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Abstract: Automated guided vehicles (AGVs) stand out as a paradigmatic application of Industry 4.0,
requiring the seamless integration of new concepts and technologies to enhance productivity while
reducing labor costs, energy consumption, and emissions. In this context, specific industrial use cases
can present a significant technological and scientific challenge. This study was inspired by a real
industrial application for which the existing AGV literature did not contain an already well-studied
solution. The problem is related to the sequencing of assigned tasks, where the queue formation
dynamics and the resource sharing define the scheduling. The combinatorial nature of the problem
requires the use of advanced mathematical tools such as heuristics, simulations, or a combination
of both. A heuristic procedure was developed that generates candidate task sequences, which
are, in turn, evaluated in a discrete-event simulation model developed in Simul8. This combined
approach allows high-quality solutions to be generated and realistically evaluated, even graphically,
by stakeholders and decision makers. A number of computational experiments were developed
to validate the proposed method, which opens up some future lines of research, especially when
considering stochastic settings.
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1. Introduction

Industry 4.0 presents great opportunities for improving productivity, but it also comes
with plenty of technological challenges. These challenges mostly relate to the transforma-
tion of human-supervised processes into automated and machine-controlled processes,
which, in turn, lead to distributed complex system coordination and connectivity issues [1].
In this context, the use of AGVs is becoming increasingly important, mainly due to the
potential productivity enhancement and reduction in labor cost, energy consumption, and
emissions [2]. Furthermore, AGVs are paradigmatic since their implementation requires
the symbiotic integration of many of the Industry 4.0 key concepts and technologies, such
as adaptive robotics, embedded systems, communication and networking, cloud systems,
simulation, virtualization, data analytics, and artificial intelligence [3].

A great deal of research has been devoted to AGVs since they were initially introduced
more than 25 years ago [4]. However, there are still open areas of development and
specific use cases that pose a technological and scientific challenge. The case presented
in this study was inspired by a real industrial application that was difficult to model
following existing AGV problems found in the literature. The problem revolves around the
dispatching, routing, and scheduling of tasks for multiple AGVs. However, these terms
are not strictly equivalent [5]. In Vivaldini et al. [6] a possible distinction between them
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has been established: (i) dispatching is the process of selecting and assigning tasks to
vehicles; (ii) routing is the selection of specific paths that each vehicle needs to execute in
order to fulfill the assigned tasks; and (iii) scheduling is the definition of the arrival and
departure times of the vehicles along the assigned routes for each one of its assigned tasks.
Following these definitions, solving the scheduling problem assumes that the routing and
dispatching problems have already been taken care of. Furthermore, in the present work,
the scheduling is considered to be a consequence of the sequence in which the different
tasks are carried out by the resources available at each point in time. This means that the
queue formation dynamics and resource sharing are the key elements defining the schedule
if handled by a sufficiently representative model. The problem presented in this form could
be referred to as task sequencing, i.e., defining the order in which the (already assigned and
planned) tasks are executed. The problem is trivial if the number of resources is infinite
and the interaction between resources is neglected, but it becomes a true combinatorial
challenge when the resources are constrained and the queue dynamics are accounted for.
Hence, the coordination of multiple AGVs that are performing a given set of tasks, and
that are considering also the interaction with other machines and the existence of resource
sharing constraints, is a complex problem that can be modeled in many different ways.
For instance, it could be modeled as a robotic task sequencing problem (RTSP) or as a
resource-constrained scheduling problem (RCSP). Both the RTSP [7] and the RCSP [8] have
been proven to be NP-hard. Thus, it is expected that any version that can be considered a
particular case or combination of both problems is also NP-hard in nature. In other words,
as the number of AGVs and workstations increases, capturing the interactions between
the individual AGVs and workstations becomes nearly impossible using conventional
mathematical methods, and it becomes necessary to resort to more advanced mathematical
tools such as heuristics or simulation (or a combination of them).

In that sense, the use of algorithms and heuristics to find high-quality solutions in a
reasonable time can be considered the preferred option to solve these types of problems, as
opposed to exact procedures that aim for an optimal solution. The time it would take to
find the optimal solution to a problem with such a vast solution space and the gap between
the optimal solution found and the real optimal solution to the problem (e.g., considering
the randomness present in the real system) makes heuristics a very sensible approach [9].
The approach followed in this study consists of identifying several algorithms typically
used for sorting non-uniform tasks and resources, and then combining them in a heuristic
procedure that generates candidate solutions for the task sequencing problem. Furthermore,
to increase the fidelity of the proposed model, a discrete-event simulation model was
developed in the Simul8 commercial software to evaluate the performance of the heuristic
results. The use of simulators such as Simul8 can have many advantages in this context,
such as the following: (i) aiding the graphical validation of results from stakeholders,
especially technical personnel and decision makers; and (ii) facilitating the creation of
complex and detailed models of real-life scenarios [10]. Without the simulation component,
the evaluation of the candidate solutions obtained by the heuristic procedure is not possible
due to the dynamic nature of the queues and shared resource availability (temporal or
sequential dependencies).

There are many studies in the literature that, as reviewed in Section 2, approach
scheduling or sequencing problems by disregarding or simplifying the complex interaction
between the available resources, as well as by considering that the idealized solutions
found can be executed in a realistic environment. The situation is even worse when the en-
vironment is stochastic, as is the case in all real-life industrial applications. Therefore, there
is a gap in terms of scalable methodologies that can cope with those complex interactions
and can be extended to more complicated settings where random variability is considered.
Therefore, the main contribution of this paper is the development of a methodology that
combines simulation and the use of simple heuristics to find high-quality solutions when
the sharing of limited resources causes queuing and interactions. The effectiveness of the
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proposed methodology is proven, through various numerical experiments, to be more
efficient than the NEH-based algorithm that uses the state-of-the-art NEH heuristic.

The rest of the paper is structured as follows: Section 2 reviews the relevant literature
related to the problem studied. Afterward, Section 3 defines the problem precisely but also
includes an example to clarify the concepts. The solving methodology is described in detail
in Section 4, and the results are presented in Section 5 together with a brief discussion of
the obtained results. Finally, Section 6 highlights the most important conclusions of the
study and some future lines of research.

2. Literature Review

In this section, a brief literature review is conducted to present the current develop-
ments in the scientific community aimed at solving AGV task sequencing problems using
heuristic and simulation methods.

2.1. AGVs in Industry 4.0

As mentioned in Section 1, the use of AGVs is increasingly regarded as an essen-
tial element in realizing the productivity improvements promised by the Industry 4.0
framework. The most basic challenge facing AGV technology is the efficient path plan-
ning for navigating manufacturing landscapes. Fransen and van Eekelen [11] discussed
AGV control strategies and illustrated the use of the A* algorithm on a geometric graph
to aid proficient path planning, thus influencing the flow layout within facilities. When
multiple AGVs are used, traffic management strategies must be implemented to prevent
collisions and ensure the smooth operation of AGVs. In this regard, Pratissoli et al. [12]
proposed novel methods for coordinating a fleet of AGVs in an industrial setting, where
they focused on developing complete traffic manager software based on a multi-level
control architecture. Furthermore, the emergence of 5G connectivity has been identified as
a technological trigger for AGV implementation, enhancing their collaborative capabilities
via high-speed, low-latency networks. Vlachos et al. [13] used a case study to investi-
gate the implications of AGVs integrated with the IoT in flexible manufacturing systems,
depicting the technological synergy between AGVs and the IoT within a manufacturing
enterprise. Also, Reis et al. [14] proposed a systematic literature review to identify the
most relevant methodologies and technologies related to AGV position control, a critical
aspect of manufacturing intralogistics and material handling, thereby aiding in defining
optimal vehicle requirements and enhancing operational efficiency. For an overview of
the current challenges and technological advances in AGVs, readers can refer to Oyekanlu
et al. [15]. Conversely, for a survey on the design and control of AGV systems (flow layout,
traffic management, vehicle requirements, etc.), readers can refer to Vis [4]. In the context
of automated container terminals, Kim and Bae [16] introduced a dispatching method
for AGVs to work with container cranes, enhancing efficiency by assigning future tasks
and using simulation in various environments. Li et al. [17] tackled task assignment and
sequencing for AGVs in manufacturing using a harmony search algorithm, which was
tested in real-life scenarios. Zou et al. [18] employed a bee colony algorithm for a similar
problem in a Chinese manufacturing company, focusing on a single depot like in our study.

2.2. Task Sequencing: Conceptual Clarifications and Evolution

Despite the extensive and often ambiguous terminology in its domain, scheduling,
which is closely related to task sequencing, provides valuable insights for this work. As
previously stated, terms such as dispatching, task scheduling, sequencing, and allocation
are frequently used interchangeably in the literature [19]. Within the context of this study,
it is crucial to underscore how shared resource availability influences task sequencing
and scheduling. Since its introduction several decades ago [20], the RCSP has evolved
into a well-studied optimization problem [21]. This problem involves scheduling a set of
tasks or activities by assigning them specific execution times, aiming to minimize the total
project duration or makespan while adhering to various constraints. These constraints
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are generally categorized based on the following: (i) the available resources required for
completing different activities; and/or (ii) activity sequences (often referred to as prece-
dence constraints) [22]. Due to its practical importance, the RCSP has been the focus of
numerous studies. For instance, Hartman and Briskorn [23] surveyed RCSP and its exten-
sions, highlighting the significance of efficient resource allocation for optimal scheduling
solutions. Recent advances in computational techniques have encouraged the development
of novel approaches to tackle the challenges posed by the RCSP. Notably, van der Beek
et al. [24] introduced a hybrid differential evolution algorithm specifically tailored for the
RCSP. This algorithm considers a flexible project structure along with the dynamics of
resource consumption and production, showcasing the potential of evolutionary algorithms
in navigating the complex challenges of resource allocation and task sequencing.

Equally pertinent to this study is reviewing the literature for the RTSP. The RTSP has
undergone extensive study as it aims to optimize the sequence of tasks performed by robots
in diverse industrial settings. Foundational work by Maimon [25] laid the groundwork,
addressing the efficient utilization of robot task flexibility characteristics and providing
a framework and classification for such problems. Over time, a plethora of approaches
and methodologies have been proposed to address the challenges posed by the RTSP. For
example, Suárez-Ruiz et al. [26] made a significant contribution by devising a method to
optimize the sequence in which a robot visits multiple targets in industrial applications,
resulting in fast RTSP solutions, which are especially beneficial in time-sensitive operations.
Subsequently, Li et al. [27] introduced an efficient approach employing a decoupling
strategy to determine an optimal sequence of collision-free motions for robots executing
a set of repetitive tasks, thus emphasizing the continuous efforts to enhance efficiency
and safety in robotic operations, particularly in environments where collision avoidance is
critical. Furthermore, Chen et al. [28] investigated optimizing joint-space tour scheduling
to align with manufacturing criteria for each task point visit, highlighting the significance
of planning the sequence of robotic tasks in attaining operational excellence in industrial
settings. Some authors have translated RTSP concepts to AGV applications, focusing on a
single AGV unit. For instance, Li et al. [29] converted the RTSP into a traveling salesman
problem, a common practice in robotics. They proposed a heuristic to reduce its complexity
from O(N3) to O(N2) by utilizing auxiliary data structures. In another approach, Martin
et al. [30] proposed a reactive solution for a dynamic RTSP, where the AGV resets after each
task, akin to this study’s application. They focused on task sequencing, using simulation to
manage resource constraints, workstation availability, and queue dynamics, thus leading
to effective scheduling.

Another significant problem family that extensively explores optimizing task sequences
executed by robots is the multi-robot task allocation (MRTA) problem. Korsah et al. [31] pre-
sented a comprehensive taxonomy for MRTA, establishing a framework that aids in the
efficient utilization of robot task flexibility characteristics. This taxonomy assists in under-
standing the features and complexity of MRTA problems, which have been extensively
investigated in several studies. For example, Khamis et al. [32] studied multi-robot sys-
tems executing collective behaviors for tackling complex tasks. Similarly, Alshaboti and
Baroudi [33] discussed state-of-the-art algorithms and strategies employed in tackling
MRTA problems, providing insights into the evolving landscape of robot task allocation.
Additionally, Chakraa et al. [34] reviewed optimization techniques for multi-robot task al-
location problems, showcasing current methods and offering insights into future directions
for optimizing task allocation among multi-robots.

2.3. Application of Discrete-Event Simulation

Most of the articles mentioned above employ simulation to varying extents to validate
algorithms developed for their AGV-related problems. Simulation facilitates a better un-
derstanding of reality’s complexity, reducing the necessity for the oversimplifications and
unrealistic assumptions sometimes required in analytical models [35]. Discrete-event simu-
lation, in particular, has proven to be a valuable tool for modeling AGV-based transport
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systems, such as AGV traffic management policies, or, as in the current study, AGV task
dispatching/sequencing rules [36]. For example, in Inoue [37] a discrete-event simulation
model was established to simulate AGV behavior and to identify the best control policy
in a real factory use case. Similarly, bin Md Fauadi et al. [38] proposed a discrete-event
simulation approach to determine vehicle requirements in a manufacturing environment.
Notably, the authors emphasized simulation’s role in accurately modeling queuing behav-
ior when multiple AGVs interact. Also, Kühn et al. [39] introduced a two-stage genetic
algorithm for generating sequencing heuristics in stochastic, decentralized, multi-project
scheduling with limited resources. The algorithm emphasizes efficient heuristic gen-
eration with lower simulation efforts and uses deterministic values initially for robust
solutions, followed by a more intensive computation stage incorporating stochastic values.
The PyScOp framework facilitates this simulation and optimization process. Equally, Azimi
and Sholekar [40] presented a novel approach to solving the multi-objective multi-mode
resource-constrained project scheduling problem with stochastic duration. This approach
employs a simulation-based optimization method, SIMSUM1, which integrates discrete-
event simulation with a relaxation technique for binary decision variables. Given the
advantages that discrete-event simulation offers in modeling multi-AGV scenarios, the use
of commercial simulators can expedite model creation, ensure its validity, and simplify
result communication to stakeholders.

Since the majority of the reviewed papers did not address the specific use of simulation
software in our problem context, namely the complex interaction between shared resources,
the purpose of this study is to fill this gap in the literature. To provide a novel approach
in this area, we combined a heuristic algorithm with discrete-event simulation software.
This combination is intended to improve problem-solving effectiveness in our particular
problem scenario. While previous studies have utilized commercial simulation software
like ARENA [41] or FlexSim [42] for warehouse AGV applications, Simul8 was selected
for this research due to its capabilities and alignment with the study’s objectives. Simul8
(www.simul8.com, accessed on 22 December 2023) is a commercial simulator renowned
for its flexibility in modeling complex systems, where its focus is on being intuitive, fast,
and effective. Although Simul8 has been successfully employed in other applications such
as healthcare systems [43], supply chain optimization [44], or transportation [45], to the
best of the authors’ knowledge, it has not been previously utilized for AGV sequencing
optimization.

3. Problem Description

In this section, the industrial case that inspired this study is presented. Subsequently,
an illustrative example of the problem is provided to enhance comprehension of the
application under consideration. Finally, the problem is formulated in mathematical terms.

3.1. Motivation and Industrial Context

The problem delineated in this study draws inspiration from a genuine industrial
scenario at a manufacturing company in Spain. The company operates a production
facility equipped with several AGVs responsible for collecting and transporting products
between designated plant locations. Initially, the products awaiting processing are stored
temporarily in a specific warehouse location, known as the depot. Then, these products are
transported to various workstations, each dedicated to a distinct manufacturing process.
Following the transportation of the product, the AGV stationed there travels back to
the starting point to transport the next product. The number of AGVs available at the
starting point remains fixed and are shared among the different streams of work. Visiting a
workstation involves a travel time (to and from) and a processing time. Notice that each
workstation has the capacity to process only one product at a time. Consequently, if an AGV
intends to visit an already occupied workstation, it must wait in the queue until the station
becomes available. Figure 1 provides a schematic representation of the aforementioned
industrial scenario. The primary objective of the company is to establish the sequence

www.simul8.com
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for the execution of various tasks by the AGVs to minimize the total production time,
commonly referred to as the makespan.

Figure 1. Schematic representation of the different elements present in the problem.

In this case study, one should differentiate between scheduling and sequencing, as
outlined in Sections 1 and 2. The task allocation to workstations and AGVs is predetermined
by the company. Each task is already assigned to a specific location and AGV. This means
that the products designated for processing are predetermined, along with their respective
travel and processing times. All the products to be processed are assumed to be available
at the start time. The problem can be likened to uniform machine scheduling, but with
a unique aspect: the resources are limited and shared among the different tasks to be
executed (i.e., each AGV can only handle one task at a time). This characteristic creates a
variant of the resource-constrained scheduling problem previously discussed in Section 2.
Additionally, typical assumptions for such scheduling problems are incorporated, such
as the absence of preemption (tasks cannot be interrupted) and considering resources as
renewable (AGVs can perform another task once they finish the current task). The approach
in this study is deterministic, implying fixed processing times for each AGV when handling
a job at a specific workstation.

3.2. An Illustrative Numerical Example

Consider a scenario where there are five tasks allocated across three distinct work-
stations, with the assignment of tasks to workstations already predetermined. All three
workstations have equal processing times. Specifically, task 1 is designated for workstation
1, tasks 2 and 4 for workstation 2, and tasks 3 and 5 for workstation 3. In this setup, there
are two available AGVs. AGV A is responsible for tasks 1, 2, and 3, while AGV B handles
tasks 4 and 5. The illustration of this scenario is depicted on the left side of Figure 2.

Let us consider that, for the sake of simplicity, the travel time is negligible compared
to the processing time in the workstations; thus, it is not considered. In the simplest
scenario with infinite resources, where there are no constraints on the AGVs, tasks can
be executed whenever the workstations are available. In such cases, scheduling becomes
straightforward as the sequence remains unchanged, and a first-in-first-out (FIFO) approach
suffices. The total makespan is determined by the maximum number of tasks within a
workstation, given they share the same processing time. This situation is depicted in
the timeline (a) in Figure 2, illustrating a total makespan of two times the workstation
processing time.
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Figure 2. Illustrative example of the problem. In case (a), no resource constraint is considered; in
case (b), the resource constraints are active, and the task sequence is {1, 2, 3, 4, 5}; and, in case (c), the
resource constraints are active, and the task sequence is {1, 4, 3, 2, 5}.

When resource sharing constraints are taken into account, as shown in timelines (b)
and (c) of Figure 2, the task sequence becomes crucial in determining the total makespan.
In timeline b), if the task sequence {1, 2, 3, 4, 5} remains unchanged, tasks 1, 2, and 3 are
executed sequentially as AGV A becomes available. Task 4 can occur concurrently with
task 3 since both AGV B and the corresponding workstation are available. Task 5 is the
final activity after AGV B becomes free. This results in a total makespan of four times the
workstation processing time, which is twice as long as the situation with infinite resources.
The resource constraint causes tasks to queue until the assigned resource is available. As
the sequence is strictly adhered to, rearranging tasks can improve the total makespan.

In timeline (c) of Figure 2, the task execution order was altered to {1, 4, 3, 2, 5}. Here,
tasks 1 and 4 can be performed concurrently because they are allocated to different AGVs
and workstations. Following this, task 3 is executed, and although AGV B is free, the
workstation is occupied, causing task 5 to queue and be executed simultaneously with
task 2. This sequence change optimizes the makespan, reducing it to only three times the
workstation processing time.

3.3. Generic Formulation for the Sequencing Problem with Shared Resources

Let M = {m1, m2, . . . , mM} be the set of workstations such that workstation mk ∈ M
has an associated processing time pk, which could be deterministic or, in the most generic
version of the problem, stochastic. Let R be the set of available resources such that AGV
rj ∈ R = {r1, r2, . . . , rR}. The set of tasks can be defined as the binary relation T such that
the following applies:

T ⊂ R×M =
{
(rj, mk) | rj ∈ R, mk ∈ M

}
, (1)

with task ti ∈ T = {t1, t2, . . . , tT}. The goal of the RCSP is to produce the totally ordered
set S(T,≤) such that the total makespan Cmax is minimized. The total makespan can be
defined as follows:

Cmax = max
(

E(ti) + pk

)
, ∀ti ∈ S, (2)

where E(ti) denotes the start time of a given task. The total makespan is, therefore, calcu-
lated as the maximum start time plus its corresponding processing time pk for all the tasks
in S. The activities carried out are constrained by the available resources and workstations.
The current activity, C(S, t) ⊂ T, for a given sequence S at time t, is a subset of the set of
tasks T that have to comply with both the resource constraint

∑
∀ti∈C(S,t)

#rj ≤ 1, (3)
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and the workstation constraint
∑

∀ti∈C(S,t)
#mk ≤ 1, (4)

thus meaning that the number of times (represented by the symbol ‘#’) that the resource rj
or the workstation mk appears in the subset of current activities, C is less or equal than 1.
In other words, a resource or a workstation can only be used once at any given point in
time t.

4. Methods and Methodology

In this section, the methodology employed to address the problem introduced in
Section 3 is delineated and the sequential steps and their principal components are detailed.
Additionally, the various heuristic algorithms developed in this study and the instances
developed for the computational experiments are described.

4.1. A Two-Step Method for Sequencing Tasks

To tackle the problem described in Section 3, a two-step process integrating heuristics
and simulation was adopted. During the first step, the heuristic component aims to gener-
ate high-quality candidate sequences, minimizing the total makespan by ordering tasks
efficiently. On the second step, the performance of the proposed sequence is evaluated. It
is important to note that evaluating each sequence entails considering the intricate and
dynamic queuing resulting from the idle time of AGVs when traveling to occupied work-
stations. As evidenced in the simplified example provided in Section 3.2, minor alterations
in the sequence significantly impact task interferences. This complexity amplifies with
an increasing number of tasks, and it becomes nearly impossible to handle by traditional
methods for big instances or when stochastic variables are present. Hence, the proposal is
to model the queuing phenomenon directly within Simul8. This simulation software is apt
for managing complex queuing scenarios, thereby allowing for a robust evaluation of the
interaction between shared resources. Moreover, utilizing Simul8 enables the easy creation
of a stochastic version of the problem by introducing stochastic processing times instead of
fixed processing times. Figure 3 visually illustrates the described methodology.

Figure 3. Schematic representation of the proposed solving methodology involving the task sequenc-
ing heuristic and Simul8 simulation of the dynamic queues.

The initial phase illustrated in Figure 3, involving the assignment of workstations
and AGVs to tasks, is considered external to the core problem and is assumed as an input.
Task-specific information (traveling and processing times, as well as AGV-to-workstation
assignments) is encapsulated within the problem instances, which are detailed further
below in Section 4.3. Essentially, the company predefines both task-to-workstation and
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task-to-AGV assignments. Subsequently, the task sequencing begins (the first step of the
method), which make use of the heuristic algorithms outlined in Section 4.2, by focusing on
determining the order of task execution. After that, at the second step of the method, the
simulation component evaluates the optimized sequence, considering the dynamic queue
formations as the simulation progresses and the resources are shared between the different
streams of tasks. Figure 4 depicts the implementation of one of the problem instances in
Simul8. It must be highlighted that the simulation strictly follows the optimized sequence,
and it automatically manages the shared AGV availability depending on the dynamically
generated queues.

Figure 4. Screenshot of the Simul8 model for the instances with three AGVs and five worksta-
tions. The simulation model follows the sequence and automatically manages the queues for both
workstations and AGVs.

4.2. Algorithm Combination and the NEH-Based Benchmark

To derive efficient task sequences minimizing the total makespan, several well-known
sequencing algorithms were combined in this study to generate a number of efficient
sequencing heuristics for ordering the given tasks. As elucidated in Section 1, the applica-
tion of heuristics is well founded due to the impracticality of finding an optimal solution
given the simplifications considered along with the inherent complexity of the problem.
The heuristic algorithms were devised using the information available within the instances,
including the number of workstations, AGVs, tasks, traveling and processing times for each
task, and task-specific workstation and AGV allocations. The partial sequencing algorithms
considered in this study were the following:

• Most loaded resource first (MLRF): This algorithm sorts AGVs, prioritizing the most
loaded AGV first based on either the total processing time the AGV is engaged or the
number of times it is required by a task. This study used total processing time for sorting.

• Less loaded resource first (LLRF): Similar to MLRF, LLRF sorts AGVs from lower
workload to higher workload.

• Shortest processing time first (SPTF): This algorithm prioritizes tasks with the shortest
processing times, sorting workstations from the least to the greatest processing time
for tasks.

• Longest processing time first (LPTF): Contrary to SPTF, LPTF sorts workstations in
reverse order, from lower to higher processing times.
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These were referred to as partial sequencing algorithms because each one of them
orders resources (i.e., AGVs) or workstations but not tasks, which are the specific combina-
tion of an AGV and a workstation, with its corresponding travel and process time. These
algorithms can be viewed as individual components that can be integrated into a com-
prehensive heuristic procedure that generates candidate solutions for the task sequencing
problem while considering shared resources. The heuristic procedure initiates by arrang-
ing the AGVs and workstations. This process involves employing the partial algorithms
discussed earlier, such as sorting AGVs (MLRF and LLRF) and workstations (SPTF and
LPTF). The combination of these sorting algorithms gives rise to four distinct heuristics:
(i) MLRF/LPTF, (ii) MLRF/SPTF, (iii) LLRF/SPTF, and (iv) LLRF/LPTF. After organizing
the AGVs and workstations, the tasks are incorporated into the final sequence through a
round-robin approach. This involves commencing from the top-ranked workstation and
AGV, selecting a workstation from the sorted list, and then choosing the first AGV from the
corresponding list. If the pairing is not among the tasks to be performed, the next AGV is
examined. This process continues until all tasks are accommodated in the final candidate
sequence. Algorithm 1 showcases the MLRF/LPTF version of the heuristic. To derive
other versions of the heuristic, modifications in lines 4 to 5 are required, while the rest of
the procedure remains consistent. The details of the heuristic process are provided in a
graphical manner in Figure 5.

Figure 5. Schematic of the heuristic followed to generate the candidate solutions, i.e., the task
sequences that were used as simulation inputs.

In order to measure the performance of our solving methodology, we provide a bench-
mark algorithm that uses the state-of-the-art NEH heuristic to serve as a reference baseline for
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comparison purposes [46]. Algorithm 2 outlines the main steps of the denoted NEH-based
algorithm. Initially, the list of tasks to schedule was divided into several sub-problems based
on their workstation–AGV combination. In other words, tasks with equal workstation and
AGV allocation were grouped together. Each of these sub-problems were solved indepen-
dently using the well-known NEH heuristic without considering resource sharing. Once a
sub-sequence was generated for each sub-problem, the final sequence of tasks was built-up,
combining each sub-sequence into the final task sequence. Specifically, the sub-sequences were
first sorted by their number of tasks in descending order, and one task from each sub-sequence
was added to the final sequence until all tasks were added to the sequence.

Algorithm 1 MLRF/LPTF algorithm.
Input: Tasks = {ti : i ≤ T}, Resources = {rj : j ≤ R}, Machines = {mk : k ≤ M}
Output: Sequence

1: for Tasks do
2: (rj, mk)← ti
3: rj.load← sum(mk.processTime) ▷ Calculate total workload per resource

4: Resources← orderBy(rj.load, desc) ▷ From max. to min.
5: Machines← orderBy(mk.processTime, desc) ▷ From max. to min.
6: m← f irst(Machines)
7: while Tasks ̸= ∅ do
8: r← next(Resources) ▷ Using Round-Robin
9: t← (r, m)

10: if t ∈ Tasks then
11: Sequence← add(t)
12: Tasks← remove(t)
13: m← next(Machines)
14: else
15: for Machines do
16: m← next(Machines) ▷ Using Round-Robin
17: t← (r, m)
18: if t ∈ Tasks then
19: Sequence← add(t)
20: Tasks← remove(t)
21: return Sequence

Algorithm 2 NEH-based algorithm.
Input: Tasks = {ti : i ≤ T}, Resources = {rj : j ≤ R}, Machines = {mk : k ≤ M}
Output: Sequence

1: Combinations← ∅
2: for t ∈ Tasks do ▷ Split tasks into combinations
3: Combinations(t.machine, t.resource)← add(t)
4: SubSequences← ∅
5: for c ∈ Combinations do ▷ Solve Combinations using NEH
6: SortedTasks← orderBy(c.totalTimes, desc)
7: s← HeuristicNEH(SortedTasks)
8: SubSequences← add(s)
9: SortedSequences← orderBy(SubSequences.length, desc)

10: while SortedSequences ̸= ∅ do ▷ Combine Sub-Sequences
11: for s ∈ SortedSequences do
12: if s ̸= ∅ then
13: t← removeFirst(s)
14: Sequence← add(t)
15: return Sequence
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4.3. Computational Experiment Instances

The computational experiments were conducted on a Windows 10 operating system,
utilizing an i7-4500U CPU 2.40 GHz with 6 GB RAM. All algorithms were implemented
using Python v3.8.10. Simul8 2022 version 29.0 was employed for the simulation model. To
evaluate the efficacy of the various heuristic algorithms developed for AGV task schedul-
ing, multiple problem instances were generated. Table 1 presents all instances used in
this study along with their key characteristics. An instance is defined by the following
factors: the number of workstations, the number of AGVs available, the number of tasks
to be performed, the travel and processing times for each task, and the allocation of tasks
to workstations and AGVs. In the following section, both the AGV travel time and the
workstation process time will be referred to as “processing time”. As a matter of fact,
two distinct instance types were considered for each workstation–AGV–task combina-
tion regarding processing time. The first type features processing times, derived from
a uniform random distribution, tightly centered around an average value, resulting in
instances with low variability in processing times (LVPT). In contrast, the second type
showcases a broader range between minimum and maximum processing times, leading to
instances with high variability in processing times (HVPT). Similarly, for assigning tasks to
workstation–AGV combinations, two instance types were created. The first type ensures a
balanced assignment, resulting in low variability in the task assignment (LVTA) to each
workstation–AGV combination. Conversely, the second type introduces an unbalanced
assignment, causing some workstation–AGV combinations to handle more work than
others, thereby leading to high variability in task assignments (HVTAs). Combining these
characteristics results in the following four distinct instance types for assessing the perfor-
mance of the algorithms: (i) low variability in processing times and low variability in task
assignment (LVPT/LVTA); (ii) high variability in processing times and low variability in
task assignment (HVPT/LVTA); (iii) low variability in processing times and high variability
in task assignment (LVPT/HVTA); and (iv) high variability in processing times and task
assignment (HVPT/HVTA).

Table 1. Instances for the computational experiments.

Instance Workstations AGVs Tasks Type

m5r3t100_01 5 3 100 LVPT/LVTA
m5r3t100_02 5 3 100 HVPT/LVTA
m5r3t100_03 5 3 100 LVPT/HVTA
m5r3t100_04 5 3 100 HVPT/HVTA

m5r3t200_01 5 3 200 LVPT/LVTA
m5r3t200_02 5 3 200 HVPT/LVTA
m5r3t200_03 5 3 200 LVPT/HVTA
m5r3t200_04 5 3 200 HVPT/HVTA

m10r5t300_01 10 5 300 LVPT/LVTA
m10r5t300_02 10 5 300 HVPT/LVTA
m10r5t300_03 10 5 300 LVPT/HVTA
m10r5t300_04 10 5 300 HVPT/HVTA

m10r5t600_01 10 5 600 LVPT/LVTA
m10r5t600_02 10 5 600 HVPT/LVTA
m10r5t600_03 10 5 600 LVPT/HVTA
m10r5t600_04 10 5 600 HVPT/HVTA

m20r10t1200_01 20 10 1200 LVPT/LVTA
m20r10t1200_02 20 10 1200 HVPT/LVTA
m20r10t1200_03 20 10 1200 LVPT/HVTA
m20r10t1200_04 20 10 1200 HVPT/HVTA
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5. Results and Discussion

This section presents the numerical results obtained from the computational exper-
iments, followed by an analysis and discussion of the obtained results. Table 2 includes
the output of the simulation for each instance and for each of the heuristic algorithms
considered. The first column identifies the instances, while subsequent columns show the
total makespan required to complete all tasks within the instance. First, we present the
results obtained from the NEH-based approach, reflecting the reference baseline to be used
for comparison purposes. Following this, the rest of the columns in the table display the
results for the various combinations of sequencing algorithms. Additionally, the average
makespan is computed for each set of instances. Finally, the percentage gaps with respect
to the NEH-based approach is provided as per the following:

Gap[%] =
Ci

max − CNEH
max

CNEH
max

× 100, (5)

where Cmax is the total makespan for each one of the i = {MLRF/LPTF, MLRF/SPTF,
LLRF/SPTF, LLRF/LPTF} algorithms considered. At this point, it is of relevance to
focus on those situations in which the sharing of resources results in inefficiencies for a
given task sequence. The inefficiencies in the sequence occur when a task is supposed
to start its processing but it has to first queue (a) because there is no AGV available for
transportation or (b) because the workstation to which it is traveling is already occupied
by a previous task. Let consider the case in which the resources are not shared among
different AGV–workstation pairs, or in which there are sufficiently abundant resources
to be shared between workstations. In the context of this study, these types of situations
are considered as inefficiency-free scenarios. In these cases, the NEH-based approach is
expected to perform extremely well and minimize the total makespan for the different sizes
and types of instances. However, for the instances analyzed, the NEH-based approach
yields the highest total makespan across almost all cases since it lacks a dedicated strategy
for minimizing the overall makespan when resources are shared. It can be observed that all
approaches presented in this work obtain better solutions than the NEH-based approach,
as can be seen by the lower makespan values and negative percentage gaps. It should be
noticed that the more negative the gap is, the more substantial the improvement in the
makespan relative to the NEH-based strategy. This is attributed to the improved sequence,
which minimizes the possible inefficiencies and, in turn, decreases the overall sequence
makespan. Apart from the obvious increment in makespan as the size of the instance
increases (a larger number of tasks requires more time for completion), the algorithm
performance tends to improve with larger instances. For scenarios involving more AGVs,
workstations, and tasks, the algorithm consistently yields better solutions in comparison to
the baseline. This trend might be attributed to the limited potential for improvement in
smaller instances, where altering task sequencing has minimal impact due to less scope
for enhancement.

Regarding the different types of instances, it is noteworthy that the ones that exhibit
significant variability in task assignment (HVTA) result in an imbalanced usage of the
system resources (the AGVs and workstations), meaning that some resources tend to have
more tasks assigned to them than other resources. In turn, a lower number of interactions
between the AGVs and workstations occurs in the system, and the NEH-based algorithm is
able to obtain solutions that have an acceptable performance. On the other hand, instances
with low variability in task assignment (LVTA) tend to result in a higher number of
interactions between shared resources, in which the proposal algorithm performs better, as
observed in the comparatively larger percentage gaps. One extreme case of this situation is
depicted in the results obtained for the instance m5r3t100_04, which had a high variability
in processing times and task assignment. Notably, the NEH-based approach outperformed
our proposed algorithms, obtaining percentage gaps between 4.09% and 7.42%. After a
comprehensive examination of the instance in the simulation, we observed that most tasks
were assigned to a particular workstation–AGV combination. Subsequently, the number of
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interactions due to the sharing of resource was significantly low. Thus, the NEH heuristic
was able to construct a high-quality sequence for that combination that minimized the
makespan, and, in turn, built a better task sequence than our proposed methods.

The observed pattern suggests that our proposed algorithms are less effective when
high variability is present in task assignment, meaning that the resources are not uniformly
shared but assigned in an unbalanced way, as described in Section 4.3. Interestingly, this
phenomenon is not encountered in the largest set of instances. This can be attributed to
the increase in the number of tasks compared to the increase in number of AGVs and
workstations. As the number of tasks increases, the variability in task assignment tends
to be mitigated due to a higher number of tasks available for sequencing. Hence, the
interaction between resources tend to take place regardless of the level of variability in task
assignment. These results point toward a promising scalability of our proposed methodol-
ogy, especially when dealing with a substantial number of tasks in an environment with
shared resources. Additionally, it appears that the algorithm performance also diminishes
in instances characterized by high variability in processing times (HVPT). This could be
explained by the inefficiencies imposed by exceptionally large processing times for certain
workstations, leading to unavoidable queues and subsequently reducing the efficacy of
sequence alterations. The boxplot depicted in Figure 6 illustrates the average percentage
gaps observed for the MLRF/LPTF, MLRF/SPTF, LLRF/SPTF, and LLRF/LPTF strategies
in comparison to the NEH-based approach. As indicated in Section 4.2, the NEH-based
approach was selected as the reference baseline for assessing other strategies, as its perfor-
mance can be considered at the state-of-the-art level, at least in scenarios without resource
sharing interactions. Hence, the NEH-based heuristic can help when evaluating the relative
performance of alternative strategies. Notice that the average percentage gap consistently
fell below zero, indicating an improvement in the average makespan compared to the NEH-
based approach across all instances, where the average percentage gaps ranged between
−16.82% and −19.49%. The large gap with respect to the NEH-based approach suggests
that the improvement could be due to the round-robin sequencing rather than due to the
combination of different sorting algorithms for the AGVs and workstations. The conclusion
is that, for situations in which resource sharing becomes critical for the application, the
balancing of resources is more important than the quality of the sequencing for a given
stream of work. In the case presented, the combination of simple sequencing strategies
outperforms the NEH algorithm when naively used in a context in which resources are
limited and have to be shared among different streams of work.

Figure 6. Boxplot of the gaps of different heuristic approaches with respect to the NEH approach.
The red line indicates the median and the green triangle the mean of the data set.
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Table 2. Results of the computational experiments in terms of the total makespan and percentage gap with respect to the NEH strategy.

Instance NEH MLRF/LPTF Gap (%) MLRF/SPTF Gap (%) LLRF/SPTF Gap (%) LLRF/LPTF Gap (%)

m5r3t100_01 6594 5248 −20.41% 5377 −18.46% 5480 −16.89% 5310 −19.47%
m5r3t100_02 6838 5674 −17.02% 6061 −11.36% 6414 −6.20% 5536 −19.04%
m5r3t100_03 8644 8125 −6.00% 8115 −6.12% 8568 −0.88% 8277 −4.25%
m5r3t100_04 8688 9121 4.98% 9115 4.91% 9333 7.42% 9043 4.09%

Average: 7691 7042 −9.61% 7167 −7.76% 7448.75 −4.14% 7041.50 −9.67%

m5r3t200_01 13,818 9752 −29.43% 10,090 −26.98% 10,405 −24.70% 9946 −28.02%
m5r3t200_02 14,761 11,016 −25.37% 11,509 −22.03% 11,895 −19.42% 11,350 −23.11%
m5r3t200_03 16,896 14,528 −14.02% 14,623 −13.45% 15,048 −10.94% 14,921 −11.69%
m5r3t200_04 17,236 15,986 −7.25% 16,410 −4.79% 16,607 −3.65% 16,402 −4.84%

Average: 15,677.75 12,820.50 −19.02% 13,158 −16.81% 13,488.75 −14.68% 13,154.75 −16.91%

m10r5t300_01 14,966 11,249 −24.84% 10,613 −29.09% 11,866 −20.71% 10,918 −27.05%
m10r5t300_02 14,719 11,393 −22.60% 11,786 −19.93% 12,243 −16.82% 12,226 −16.94%
m10r5t300_03 24,557 22,198 −9.61% 22,438 −8.63% 22,589 −8.01% 22,453 −8.57%
m10r5t300_04 23,817 21,690 −8.93% 21,828 −8.35% 22,546 −5.34% 21,905 −8.03%

Average: 19,514.75 16,632.50 −16.49% 16,666.25 −16.50% 17,311 −12.72% 16,875.50 −15.15%

m10r5t600_01 36,203 23,095 −36.21% 22,665 −37.39% 22,094 −38.97% 24,633 −31.96%
m10r5t600_02 36,759 26,424 −28.12% 25,766 −29.91% 25,414 −30.86% 26,826 −27.02%
m10r5t600_03 53,791 47,427 −11.83% 47,565 −11.57% 47,684 −11.35% 47,628 −11.46%
m10r5t600_04 54,801 49,184 −10.25% 48,980 −10.62% 49,037 −10.52% 49,149 −10.31%

Average: 45,388.50 36,532.50 −21.60% 36,244 −22.37% 36,057.25 −22.93% 37,059 −20.19%

m20r10t1200_01 52,242 31,338 −40.01% 31,198 −40.28% 31503 −39.70% 32,768 −37.28%
m20r10t1200_02 54,533 38,646 −29.13% 38,945 −28.58% 37,442 −31.34% 37,821 −30.65%
m20r10t1200_03 75,115 45,027 −40.06% 45,039 −40.04% 47,707 −36.49% 47,524 −36.73%
m20r10t1200_04 78,231 54,280 −30.62% 55,022 −29.67% 55,259 −29.36% 54,306 −30.58%

Average: 65,030.25 42,322.75 −34.95% 42,551 −34.64% 42,977.75 −34.22% 43,104.75 −33.81%
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In detail, the approaches that give priority to the most loaded resource (MLRF/LPTF
and MLRF/SPTF) seem to give as good or even better results compared to the other
two approaches. This can be attributed to the way the studied benchmark instances are
specified, as the number of AGVs is always lower than the number of workstations. Thus,
the most important resource to take into account when generating an improved sequence
of tasks is to consider the process times in the AGVs in order to prioritize the most loaded
ones. Moreover, the strategies that prioritize workstations with longer processing times
(LPTF) also tend to perform very well since they prevent excessive workstation occupancy
during the later stages of task processing. Thus, sequences favoring the LPTF strategy
over SPTF exhibit lower percentage gaps, underscoring its effectiveness across nearly all
instances. The MLRF/LPTF algorithm emerges as the most effective sequencing heuristic
for addressing the proposed problem. As already discussed, its superiority primarily
stems from the fact that it strategically places the most heavily utilized AGVs and most
loaded workstations at the beginning of the sequencing, thereby mitigating potential queue
formations and inefficiencies that might arise later in the process.

6. Conclusions

This study addressed the complex challenge of optimizing task sequencing within
manufacturing environments. The primary objective was to minimize the total production
time, also known as the makespan, by determining the most efficient order for execut-
ing tasks assigned to AGVs and workstations. The methodology proposed in this study
employed a two-step process integrating heuristic algorithms and simulation techniques.
The heuristics were designed to generate high-quality candidate sequences considering
resource utilization, task assignment, and processing times. Simul8, a discrete-event simula-
tion software, was utilized to model the complex queuing dynamics arising from the AGV
task sequencing, providing a robust evaluation framework for the proposed sequencing
strategies. From the developed heuristic algorithms, MLRF/LPTF emerged as a superior
strategy for task sequencing. This algorithm strategically prioritized the most loaded
AGVs and workstations with the highest processing times, resulting in substantial im-
provements in the makespan compared to the default sequencing strategy, which was
based on the well-known NEH algorithm. The performance of the proposed algorithms
demonstrated consistent enhancements, especially for larger instances, emphasizing their
effectiveness in improving AGV task sequencing efficiency in the context of limited and
shared resources. Nonetheless, the analysis revealed a correlation between the variability
in the task assignment and processing times, as well as in the algorithms’ performance.
Instances characterized by high variability exhibited reduced improvement potential due
to dominating factors such as non-uniformly load machines with very long processing
times, thus limiting the algorithms’ effectiveness.

Building upon the insights gained from this study, several research lines emerge. A
future line of research that naturally extends from this study involves the development of a
stochastic version of the presented problem. This stochastic behavior can be achieved by
transforming the fixed task/activity process times into random variables selected from spe-
cific probability distributions, such as log-normal or Weibull distributions. This direction
benefits from the methodology established in this study, where the evaluation of the final
scheduling utilizes a discrete-event simulator like Simul8. Leveraging such a simulator en-
ables the realistic simulation of dynamic queues resulting from stochastic processing times.
Furthermore, enhancing the interaction between the algorithmic component and simulation
could allow for more integrated simulation–optimization frameworks, often referred to as
simheuristics [35,47]. This integration holds promise for efficiently deriving high-quality
and robust solutions that consider the stochastic nature inherent in warehouse and produc-
tion processes. Another research line could involve extending the constructive heuristics
into biased-randomized algorithms [48] capable of providing enhanced results, and also
utilizing the simulation developed in this study as an environment for a reinforcement
learning agent. Such an agent could learn optimal sequencing policies by being dynamically
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based on the current production state. By adapting to queues and resource sharing in a
changing environment, the agent could propose improved sequencing strategies over time.
Finally, investigating the scalability and applicability of the developed heuristic algorithms
to diverse industrial scenarios could be an area for further investigation.
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