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Resumen del Trabajo 

El conocimiento de las relaciones entre el bacterioplancton y las proliferaciones de 

fitoplancton es clave para entender el funcionamiento de los ecosistemas, como 

también predecir y mitigar los efectos del cambio global sobre estos ecosistemas. 

Estas comunidades microbianas son gobernadas por relaciones complejas. Además, 

los datos para estudiar la diversidad del bacterioplancton (Variantes de secuencias de 

amplicones del gen del ARNr 16S) son altamente dimensionales, dispersos y ruidosos. 

En este proyecto, los clasificadores Random Forest basados en datos de diversidad se 

utilizaron para predecir proliferaciones costeras de fitoplancton y buscar 

biomarcadores de estos. Tras unir los datos de dos campañas oceanográficas, las 

muestras se clasificaron entre las categorías Bloom y normal según la concentración 

de clorofila. Los datos resultantes eran altamente dimensionales (166 muestras, 7593 

variables) y desbalanceados (31 muestras bloom, 135 normales). Para reducir la 

dimensionalidad, las variables biológicas con abundancias relativas menores al 0,01% 

se eliminaron. Alternativamente, se agruparon a nivel de género. Los modelos 

Random Forest se entrenaron valorando diferente número de variables en los árboles 

individuales. El proceso se repitió con cien divisiones diferentes de los datos en los 

grupos de entrenamiento y test para asegurar la representatividad de los resultados.  

Los modelos sólo alcanzaron buenos niveles de desempeño (kappa, sensibilidad y 
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especificidad medias > 0.8) tras utilizar la técnica de sobre muestreo sintético de la 

clase minoritaria, bloom, para balancear los datos. Finalmente, se determinaron los 

biomarcadores como las variables más importantes según su error predictivo. 

Abstract 

Understanding the relationship between bacterioplankton and coastal phytoplankton 

blooms is key to understand coastal ecosystems functioning, which are the most 

productive areas for fisheries. With that knowledge, we could predict and may be 

mitigate, the effects of global change or contamination events in these productive 

ecosystems. However, these microbial communities are governed by very complex 

relationships. In addition, the data used to study bacterioplankton diversity 

(Amplicon Sequence Variants of 16S rRNA gene) is highly dimensional, sparse, and 

noisy. In this project, Random Forest classifiers based on diversity data were used to 

predict coastal phytoplankton blooms and search for their biomarkers. After joining 

two oceanographic campaigns data, samples were classified as bloom or normal 

depending on the total chlorophyll concentrations. The resulting dataset was highly 

dimensional (166 instances, 7593 features) and imbalanced (31 instances bloom, 135 

– normal). To reduce dimensionality, biological features with relative abundances 

below 0.01 were removed, or they were grouped into clusters at genus level. Random 

forest models were trained and tuned with a grid-search of the number of features 

included in the individual trees. The process was repeated using one hundred 

different data splits into train and test groups to ensure results’ representativity. 

Good performance values (kappa, sensitivity, and specificity > 0.8) were achieved only 

after using the synthetic minority oversampling technique to level the number of 

instances between the two categories. Using those models, the topmost important 

features, according to the predictive error rate of features, were selected as 

biomarkers.   
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1. INTRODUCTION 

1.1. BACKGROUND AND PROJECT RATIONALE 

Coastal areas represent only the 7% of the total area of the oceans but produce the 14-

30% of the primary production of the ocean (Pontiller et al. 2022). This productivity 

supports the coastal marine ecosystem, having environmental and sociological 

implications. Coastal fisheries play an important socioeconomic role worldwide. For 

instance, in Europe the small-scale fisheries, which are the 84% of the fleet, provide 

direct employment for 100,000 people (Lloret et al. 2018). Among coastal areas, Easter 

Boundary Coastal Zones (EBCZ) are of particular interest. Upwelling events occurs along 

EBCZ when the winds induce the rise of nutrient-rich subsurface waters causing 

phytoplankton blooms that sustain high levels of productivity (Figure 1) (Joglar et al. 

2021; Pontiller et al. 2022).   

a) 

 

b) 

 

Figure 1. a) Diagram of a coastal upwelling event, when deep cold water reaches the surface near a 
coast driven by wind changes (By Lichtspiel). b) Effects of upwelling on surface chlorophyll concentrations 
in the Western Pacific Ocean (NASA) (Source: https://en.wikipedia.org/wiki/Upwelling, accessed on Jun 

6th 2023) 
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Microorganisms play a central role in marine biogeochemical processes and therefore, 

in the marine ecosystem support. Bacterioplankton (bacteria and archaea living in the 

oceanic water column) are key members of marine food webs due to their high 

abundance and activity. Indeed, heterotrophic prokaryotes are the only organisms that 

efficiently transform the dissolved organic matter (DOM) in marine ecosystems (Deng, 

Vallet, Pohnert 2022). This is a very important process because marine photosynthetic 

microorganisms (cyanobacteria and single-cell eukaryote phytoplankton) are 

responsible for half of the primary production of Earth (figure 2) (Deng, Vallet, Pohnert 

2022). Roughly, 50% of the organic carbon produced by phototrophs is transformed by 

heterotrophic prokaryotes, which also regulate the cycle of nitrogen and phosphorous 

among other elements.  

Microbial communities affected by upwelling events are complex systems characterized 

by close interconnections of phytoplankton with bacteria, viruses, oomycetes, and 

herbivores (Deng et al., 2022). It is well known that temporal and spatial fluctuations of 

abiotic variables exert a control on ocean microbial communities. In the case of coastal 

marine ecosystems, the supply of inorganic nutrients impacts their productivity heavily  

(Paul et al. 2022). However, recent studies have recognized that biotic factors, 

specifically the interactions between bacterioplankton and phytoplankton, are relevant 

to understand the dynamics of these communities (Costas-Selas et al. 2022; Gronniger 

et al. 2022; Hernández‐Ruiz et al. 2018).  

Given the importance of marine microorganisms and their ecological and physiological 

differences among the different species, understanding microbial seasonal succession, 

interactions their consequences is highly relevant to determine and predict the 

adaptiveness of these communities but also, to better understand ocean functioning 

and the impacts of current global changes on EBCZ ecosystems (Bunse, Pinhassi 2017; 

Deng, Vallet, Pohnert 2022).  

 

Figure 2. Phytoplankton bloom in the Barents Sea, notice the size of the blooming area compared with 
the northern Norwegian coast (Envisat satellite, ESA, CC BY-SA 3.0 IGO, 

https://creativecommons.org/licenses/by-sa/3.0/igo/) 
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In the last decades, molecular and computational advances have allowed the study of 

the phylogenetic and genomic diversity, and community composition patterns of marine 

microorganisms through the sequencing of marker genes (18S rRNA and 16S rRNA 

genes) or full metagenomes or metatranscriptomes (Costas-Selas et al. 2022). The 

expansion of high throughput sequencing is increasing the number of available microbial 

ecology datasets that have the potential to provide key insights into environmental 

phenomena. To analyse them, microbial ecology has relied on traditional statistical 

analysis. However, high throughput sequencing microbiome data are highly 

dimensional, noisy, sparse and, compositional and usually, they cannot meet the 

assumptions of classical statistics methods.  

Machine Learning (ML) has been used to find patterns in data that can be predictive of 

different phenomena in biological disciplines such as neuroscience or drug discovery. 

However, investigation into microbial ecology applying ML models is lagging behind  

(Ghannam, Techtmann 2021; Marcos-Zambrano et al. 2021). ML methods present some 

advantages over classical statistics that are very attractive for the ecology field. Among 

them, the capacity of ML methods to perform robust interrogation of complex 

association patterns in microbial communities stands out (Ghannam, Techtmann 2021). 

The main goal of this project is to take advantage of ML methods to identify the main 

bacterioplankton biomarkers that might be related to phytoplankton blooms and, that 

could serve to explore the role of biotic interactions in the highly productive EBCZ areas. 

The complexity of microbial communities of EBCZ areas and, the remaining questions 

about their functioning and capacity to adapt to the current global change and 

contamination issues, make them a very interesting target for ML studies. The ML 

methods that allow the search for biomarkers are of particular interest as they can help 

to disentangle the biotic interconnections of these systems. 

1.2. GOALS  

General objective. 

Produce a ML model able to predict phytoplankton blooms events using microbial 

community diversity data and find relevant microbiological biomarkers of such 

ecological process. 

Specific objectives. 

1. To produce an ML model to predict phytoplankton blooms: 

1.1. Generate Amplicon Sequencing Variants (ASVs) counts per sample from raw 

sequencing data that will serve as initial data for ML approaches. 

1.2. Determine the range of Chlorophyll concentration that correspond to a 

phytoplankton bloom. This initial objective was changed through the project to 
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the classification of samples into two classes, bloom events or normal situations, 

depending on total Chlorophyll concentrations. 

1.3. Generate a regression ML model capable to predict chlorophyll concentration 

from ASVs data with a precision at least over 70%. This initial goal was modified 

to create a classifier ML model capable to determine if a sample correspond to 

a bloom or normal situation with a performance over 70%. 

2. To find relevant microbiological biomarkers: 

2.1. Determine the threshold to consider a feature as a biomarker. 

2.2. Generate a list of microbial species considered as biomarkers of phytoplankton 

blooms. 

 

1.3. IMPACTS ON SUSTAINABILITY, ETHICAL BEHAVIOUR, SOCIAL RESPONSIBILITY AND 

DIVERSITY   

Sustainability 

One of the main motivations to develop this project was its potential positive impacts 

on environmental sustainability. Achieving the main goal of this TFM, would help to 

better understand the coastal ecosystems functioning. That knowledge is key to better 

understand and predict the impacts of climate change and contamination events on 

coastal ecosystems; but also, it is part of the base to develop methods to mitigate those 

impacts, if possible. Coastal microalgae blooms are highly related with water 

temperature, which is rising due to global change. Blooms are also related to nutrient 

concentrations, which can dramatically increase due to run-off of land contaminants 

causing severe eutrophication events as the recent episodes occurred in the Mar Menor 

area of the southeast of Spain.   

A direct negative impact of the development of this project is the use of computationally 

expensive methods. Given the current main sources of energy, the use of 

computationally intensive methodologies implies generation of green-house gas CO2.    

Ethical Behaviour and Social Responsibility 

The deontological principles of research and academic work are followed in this project. 

Specifically, the data used are public or are being used with the permission of the 

authors; methods and results are all explained and showed, and all citations and 

previous works are acknowledged.  
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The Project is highly technical, focused in the areas of prediction and microbial ecology; 

therefore, it does not have direct economic or social dimensions.  However, through its 

potential sustainability impacts, it might have a positive impact in sustainable 

development goals related to cero hunger (2), and decent work and economic growth 

(8). As the main goal of the TF can help to better understand the coastal ecosystems, it 

might have a future positive impact in the development of more sustainable fisheries, 

that would serve as a reliable source of food, and with a better distribution of resources 

between the different social agents. In any case, it would require the intervention of 

many external agents and the improvements of many other areas. A better 

understanding of the microbial mechanisms during the blooms is only a small portion of 

the knowledge required to achieve those positive impacts.  

It is also related to the sustainable development objective 6, clean water and sanitation, 

because the water quality of the coastal areas is very related to the microbial 

communities that inhabits them, especially in the events of water eutrophication as 

already explained.   

Diversity and Human Rights  

Through the development of more sustainable fisheries with better resources 

distribution, this project might have a positive impact in the sustainable development 

objective 10, reduced inequalities. But as already indicated, the role of this TFM in this 

impact would be small and would require many changes far beyond the area of this 

project.  

Human diversity is respected as much as possible during the TF. Inclusive language is 

used when needed. Search and inclusion of previous works are done regardless the sex, 

class, race, disability, sexual orientation, and gender of the authors. The ISO 690 citation 

style is used to ensure showing full names of authors. The obtained results are not 

directed or focused on any specific group of people.  

1.4 APPROACH AND METHODOLOGY 

In the context of this project, a biomarker could be either a taxonomic marker or a gene 

related to any relevant biological process, where the most interesting ones could be 

those related to metabolic or cell signalling pathways. Because of that, the analysis 

would be initially focused on metagenomic data. Taking advantage of a set of 

metagenomes and corresponding environmental metadata of a seasonal study of 

Northwest coast of the Iberian Peninsula (Envision campaign). This data is available 

through a collaboration with oceanographers and marine ecologists: professors Sandra 

Martínez-García and Eva Teira from “Centro de Investigación Mariña da Universidade de 

Vigo, Departamento de Ecoloxía e Bioloxía Animal (CIM-UVigo)” in a wider research 

project in which bioinformatics and classical statistics are being applied to study the N-
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cycle  on the EBCZ of Galicia (An approach to study the ecology of marine microbial 

communities based on traits and guilds – TRAITS). Some results using part of this dataset 

have been published already (Pontiller et al. 2022). 

In microbial ecology studies, especially those using metagenomics, the number of 

samples that can be used as instances in ML approaches, is usually very low compared 

to other datasets. Envision dataset is not an exception as it comprises only 23 samples. 

An alternative could be search for biomarkers using only the prokaryotic taxonomic 

marker gene (16S rRNA gene) as the microbial ecology studies using that kind of data 

usually comprises a higher number of samples due to the lower costs of sequencing and 

data analysis. And again, Envision dataset is not an exception, as it contains 130 samples 

of 16S rRNA gene amplicon data. In addition, collaborators from U. of Vigo have other 

dataset of marker genes of a seasonal study developed in the same EBCZ in the previous 

years (Dimension, (Hernández‐Ruiz et al. 2018) that can complement Envision dataset.  

In any case, the number of samples available is low, what is a concern for ML methods. 

Therefore, the project must start with a search on bibliography and several databases 

(i.e: European Nucleotide Archive (ENA), Joint Genome Institute Integrated Microbial 

Genomes and Microbiomes (JGI-IMG/M) or TARA Oceans databases (Sunagawa et al. 

2015; Salazar et al. 2019) to find similar and available datasets of coastal phytoplankton 

blooms.  

However, even though the sequences are usually available, most studies do not make 

available the corresponding environmental metadata, at least in the detailed level 

needed in this project. Because of that, it is highly probable that no similar datasets will 

be found.  In the case of finding a set of available metagenome samples there are more 

difficulties. The initial steps of a metagenome analysis (assembly, gene identification and 

annotation) are characterized by long computing times even in high performance 

scientific clusters. For instance, the assembly and annotation of the Envision 

metagenomes, already done in the context of the TRAITS project, took a couple of weeks 

in the same server used in this project. Due to the time limitations in this project, 

performing again those analysis with a new group of metagenomes including Envision 

samples is not possible. Consequently, the search for compatible metagenomes must be 

focused on data already assembled and annotated with a pipeline compatible with the 

data analysis already performed with Envision metagenomes, which is highly 

improbable. In the case of finding appropriate metagenomic datasets, a table of 

sequence counts of genes vs. samples would be the data used in the ML approaches.  

In the case of marker gene amplicon data, the computational times are significantly 

lower, which would allow to start the analysis from raw sequences. In the context of 

ecological studies, the first step when dealing with raw sequences of taxonomic marker 

genes is to produce tables of species vs. counts on each sample. This is the starting point 

for the standard statistical analysis, and the data that will be used in the ML approaches 

if no metagenomic data is found. To create those tables, sequences must undergo a 
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series of processing steps to calculate a proxy for microbial species. Currently, there are 

two approaches for that. First, calculate Operational Taxonomic Units (OTUs) based on 

sequencing similarity (usually 97% or higher). A more recent approach is to calculate 

Amplicon Sequence Variants (ASVs) that discriminate biological sequences from 

sequencing error and have finer resolution (Callahan, McMurdie, Holmes 2017). 

Although there is some debate in the community regarding the use of both approaches 

(Glassman, Martiny 2018), ASVs will be used in this project because this approach has 

been claimed as more precise, reusable, reproducible and comprehensive (Callahan, 

McMurdie, Holmes 2017). Each ASV will be a feature of the dataset. This diversity data 

can be aggregated in different taxonomic levels (specie, genus, family, order…) that 

could be used as features instead the ASVs. However, a recent work has shown that ML 

algorithms perform better using more detailed diversity data (i.e., ASVs, species or 

genera) than lower taxonomic ranks that aggregate the information (i.e., order or class) 

(Wilhelm, van Es, Buckley 2022). All these steps can be performed with Mothur pipeline 

(Schloss 2020). 

The microbiome sequencing data (either rRNA marker genes, metagenomes or 

metatranscriptomes) is characterized by noise, compositional nature, and sparsity, 

factors that can impact the performance of ML models. Despite of that, environmental 

microbiology studies usually fail to acknowledge these problems (Busato et al. 2023). 

Therefore, exploratory analysis will be employed to reduce the possible source of noise 

(i.e., batch effects); appropriate normalizations (i.e., log-ratio transformations) will be 

applied to avoid compositional problems; and addition of pseudo-counts will be used to 

reduce the sparsity problem. Also, the number of ASVs (features) of this kind of datasets 

are usually in the range of few thousands, making these datasets highly dimensional. A 

feature selection step will be used (i.e., ASVs with low abundances and present only a 

low fraction of the samples would be discarded).  

In addition to ASVs or genes, other data describing the environment is crucial to achieve 

the goals of the project. The chlorophyll concentration of the water that is a proxy for 

phytoplankton growth and therefore, its blooms (Deng, Vallet, Pohnert 2022). A 

regression model to predict chlorophyll concentrations from DNA data is more 

interesting than using a classification approach because it can allow to infer more 

detailed links between the microbiota and the Chlorophyll concentrations. Therefore, 

this kind of models will be the target of the project. In any case, samples can be also 

divided between those corresponding to the bloom events or normal situation using 

chlorophyll concentrations, may be with the help of other environmental metadata. The 

input of the collaborators, professors Sandra Martínez-García and Eva Teira, would be 

crucial for this step. 

Given the nature of the goal and data, the project will use a supervised learning 

methodology. Among the different possibilities capable of regression analysis (i.e., k-

nearest neighbours, support vector machines or artificial neural networks), random 

forest (RF) is the ML method preferred when dealing with microbiome data (Busato et 
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al. 2023; Ghannam, Techtmann 2021; Marcos-Zambrano et al. 2021; Janßen et al. 2019). 

The reasons are that RF are less prone to overfitting, can consistently identify true 

effects in complex and heterogeneous data, usually obtains better accuracies and in 

general, are considered interpretable and meaningful information can be extracted from 

their classification steps (Liu et al. 2022; Ghannam, Techtmann 2021; Janßen et al. 2019).  

Due to these advantages, RF will be used to predict the blooms, using chlorophyll as a 

proxy, as well as to determine the biomarkers associated to them. Although support 

vector machines, artificial neural networks and deep learning has some prevalence on 

studies of microbial communities, mainly from human microbiome using ML methods 

(Marcos-Zambrano et al. 2021), those approaches have been discarded for this project. 

First, the black-box nature of artificial neural networks and support vector machines 

make them a bad choice to search for biomarkers among the features. Second, the low 

number of microbiome samples available from marine environments limits the 

application of artificial neural networks or deep learning on the project. There are few 

examples that applies data augmentation or transfer learning methods to microbiome 

studies but, an in all cases authors used the largest available dataset of microbial 

community samples (human gut microbiomes) including thousands of samples in their 

methods (Tataru, David 2020). Again, due to the limited number of samples available for 

oceanic environments, these methods are initially discarded.   

After training, the RF model will be adequately evaluated and refined. Then, the 

importance of different features in the RF model will be calculated and used to identify 

the best biomarkers. There are limited examples of biomarker search using ML on 

environmental microbiomes (Wilhelm, van Es, Buckley 2022; Janßen et al. 2019). For 

that the variable importance of the top features to predict the Chlorophyll 

concentrations will be determined using information during the forest construction (Liu 

et al. 2022; Yuan et al. 2022). All the work related to ML algorithms will be done in the 

R environment using caret package (R Core Team 2023).  

1.4. WORKING PLAN 

Resources 

The required resources needed are: 

- Data, both DNA sequences and environmental metadata, already available 

through a collaboration with professors Sandra Martínez-García and Eva Teira 

from University of Vigo, and on public databases. 

- Computational resources, available through access to the scientific computation 

servers of the National Center of Biotechnology – CSIC.  

- Personal computer. 
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Tasks 

Tasks are enumerated according to the objectives of the project: the numeric part 

corresponds to the specific objective, then a letter enumerate the task itself. For those 

tasks relate to documentation and preparation of reports, the numeric part of the label 

has been set to 0. Note that the date format used in this project is dd/mm/yyyy. 

Table 1. Temporal plan of tasks. 

DESCRIPTION START END 

Working plan definition, PEC1. 01/03/2023 20/03/2023 
0.a. Bibliographical search on the topic. 01/03/2023 15/03/2023 
0.b. Search for similar datasets on public databases. 07/03/2023 12/03/2023 
0.c. Require authorization to work with private datasets 
from collaborators. 

13/03/2023 15/03/2023 

0.d. Develop working plan. PEC1. 16/03/2023 20/03/2023 
0.e. Plan delivery and feedback. 20/03/2023 27/03/2023 
Work development – phase 1, PEC 2. 21/03/2023 24/04/2023 
1.1.a. Data gathering from collaborators and public 
databases. 

21/03/2023 26/03/2023 

1.1.b. ASVs table generation. 27/03/2023 09/04/2023 
1.2.a. Determine Chlorophyll ranges of blooms. 21/03/2023 09/04/2023 
0.f. Progress documentation. 03/04/2023 09/04/2023 
1.3.a. Data preprocess: exploratory analysis, normalization, 
and correction of sparsity. Feature selection. 

10/04/2023 19/04/2023 

0.g. Preparation of PEC 2 report.  20/04/2023 24/04/2023 
0.h. PEC 2 delivery and feedback. 24/04/2023 01/05/2023 
Work development – phase 2, PEC 3. 25/04/2023 29/05/2023 
1.3.b. Model construction, training, and validation. 25/04/2023 07/05/2023 
0.i. Progress documentation. 05/05/2023 07/05/2023 
1.3.c. Model improvement and validation. 08/05/2023 14/05/2023 
0.j. Progress documentation. 12/05/2023 14/05/2023 
2. Evaluation of the importance of features to determine 
biomarkers. 

15/05/2023 25/05/2023 

0.k. Preparation of PEC 3 report. 26/05/2023 29/05/2023 
Final report preparation, PEC 4. 30/05/2023 20/06/2023 
0.l. Final report preparation. 30/05/2023 13/06/2023 
0.m. Presentation preparation. 14/06/20203 20/06/2023 
0.n. Code upload to public repository. 30/05/2023 20/06/2023 
Public Defence, PEC 5. 03/07/2023 14/07/2023 
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Gannt diagram 

 

Figure 3. Gantt diagram. 
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Milestones 

Description Date 

Working Plan delivery 20/03/2023 
Work development phase 1 delivery 24/04/2023 
Work development phase 2 delivery 29/05/2023 
Final report delivery 20/06/2023 
Presentation delivery 20/06/2023 
Public defense 03-14/07/2023 

1.5. SUMMARY OF OBTAINED PRODUCTS 
 
Working plan. 
A PDF document that includes the problem to address, its background and importance, 
the objectives of the project and, de detailed working plan to achieve them. 

Final report. 
A full report on PDF format of the work developed during the project. It details the 
methods developed, the results obtained, and conclusions deduced from them.  

Product. 
A public repository where the code developed during the project is available. 

On-line presentation. 
Presentation document in ppt format to show the performed work and results. 

1.6. SHORT DESCRIPTION OF OTHER CHAPTERS  

The other chapters of this memory include:  

2. Materials and methods. Detailed explanation of data sources and methods used, 

including the generation of Amplicon Sequence Variants, the training and 

improvement of Random Forest models and the selection of important features. 

3. Results and discussion. Section that includes a description of the data finally 

included in the project, the results of sequences and data preprocessing, the 

performance of classifiers and the biomarkers found.   

4. Future work and conclusions. Conclusions drawn from current results, discussion 

about future extensions of the work, and impacts on sustainable development 

goals. 

5. Glossary. Explanation of the most used terms and acronyms. 

6. Bibliography. Full description of cited articles, books, and websites. 

7. Appendices. Section that includes extra plots and tables.  
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2 MATERIALS AND METHODS. 

2.1 DATA SEARCH AND SELECTION. 

2.1.1 Search of public databases for additional data. 

Initially, the search of biomarkers was planned for metagenomic data from the 

oceanographic campaign Envision (Pontiller et al. 2022). However, Envision 

metagenomic data consisted of only 23 samples to serve as instances. As an alternative, 

16S rRNA gene data was also considered. The two available campaigns (Envision and 

Dimension) comprised only 166 samples (see section 2.1.2), which still is a low number 

of instances. Consequently, similar datasets were searched on bibliography and public 

databases, all accessed several times between March 7th to 12th, 2023: 

- Bibliography searches were preformed using Google Scholar (Google 2004) and 

Scopus (Elsevier 2004). 

- Public repositories: 

o European Nucleotide Archive (EMBL-EBI 2023).  

o Joint Genome Institute Integrated Microbial Genomes and Microbiomes 

(DOE-JGI, 2006; Markowitz et al., 2006). 

o Qiita (Gonzalez et al. 2018). 

o Earth Microbiome Project (Thompson et al. 2017) 

o TARA Oceans databases (Sunagawa et al. 2015; Salazar et al. 2019) 

2.1.2 Envision and Dimension campaigns. 

Once metagenomic data was discarded as an option (see Results and Discussion 

section), two kinds of data were needed for the project. The partial 16S rRNA gene 

sequences (fastq files) and the environmental data including the chlorophyll 

concentrations and other relevant variables. The 16S rRNA gene sequences and 

environmental data were collected in two oceanographic campaigns developed in the 

North-West coast of the Iberian Peninsula in an upwelling system near Ría de Vigo 

(Dimension and Envision) (Joglar et al. 2020; Hernández‐Ruiz et al. 2018). Sampling was 

done at two different locations of the east Atlantic Ocean: one coastal station (st 3) (42° 

N, 8.88° W), and one oceanic or offshore station (st 6) (42° N, 9.06° W)  (Figure 4) (Joglar 

et al. 2020; Hernández‐Ruiz et al. 2018). In both projects, samples to determine 

microbial community composition along with several other environmental variables 

were collected before, during and after phytoplankton blooms on an EBCZ. 

In Dimension campaign, monthly seawater sampling was carried out only in the coastal 

station from January 2014 to November 2015. Between July and August 2014 sampling 

was not possible due to ship technical issues. Two depths were sampled, 1 m. and 30 m. 
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In Envision, both stations were sampled during different seasons along 2016.  For that, 

three one weeklong cruises took place on February, April, and August. On them, samples 

were taken each other day at several depths (from 5m to 200 m) depending on the 

ocean conditions. More details about the sampling strategy and methodology can be 

found in (Hernández‐Ruiz et al., 2018; Joglar et al., 2020). 

 

Figure 4. Location of coastal and oceanic sampling points in the North-West coast of the Iberian 
Peninsula. (Courtesy of Prof. Sandra Martínez-García). 

All data, except the raw partial 16S rRNA gene sequences of Envision, were directly 

obtained from the University of Vigo collaborators. The raw sequences of the Envision 

project were obtained from the Sequence Read Archive (SRA) public database 

(bioproject ID PRJEB36188). SRA-explorer (Phil Ewels 2014) and Aspera 4.1.9.93 (IBM) 

were used to download the fastq files of the raw sequences. Also, the table with the 

information of the bioproject was directly downloaded from the SRA website as a .csv 

file.  

Initially, the available files included: 

Envision: 

- 321 fastq files of raw partial rRNA sequences. This set contained samples taken 

in the field but also from incubation experiments that were not of relevance in 

this project. Also, they included either 16S or 18S rRNA partial genes targeting 

Prokaryotic and Eukaryotic diversity.  

- The sequencing form used when submitting the samples to a company for 

Illumina sequencing. This file was the only soured of information to correctly 

identify fastq files with the samples of interest (16S rRNA gene sequences taken 

in the field). 

- 3 metadata tables with sampling and environmental information such as date 

and depth of sampling, chlorophyll concentrations or several inorganic and 

organic measurements (nitrate, nitrite, or prokaryotic biomass). 
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- 6 files with data from a CTD, an oceanographic instrument that measures 

conductivity (C), Temperature (T) and Depth (D). Each one contained data from 

one sampling station taken during one of the months studied in this campaign.  

Dimension: 

- 74 fastq files of partial 16S rRNA gene sequences. 

- Sample – fastq files table correspondence for the first year of the project (2014). 

- Metadata table with information about sampling date, depth, chlorophyll 

concentrations and, other environmental variables including those measured 

with the CTD.  

2.2 ENVIRONMENTAL METADATA AND SEQUENCE FILES PREPARATION AND PREPROCESS. 

Data gathered from collaborators and SRA lacked a system to unequivocally identify 

samples between fastq files and metadata tables because different naming systems 

were mixed. To avoid that problem, a common sample naming system, compatible with 

downstream analysis tools (Mothur), was created and applied to all files in the project:  

 

XXXProk### 

 

where XXX corresponded to either ENV or DIM for each project and ### indicated the 

sample number. Then, sample names were changed in all files (fastq files, SRA bioproject 

information table and, metadata tables) using information from different sources 

depending on the file. For instance, in the Dimension project, names of fastq files did 

not match the sample names in the metadata table. The available table with 

correspondences between fastq file names and sample names only covered the first 

year (2014). To match the fastq files and sample names on metadata table of the second 

year (2015) information of the sampling date had to be extracted from the fastq file 

names and contrasted with the information contained in the metadata table. Then, the 

name of both fastq files and samples could be changed to the new common system. 

The initial pre-process included the recodification or renaming of several environmental 

variables because they were named or recorded with different coding systems even 

within the same project. For example, in the three initial metadata tables of the Envision 

project, one for each month, the depth level, a categorical variable, was encoded as prof 

1 - prof 7 in February table, and as p1 - p7 in the other cases.  Finally, environmental 

variables with missing data that could not be imputed were removed. For instance, that 

was the case of primary production measurements that were completely missing for 

ocean station and not measured several times in the coastal station. 
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The files preprocess was complex and dependent on the campaign and file that was 

being processed. An overall outline can be found in figure  5, and details of the process 

can be found in the companion code (see section 2.10 and appendix 7.6).  

 

Figure 5. Initial pre-process outline for ENVISION and DIMENSION data and files. 

2.3 CLASSIFICATION OF SAMPLES BASED ON CHLOROPHYLL CONCENTRATIONS. 

Despite that the initial plan was training a regression model using chlorophyll 

concentrations as outcome variable, finally oceanographers decided that to classify the 

samples between normal and bloom situations would be a better approach. To help 

oceanographers to classify samples between each event, an exploratory analysis of 

some environmental variables was performed.  

For that, PCA analyses for both Envision and Dimension campaigns were performed 

using numeric environmental data and not the biological data (chlorophyll and 

abundances and biomass of Prokaryotes and Eukaryotes in Envision, chlorophyl and 

primary productivity in Dimension). Prior to PCA computation, samples with missing 

values were filtered and variables were scaled. Then the correlations of environmental 

variables to the first couple of components were explored. Categorical variables (month, 

depth) were used to colour the samples in the PCA plot to explore sample distribution 

according to them. 

Collaborators from U. of Vigo also requested an analysis of sample frequency 

distribution through months, seasons and depths using different percentiles of total 

chlorophyll concentrations to divide the data in groups. Sample distribution among 

groups defined by 50, 75 and 90 percentiles of total chlorophyll concentration were 

examined. This later approach was preferred by the oceanographers to decide the 
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division of samples between bloom and no-bloom categories. The 75 percentile was 

used in the sampling station closer to the coast while the 90 percentile was used for the 

oceanic station. Samples with chlorophyll concentrations above the corresponding 

percentile were classified as “bloom” and samples below it as “normal”. 

2.4 AMPLICON SEQUENCE VARIANTS GENERATION. 

To generate Amplicon Sequence Variants (ASVs), raw partial 16S rRNA gene sequences 

from Envision and Dimension were jointly treated. Those sequences were obtained with 

515F-Y and 926R primers (Parada, Needham, Fuhrman 2016) and sequenced in an 

Illumina platform (Hernández‐Ruiz et al., 2018; Joglar et al., 2020). 

2.4.1 Sequences pre-processing 

The starting data were partially overlapping paired sequences. Initially, the presence of 

16S rRNA primers used to generate the data, on raw sequences was checked with 

TagCleaner (Schmieder et al. 2010).  As the primers were present and removing the 

highly conserved primer sequences is important to correctly generate ASVs, primers 

were trimmed from paired reads using the tools of Mothur pipeline (Schloss 2020).   

Next, trimmed reads were filtered to remove low quality sequences. In this step, paired 

reads that are missing a partner or sequences with low quality values or sequencing 

errors were removed using Moira (Puente-Sánchez, Aguirre, Parro 2016). Moira applied 

a Poisson binomial distribution to estimate sequencing errors. Then, Moira merged 

paired reads into consensus sequences. High quality paired sequences that partially 

overlap, were merged to generate a single and longer sequences that were used as input 

data for ASVs generation. 

2.4.2 Generation and taxonomic assignment of ASVs.  

DADA2 was used to calculate ASVs (Callahan et al. 2016). Apart from calculating ASVs, 

DADA2 pipeline also detected and removed chimeric sequences. Due to the conserved 

regions within the 16S rRNA gene, chimeric sequences can be generated during DNA 

library preparations (i.e., during Polymerase Chain Reaction), sequencing or data 

analysis. The taxonomic inconsistency of different sequence regions is the key to remove 

them from the dataset. Finally, DADA2 assigned taxonomy of ASVs using a native 

implementation of the naïve Bayesian classifier method (Wang et al. 2007) and SILVA 

v.138 database (Quast et al. 2013). 

2.5 DATA PREPARATION 

DADA2 results needed some preprocessing prior to work on R. DADA2 does not create 

ASVs names, but instead uses the sequence as ID. Therefore, ASVs were numerically 

named while the sequence match with those IDs was recorded. Then, ASVs 
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corresponding to eukaryotes, mitochondria and chloroplasts were removed from the 

ASVs vs. samples counts table using taxonomic assignments to locate them. A 

problematic Envision sample (ENVProk141) was also removed. 

Next, metadata from both Envision and Dimension were merged. Most of the 

environmental variables were removed as many of them were not present in both 

datasets and others were not further needed. Also, a new variable with depth levels was 

added. It classified the numeric value of depth (in meters) into three different levels: 

surface (5-30 m), intermediate (40-55 m) and deep (60-200 m). Finally, the sample 

classification between bloom and normal situations based on chlorophyll concentrations 

was encoded into a variable called event.    

2.6 ASVS FILTERING, CLUSTERS GENERATION AND EXPLORATORY ANALYSIS. 

To reduce dimensionality, ASVs were filtered based on relative abundances. The ASVs 

with a mean relative abundance below 0.01% were removed. Also, not filtered ASVs 

were joined according to their taxonomic assignments at the genus level into clusters. 

These preprocessing steps produced three different datasets of biological features that 

were used throughout the project: 

- Filtered ASVs (relative abundance > 0.01%). 

- Clusters  (ASVs joined at genus level). 

- Unfiltered ASVs. 

Data characteristics of either filtered or unfiltered ASVs and clusters were explored 

visualizing data distributions. Also, NMDS ordinations were calculated. Two options 

were included. First, ASVs or clusters count data was transformed with robust centered 

log-ratio transformations (rclr), Euclidean distance was calculated and the best solution 

for a NMSD ordination was searched with at least 500 random starts. A second approach 

was to apply a total sum transformation to the ASVs or clusters count data, that is 

equivalent to calculate proportions, and then calculate their square root followed by the 

search of the best NMDS ordination using Bray-Curtis dissimilarities with 500 random 

starts. 

2.7 RANDOM FOREST MODELS. 

2.7.1 Feature selection and preprocess 

Features used to train the models included both metadata variables (i.e., depth, season) 

and biological features. Therefore, the full datasets were a mix of categorical and 

numeric variables. Categorical variables were recoded using one-hot encoding. 
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Biological features (ASVs or Clusters) were transformed as previously described to deal 

with differences in sequencing depth. Then, all features were centred and scaled.  

Several criteria for feature selection were applied in all cases considered: 

- Perfectly correlated features were joined into groups and only one member of 

each group was included in the dataset.  

- Features with variances near zero were filtered from the dataset.  

- Biological features were filtered by prevalence, removing those that appeared 

only in few samples. Different percentage of samples were explored for this filter 

(1% ~ 2 samples, 2% ~ 3, 3% ~ 5, 5% ~8,10% ~17 and, 20% ~33). 

- As already mentioned, ASVs with relative abundances lower than 0.01% were 

removed from the data in one of the cases considered.  

2.7.2 Model training, validation, and performance. 

Datasets were split into train and test groups, keeping the 80 % of instances in the train 

group and the other 20 % in the test group. This division was done considering the 

imbalanced nature of the dataset (see results section 3.2.2); therefore, the train and test 

group kept the proportion between the two classes of the outcome variable.  

Initially, datasets were split one time and a RF model was trained (figure 6). The main 

goal of this initial model training was to explore the hyperparameters values to consider; 

but also, to estimate the computing times needed to train the models using several 

datasets splits (see below). The RF function used (rf function of R caret package, 

wrapped in the mikropml package) had one hyperparameter that allowed tunning: 

mtry, that is the number of randomly selected features to consider on each decision tree 

of the forest. The number of trees on the forest was fixed by the function to 500. During 

this first train, a grid search was performed to explore different values for the 

hyperparameter mtry. The range of values was:  

[sqrt(F)/2, sqrt(F), sqrt(F)x2] 

where sqrt(F) is the square root of the number of features. The different mtry values 

were validated using repeated k-fold cross-validation (RCV). Two values of k were 

wxpored in the k-fold RCV: 5 and 10. The number of repetitions were 10 for ASVs 

datasets and 100 for clusters datasets due to the computational cost. Area Under the 

Curve (AUC) was used as the performance metric to select the best mtry value. Then, 

the best model performance was evaluated with the test data. 

The results of the k-fold RCV were used to redefine the grid-search for hyperparameter 

mtry. Then, the same pipeline to train, validate the new mtry values and calculate the 

performance of the best model, was applied to 100 different datasets splits to obtain 
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100 RF models (figure 6). Finally, the averaged performance of this set of RF models was 

calculated using several metrics: AUC, Accuracy, Kappa, Specificity and, Sensitivity 

considering the “normal” level of the outcome variable as positive. This approach was 

based on the one proposed by Begüm D. Topçuoglu et al. that implemented a pipeline 

according to good practices in the literature (Topçuoğlu et al. 2021). 

 

Figure 6. Diagram of the protocol used to train and tune the models. 

2.8 IMPROVING MODEL PERFORMANCE. 

2.8.1 A Support Vector Machine model. 

A Support Vector Machine model (SVM) was trained using the non-linear Radial Basis 

Function kernel. In this case only the filtered ASVs dataset was used. The same pipeline 

used in the RF models for data preprocess, model training, validation and evaluation of 

performance was applied for the SVM case. The only exception was that the initial model 

train step, in which only one dataset split was considered to explore the validation of 

the hyperparameters was skipped. The SVM validation was performed using the 

hyperparameters grid-search defined by default by the function used (run-ml in 

mikropml package): cost hyperparameter (C): 1x10-3, 1x10-2, 1x10-1, 1, 1x101, 1x10-3 and 

sigma:  1x10-6, 1x10-5, 1x10-4, 1x10-3, 1x10-2, 1x10-1. The validation strategy was a 5 k-

fold RCV repeated 10 times. 
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2.8.2 Synthetic data generation. 

Synthetic Minority Oversampling Technique (SMOTE) method was used to deal with the 

imbalanced nature of the datasets (Kovács 2019). The approach was applied only to the 

filtered ASVs dataset. The pipeline in this case was a modification of the one already 

described (section 2.7.2) with the following modifications:  

- The initial RF forest model was not trained and the mtry hyperparameter grid 

search was based on the results obtained for the previous RF models trained on 

the filtered ASVs dataset. The values tested were 8,16,32,48,64. 

- Only a 5 k-fold repeated cross-validation (x10) approach was used for validation, 

with Accuracy as metric to select the best value for mtry.  

- Dataset was split into train and test groups 100 times as previously described. 

However, the data on the train group was used to generate new synthetic data 

with the SMOTE method to sample up the ”bloom” level to the same frequency 

to the “normal” level of the outcome variable. 

- These models were trained in R as in previous cases, but the functions used to 

train the model differed. For convenience, prior models were trained with the 

run_ml function of the mikropml package that also performs validation and 

calculate models’ performance. Although this function is a wrapper of several 

caret tools, it did not allow a direct implementation of the SMOTE method. 

Therefore, the new models were trained and validated using caret train 

function directly. Therefore, SMOTE method was applied through the 

trainControl function using the default options, which called the smote 

function from themis package. 

- Also, performance was directly calculated with confusionMatrix function after 

making predictions for the test group. In this case, the positive class was 

“bloom”. 

2.9 DETERMINATION OF FEATURE IMPORTANCE. 

Feature importance was obtained from the RF models trained with synthetic data. The 

protocol used was the one described by Leo Breiman, 2001 (Breiman 2001). To 

determine feature importance the prediction error rate or each feature variable was 

calculated from permuting out-of-bag data during the forest building procedure. Then, 

the importance was scaled from 0 to 100. A feature was considered as important if its 

median scaled importance value across all 100 RF models was over 20. 
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2.10 HARDWARE, SOFTWARE AND CODE AVAILABILITY 

Hardware used. 

Most of the work has been developed in a personal computer with the following 

characteristics: 

• Processor: AMD Ryzen 7 4800H with 16 cores. 

• RAM memory: 64 Gb.  

• Operational system: Windows 11.  

The most intense computing steps (sequences processing, ASVs calculation and most 

models training with 100 data splits x 100 repeated cross validation) were performed in 

a scientific computing server located at National Center of Biotechnology (CSIC):  

• Processor: 104 CPUs  

• Total RAM memory: 1.48 Tb  

• Operational system: Ubuntu 20.04. Environments managed with Conda.  

Softare used. 

All scripts and code were developed on Bash (Free Software Foundation 2023), python 

3.8.10 (Python Software Foundation 2023)  or R 4.1.3 (R Core Team 2023). Other 

software: 

UBUNTU LTS 20.04(UBUNTU community 2020)  

Data management: 

SRA-explorer (Phil Ewels 2014), Aspera 4.1.9.93 (IBM) 

Sequences processing and ASVs generation: 

TagCleaner 0.16 (Schmieder et al. 2010); Moira v1.3.2 (Puente-Sánchez, Aguirre, Parro 

2016), Mothur 1.36 (Schloss 2020) 

Main R libraries used. For individual references, please see CRAN-repository (CRAN 

Team 2023):  

- Data management: tidyverse 2.0.0, purrr 1.0.1, tibble 3.2.1 

- Statistical analysis: vegan 2.6-4 

- Plots: ggplot2 3.4.2, RColorBrewer 1.1-3, ggpubr 0.6.0 

- Parallel computing: future.apply 1.10.0, doFuture 1.0.0, future 1.32.0, tictoc 1.2 

- Machine learning methods: caret 6.0-94, mikropml 1.6.0, themis 1.0.1 
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Code availability. 

All code developed during this project is available on the GitHub repository: 

https://github.com/micronuria/envisdim_ml 

A description of repository content is included in the Appendix 7.6 of this memory. 

3 RESULTS AND DISCUSSION 

3.1 DATA INCLUDED IN THE PROJECT. 

The initial idea was to apply ML algorithms to search for bloom biomarkers among 

different microbial processes (i.e., metabolic pathways and cell-signalling) and 

taxonomic groups using metagenomic data available within the Envision project 

(Pontiller et al. 2022). However, the low number of samples available, only 23, was a 

concern. A search on bibliography and several databases to find similar and available 

large metagenomic datasets of coastal phytoplankton blooms (including both sequence 

data and the corresponding metadata) was unsuccessful. Few promising microbiome 

studies which included coastal datasets during blooms were found. The metagenomes 

of TARA Oceans project (Sunagawa et al. 2015; Salazar et al. 2019) were discarded as 

the data analysis was different from the pipeline used in Envision metagenomes, which 

raised concerns about compatibilities between both datasets. To solve this problem, all 

data had to be realized together starting with metagenomes assembly, which was not 

possible within the temporal frame of this project. A second option was a work on a 

succession of bacterioplankton populations induced by a phytoplankton bloom (Teeling 

et al. 2012). Unfortunately, sequences data was not available in any database. 

There are previous studies on environmental microbiomes that applied ML methods to 

low number of metagenomes (in the order of few dozen samples, (see for instance 

several references cited in (Ghannam, Techtmann 2021; Marcos-Zambrano et al. 2021; 

Li et al. 2022), but the reported results and model accuracy were quite poor. Therefore, 

using metagenomic data was considered too risky and discarded. Instead, the objective 

was focused on finding biomarkers among prokaryotic taxa using 16S rRNA gene 

sequences, for which more samples (130) were available in the Envision project (Joglar 

et al. 2020). To increase the number of instances to train the ML models, a second 

dataset of an oceanographic campaign of collaborators from U. of Vigo in the same EBCZ, 

Dimension, was included. Dimension contained 36 samples, increasing the number of 

samples to 166.  As that number of instances was relatively low, a new search for similar 

16S rRNA gene datasets on bibliography and public databases was performed to 

complement the data from Dimension and Envision. However, the search was 

unsuccessful again. The main reason was the lack of appropriate metadata tables that 

https://github.com/micronuria/envisdim_ml
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unequivocally indicated the chlorophyll concentrations and other variables for the 

sequenced samples. Therefore, the project proceeded only with the data facilitated by 

collaborators from U. of Vigo. This initial number of samples could be considered low, 

but it is in the order of samples of similar studies already published that reported 

excellent results (Li et al. 2022; Ghannam, Techtmann 2021; Marcos-Zambrano et al. 

2021). 

3.2 CLASSIFICATION OF SAMPLES ACCORDING TO CHLOROPHYLL CONCENTRATIONS 

3.2.1 PCAs of selected environmental variables for both campaigns. 

To aid oceanographers to classify the samples as belonging to bloom or normal events, 

several environmental variables related to blooms were explored using PCA. The 

analyses were done for each campaign because many environmental variables differed 

between Envision and Dimension datasets. While chlorophyll measurements were 

present in both datasets, primary production was consistently determined only in 

Dimension campaign, whereas biomass and cell abundances of different 

microorganisms were recorded in Envision.  

Results (Figure 7, see also appendix 7.1) showed that samples differentiate according to 

depth. A trend according to the sampling month (or season because February 

corresponds to Winter, April to Spring and August to Summer) could be observed in 

Envision along principal component 1. That trend was not obvious in Dimension 

campaign. This could be related to the sampling frequency in both campaigns. While in 

Envision samples were taken intensively during one week of each month followed by a 

long period without samples; in Dimension, ocean water was sampled monthly. Samples 

grouped according to depth in both campaigns, in this case mostly along PC1 but also 

along PC2. Other variables such as sampling site (only for Envision, Dimension was 

sampled only on the coast station), or year did not group the samples.  
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a) 

 

b) 

 

c) 

 

d) 

 

e)

 

f) 

 

Figure 7. PCAs for Envision (left column) and Dimension (right column) calculated with environmental 
variables. The samples have been coloured according to different qualitative variables indicated on each 
panel. The percentage of variance explained by each comp component is indicated between parentheses. 

To further explore this data, correlations of variables with principal components were 

analysed (Table 2). Variables more correlated with both principal components were 

related with biomass or cell abundances of protists and bacteria in Envision, and 

primary production in Dimension. In both cases, Chlorophyll concentrations were not 
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so strongly correlated with principal components, although it could be related with the 

samples order according to depth.   

 Table 2. Correlations of selected environmental variables with PC1 and PC2 axis of PCA analysis for 
Envision and Dimension campaigns. Results are shown in decreasing order. Variable names in Envision: 
large protists biomass (BBlp), small protists biomass (BBsp), large protists abundance (AFlp), small protists 
abundance (AFsp), Synechococcus abundance (AFSyne), Synechococcus biomass (BFSyne), bacterial 
biomass (BB), bacterial biomass (AB), total chlorophyll a (chla Total), Prochlorococcus abundance (AFProc), 
Prochlorococcus biomass (BFProc). Dimension –Chlorophyll a (Chla.t), Primary production (PP) of total 
microeukaryotes(.m), nanoeukaryotes (.n) or picoeukaryotes(.p), community respiration (PP.h.t) and 
Biomass Prochlorococcus (BP).  

Envision Variable Env PC1  Variable Env PC2 

 BBlp 0.393 AFProc 0.444 

 AFlp 0.385 AB 0.429 

 BBsp 0.380 BB 0.429 

 AFsp 0.366 chlaTotal 0.425 

 AFSyne 0.341 BFProc 0.389 

 BFSyne 0.330 BFSyne 0.276 

 BB 0.261 BBsp 0.136 

 AB 0.253 AFlp 0.058 

 chlaTotal 0.162 AFsp 0.049 

 AFProc 0.159 BBlp 0.036 

  BFProc 0.108 AFSyne 0.023 
     

Dimension Variable PC1 Variable PC2 

 PP.t.h 0.467 BP 0.989 

 PP.n 0.462 PP.n 0.094 

 PP.p 0.459 Chla.t 0.086 

 PP.m 0.439 PP.t.h. 0.073 

 Chla.t 0.398 PP.p 0.064 

 BP 0.078 PP.m 0.003 

 

In Dimension PCA, a potential outlier could be observed. That sample was taken during 

September 2015 in the surface, and it corresponds to an event of intense phytoplankton 

primary production (Figure 8), probably related to a bloom. Because of that, that sample 

was kept in the analysis.  

Despite the observed trends, oceanographers discarded these results to classify samples 

between bloom and normal conditions.  
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Figure 8. Primary production for the different size-fraction Eukaryotes in Dimension campaign. 

 

3.2.2 Distribution of samples between bloom and normal events. 

To determine which samples correspond to bloom and normal events, samples were 

divided into groups according to different percentiles of total chlorophyll a 

concentrations (table 3). On those divisions, samples below the cutoff were considered 

as normal situations and samples above the cutoff were labelled as bloom events. Three 

different percentiles were requested by the oceanographers: 50 and 75 percentiles for 

the full dataset, and 90 percentile only for the ocean station samples.  

Table 3. Number of samples belonging to bloom and normal events for different chlorophyll percentiles 
and sampling stations.  

 

Percentile 
50 

Percentile 
75 

Percentile 
90 

Ocean_bloom 35 18 7 

Ocean_normal 35 52 63 

Coast_bloom 48 24 NA 

Coast_normal 48 72 NA 
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Finally, oceanographers decided to apply the division based on the 75 percentile for the 

coastal station and the 90 percentile for the oceanographic station. The difference on 

sample number between the two categories was large, with 31 instances labelled as 

bloom and 135 as normal. As consequence, the dataset was highly imbalanced with the 

78.9 % of the samples belonging to the “normal” class and the other 18.7 % of the 

samples in the “bloom” class. 

3.3 SEQUENCES AND ASVS PREPARATION 

The number of original raw sequences was 3,979,906. Of those, the 36.18% was 

discarded due to low quality issues and the 17.77% were filtered by chimera removal or 

by removing pairs of reads that were missing a partner. Likewise, the number of ASVs 

before chimera removal, 15,176, was reduced to 8,184 after chimera removal.  

These sequences needed further refinement. 16S rRNA gene primers can amplify other 

sequences that are not Bacteria and Archaea such as some eukaryotic sequences as well 

as the 16S rRNA gene from chloroplasts and mitochondria. The data contained 5 

Eukaryotes, 537 chloroplasts and 73 mitochondria. Also, the Envision sample 141, which 

was present in the original dataset, (Oceanic station, August, day 7, depth 1) was 

problematic because there were doubts about its DNA quality. To avoid problems, the 

sample was removed from the dataset. These filtering steps reduced the number of 

ASVs to 7,569 and the number of sequences to 1,673,164, the 42.04 % of the original 

sequences. 

3.4 ASVS EXPLORATORY ANALYSIS  

As part of the feature selection process low abundant ASVs, those with relative 

abundances below 0.01%, were removed to reduce dimensionality and sparsity (figure 

9). This filter reduced the number of ASVs to 1203. Such practice is common when 

applying ML methods to this kind of data (Marcos-Zambrano et al. 2021; Topçuoğlu et 

al. 2020). It is also a common practice to reduce noise when classical analyses are used 

(Poretsky et al. 2014).    
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a)  

 

b)  

 

Figure 9: Boxplots of ASVs counts per sample before (a) and after (b) removing low abundant ASVs. 

The ASVs distributions were highly skewed even after removing low abundant ASV. This 

observation is typical of microbial diversity studies using molecular tools, where few 

ASVs or microorganisms are highly abundant accompanied by a large cohort of low 

abundant organisms (Pedrós-Alió 2012).  Therefore, the highly abundant ASVs were not 

removed as they are important members of the microbial community. 

Samples were also explored with NMDS. In this case, two methods were used. First, 

counts were transformed by the square-root of their proportions, a widely used method 

on microbial ecology also used in ML approaches (Ghannam, Techtmann 2021; Marcos-

Zambrano et al. 2021). Second, as ASVs counts are compositional data, they were 

transformed using rclr transformation that is more appropriate for this kind of data than 

other transformations. (figures 10 and 11).  

The NMDS using square-root of proportions transformation (figure 10) indicated no 

batch effects due to the campaigns, year or sampling site. Other spatial-temporal 

variables (month, season and depth level) indicated slight trends in the data, although 

samples did not clearly separate according to the different levels of those variables. 

Because of that, these categorical variables were also considered as features in the ML 

model. In addition, some separation between bloom and normal samples (event 

variable) was observed although it was not very clear.  

When using the rclr transformation, samples clustered according to campaign (figure 

11). In addition to this observation, it is not well known how centered log ratio 

transformations interact with ML algorithms (Busato et al. 2023). For those reasons, this 

kind of transformation was discarded for downstream analyses.  
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This exploratory analysis was also performed using unfiltered ASVs with very similar 

results for square-root of proportions transformation, what reinforced the idea of 

removing low abundant ASVs from the analysis (see appendices).  

 

Figure 10: NMDS calculated with filtered ASVs with data transformed by the square-root of proportions. 
First panel contains the stress plot. The other panels contain the NMDS plot in which samples are labelled 
with their names or coloured by the categorical variables.  
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Figure 11. NMDS using filtered ASVs transformed with rclr. First panel contains the stress plot. The other 
panels contain the NMDS plot in which samples are labelled with their names or coloured by the 
categorical variables.  

 

3.5  CLUSTERS EXPLORATORY ANALYSIS 

To further reduce the dimensionality of the data, ASVs were joined into clusters 

according to their taxonomic annotation to genus level (Janßen et al. 2019). In total, 688 

clusters were obtained with a highly skewed distribution as expected (Figure 12).  
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Figure 12. Boxplots of clusters counts per sample. 

 

As with ASVs, samples were analysed with NMDS but in this case using clusters applying 

both kind of transformations (Figures 13 and 14). Results found were like those obtained 

with ASVs. NMDS with root-square of proportions transformations showed slight trends 

in samples according to season, month, and depth level. Whereas NMDS with rclr 

transformed data showed undesirable grouping of samples for campaigns.  
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Figure 13. NMDS calculated with clusters count data transformed by the square-root of proportions. First 
panel contains the stress plot. The other panels contain the NMDS plot in which samples are labelled with 
their names or coloured by the categorical variables. 
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Figure 14. NMDS using clusters count data transformed with rclr. First panel contains the stress plot. The 
other panels contain the NMDS plot in which samples are labelled with their names or coloured by the 
categorical variables. 

3.6 RANDOM FOREST MODELS TRAINING AND VALIDATION 

3.6.1 Feature preprocess and selection 

Features used to train the RF models consisted of the biological variables (either ASVs 

or Clusters) and other variables related to the environment of sampling characteristics, 

many of which were categorical: depth and depth level, year, month, sampling station 

and, campaign.  

Features used in model training and evaluation were selected using several criteria. A 

criterion to select features has been already mentioned. In the case of ASVs, those with 
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relative abundances lower than 0.01% were removed from the data in one of the cases 

considered. In addition, perfectly correlated features were grouped, keeping only one 

member on the dataset. On all analysed datasets, the campaign Envision and year_2016 

were the only correlated features found. Next, features with variances near zero were 

filtered. 394 and 184 features were removed from clusters and filtered ASVs datasets 

respectively whereas, 3515 features were removed in the unfiltered ASVs dataset.  

A prevalence filter was also explored. This approach consisted of removing features that 

appeared only in a low number of samples. It is a filter usually applied in microbial 

ecology studies to remove transient and not relevant species. To define the threshold of 

low prevalence, different percentage of samples were explored. Initially, low 

percentages were considered (1% ~ 2 samples, 2% ~ 3 samples and, 3% ~ 5 samples), 

but no features were removed in any case. Then, higher percentages were tested (5% ~ 

8 samples, 10% ~17 samples and, 20% ~ 33 samples) to ensure the filter worked. Only 

the percentages above 10% removed some features. However, using those cutoffs could 

not be considered as a low prevalence filter. Therefore, no features were removed from 

the datasets due to this criterion. 

The final size of the datasets analysed were 166 instances of: 

• 318 features for the clusters dataset. 

• 1033 features for the filtered ASVs dataset. 

• 4078 features for the unfiltered ASVs dataset. 

Features were preprocess prior to model training. Biological features were transformed 

applying the square root of their proportions as already described in section 3.4 and 3.5.  

 The data distributions with centered and scaled features are shown in figure 15. (See 

appendices for unfiltered ASVs results). 
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a)  b) 

  

Figure 15. Boxplots of feature values from the clusters (a) or filtered ASVs (b) datasets after 
preprocessing and selection. 

 

3.6.2 Random forest models training 

The instances in the dataset were differentially distributed between the two categories 

of the outcome variable (event). Only 31 instances corresponded to the category of 

interest (bloom) and 135 to the normal category. 

The dataset was split considering the unbalanced character of the dataset. The train 

group included the 80 % of the instances and the test group contained the other 20% of 

the samples. This division resulted in: 

- Train group: 25 bloom and 108 normal instances. 

- Test group: 6 bloom and 27 normal instances. 

3.6.2.1 Hyperparameter tunning. 

The default grid search for mtry hyperparameter was used in the initial test to train the 

RF models (Figure 6, in methods). The values validated with 5 and 10 k-fold RCV were: 

- Clusters datasets: 9, 18, 36. 

- Filtered ASVs dataset: 16, 32, 64. 

- Unfiltered ASVs datasets: 32, 64, 128. 

After evaluating the mean AUC values (Figure 16) obtained during the k-fold repeated 

validation, the range of mtry values was extended:  
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- Clusters datasets: 3,6,9,18,24,36. 

- Filtered ASVs dataset: 8,16,32,48,64. 

- Unfiltered ASVs datasets: 16,32,48,64,128. 

a) b) 

  

c) d) 

  

 Figure 16. Mean AUC for the mtry values in the initial RF initial train using the default (a, c) and the 
extended (b, d) grid searches for the clusters (a,b) and filtered ASVs (c, d) datasets. Values from the 5-

fold RCV of the initial single run.  

 

3.6.2.2 Random Forest performance results. 

After extending the grid for mtry, 100 models were trained and tuned for each dataset. 

For that, the dataset split was randomly repeated 100 times considering the distribution 

between both categories. This strategy was applied to obtain a robust interpretation of 

model performance (Topçuoğlu et al. 2020) given the low number of instances.  This 

approach was applied to the clusters, filtered ASVs and unfiltered ASVs. This last case 

was run for comparison expecting lower performance than the models in which data 

dimensionality and sparsity was reduced. 

The validation results are shown in figure 17. Overall, the best mtry value was 6 for the 

clusters, 16 for filtered ASVs, and 128 for unfiltered ASVs. In the case of the unfiltered 
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ASVs, the maximum value of AUC was located on one of the range sides, indicating that 

probably the best hyperparameter solution for those models was not found. To solve 

that issue, the range of mtry should have been incremented again. However, given the 

computational cost of running those models and that these cases were not of interest, 

the model tunning was not repeated for the unfiltered ASVs.    

 

Figure 17. Mean AUC for the different mtry values explored. a) clusters with 5 k-fold RCV, b) clusters with 
10 k-fold RCV, c) filtered ASVs with 5 k-fold RCV, d) filterd ASVs with 10 k-fold RCV, e) unfiltered ASVs with 
5 k-fold RCV, f) unfiltered ASVs with 10 k-fold RCV. Error bars indicate one standard deviation. 

The performance results were very similar for all cases (figure 18). The similar values 

obtained for AUC during training (variable cv_metric_AUC, figure 18) and during model 

performance evaluation with the test data (variable AUC, figure 18) indicated that the 

models were not suffering from overfitting. Mean Accuracy and AUC were higher than 

0.85 (Table 4). However, Kappa metric, that considers the possibility of a correct 

prediction by chance alone was quite poor with averaged values below 0.40 in all cases.  
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Table 4. Averaged values of different performance metrics for RF models 

Model* AUC Accuracy Kappa Sensitivity Specificity 

cl-k5 0.899 0.856 0.371 0.917 0.387 

cl-k10 0.898 0.855 0.364 0.924 0.374 

ASVs F k5 0.885 0.854 0.366 0.894 0.400 

ASVs F k10 0.883 0.850 0.346 0.890 0.390 

ASVs Unf k5 0.898 0.8545 0.365 0.920 0.379 

ASVs Unf k10 0.901 0.859 0.381 0.925 0.384 

*) cl: Clusters, ASVs F: filtered ASVs, ASVs Unf: unfiltered ASVs, k5: 5 k-fold RCV, k10: 10 k-fold RCV. 

The results of Specificity and Sensitivity explained the problem. In this evaluation, the 

category “normal” was considered the positive class while “bloom” was the negative.  

Sensitivity, a metric that measures the true positive rate, reached high averaged values 

(> 0.88) showing that the models correctly classified most of the “normal” instances. In 

contrast, the low averaged values for Specificity (< 0.41), which measures the 

percentage of negative samples correctly classified, indicated that the models could not 

classify the “bloom” samples.  

 

Figure 18. Performance for RF models. All metrics were calculated with the test group except 
"cv_metric_AUC”, that indicates the results of the 5 or 10 k-fold repeated cross-validation. Datasets: asvF 
- filtered ASVs, asvUnF – unfiltered ASVs, cl: Clusters. 

Given the highly unbalanced nature of the datasets (normal: 78.9 %, bloom: 18.7% the 

of instances), the high values achieved by Accuracy and AUC could be explained by 
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correct classification of the instances by chance. As Kappa considers that possibility, it 

showed lower values.   

3.7 ATTEMPTS TO IMPROVE MODEL PERFORMANCE 

3.7.1 SVM model 

To test the choice of ML algorithm, a SVM model with a Radial Basis Function kernel was 

also trained using the filtered ASVs dataset and the hyperparameters grid-search 

defined by default with a 5 k-fold RCV (see methods 2.8.1). The best hyperparameters 

were C=1 and sigma = 1x10-6, that was the lower value explored in the grid-search for 

this hyperparameter (Figure 19). The search could have been extended to include lower 

values of sigma. However, it was not repeated since the AUC value was reaching a 

plateau in the lower values of sigma, therefore the expected benefits of repeating the 

process were smaller than its computational cost. 

 

 

Figure 19. Mean AUC for the different values for hyperparameters C (a) and sigma (b) on the SVM 
models.  

In any case, the SVM model did not improve the performance obtained with the RF 

models (Figure 20). On the contrary, the averaged performance metrics were worse 

than in the RF models (AUC: 0.86, Kappa 0.24, Sensitivity: 0.90, Specificity: 0.32). These 
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results were not surprising as it has been reported that SVM models perform worse than 

RF models for this kind of data (Busato et al. 2023; Ghannam, Techtmann 2021; Marcos-

Zambrano et al. 2021). 

 

Figure 20. Performance of SVM and RF models. All metrics were calculated with the test group except 
"cv_metric_AUC”, that indicates the results of the 5 or 10 k-fold rcv. The SVM model is: asvs-SVM_k5. The 
rest are the RF models. Datasets: asvF - filtered ASVs, asvUnF – unfiltered ASVs, cl: Clusters. 

3.7.2 Synthetic data 

When dealing with imbalanced datasets, ML methods tend to overfit majority classes 

(He, Garcia 2009). That seems to be the case of the previous results. A common way to 

increase the performance of models dealing with imbalanced datasets is the synthetic 

data generation. Among the different methods available, the SMOTH algorithm is 

commonly applied (Kovács 2019).  

This methodology was tested using the filtered ASVs dataset. The number of instances 

in the “bloom” class was incremented through SMOTE method to level the instances 

included in the “normal” class. This approach was applied only to the train data, not to 

the test data. The process was repeated for the 100 different datasets splits between 

the train and test groups used to train a set of RF models as previously done.  

The performance of the models increased considerably using the synthetic dataset 

(figure 21) with values for Kappa, Sensitivity and Specificity over 0.8 in most cases. 

Please, notice that in this case, “bloom” was considered the positive class during the 
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calculation of the performance metrics. Even though that the capacity of these models 

to detect the “bloom” samples was still worse than for the “normal” samples, these 

results indicated that the classification performance was good. 

 

 

Figure 21. Performance of the RF models that used the synthetic dataset. 

3.8 DETERMINING BIOMARKERS 

As the performance reached with the RF models using synthetic datasets were good, 

these results were used to search for biomarkers. The feature importance was scaled 

from 0 to 100. Among them, the features with median values over 20 were selected as 

biomarkers (Figure 22). This cut-off was selected by convenience to focus the results on 

the features with the larger influence. Features with median values over 10 are shown 

in the Appendix 7.5.  

Considering a stringent biomarker definition, environmental variables should not be 

considered so. Among the 37 important features, only one was an environmental 

variable, depth. This could be expected as blooms occurs closer to the surface. The other 

36 features were ASVs that could be considered as biomarkers. Most biomarkers were 

bacteria and only one archaea was found (table 5). Bacteria belonged mostly to 

Proteobacteria and Bacteroidota phyla. The five biomarkers with the largest importance 

included quite diverse microorganisms belonged to four different families 

(Pseudohongiella, Flavobacteriaceae, Rhodobacteriaceae and Alteromonas) and 

included some genera known for being associated with microalgal blooms like the genus 

Pseudohongiella and Polaribacter. The analysis of the potential role of these biomarkers 

is beyond the goals of this project. 
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Figure 22. Biomarkers. Features with median scaled importance value across all 100 RF models over 20. 
Bars indicate the 25 and 75 percentiles.  
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Table 5. Taxonomy of ASVs selected as biomarkers. No species could be determined except for asv0008. 

ASV Kingdom Phylum Class Order Family Genus 

asv0001 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Amylibacter 

asv0006 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Aurantivirga 

asv0008 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Planktomarina* 

asv0012 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Ascidiaceihabitans 

asv0014 Archaea Thermoplasmatota Thermoplasmata Marine Group II NA NA 

asv0016 Bacteria Bacteroidota Bacteroidia Flavobacteriales NS9 marine group NA 

asv0026 Bacteria Bacteroidota Bacteroidia Flavobacteriales Cryomorphaceae NA 

asv0037 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae NA 

asv0038 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Polaribacter 

asv0052 Bacteria Bacteroidota Bacteroidia Flavobacteriales Cryomorphaceae NA 

asv0054 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Porticoccaceae SAR92 clade 

asv0061 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Polaribacter 

asv0063 Bacteria 
Marinimicrobia 
(SAR406 clade) NA NA NA NA 

asv0064 Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Alteromonadaceae Glaciecola 

asv0066 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Yoonia-Loktanella 

asv0072 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Halieaceae 
OM60(NOR5) 
clade 

asv0091 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Winogradskyella 

asv0092 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Halieaceae Luminiphilus 

asv0101 Bacteria Proteobacteria Gammaproteobacteria Thiotrichales Thiotrichaceae NA 

asv0116 Bacteria Bacteroidota Bacteroidia Flavobacteriales NS9 marine group NA 

asv0128 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae NS5 marine group 

asv0129 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae NS5 marine group 

asv0146 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae NS5 marine group 

asv0156 Bacteria Bacteroidota Bacteroidia Flavobacteriales Cryomorphaceae NA 

asv0158 Bacteria Proteobacteria Alphaproteobacteria Thalassobaculales Nisaeaceae OM75 clade 

asv0192 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudohongiellaceae Pseudohongiella 

asv0212 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudohongiellaceae Pseudohongiella 

asv0214 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 
NS3a marine 
group 

asv0233 Bacteria Proteobacteria Alphaproteobacteria SAR11 clade Clade I NA 

asv0255 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Halieaceae 
OM60(NOR5) 
clade 

asv0325 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 
NS3a marine 
group 

asv0327 Bacteria Proteobacteria Alphaproteobacteria SAR11 clade Clade I Clade Ib 

asv0416 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Polaribacter 

asv0681 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Formosa 

asv1027 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Polaribacter 

asv2231 Bacteria Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Aurantivirga 

* Planktomarina temperata 
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4 FUTURE WORK AND CONCLUSIONS 

4.1 CONCLUSIONS 

The use of ML methods in the study of microbial communities is largely limited by the 

number of samples and this project is a good example of it. It is a particular problem for 

the study of microbiomes not related to human health where the number of samples is 

even lower as sampling that requires fieldwork is usually very costly, and budgets are 

usually tight. To overcome those problems, scientific community should make a 

community effort. Most scientific endeavours directed to environmental microbiomes 

include the deposition of sequences in public databases. But that is not often the case 

for other kind of data within the same projects. The lack of associated metadata hiders 

the use of the large amounts of available environmental sequences. This issue has been 

arisen before, and methods to carefully annotate sequences with their corresponding 

metadata were proposed more than a decade ago (Yilmaz et al. 2011). Still, it is rare to 

find an environmental dataset compiling the specifications to make those sequences 

useful for other researchers, especially in ecology where environmental data is essential.  

Despite of that, the available ML tools have allowed to overcome these difficulties. Even 

though the number of samples included in the study was very low, and the dataset was 

quite imbalanced, a classification model with high performance was obtained 

demonstrating, one more time, the applicability of ML methods to standard microbial 

ecology studies. The future analysis of the biomarkers found and its comparison with 

the results obtained with classical statistical tools would determine the advantage of 

this kind of approaches.  

This work has been an example of the importance of developing a good plan of data 

management in the first steps of a research endeavour. This project inherited the data 

from two oceanographic campaigns. Although some initial data management was 

expected to integrate both projects, the time and effort required to get and organize 

the datasets, even within the same campaign, was totally unexpected. The lack of 

unique and common systems to name de samples, between and within datasets, and 

the difficulties to locate the datasets themselves delayed this project from its very 

beginning. That negatively affected the development of the project, making difficult to 

reach the proposed objectives.  

Achieving the proposed goal was expected because few similar studies searching 

biomarkers on microbial communities with ML methods and low number of samples 

have been published (see section 1.1). However, the initial problems with the datasets 

negatively impacted the temporal plan that had to be adjusted through the 

development of the TFM. Also, the problem of imbalanced datasets was not anticipated. 
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Therefore, the methodology had to be adjusted as well to introduce the SMOTE method. 

Fortunately, the mitigation actions worked out and the project ended on time.  

4.2 FUTURE WORK 

Even though the all the planned goals were achieved, the are some areas that should be 

explored in more detail.  

First, other methods to classify samples between normal or bloom levels should be 

analysed. For instance, other environmental variables such as primary productivity or 

microalgal biomass could be used instead of or in combination with chlorophyll to 

determine when a bloom is happening. Coastal blooms are complex events controlled 

by many factors and not well understood (Deng, Vallet, Pohnert 2022), and only using 

one variable for its determination can be limiting. In the data used in the project, those 

variables contained many missing values or were not measured at all in the coastal 

station. Therefore, finding other useful datasets would be crucial to do not reduce the 

number of samples even further if this approach is explored. Another possibility is the 

use of unsupervised machine learning techniques to group samples according to 

environmental variables. The analysis should be extended beyond the one already 

developed as the variables considered on it were limited.  

Due to temporal constraints, the SMOTE method was applied to filtered ASVs only. It 

would be interesting to apply the same analysis to the other two datasets, clusters and 

unfiltered ASVs, and compare the performance results and biomarkers found. 

As all classifiers failed until synthetic data was generated, a regression approach should 

also be explored. On it, the problem of an imbalanced dataset will not be present. This 

was the original idea when the project was planned. In the light of the problems faced, 

it would be worth to explore the use of generalize linear models or regression random 

forests. The linear models offer an extra advantage over random forest, which is of 

particular interest to interpret the biomarkers. In that case, the strength, and the kind 

of relationship (positive or negative) between the biomarker and the variable or group 

of variables to predict can be inferred from the biomarker´s weight in the model. That 

would facilitate finding the role of those biomarkers in the environment.  

Another method to determine feature importance in the classifiers should be explored 

as well. In particular, the method based on the total decrease in node impurity or Gini 

index. Then, the biomarkers found should be compared with the current results to check 

their consistency.  

In any case, the biomarkers found need to be analysed in detail to try to understand 

their relationship with the blooms. Although these microorganisms are the most 

important for the classifier, it is still unknown if they are more relevant during the 
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blooms or during the normal situation of the water column. For that, their spatio-

temporal trends need to be studied. Also, the results obtained with RF models should 

be compared with the results obtained with standard techniques such as differential 

analysis. This comparison would allow to determine if ML approaches are more capable 

than classical tools to find complex relationships on these datasets. 

Finally, it would be quite interesting to use this approach to metagenomic data instead 

of marker genes. That would allow us to find biomarkers related to metabolic and other 

cellular processes linked to phytoplankton blooms.  

4.3 IMPACTS ON SUSTAINABILITY, ETHICAL BEHAVIOUR, SOCIAL RESPONSIBILITY AND 

DIVERSITY. 

The foreseen positive impacts on sustainability and social responsibility are expected to 

occur in the future. And these impacts will take place only if the knowledge generated 

serves to advance in the management of coastal areas and fisheries and social 

stakeholders develop policies to implement changes. Therefore, achieving those 

impacts is far beyond the development of this project.  

The impact of intense computing in the greenhouse gas emissions could not be 

mitigated during the development of this project because Random Forest algorithms 

stand out in performance compared to other less intensive classifiers. Planned future 

work includes the exploration of other less intensive methods that, if their performance 

is good enough, might be used for future biomarker search on microbial communities.  

Ethical behaviour and diversity impacts were faced during the progress of the TFM and 

mitigated with the methods already mentioned in section 1.3. In particular, the use of a 

citation style that includes the full name of authors in the bibliography has been applied. 

No other issues have been detected.   
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5 GLOSSARY 

ASV: Amplicon Sequence Variant. 

AUC: Area Under the Curve. 

Bacterioplankton: Prokaryotic microorganisms living in the water column. 

Bloom: an event of rapid phytoplankton proliferation in aquatic ecosystems that results 

in dense assemblages.  

EBCZ: Easter Boundary Coastal Zones. 

k-fold RCV: k-fold Repeated Cross Validation. 

Microbiome: a microbial community. 

ML: Machine learning. 

mtry: hyperparameter of Random Forest models. The number of features used to build 

each individual tree. 

Phytoplankton: Microalgae that are the base of aquatic food webs. 

rclr: robust centered log-ration transformation. 

rRNA: ribosomal ribonucleic acid. 

RF: Random Forest. 

SMOTE: Synthetic Minority Oversampling Technique. 
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7 APPENDICES 

7.1 OTHER PCAS OF DIMENSION CAMPAIGN. 

 

PCAs of Dimension campaign coloured according to variables not showed in the main 

text. 

 

a) b) 

 
 

Figure A.1: PCAs of environmental variables according to month (a) and Upwelling events (b). 

In Dimension the upwelling index that determines if an upwelling or downwelling event is 

occurring was calculated (D – Downwelling, U – Upwelling). 
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7.2 TOTAL CHLOROPHYL DATA EXPLORATION 

To help collaborators, the sample frequencies among different months, seasons, and 

depths when data was divided according to different percentiles of total chlorophyll 

concentration. 

Division of data based on 50 and 75 percentiles. 

a) b) 

 

 

Figure A.2. a) Number of samples on each group, b) boxplot of total chlorophyll 
concentrations on each group. Group name encoding: Bl: bloom, Nbl: no-bloom, C: coastal 
station, O: Ocean station, 50: division using 50 percentile, 75: division using 75 percentile. 

Details on the 75 percentile groups 

Check the sample distributions through months, depths and other variables for each 

campaign using 75 percentile cutoff. 
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Figure A.3. 75 percentile division. Number of samples on bloom and no-bloom or normal 
groups depending on month and depth for coastal and oceanic stations for Envision 

campaign. 
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Dimension – Coast only 
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Figure A.4. 75 percentile division. Number of samples on bloom and no-bloom or normal 
groups depending on depth, month and season for Dimension campaign. 
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90 percentiles for oceanic station. 

Exploration of sample distributions using the 90 percentiles for the oceanic station. 

Bloom - Normal 

 

Month 

 

Season 

 

Figure A.5. 90 percentile division. Number of samples between samples on bloom and no-

bloom or normal groups for the oceanic station, and according to depth, month and season. 
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7.3 SEQUENCE COUNTS PER SAMPLE 

Table A.1. Number of sequences on each sample before and after chimera removal by DADA2 

Sample Input No chimera 

DIMprok1 37507 31599 

DIMprok10 21116 17873 

DIMprok13 32583 25683 

DIMprok16 28769 22188 

DIMprok19 39469 32029 

DIMprok22 23695 18697 

DIMprok25 27114 20159 

DIMprok28 17863 15994 

DIMprok31 26951 18930 

DIMprok34 23902 19975 

DIMprok37 28029 20050 

DIMprok4 20274 18856 

DIMprok40 23054 20571 

DIMprok43 29509 21106 

DIMprok46 28232 24484 

DIMprok50 221488 139305 

DIMprok51 40291 30254 

DIMprok52 20091 12477 

DIMprok53 16864 11834 

DIMprok54 17711 10585 

DIMprok55 41982 26019 

DIMprok56 36264 25207 

DIMprok57 67335 48580 

DIMprok58 87601 56605 

DIMprok59 53048 40274 

DIMprok60 53573 40983 

DIMprok61 37475 29482 

DIMprok62 44787 31639 

DIMprok63 47069 36294 

DIMprok64 24429 16535 

DIMprok65 26568 21180 

DIMprok66 21470 12314 

DIMprok67 45914 37960 

DIMprok68 35401 27193 

DIMprok69 19800 16572 

DIMprok7 29132 23210 

ENVProk001 7141 5409 

ENVProk002 6357 5597 

ENVProk003 7637 6820 

ENVProk004 7093 5287 



59 

 

ENVProk005 7169 5936 

ENVProk006 9182 6923 

ENVProk007 7479 4914 

ENVProk008 8507 7399 

ENVProk009 5405 4233 

ENVProk010 6703 5510 

ENVProk011 5919 5046 

ENVProk012 6025 4500 

ENVProk013 6950 5061 

ENVProk014 6665 5385 

ENVProk015 7539 7075 

ENVProk016 7478 6326 

ENVProk017 9359 7917 

ENVProk018 6601 4843 

ENVProk019 8653 5985 

ENVProk020 6853 6196 

ENVProk021 7250 5900 

ENVProk022 9907 9341 

ENVProk023 6451 4172 

ENVProk024 6594 4628 

ENVProk025 5149 3530 

ENVProk026 8148 7149 

ENVProk027 8036 7294 

ENVProk028 6275 4777 

ENVProk029 9347 7254 

ENVProk030 8700 7739 

ENVProk031 9003 7047 

ENVProk032 8564 7487 

ENVProk033 6664 4377 

ENVProk034 7968 5770 

ENVProk035 7603 5648 

ENVProk036 6462 5316 

ENVProk037 6579 5912 

ENVProk038 7488 5525 

ENVProk039 7437 5327 

ENVProk040 8311 7211 

ENVProk041 6315 4604 

ENVProk042 8551 7499 

ENVProk043 6092 5564 

ENVProk044 7069 6366 

ENVProk071 6811 4425 

ENVProk072 6267 4800 

ENVProk073 6543 4021 

ENVProk074 8931 6034 
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ENVProk075 7586 4962 

ENVProk076 6775 4666 

ENVProk077 9944 7706 

ENVProk078 8490 6506 

ENVProk079 8443 7285 

ENVProk080 6095 4654 

ENVProk081 9462 5658 

ENVProk082 7769 5692 

ENVProk083 7141 4528 

ENVProk084 8858 6930 

ENVProk085 11391 7604 

ENVProk086 9901 6672 

ENVProk087 8526 7364 

ENVProk088 13648 10271 

ENVProk089 13077 9814 

ENVProk090 7702 5522 

ENVProk091 9696 8903 

ENVProk092 10464 9460 

ENVProk093 11422 8597 

ENVProk094 7772 4377 

ENVProk095 7914 5330 

ENVProk096 10808 8735 

ENVProk097 8234 5700 

ENVProk098 7292 4844 

ENVProk099 5066 3041 

ENVProk100 7950 5935 

ENVProk101 8959 6320 

ENVProk102 7020 5774 

ENVProk103 7015 4526 

ENVProk104 7898 5404 

ENVProk105 8341 5828 

ENVProk106 7557 5376 

ENVProk107 6458 4699 

ENVProk108 7185 6201 

ENVProk109 5907 5467 

ENVProk110 7938 5471 

ENVProk111 8597 6652 

ENVProk112 6634 5884 

ENVProk113 7308 5816 

ENVProk114 7954 7232 

ENVProk136 10742 6778 

ENVProk137 8852 6214 

ENVProk138 9453 7153 

ENVProk139 10552 8567 
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ENVProk140 8276 6578 

ENVProk141 3462 2173 

ENVProk142 7193 6059 

ENVProk143 7711 6040 

ENVProk144 4488 4089 

ENVProk145 10455 9123 

ENVProk146 5950 5109 

ENVProk147 9425 6489 

ENVProk148 5314 4565 

ENVProk149 9636 7410 

ENVProk150 11625 9397 

ENVProk151 9439 7298 

ENVProk152 7442 5937 

ENVProk153 8208 7140 

ENVProk154 8325 7838 

ENVProk155 5944 5176 

ENVProk156 9327 8063 

ENVProk157 5947 5091 

ENVProk158 6013 4211 

ENVProk159 4844 4211 

ENVProk160 4553 4269 

ENVProk161 8682 7447 

ENVProk162 8977 7617 

ENVProk163 4793 4095 

ENVProk164 4003 3523 

ENVProk165 8666 7392 

ENVProk166 10723 9187 

ENVProk167 6107 5679 

ENVProk168 8501 6230 

ENVProk169 11363 8750 

ENVProk170 11461 8959 

ENVProk171 9136 7528 

ENVProk172 6092 5745 

ENVProk173 4938 3663 

ENVProk174 5694 4651 

ENVProk175 11101 9277 

ENVProk176 6661 6063 

ENVProk177 9056 7831 

ENVProk178 9901 8985 
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7.4 EXPLORATORY ANALYSIS OF UNFILTERED ASVS 

 

Figure A.6. NMDS calculated with unfiltered ASVs with data transformed by the square-root of 

proportions. First panel contains the stress plot. The other panels contain the NMDS plot in 

which samples are labelled with their names or coloured by the categorical variable indicated. 
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Figure A.7. NMDS of unfiltered ASVs transformed with rclr. First panel contains the stress plot. 

The other panels contain the NMDS plot in which samples are labelled with their names or 

coloured by the categorical variable indicated. 
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Figure A.8. Boxplots of feature values from the unfiltered ASVs dataset after preprocessing and 

selection 
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7.5 FEATURES WITH MEAN IMPORTANCE VALUES OVER 10  

 

Figure A.8. Biomarkers. Features with median scaled importance value across all 100 RF 

models over 10. Bars indicate the 25 and 75 percentiles. 
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7.6 REPOSITORY CONTENTS 
 
Scripts are located in the code folder that has the following structure:  
 
Folder Original_files_preprocess: 

Data download from SRA: Data_collection.md, sra_explorer_download.sh 
Environmental metadata and sequence files preparation: 
Metadata_files_preprocess.md 

Raw sequences preprocess:  Sequences_preprocess.md 
ASVs calculation:  ASVs_calculation.md 
 

Folder Chlorophyll_groups: 
PCAs of environmental variables:   PCA_environmental_data.R 
Data distribution according to different percentiles of total chlorophyll 
concentrations: Percentiles.R 

 
Main code folder scripts: 
Data preparation: 
   Preparation of DADA2 results: DADA2_tables.R 
   Merge of Envision and Dimension environmental metadata and sample labelling:    

Initial_preprocess.R 
     
Data exploration: 
   ASVs without filtering exploration: ASVs_no_filter_exploration.R 

   ASVs filtering and exploration: ASVs_filter_exploration.R 

   Clusters generation and exploratory analyses: Clusters_grouping_exploration.R 
     
Train, validation with 5 and 10 k-fold repeated cross-validation and performance test of 
Random Forest and SVM models: 
   Random Forest with Clusters: Clusters_model_1.R 
   Random Forest with Filtered ASVs: ASVs_model_1.R 
   Random Forest with Unfiltered ASVs: ASVs_no_filter_model_1.R 
   SVM Radial with Filtered ASVs and validation results: ASVs_SVM_model.R 

Validation and performance metrics for RF and SVM models: 
RF_SVM_models_results.R 

     
Synthetic data: 
   Data generation and models training: ASVs_synthetic_RF.R 
   Performance results of RF model with synthetic data: ASVs_synthetic_RF_results.R 
  

Features importance: feature_importance.R 
 
         


