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A simple solution to locate groups of items
in large retail stores using an RFID robot

Victor Casamayor-Pujol, Bernat Gastón, Member, IEEE, Sergio López-Soriano, Abdussalam A.A.
Alajami, and Rafael Pous

Abstract—This paper presents a simple solution
to estimate the location of products in a retail store,
using an autonomous ground robot with an RFID pay-
load. The model used and explained in this paper is
designed to be as simple and versatile as possible,
while achieving accurate location estimations when
compared with other proposed models in the state-
of-the-art (SOTA). In addition, the solution developed
meets the business requirements of the retail industry,
such as locating at SKU (Stock Keeping Unit) level, as
opposed to item level, or expressing the location in
terms of store fixtures (e.g. shelf, rack) as opposed
to (x,y) coordinates. The research results are obtained
from experiments of the model in different environ-
ments, achieving accurate location estimations in a
controlled laboratory environment. Moreover, for the
first time, the model has been tested in a large retail
store, where the results obtained met the require-
ments of the store owners.

Index Terms—Radio Frequency Identification, Re-
tail, Robotics, Location

I. INTRODUCTION

Over the past few years, RFID technology is increas-
ingly being adopted by the retail industry due to the
beneficial impact it had in the field of Supply Chain
Management (SCM) ([1], [2] and [3]) and as a valid
alternative to Electronic Article Surveillance (EAS) [4].
Nevertheless, this technology has not yet been exploited
to its full potential. One of the most well-known applica-
tions of RFID in retail is fast and accurate stock counting
(inventory). However, there are several other interesting
applications among which the location of products in
the store has created a lot of interest in the retail
business. The information about the location of products
enables many important retail business cases, such as
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finding misplaced items, verifying store planograms, or
preparing on-line orders to be collected at the store.

Products in a store are almost always identified by
a barcode printed on a label, also known as Stock
Keeping Unit (SKU, sometimes also know as Global
Trade Identification Number, GTIN), which identifies
all items of identical characteristics (e.g. model, color
and size). In a retail store using RFID each label also
has an RFID tag, which includes a universally unique
Electronic Product Code (EPC [5]) that identifies each
item individually. An EPC is essentially the SKU code
plus a unique serial number and is sometimes referred to
as Serialised GTIN (SGTIN).

An RFID robot consists of an autonomous robot
vehicle carrying an RFID payload. The robot navigates
autonomously around the store, while the RFID subsys-
tem reads all RFID tags within reach. For the robot
to navigate autonomously, an initial mapping phase is
necessary, in which the robot is driven manually around
the store so that it can use its sensors (mainly laser
sensors) to create a 2D map of the store, and at the same
time establish a sequence of waypoints that will later be
visited. In order to locate itself while constructing the
map, the robot uses the well-known algorithm Simulta-
neous Location and Mapping (SLAM, [6]). After that,
every time a new inventory or location is required, the
robot can start what is known as a mission by leaving its
charging station, navigating to each successive waypoint,
and finally returning to its initial position. To calculate
its position within the map during the mission, the robot
uses another well-known algorithm, the Adaptive Monte
Carlo Localization (AMCL, [7]), which estimates the
most likely position and orientation (collectively known
as pose) by comparing the current input from the sensors
with the previously stored map and computing likelihood
metrics. In order to optimize the RFID readings, the
RFID payload controls the navigation speed of the robot,
making it go slower in areas with a high density of tags,
and faster where there are few or no tags [8].

At the end of each mission, the list of unique EPCs
read by the RFID payload of the robot constitutes the
inventory of the store. The inventory accuracy is defined
as the percentage of unique EPCs collected during the



location mission with respect to the total number of EPCs
actually present in the environment (inventory ground
truth). SKU inventory accuracy is defined the same way,
but for SKUs instead of EPCs. Also, the mission can be
used to estimate the position of the items, by using the
model presented in this article. In the same direction, lo-
cation accuracy is defined as the number of successfully
placed elements over the total present elements of the
store. An element is considered successfully placed when
the distance between the estimated and actual positions
of the element is below a certain predefined threshold,
or it is placed on the correct fixture, group of fixtures,
or zone. While RFID robots have demonstrated that they
can produce accurate inventories [9], locating products
accurately in the store remains an open problem.

The models used by published solutions for the lo-
cation of products ([10], [11], [12]) are complex and
have only been evaluated in controlled environments
where undesired effects are minimized. Consequently,
presenting and assessing a new location model that
can operate in real environments is a relevant advance
towards a solution that can be broadly adopted in the
retail industry.

Previous solutions have focused on estimating the
location of a single item in a room, given as (x,y)
coordinates. However, the retail industry needs to know
the locations at the SKU level and referenced to fixtures.
This means that retailers do not expect a location for a
single object, but for each group of all identical objects
which share the same SKU code, normally placed in
one or only a few locations in the store. Additionally,
most retailers prefer to receive the location information in
terms of SKUs referenced to fixtures (e.g. shelves, racks),
instead of in terms of coordinates. Other retailers prefer
SKU locations to be referenced to groups of fixtures, or
even store zones (e.g. the shoe area in a fashion store). In
summary, while previous solutions provided the location
information as (EPC,x,y) tuples, retailers expect (SKU,
fixture), (SKU, group) or (SKU, zone) pairs.

Figure 1 shows the usual operation of the robot. The
path and the map are created once for every store. During
the mission, the robot follows the path and obtains as
many readings as possible from the RFID tags of the
items in the store. After the mission, the algorithm
presented in this article is used to compute the estimated
location of each SKU.

The solution has been tested in a laboratory environ-
ment and twice in a real fashion store with an area
of around 1, 000 m2 and with approximately 11, 000
items. Each of the experiments had its own objective.
Laboratory experiments were done in order to validate
the model and the hypotheses used in it, and also to
obtain a reference that could be used to compare against
other solutions in the SOTA. The first experiment on

Fig. 1. Normal operation of the robot during an inventory and
location mission.

the fashion store focused on adjusting parameters and to
assess the change on performance due to the complexity
of real environments as compared to a laboratory envi-
ronment. The second experiment in the retail store was
done to verify that the solution meets the requirements of
the retailer and provides a final assessment of the model.

This article is organized as follows. In section II we
present and analyze existing methodologies for locating
RFID-tagged items. In section III the proposed solution
is presented. In section IV the experiments are explained
and discussed. Finally, in section V we expose our
conclusions.

II. BACKGROUND

Over the past two decades, the scientific community
has done great effort to provide RFID systems with
location capabilities ([13], [14]). This effort has resulted
in several contributions to the literature and various
methods developed so far with relative success ([15]).

Range-based methods consist of simpler hardware so-
lutions and are severely affected by multi-path and non-
line-of-sight (NLOS) effects typical of complex indoor
environments. Therefore, their location accuracy is low,
and their computational cost is high. In contrast, methods
based on scene analysis can achieve higher location
accuracy and are more robust against errors introduced
by indoor environments, at the cost of having to deploy
large numbers of reference tags in the case of finger-
printing methods ([16]) or having to deal with complex



probabilistic models in the case of non-fingerprinting
methods.

It is worth mentioning that range-based methods make
use of wave propagation models and the geometrical
relation between the antennas and tags to obtain the
position of the tag using multilateration (MLAT) ([17],
[18], [19], [20]) or probabilistic algorithms ([21]). On
the other hand, range-free methods are based on the
analysis of the scene ([15]). For instance, fingerprinting
techniques ([22]) generally make use of reference tags
with a priori position to construct a map of the scenario.
Non-fingerprinting methods such as holographic and
Synthetic Aperture Radar (SAR) methods are based on
the modeled behavior of some parameters to obtain the
estimated position ([23]).

A fair comparison between the different methods
would require the homogenization of testing elements
and characteristics of the environment. Nevertheless,
results ([15]) show that there are important differences
between the two main methods in terms of location
accuracy. When the actual position of the element is
known, we use the mean distance error, defined as the
average of the differences between the estimated and
actual positions of each element in the store. When the
known location of the element refers to a fixture, group
of fixtures, or zone in the environment, we refer to fixture
location accuracy, group location accuracy and zone
location accuracy respectively. Elements can be either
individual items, SKUs (groups of identical items), or
any other grouping the retailer may consider relevant. In
the following, we use SKUs as the elements for accuracy
and error calculation. Since a SKU is a group of items,
its position is considered to be the centroid of the set
(simple average of the positions of each item).

The use of robots for locating items is not a new
idea, as several studies already have been conducted in
the past ([23], [24], [25]). In contrast to solutions using
a fixed infrastructure readers and antennas, the use of
robots results in a dramatic reduction of acquisition,
installation, and maintenance costs for large facilities,
with the additional advantage of avoiding static null
electromagnetic field zones (blind spots).

There is still the open challenge of locating tags
accurately using robots in complex indoor environments,
such as retail stores, due to the induced significant RF
multi-path fading effects ([11]). In [10] and [26], the
authors used a SAR-based localization method, using the
phase of the tag in achieving mean distance errors of
only a few centimeters. However, due to the limitations
of the phase-based method they had to fix one of the
dimensions. When they fixed a distance to the tag ([26]),
the SAR-based method provided a mean distance error of
less than 1cm. But when a more realistic set-up was used
the performance deteriorated to a mean distance error

of 28 cm ([10]). In both cases the testing environment
consisted of 38 RFID tags placed within a volume of 7m
× 5m × 1.5m.

In [12], the authors use phase unwrapping and non-
linear optimization to locate the target tags with a
mean distance error of 32 cm. The authors compare
their method’s performance with the SAR-based one
presented above, and they conclude that SAR-based and
holographic methods may require more than 20 minutes
of computation to compute the estimated location of
around 80 tags. Using optimizations, they were able to
speed up the computation by a factor 55, at the cost
of a slight increase of the error and the complexity of
the method. The authors claim that by adding reference
tags in the environment the mean distance error can be
reduced to 17 cm.

On the contrary, in [11], the authors present a lo-
calization method applying Bayesian filtering and using
a new RFID model of variable transmitted power. The
method uses the RFID readings at different powers to
create a grid of possible positions for each individual
tag. Then they used a Bayesian filter to predict the most
likely position inside this grid. The authors claim that
they obtain a 50 cm mean distance error in a much
more complex scenario than the ones presented before.
Specifically, they use a mock apparel store composed of
674 items with a total area of 204m2.

It is worth mentioning that there is no study in current
SOTA targeting real large-scale stores. Our target sce-
nario is a real retail store with more than 11, 000 unique
tags within an area of approx. 1, 000m2. We also made it
a requirement that location mission can be completed in
a similar time as an inventory mission [8]. From previous
works, we can conclude that even if SAR-based methods
provide the best accuracy, their vulnerability to multi-
path effects and their computational cost prevents them
from being used in complex scenarios. On the other side,
power based probabilistic methods like the one presented
in [11], are much more suitable in large scenarios.

In this article, we present a new location model.
Similarly to [11], we optimize the irradiated power
to obtain a better accuracy, however, we simplify the
positioning of the tag by using a fixed position for each
reading and a clustering method to refine the result.
Hence, we avoid the use of a grid and a Bayesian filter.
The proposed solution allows us to solve the large-scale
location problem in a very short amount of time at a
very low computation cost, which makes it scalable to
very large stores. We will show that our simplified model
can be compared in terms of mean distance error to the
ones presented above. Once validated, we show that the
presented model can be applied to real large retail store
providing retailers, for the first time, with a solution they
can actually deploy.



III. A SOLUTION FOR LOCATING ITEMS IN STORES

We aim to create a model that results in a solution
that is adequate to the needs of the retail industry.
In this section we address the problem, explain the
methodology, and present the solution.

A. Defining the problem

The retail industry requires a solution for locating
groups of EPCs, which means all items with the same
SKU, and locations must be referenced to fixtures or
zones of the store. Two hypotheses have been considered
for developing the solution model:

• Hypothesis 1: The RFID parameters for a location
mission will be different from those of an inventory
mission.

• Hypothesis 2: The complexity of a given model
does not correlate with its location accuracy when
it is used in different environments.

The first hypothesis is based on the observation that
while for completing an inventory mission the robot only
needs to read each tag once, for computing an estimated
location, due to the existence of multi-path and other
unwanted signals in the environment, it is paramount
to obtain repeat reads of the same tag, as the location
accuracy increases with the number of reads.

The second hypothesis is based on the observation
that the strong interaction of the RFID waves with the
environment will make complex models that take the en-
vironment into account less accurate as the environment
changes. Therefore, a simpler model will have an accept-
able and consistent performance in any environment.

The location mission’s objective is to assign SKUs to
fixtures (and optionally to groups of fixtures or zones in
the store). This means that a successful location mission
will be assigning as many SKUs as possible to the
fixture, group, or zone where they are actually located.
Accuracy measurements are used to illustrate results of
the model. Hence, it is not only important to place the
SKUs correctly, but also to detect as many of them as
possible, to maintain a high inventory accuracy. Since
retailers are mostly interested in fixture based location
accuracy, we will assume that the location is in 2D.

B. Methodology

The presented methodology for locating SKUs in
fixtures is very simple and is based on three steps: (1)
estimating the reading position, (2) obtaining the cluster
centroid, and (3) assigning the cluster to a given fixture,
group, or zone. The rest of the section explains these
steps in further detail. Further information can be found
in [27].

1) Estimating the reading location: An estimated
reading position for an RFID tag is computed every
time it is read. The tag is positioned with respect
to the antenna that performed the reading, at a fixed
distance. To keep the model as simple as possible
this distance is considered to be constant for every
type of store, and it is a parameter for the algorithm
called reading distance. Then, the relative position
of the tag with respect to the antenna is transformed
to a position relative to the map, given the position
and orientation of the antenna with respect to the
robot, and the position and orientation of the robot
with respect to the map at the precise time of the reading.

2) Obtaining the cluster centroid: At the end of each
mission, all the readings of the same SKU are processed
to obtain an estimated centroid for each SKU. A straight-
forward possibility is to aggregate all the positions of the
readings and compute the average. However, this solution
will not consider the frequent case of having more than
one location for a given SKU (same product found in
two or more locations in the store). Moreover, it will
not discard outlier reads, common occurrence due to the
multi-path effect.

A more advanced implementation is to use a clustering
method, for example DBSCAN [28]. The output of this
algorithm is a set of clusters composed by reading’s
positions and a set of outliers (readings that are not
assigned to any cluster). The readings that are labeled as
outliers are discarded while all the obtained clusters are
considered valid positions. The centroid of each cluster
is calculated as the simple average of all the estimated
positions of its readings.

The DBSCAN algorithm has two parameters, called
eps and min samples. The eps parameter is defined
as the maximum distance between two readings for one
to be considered the neighbor of the other, while the
min samples parameter is defined as the minimum
number of readings required to consider a cluster. By
using these two parameters, it is not required to know
beforehand the number of actual locations of a SKU.

We added another parameter, called min epc, defined
as the minimum number of unique EPCs for a cluster
to be considered. Using this parameter, we avoid the
situation where a misplaced item is considered a cluster.

3) Assigning the cluster to a given fixture, group, and
zone: We assign the centroid of each cluster to their
closest fixture, using the Euclidean distance. However,
the parameter max distance is used to avoid assigning
clusters that are too far from the closest fixture. When
groups or fixtures or zones are used, the precise method-
ology for assigning the SKU to a group or a zone is
detailed for each experiment.



IV. EXPERIMENTATION

The experiments done to assess the results of the
location methodology presented in this work took place
in three different phases and in two environments: a
laboratory and a real store. Each of these phases had
different objectives: the first phase, in the laboratory, was
designed to validate the solution and compare it with
the SOTA. The second phase was designed to evaluate
the solution in a real environment. The third phase was
designed to validate that the solution met the business
requirements of the retailer.

The RFID robot used was Keonn’s Robin® [29] which
uses 2 Keonn RFID readers (AdvanReader-160® [30]).
Each reader is connected to a set of 4 Keonn RFID
antennas (Advantenna-SP11® [31]) placed on either side
of the robot, as shown in Figure 2.

Fig. 2. The robot operating at the store, and a detail of the
RFID payload. Number 3 is one of the two 4-antenna sets of and
number 4 is the reader controlling the antenna set on that side.

A. First phase: Laboratory environment tests

To validate the model and compare it with previous
solutions several tests were performed in a laboratory,
which provides a much more controlled environment than
the real store, making root cause analysis, optimization
and debugging easier. Additionally, performing these
tests in the laboratory allows a priori knowledge of the
complete ground truth of the tags in the environment,
which is required to confirm hypothesis 1. The laboratory
environment consists of an empty office space in which
several aisles are created artificially with 49 cardboard
boxes, as shown in Figure 3. RFID tags are placed on

top of the boxes without a predefined orientation. The
tags represent 49 different SKUs, between 10 and 50
tags are assigned to each SKU, and the location of each
SKU is considered to be the top-center of each cardboard
box that contains the tags.

Fig. 3. Laboratory environment for the first phase.

Experiments are done with a variable RF power, from
30 dBm to 15 dBm, and two sessions S2 and S0, the
latter will not silence the RFID tags after the reading so
they will continue answering the reader.

The other parameters of the methodology are sim-
plified to focus on hypothesis 1. Therefore, the
reading distance parameter is set to 0.5 m since the
aisles are 1 meter wide. No clustering is used in this
phase, as each SKU is placed in only one location.
The downside of this is that possible outliers will not
be filtered. However, if the method works in these
conditions, we estimate that it will work better with the
use of clustering.

Table I shows the results. Seven tests are performed
with varying power and session parameters, each of them
with three repetitions. The accuracy values presented are
the average of these repetitions. Each run consisted in the
robot navigating the entire space while reading the RFID
tags. In the columns we show the location accuracy, the
mean distance error, and the inventory accuracy.

From Table I we observe that the best location accu-
racy is obtained with RFID session S0 and RFID power
of 20 dBm, which validates hypothesis 1. The method
with these parameters achieves a location accuracy of
81%, a mean distance error of 37 cm, and an inventory
accuracy of 85%. This mean distance error is in line
with the previous solutions in the SOTA, which were
between 28 cm and 50 cm. Moreover, as shown in [11],
the use of a lower power for reading tags maximizes the
location accuracy and minimizes the distance mean error.
However, it also reduces the inventory accuracy. This
is the reason why inventory and location must be done
in separate missions with different parameters. Power
values above 20dBm result in lower accuracy because of
the increase of outlier readings, and lower power values



Test RFID
power

RFID
session

Location
accuracy [%]

Distance
mean error [m]

Inventory
accuracy [%]

1 30 S2 2.04 2.50 99.62
2 25 S2 28.57 0.92 97.5
3 25 S0 71.43 0.45 97.18
4 20 S2 57.82 0.48 83.9
5 20 S0 80.61 0.37 84.96
6 15 S2 69.39 0.45 40.51
7 15 S0 76.53 0.43 40.10

TABLE I
RESULTS FOR THE FIRST PHASE OF TESTS.

result in lower accuracy because not enough readings are
obtained to calculate the centroid. Finally, an accuracy
above 80% is considered satisfactory as the distances
between centers of cardboard boxes is only around 40cm,
and all errors are due to placing the SKU in an adjacent
box.

B. Second phase: first set of store experiments
The experiments of the second phase were done in a

real large retail store of 1, 000 m2 with around 11, 000
different RFID tags located in the labels of the items
exposed. The store associates divided the ground floor
in 11 different zones categorizing them by the type of
products and the characteristics of each zone. In addition,
they identified 88 fixtures in which the products were
placed.

Figure 4 shows the distribution of zones and fixtures in
the store. Each SKU is assigned as explained in section
III, and zones cover all the ground floor without over-
lapping, so each SKU is assigned to the zone containing
its estimated location.

The ground truth was collected manually while the
robot mission was in progress. Approximately 70% of
the SKUs in the store were recorded with their actual
location (fixture and zone). Due to time constraints, it
was not possible to record all 100% of the SKUs. The
store was closed to the public while the experiments were
performed.

This phase was conducted in two steps. In the first
step a single run of the robot was used to adjust the
DBSCAN and the reading distance parameters. The
RFID parameters were the same that provided the best
results in the laboratory experiment (power of 20 dBm
and session S0). The filtering parameters min epc and
max distance were not yet used in this phase. The
second step was performed a week later with a newly
collected ground truth but with the parameters of the
first one. The results from the second step are used to
evaluate the performance of the method.

The parameters reading distance, eps and
min samples are adjusted separately. First
reading distance is set to 1 m, then the DBSCAN

Fig. 4. Zones and fixtures of the store in the first set of tests.

parameters are adjusted. Properly adjusting these two
parameters is relevant to improve the results, and they
are dependent on the type of store. The parameter
min samples depends on the average and variance of
the number of items that compose a SKU, and should
be decreased if SKUs include few items, otherwise
they will be discarded by the algorithm. Adjusting eps
depends on the multi-path effects created while using
RFID waves in the store. If few multi-path effects exist,
eps can be decreased which will improve the accuracy
of the result. Figure 5 shows the results of the process
in this store. The location accuracy is the percentage of
SKUs correctly placed in the expected area, the average
distance error is the distance between the recorded
position of the SKU and the estimated position, and
the groups lost are the number of groups that have
been discarded by the clustering method. The x-axis
shows all the combinations of the two parameters (eps



Fig. 5. Analysis of the performance as a function of the parame-
ter’s eps and min samples. The values shown on the x-axis are
the different pairs of eps, min samples values that where tested.

Fig. 6. Zone location accuracy obtained as a function of the
reading distance.

and min samples) that were tested. We observe that
best performance is achieved when eps = 3 m and
min samples = 3.

On the following procedure, we try to find the
best value for the reading distance parameter af-
ter having determined the optimum values for eps
and min samples. Figure 6 shows the zone loca-
tion accuracy values obtained as a function of the
reading distance. We observe that the maximum ac-
curacy is achieved with reading distance = 1.4m.

In the second step, another run of the robot
is performed with the previously fixed parameters:
RFID power equals to 20 dBm, RFID session S0,
reading distance = 1.4 m, eps = 3 m, and
min samples = 3. The results obtained are shown
in Table II, we can observe that both fixture and zone
location accuracy values are above 90% which was the
lowest location accuracy value accepted by the retailer.
We observe that in comparison to the experiments done
in the laboratory environment, the mean distance error
increases (73 cm) due to the complexity of the envi-
ronment. These results validate the second hypothesis as
although the complexity of the environment has drasti-
cally increased the simplified model managed to maintain
accuracy figures above 90% with a reasonable value of

mean distance error. Since no similar results were found
in the SOTA, no results can be compared at this point.

C. Third phase: second set of store experiments
One year after having achieved successful results in

the second phase of experiments, some changes were in-
troduced in the model to better adapt to the requirements
of the retail industry. A new definition of fixtures is used,
specifically, fixtures are defined as points in the 2D plane,
instead of polygons, which increases the maintainability
of the solution. Also, the retailer gave us insights about
the store to add two more filtering parameters. Finally,
the assignment of SKUs to groups of fixtures and zones
is done through the fixture assignment. The group and
zone to which each fixture belongs is part of the ground
truth, therefore, when a SKU is assigned to a fixture
it is also automatically assigned to its group and zone.
Therefore, the group and zone location accuracies are
now dependent on the fixture location accuracy.

Therefore, together with the retailer, we redefined the
store characteristics. First, 10 zones were defined instead
of 11 due to changes in the store’s layout. Second, the
number of fixtures was increased from 88 to 183, with
all of them being represented by points as it can be seen
in Figure 7. The main reason for this increase is that a
single fixture for the phase 2 may now be considered
a group of fixtures, defined as several fixtures within a
radius of 50cm. In any case, due to changes in the layout,
there were a total of 122 groups of fixtures. Therefore,
in this last phase, the store components were fixtures,
groups of fixtures and zones.

The retailer noticed that the number of SKUs placed in
more than one spot in phase 2 was larger than expected.
According to our study on phase 2, this might have
happened due to misplaced items or staff operations.
Nevertheless, the new introduced set of parameters were
filtering parameters min epc = 3 and max distance =
2m. In this case the retailer was not interested in finding
misplaced items, an information that could be obtained
by setting min epc = 1.

Before initializing the test, we record the coordinates
of the location of each fixture and the SKUs in it. This
ground truth did not contain the specific coordinates of
each SKU, as the retailer was not interested in the mean
distance error.

The optimization of parameters is not performed at
this phase because we want to prove that the method
can work in different environments without the need of
being adapted at each scenario.

It is important to recall that experiments done in
phase 2 and phase 3 were in the exact same retail shop.
However, during this year gap, considerable changes
of the store layout were introduced making it a fairly
different environment for the robot. The parameters and



Total
SKUs

Identified
SKUs

SKU inventory
accuracy [%]

Zone location
accuracy [%]

Fixture location
accuracy [%]

Mean distance
error [m]

379 366 96.6 95.9 92.1 0.73
TABLE II

SUMMARY OF RESULTS FOR PHASE 2 OF THE EXPERIMENTS

Fig. 7. Layout of the store for the third set of experiments. The
zones, the fixtures (red squares) and the groups of fixtures are
shown.

their value were the following: RFID power = 20 DB,
RFID session = S0, reading distance = 1.4 m,
eps = 3 m, min samples = 3, min epc = 3 and
max distance = 2 m. The results are shown in Table
III.

From Table III we observe that the number of SKUs
found and the zone location accuracy results are similar
to those in phase 2. However, the decrease in group
location accuracy and fixture location accuracy is about
13 and 24 points respectively if they were to be compared
with the fixture location accuracy of phase 2. There are
several reasons that can explain this. The first reason
is that the number of fixtures and groups of fixtures
defined is much higher, the increase is more than a
100% for the fixtures and almost a 50% for the groups
of fixtures. Logically, placing different fixtures closer
than the mean distance error is clearly affecting the
results. Additionally, the zone location accuracy and the
group location accuracy are linked to the fixture location
accuracy. Therefore, if the fixture assignment is wrong
the other two may easily follow. Taking this into account,
having a good zone location accuracy and a worse fixture
location accuracy shows that our mean distance error is
probably above 50 cm but not much higher, as the zone

location accuracy is kept as high as in phase 2. Another
reason is using points instead of polygons to represent
fixtures. For instance, a table of 1m2 is represented by
a point in its center, and a few centimeters from the
table there is another fixture, for instance a rack, also
represented by a point. In such a case, it is possible that
an SKU on top of the table is actually closer to the
point representing the rack than the point representing
the table.

These results can not directly be compared with the
previous state-of-the-art since no previous work was
evaluated in terms of fixture, group, or zone location
accuracy. However, given the results and the store layout,
we can confirm that the mean distance error is in line
with the second phase of experiments and hence, also
with the previous works.

V. CONCLUSION

The solution presented in this paper uses a simplified
range-free RFID model and location method for RFID-
based robots. The solution is based in two hypotheses.
The first one is that for RFID tag location missions, RFID
parameters must be different from those used in inventory
missions, as a result unwanted distortions or noise signals
are mitigated in the cost of lower detecting range. As
anticipated in [32], the closer the robot is to the tag, the
better the location accuracy. The second hypothesis is
that a simple method can have equal or better location
accuracy than a complex method. The strong interaction
between the RF waves and the environment implies that
any method based on a model of such interaction will
not perform well when the environment changes. Hence,
a simple method, less dependent on the environment, can
adapt much better to these changes. Even if the presented
model is much simpler than previous works in the state
of the art (e.g. [15], [11]), it achieves similar or better
results in comparable environments.

Following the requirements and needs of the retail
industry, two simplifications are applied to the location
problem. The first one uses the fact that, in most ap-
plications, the location of a single tag will not be as
relevant as the location of an entire SKU. By grouping
items, we can lower the RFID power to get more accurate
readings without losing data due to not detecting all the
RFID tags. The second one consists in providing the
SKU locations as relative positions of the store such
as a fixture, a group of fixtures, or even a zone in
the store. Cartesian coordinates do not provide practical



Total
SKUs

Identified
SKUs

SKU inventory
accuracy [%]

Zone location
accuracy [%]

Group location
accuracy [%]

Fixture location
accuracy [%]

374 371 99.2 96.8 79 68
TABLE III

SUMMARY OF RESULTS FOR PHASE 3 OF THE EXPERIMENTS

information for retailer business applications. This means
that the method should not focus on minimizing the
mean distance error, but should focus on maximizing the
location accuracies instead.

The algorithm has been tested in a real retail store
of 1, 000 m2 and with around 11, 000 unique tags.
This represents a breakthrough with respect to previous
solutions from the SOTA, where they were only tested in
laboratory environments or mock stores. We have shown
that when moving the solution from the laboratory to the
real store and focusing on the business needs, the location
accuracies obtained are lower, as expected. However,
with the presented solution our results are in accordance
with the SOTA, and within the expectations of the retail
industry. Moreover, our results show that it is possible to
locate groups of items with high accuracy on fixtures that
are separated more than the mean distance error which
in our case is 28 cm in the laboratory environment and
73 cm in the real store. We show that in this case, we
can get location accuracies above 90%.
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