponding to the BRCA patients. Thus, this algorithm had four 
observations considered as errors. Regarding the same algorithm but run with 
eight clusters, the BRCA patients are divided into three different clusters, two of 
them accounting for 124 patients and the other one with 52 patients. The KIRC 
patients are also divided into two different clusters, one with 84 patients and the 
second with 62 patients. Furthermore, 77 out of 78 COAD patients were classified 
in the same cluster, but the remaining one was classified in the cluster 
corresponding to the LUAD patients, and at the same time, all the LUAD patients 
were placed into the same cluster, except for three who were positioned in the 
BRCA cluster with 52 patients. Finally, all the PRAD patients were classified into 
the same cluster. Therefore, this algorithm also showed four misclassified 
observations.  
 
In the case of the PAM algorithm with k = 6, the Figure 41 shows that the extra 
cluster observed is given by the division of the BRCA patients cluster into two 
clusters containing 252 and 48 patients. Furthermore, all the KIRC were classified 
into the same clusters and all the PRAD patients were also placed into only one 
cluster. However, one KIRC patient and one LUAD patient were classified into 
the BRCA cluster of 252 patients, while two other LUAD patients were placed in 
the BRCA cluster of 48 patients. Concerning the PAM algorithm with k = 8, the 
BRCA patients were again divided into three clusters but with a different quantity 
of patients per cluster compared to the k-means with k = 8 (with clusters of 162, 
90 and 48 patients). Furthermore, the KIRC patients were also divided into two 
clusters of 84 and 62 patients. Moreover, four patients were also misclassified in 
this case, specifically, one COAD and one LUAD patients were classified into the 
BRCA cluster with 162 patients and two LUAD patients into the BRCA cluster 
with 162 patients. It is worth noting that in both k-means and PAM algorithms with 
k = 8, the same clusters were divided into the same number of clusters, although 
they contained different numbers of patients per cluster.  
 
It is important to mention that, as can be seen in Figure 41, all algorithms were 
able to create clusters where homogeneity of cancer types predominated, i.e. we 
did not find clusters that have the same approximate number of patients with 
different cancers or suggesting that the division of the data into clusters was 
random. 
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Figure 41. Comparison between the classification of the original data and the classification of the 
algorithms performed using the PCA95 dataset that obtained the best classification scores, 
specifically, k-means algorithm with k = 5 and k = 8, and PAM algorithm with k = 6 and k = 8. 

 
Regarding the PCA800 data, as can be seen in Table 17, the best classification 
score was reached by the CLARA algorithm with five clusters, achieving a score 
of 800 points. As represented in Figure 42, all BRCA, COAD, LUAD and PRAD 
were classified as in the original data. However, in the case of the LUAD patients, 
although 145 were located into the same cluster, one of them was placed into the 
same cluster as the LUAD patients. Therefore, this algorithm has only one 
classification error, having a higher classification score than the algorithms 
implemented using the PCA95 dataset.  



55 
 

 
Figure 42. Comparison between the classification of the original data and the classification of the 
algorithm performed using the PCA800 dataset that obtained the best classification scores, 
specifically, CLARA algorithm with k = 5. 

 
Regarding the UMAP dataset, as can be seen in Table 17, all of the algorithms 
tested had the same score, reaching 800 points, except for the DBSCAN 
algorithms which have lower scores. Therefore, they all obtained the same score 
as the CLARA k = 5 algorithm using the PCA800 dataset. It is important to 
mention that all the algorithms implemented using the UMAP dataset with k = 5, 
specifically, k-means (Figure 43), PAM (Figure 44), CLARA (Figure 44) and 
agglomerative hierarchical with Ward’s method (Figure 45) algorithms, showed 
the same classification results. These algorithms classify all the observations as 
in the original labelled data, with the exception of one observation corresponding 
to a LUAD patient, which is classified in the same cluster as the BRCA patients. 
Furthermore, the same classification pattern is observed for the algorithms 
implemented with k = 6, in particular, k-means (Figure 43), PAM (Figure 44), 
CLARA (Figure 44) and Gaussian model mixture. In these cases, the BRCA 
patients are divided into two clusters, one of 254 patients and the other with 46 
patients. Furthermore, they have in common with the algorithms with k = 5 that 
one LUAD patient is misclassified, in this case, also grouped with BRCA patients, 
specifically, into the second BRCA cluster.  
In the case of the algorithms performed with k = 7 and k = 8, the results vary 
between algorithms, however they all share that one LUAD patient is classified 
into a BRCA cluster, as in the previous algorithms. In the case of the k-means 
algorithm with k = 7, the BRCA patients are still placed into two different clusters 
(one with 254 observations and the other with 45, plus the misclassified LUAD 
patient) and also, the LUAD patients are divided into two clusters with 87 and 53 
instances. However, in the case of PAM and CLARA with k = 7, the only cancer 
type that it is separated into various clusters is BRCA, being divided into three 
clusters in both algorithms, while each of the remaining cancer types are 
classified into one cluster per type. Furthermore, in PAM and CLARA with k = 8, 
the BRCA and KIRC observations are again separated into three and two 
clusters, respectively, while the rest of the types of cancer patients are placed 
into a cluster per cancer type. Therefore, it seems that the way that the patients 
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are divided into clusters is similar between algorithms and it depends on the 
number of clusters. Also, it can be noted that the group of patients that appeared 
to be separated before the others is BRCA, which is also the group with a larger 
group of patients.  

 
Figure 43. Comparison between the classification of the original data and the classification of the 
k-means algorithms performed using the UMAP dataset that obtained the best classification 
scores, specifically, k-means with k = 5, k = 6 and k = 7. 
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Figure 44. Comparison between the classification of the original data and the classification of the 
PAM and CLARA algorithms performed using the UMAP dataset that obtained the best 
classification scores, specifically, both PAM and CLARA algorithms with k = 5, k = 6, k = 7 and k 
= 8. 
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Figure 45. Comparison between the classification of the original data and the classification of the 
hierarchical and Gaussian mixture algorithms performed using the UMAP dataset that obtained 
the best classification scores, specifically, hierarchical with k = 5 and Gaussian mixture with k = 
6. 

4.4.2.1. Comparison between datasets 

Regarding the classification accuracy evaluation of the three dimensionally 
reduced data (PCA95, PCA800 and UMAP), it was found that the PCA95 dataset 
is the one with lower scores, since both the PCA800 and UMAP datasets reached 
800 out of 801 correctly classified observations in at least one of the algorithms. 
Furthermore, it is worth mentioning that using the UMAP technique to reduce the 
dimensionality, several of the algorithms reached 800 correctly classified 
observations for different parameters, but, in the case of the PCA800 dataset only 
CLARA with k = 5 had this score value. Besides that, several of the algorithms 
that had the best classification score using the UMAP dataset, also had the best 
values in different internal evaluation indices, pointing them as the best 
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algorithms tested, namely, k-means, PAM, CLARA and the agglomerative 
hierarchical algorithm with k = 5.   

4.4.3. Stability evaluation 

Considering the previous results (internal validation and classification score), the 
stability of the best algorithm was tested with the aim of differentiating the best 
algorithms in order to select one. The UMAP results were chosen for this section 
because this technique is less computationally intensive than the PCA800 and 
the classification score was the same as for UMAP. Thus, considering that k-
means, CLARA, PAM and hierarchical with k = 5 had the best results in the 
internal validation, being the only algorithms that had the best score in three 
different indices, and also, had 800 points in the classification score, their stability 
was tested.  
As can be seen in Table 19, all the algorithms show the same exact values for all 
the stability parameters tested. Therefore, the previous results and the stability 
measurements suggest that these algorithms have the same performance in 
clustering the gene expression data of cancer type of patients.  
 
Table 18. Stability results of the best algorithms in terms of internal evaluation and score 
classification, specifically, k-means, PAM, CLARA and hierarchical algorithms with k = 5, using 
the UMAP dataset. 

 
 

4.4.4. Comparison of the original data distribution separated within the clusters 
obtained by the best algorithm 

Since it was not possible to differentiate between the four best algorithms using 
the internal evaluation, classification accuracy and the stability, the k-means 
algorithm was chosen for this step, as it is more frequently highlighted in the 
literature as the most suitable algorithm for this type of data [18,28]. Furthermore, 
since the four algorithms had exactly the same performance and the same 
classification result, the result of the k-means could be extrapolated to the others.  
 
In this context, Figure 46 shows the distribution of each the mean and the median 
of each cluster is represented. As can be seen in the figure, all the clusters appear 
to have very similar distributions, suggesting that there are no significant 
differences between them. The only cluster whose interquartile range is further 
apart from the rest is cluster 4. However, looking at the scale of the figure, the 
difference between this cluster and the others is also very small. 
 

 k = 5 

Algorithm APN AD ADM FOM 

k-means 0.0990 2.1467 1.2738 2.2151 

PAM 0.0990 2.1467 1.2738 2.2151 

CLARA 0.0990 2.1467 1.2738 2.2151 

Hierarchical 0.0990 2.1467 1.2738 2.2151 
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Figure 46. Representation of the distribution of the mean (A) and the median (B) of the original 
data gene expression of the patients within each cluster obtained by the algorithms k-means 
with five clusters. 
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5. Discussion 

Cancer is a multifactorial disease that causes millions of deaths each year and is 
expected to double in incidence over the next fifty years [1,2]. The complexity and 
diversity of cancer complicate the study its biology, delays the discovery of 
effective cures and treatments, as well as complicates the identification and 
classification of the different cancer types and subtypes [1,9]. In response to 
these challenges, several projects have emerged with the aim of finding ways to 
accelerate the cancer research [10]. NGS in combination with machine learning 
has proven to be of great relevance to the cancer molecular study and 
comprehension, particularly, in the study of its transcriptome [13]. Among 
machine learning techniques, unsupervised machine learning has gained 
attention because of its ability to find hidden associations between molecular 
disorders based on the gene expression characteristics rather than predefined 
labels [15–18]. In this context, an RNA sequencing dataset containing the gene 
expression information of cancer patients with different types of cancer was 
employed in order to identify an unsupervised machine learning model capable 
of recognizing cancer types and/or subtypes within the data. For this porpoise, 
several dimensionality reduction approaches and unsupervised algorithms were 
tested.  
 
During this work, it was demonstrated that unsupervised machine learning 
algorithms are capable of finding underlying similarities in gene expression within 
each originally labelled type of cancer, as several algorithms successfully 
distinguished and separated the cancer types present in the original labelled data 
with a high percentage of accuracy. Specifically, k-means, PAM, CLARA 
(partitioning models) and agglomerative hierarchical algorithms with k = 5, using 
the UMAP technique outcome, were able to correctly classify 800 out of 801 
observations (99.875% of accuracy), while also generating compact and well-
defined clusters (internal evaluation).  
However, despite the efforts to select a single method to perform this clustering 
task, none of the evaluation methods carried out could differentiate between 
these algorithms. In order to choose between k-means, PAM, CLARA and 
hierarchical algorithms, it would be necessary to test different datasets in order 
to determine which algorithm is better adapted to general cases, being able to 
perform a successful classification in any dataset in which it is implemented. It is 
crucial not only to be able to classify this particular dataset but also, to ensure a 
good performance when the algorithm is applied to diverse data sets. 
Additionally, by applying the algorithms in different datasets, it would be possible 
to determine whether the recurrent misclassification of one LUAD patient by these 
algorithms is an isolated error or if they are unable to correctly detect the 
differences between certain types of cancer, particularly between BRCA and 
LUAD cancers. Although the algorithms make only 1 error out of 801 
observations, in the context of cancer, this error can be fatal. Therefore, it is 
essential to verify if this error could be repeated on a larger scale, whether it 
occurs recurrently or if, on the contrary, this particular patient exhibited 
characteristics that were out of the ordinary within that particular type of cancer, 
leading the algorithm to reach an incorrect conclusion.  
Nevertheless, it is worth noting that the fact that different algorithms produce the 
same results suggests that these algorithms do not depend heavily on the 
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intrinsic characteristics of each model, and also the existence of patterns in the 
data that allow the algorithms to classify the observations correctly, 
demonstrating once again that gene expression data are a key tool in the study 
of cancer. 
 
Furthermore, this study found that the UMAP technique was generally more 
efficient than PCA approaches. The UMAP technique produces a bidimensional 
matrix of data that allowed the algorithms under study to reach a conclusion from 
the data faster than the PCA outcomes, implying that its use is less 
computationally expensive. Furthermore, the UMAP dataset had the best results 
in both the internal evaluation and the classification accuracy assessment, 
consistently outperforming PCA in several evaluation indices for almost all the 
algorithm tested. These observations were expected since, according to Dorrity 
M.W. et al. (2020), the recently developed UMAP technique is more sensitive in 
performing the dimensional reduction of data while preserving the patterns and 
structure than PCA, when applied to gene expression data [40]. Furthermore, 
Yang Y. et al (2021) support this notion by comparing various dimensionality 
reduction methods, including PCA and UMAP, across 71 large transcriptomic 
datasets. Their study concludes that UMAP had the superior performance, 
allowing the creation of clusters with biological and clinical significance [51]. 
Moreover, it has been proven that UMAP technique provides faster run times and 
higher reproducibility and accuracy than PCA, further supporting the findings of 
this work [52]. Regarding the two approaches carried out with the PCA technique, 
it is important to highlight that although the variables within the PCA800 dataset 
only explained the 25% of the total variance, this dataset generally had better 
results in terms of internal structure and precision score than the PCA500 
dataset, in which the 95% of the total variance is explained, containing a much 
larger number of variables. This suggests that the majority of the variables in the 
original dataset do not provide useful information about the differences between 
cancer types or subtypes, and only a small percentage of the genes contribute to 
the identification of those differences. In line with these observations, as 
mentioned in section 4.4.4, after analysing the distribution of each cluster from 
the k-means algorithm in the original data, it was found that all the clusters 
appeared to have the same distribution. However, while executing the algorithms, 
distinct differences were observed among the clusters, which appeared well-
defined and clearly separated. Therefore, this fact again suggests that only a 
small subset of variables among the 20531 variables present in the original data, 
possesses the ability to distinguish the patients in their cancer types, while the 
majority of variables might obscure the differences between patients. This 
underscores the importance of applying dimensionality reduction techniques. 
Furthermore, reducing the number of dimensions allows to move a step closer to 
the discovery of biomarkers that could allow the study of the differences between 
patients and the identification of cancer types directly from the original data, by 
focusing on only the most relevant genes from the beginning of the analyses.   
 
Moreover, it is worth mentioning that there were algorithms that also accurately 
classified the data with similar internal validation values and equally high score 
classifications but placed the data into six clusters. However, the algorithms that 
were selected as the best ones using five clusters instead of six, were chosen 
because they performed best on more evaluation indices.  
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Nevertheless, it is important to emphasize that when the distribution of the UMAP 
dataset was plotted, six groups of data could be seen. Furthermore, the sixth 
group of data was noticeably smaller than the others, being represented close to 
the largest one, which might imply that this small group is more similar to the 
larger group than to the rest of the clusters. Also, given the information that the 
original labelled data provides, it seems likely that the largest group corresponds 
to the BRCA patients since it is the most represented cancer type in the original 
dataset. Considering the algorithms that showed better classification scores and 
that separate the data into 6 clusters, all of them divide the BRCA cluster into two 
clusters, one with 254 patients and the other with 46 (plus one misclassified 
LUAD patient). Therefore, this suggests that the smaller group shown in the plot 
is formed by patients suffering from a cancer subtype of BRCA cancer, but it is 
important to perform further analysis to confirm this hypothesis. In this regard, the 
separation of this cluster of BRCA patients into two, could be due to the fact that 
the number of BRCA patients in the data is higher than in the rest of cancer types 
and therefore, being a larger group, it is expected to have a higher variance 
among the data, making it more likely to be separated into different clusters. 
Thus, it is crucial to analyse the characteristics of the members of the extra cluster 
and to study in detail the molecular differences from the rest of the subjects in the 
main BRCA cluster before concluding that a cancer subtype had been found. To 
do so, it is necessary to identify differentially expressed genes between the two 
clusters, using a combination of differential expression analysis techniques and 
the metadata available in TGCA files [6] and to perform gene set enrichment 
analysis, such as Gene Ontology enrichment analysis and pathway analysis, in 
order to understand the biological processes underlying the observed differences 
in gene expression [53,54]. In addition, the analysis of more BRCA expression 
data using the same algorithms could allow confirming or rejecting this 
hypothesis.  
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6. Conclusions and future perspectives  
 
The present work allowed the successful classification of gene expression data 
from cancer patients into different cancer types, achieving a high percentage of 
accuracy into well-defined and separated clusters. However, determining a single 
unsupervised algorithm as the optimal method proved challenging since several 
algorithms achieved the same performance, namely, k-means, PAM, CLARA 
(partitioning methods) and agglomerative hierarchical algorithms, all of them 
implemented for five clusters. Moreover, although further analyses are required 
to confirm the hypothesis, the models implemented suggest the presence of a 
subtype of BRCA cancer within the data under study. Furthermore, it was 
possible to verify that among the dimensionality reduction methods, UMAP 
technique was the one that gave the best results after the implementation of the 
algorithms as well as implying faster running times.    
This study highlights the importance of the unsupervised machine learning 
algorithms, which, in combination with NGS techniques are capable of 
accelerating the unravelling of the underlying mysteries of the cancer biology and 
helping to find novel cancer classifications that facilitate the discovery of effective 
treatments. 
 
Regarding the impact on sustainability, ethical-social aspects, and diversity no 
significant impacts were predicted during the design stage of the project and no 
unexpected impacts occurred during its development.  
 
In terms of future work, in order to determine the robustness of the models and 
their performance in different datasets with similar types of data, it is necessary 
to implement them across a variety of datasets. Performing these models across 
different datasets, will allow to confirm whether the classification errors shown in 
each selected algorithm are due to the presence of an outlier in the data or due 
to the inability of the model to perform an accurate classification of certain 
patients.  
In addition, to verify not only the presence of a BRCA subtype in the dataset but 
also, the ability of the algorithm to detect it, further analyses will be needed.  
Performing differential expression analysis together with gene set enrichment 
analysis will allow a detailed exploration of the differences between the two 
clusters generated by the best algorithms using six clusters. This deeper 
exploration would help to study the functions and pathways associated with the 
most differentially expressed genes of these groups of patients and provide 
insights into the features that may differentiate the two clusters. Consequently, 
this approach will contribute to a more thorough understanding of potential 
subtypes within the BRCA cancer type. 
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7. Glossary  
 
AD Average Distance  
ADM Average Distance between Means  
APN Average Proportion of Non-overlap  
BRCA  breast cancer 
COAD  colon cancer 
cDNA Complementary Deoxyribonucleic Acid 
CLARA Clustering for Large Applications  
DBSCAN Density-Based Spatial Clustering of Applications 

with Noise  
Dim Dimension 
dNTPs Deoxynucleotide Triphosphates 
FOM Figure of Merit  
KIRC  kidney cancer 
LUAD  lung cancer 
NGS Next Generation Sequencing  
MinPts Minimum number of neighbours  
PAM Partitioning Around Medoids  
PC Principal Component   
PCA Principal Component Analysis  
PCA95 PCA outcome selecting the variables explaining 

the 95% of the variance 
PCA800 PCA outcome selecting the 800 most relevant 

variables in terms of explained variance 
PCR Polymerase Chain Reaction 
PRAD  prostate cancer 
RNA Ribonucleic acid 
RNA-Seq RNA sequencing 
sd Standard deviation  
sd0 dataset without the variables with null standard 

deviation 
TCGA The Cancer Genome Atlas  
UN United Nations 
UMAP Uniform Manifold Approximation and Projection 
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