
Split message-based anonymity for JXTA
applications

Joan Arnedo-Moreno, Noemı́ Pérez-Gilabert
Internet Interdisciplinary Institute (IN3)

Universitat Oberta de Catalunya
Barcelona, Spain

jarnedo, nperezg@uoc.edu

Abstract—JXTA is an open peer-to-peer (P2P) protocols spec-
ification that, in its about 10 years of history, has slowly evolved
to appeal to a broad set of applications. As part of this process,
some long awaited security improvements have been included
in the latest versions. However, under some contexts, even
more advanced security requirements should be met, such as
anonymity. Several approaches exist to deploy anonymity in P2P
networks, but no perfect solution exists. Even though path-based
approaches are quite popular, it is considered that, in dynamic
groups, using a split message-based one is better. In this work,
we propose an anonymity service for JXTA using such approach.
The proposal takes advantage JXTA’s core services, in a manner
so that it can be easily integrated to existing end applications
and services.1

Index Terms—peer-to-peer; security; anonymity; JXTA; Java;
split message;

I. INTRODUCTION

JXTA [1] is a well-known open protocol specification that
enables the deployment of peer-to-peer (P2P) applications, al-
lowing a set of heterogeneous devices to group and collaborate
regardless of the underlying network topology. Created by
SUN in 2001, JXTA has iterated through successive revisions
during its 10 years of history, slowly gaining popularity, with
over 2,700,000 downloads and more than 120 active projects.
Such projects range from real-time collaboration [2] to remote
robot control [3] or collaborative web search [4].

The latest version at present time, JXTA 2.7 [5], has been
made available at the start of 2011. Its main highlights include
some long awaited basic security improvements, such as secure
peer groups and advertisement signatures. However, there is
is still a long way to go on that regard. As P2P systems
evolve and are used in new scenarios, more advanced security
capabilities become important. An example of them is message
anonymity [6], which becomes indispensable in systems where
identities must not be disclosed, such as a ballot or peer
evaluation system. Even in scenarios where anonymity is not
considered indispensable, such as a simple suggestion box,
it may provide the added bonus that, by safeguarding user
privacy, participation is encouraged.

1This work was partially supported by the Spanish MCYT and the FEDER
funds under grant TSI2007-65406-C03-03 E-AEGIS and CONSOLIDER
CSD2007-00004 ”ARES”, funded by the Spanish Ministry of Science and
Education.

There are several ways to attain anonymity on a P2P
system. Unfortunately, no silver bullet exists. Every different
approach has its own strengths and weaknesses and choice
entirely depends on the system’s requirements. Nevertheless,
path-based protocols [7] are quite popular [8], [9], since
they provide the highest degree of anonymity. However, this
approach puts a heavy burden on the source peer, since
an initial path must be preconstructed and encrypted using
asymmetric cryptography. Furthermore, preconstructed paths
must be periodically probed, assessing whether all the included
peers are still online before they can be used. Otherwise,
the message will be lost. In dynamic networks, where it is
uncertain whether a particular peer will be online or not, it is
often the case that paths must be continuously reconstructed.
In such scenario, it is better to use a split message-based
approach, where no path must be precomputed and a high
degree of sender anonymity is still maintained.

In this paper, we extend our previous work [10] and study
the feasibility of split message-based approaches by proposing
an anonymity service for JXTA relying on this technique. This
is achieved by adapting one of the latest proposals to P2P
anonymity to JXTA’s architecture. Additional contributions of
this paper encompass some improvements over the original
protocol in order to create a service that fully realizes the ca-
pabilities that JXTA already provides, minimizing the amount
of required changes to an existing system in order to integrate
anonymous messaging.

The paper is structured as follows. In Section II, we provide
a thorough review of current split message-based approaches
to anonymity within P2P systems. Section III describes our
proposed anonymity method and how it is adapted to the
specifics of JXTA. We also discuss some protocol tweaks and
improvements on the original proposal. Finally, Section IV
concludes this paper and outlines further work.

II. RELATED WORK

Several surveys on anonymity on unstructured P2P networks
exist [11], [12], each one proposing a different taxonomy to
categorize current approaches. Our work is based on the latter,
being the most recent one. According to the author, approaches
can be divided into three categories: unimessage, split message
and replicated message. In unimessage approaches, the anony-
mous message travels across the network as a single entity. In



split message ones, it is split into several pieces which travel
independently of each other. Finally, in replicated message
ones, multiple replicas of the same message are spread across
the network. Path-based approaches and its variations, the
most popular ones in peer-to-peer anonymity, are an important
subset in the unimessage category.

In this section, we focus on split message-based ap-
proaches, since it is the chosen mechanism for our proposed
anonymity service. This category basically relies on threshold
systems [13], and it is mainly used for file publication. In
threshold systems, a secret is split into n parts, which are
distributed through the network. It is enough that t parts
(t < n) are gathered to be able to recover the original
secret. This idea is directly applied to documents or messages,
which take the role of the shared secret, distributed among
the peers. The peer which is able to recover the secret is
the one that finally transmits the data, acting on behalf of
the actual sender, and thus hiding its identity. The main
strength of split message-based approaches, in comparison
with approaches from other categories, is its high reliability
and ability to cope with dynamic environments. However, it
comes at the cost of a quite high latency and traffic overhead.
Since secret distribution usually relies on heavy use of flooding
mechanisms, many messages must be transmitted across the
whole network.

The FreeHaven Project [14] is a well known and long
lived anonymous storage system, strongly focused in data
persistence. Anonymity is achieved through a community of
servers, named servnets, which process and hold the actual
document parts. Each one has a pseudonym, so they can be
easily identified within the network and maintain a reputation
index. Users who want to publish (publishers) or access data
(readers) are not necessarily part of the servnet network. In
that sense, only a small part of the P2P community actually
manages the securely stored data.

Publishers send document to a servnet, which uses Rabin’s
information dispersal algorithm (IDA) [15] to break the docu-
ment into parts, following the guidelines of a threshold system.
The parts are then signed using a newly generated key pair
(PKdoc, SKdoc) and distributed across the servnet network
under an index H(PKdoc), the hash of PKdoc. Readers can
retrieve the document by sending a request with H(PKdoc)
to a servnet. The request is then flooded through the servnet
network, and each time a servnet which holds a document part
receives the request, such part is sent to the reader using an
anonymous remailer, such as a mix network [16]. Once the
reader has received and verified enough parts, it is able to
recover the original document. Both document management
schemes are summarized in Figure 1.

Closely following the steps of FreeHaven, we can find the
Jigsaw Distributed File System (JigDFS) [17], a secure and
reliable P2P file system based on JXTA. This proposal also
uses IDA to split a document among different peers, however,
it is applied in an iterative manner. Once a piece has been
distributed, it may be split and distributed again in order to
improve reliability. Thus, a document’s resulting distribution

Fig. 1. FreeHaven document publication and retrieval.

scheme can be mapped into a tree-like structure. Furthermore,
before each iteration is executed, files are password encrypted,
so only legitimate users can access them, and noise data is
added to confuse attackers. Peers which store document parts
cannot actually read data even under collusion. However, this
proposal’s main goal is not complete anonymity, but only some
degree of plausible deniability regarding document ownership
once it has been stored. The underlying protocols are not
truly anonymous, since senders and receivers can be clearly
pinpointed.

Beyond document distribution techniques, the Secret-
Sharing Mutual Anonymity Protocol [18], or SSMP, can be
found, proposing a mutual anonymity approach also based
on an information dispersal algorithm, but only focusing on
document retrieval. In this approach, queries and responses
are split instead of documents. When an initiator, O, wants to
look up a document, it generates a secret key, T , and uses
it to encrypt the document identifier, e = ET (id)). Both
e and T are split and probabilistically flooded across the
network. All parts are indexed using a single query identifier,
sq. As soon as any peer P1 has received enough parts to
be able to separately recover both e and T , the identifier is
decrypted and a standard, plain text, document search query
is flooded across the network. P1 then effectively acts on
behalf of the actual request initiator, using onion routing [7] to
create an anonymous communication channel between itself
and the document holder. When the chosen document must
be transmitted, the same information distribution process is
repeated, but this time splitting and flooding a new symmetric
key (T ′) and the encrypted document itself (e′ = ET ′(doc)).
However, all parts are indexed using the original sq. Therefore,
O is able to identify them as the response to its original query
as they travel across the network, and obtain the requested
document.

Reusing the previous ideas, the same authors later proposed
PUZZLE [19], an anonymous protocol specially suited to
Mobile P2P Networks (MOPNET). The basic idea is taking
advantage of the broadcast feature of mobile nodes when
distributing split secret parts in order to mitigate the traffic



overhead produced by flooding. Apart from that, the basic
scheme for document search and retrieval is exactly the same.
Nevertheless, we consider this proposal specially interesting,
since the authors specifically cite JXTA as an example of
MOPNET, and thus eligible for this protocol.

What could be considered the most recent iteration of the
scheme used in the previous proposals can be found in Rumor
Riding(RR) [20]. The IDA algorithm is no longer used to
split queries, again focusing on document search. In fact, a
publication mechanism is not contemplated.

The system’s behavior is summarized in Figure 2. When a
peer, the initiator I , wishes to issue an anonymous message, an
AES symmetric key is generated and used to encrypt the query.
Both the key and the ciphertext are arranged into different
packets, called rumors, which are separately forwarded across
the network following a random walk algorithm. The rumor’s
Time-To-live (TTL) is adaptatively chosen so there is a high
probability that, at some time, they will have crossed the
same peer. That peer, the sower SI , is able to decrypt the
ciphertext and retrieve the original query. SI acts on behalf
of the initiator, probabilistically flooding the query across
the network until it reaches any peer able to process it, the
responder R. Since queries are related to document retrieval,
more than one responder may exist.

Once the query has been processed, the response is sent
back from R to I using a similar strategy. However, this
time the response is encrypted using I’s public key prior to
rumor generation. Then, a new pair of rumors is forwarded
until they have crossed a new sower, SR. However, the
response is not recovered at SR, but the response rumors are
directly submitted to SI . From SI , both rumors independently
backtrack the path the query rumors took at the start of the
protocol, until they converge at I , which is the only peer able
to recover the plaintext response.

Fig. 2. Rumor Riding Query issuance and response.

Finally, it is interesting to make note of the fact that, in
several of the existing proposals, even though split message
approaches are used, at some point they rely on unimessage
mechanisms, such as mix networks or onion routing [7], to es-
tablish a secure channel. Even though those mechanisms don’t
play a main role in the protocol, they are necessary. Therefore,
these kind of approaches could actually be considered, up to
some point, hybrid ones.

III. SPLIT-MESSAGE BASED ANONYMITY SERVICE

JXTA main purpose is providing mechanisms to share re-
sources and services. In order to provide anonymity in services
consumption, is important to review the JXTA messaging
architecture. From this analysis, it is possible to identify the
elements that can be taken advantage of in order to define a
split message-based anonymity layer which is transparent and
finely integrated to JXTA architecture, without the need of
defining additional protocols or core primitives.

A. JXTA architecture overview

The main idiosyncrasy in JXTA’s design, which sets it apart
from other P2P frameworks, is introducing the concept of
Peer Group, a segmentation of the global JXTA network.
All peers publish and consume services within the context
of a group, interacting with each other by using some JXTA
core services, the most important ones being the Membership
Service, Discovery Service and Pipe Service.

The Membership Service allows joining a peer group
and claiming an unique identity within the group’s context.
Through this service, each group member is provided with
a credential, which may be used at any time to authenticate
to other group members. Different implementations exist de-
pending on the chosen way such identity is claimed and the
credential format.

The Discovery Service manages group resources publication
and discovery. Every resource in a JXTA group is described
by an Advertisement, a metadata document. A resource cannot
be accessed unless its corresponding Advertisement is previ-
ously retrieved. It is the Discovery Service’s responsibility to
manage and distribute Advertisements, since a resource is not
considered available unless it is periodically published.

There are several Adviertisement types, but the most im-
portant ones are:
• Peer Advertisement: Describes a peer and the resources

and services it provides, under a special service parameter
entry. Each peer is responsible for the publication of its
own Peer Advertisement, and is considered online only
while it continues to do so.

• Pipe Advertisement: Describes a JXTA Pipe, and abstract
communication channel and the main mechanism to ex-
change data between applications.

Finally, the Pipe Service is responsible for managing mes-
sage exchanges using JXTA Pipes. The simplest pipe in JXTA,
the JxtaUnicast, provides an asynchronous, unidirectional
message transfer mechanism which can be easily established



and managed. Nevertheless, there is a higher-level communi-
cation abstraction, the JxtaBiDiPipe, which provides a bidirec-
tional communication channel. The latter is usually preferred
by services, since it allows a straightforward query-response
message exchange. The description of JXTA’s standard service
model based on this procedure follows:

1) Each service provider starts a JXTAServerPipe using the
Pipe Service, which makes available and listens to an
input pipe in order to process inbound communication
requests. This input pipe is defined using a Pipe Adver-
tisement.

2) The service provider publishes the Pipe Advertisement
to other group members using the Discovery Service.

3) The Advertisement is propagated within the group by
Rendezvous Peers, special super-peers who efficiently
distribute Advertisements.

4) To consume a service, a peer also uses the Discovery
Service to retrieve the Pipe Advertisement. Then, a
connection is established via the Pipe Service and the
consumer may begin sending messages.

5) Once a message is received at the server side, the results
depend on the pipe type, JxtaUnicast or JxtaBiDiPipe.
In the former case, messages may be processed, but
no response is possible. On the latter case, a linked
outbound communication channel is created and two-
way exchanges are made possible.

JXTA messages sent through pipe connections follow a
predefined structure comprised of a set of name/value pairs
labelled under a namespace and organized as an ordered
sequence. As a message passes down each JXTA layer, one
or more named elements may be added to the message
(for example, control data). Their order within the message
structure always follows the same order they were added. As
a message is processed back up the stack, each layer will
remove these elements, until only application data remains.

Message exchanges can be secured in JXTA by using a
group based on the PSE (Personal Security Environment)
Membership Service implementation. Under this kind of peer
group, each peer is provided with a credential based on
public key cryptography. This guarantees that each peer has
initialized a valid pair of public-private keys and that the public
key of each peer is automatically distributed inside its Peer
Advertisement, in a special service parameter entry.

B. Anonymizing procedure

From all the protocols reviewed in Section II, we have
chosen RR as the foundation for our work. The main reasons
being that it is one of the most recent proposals, as well
as being a ”pure” protocol, instead of relying in unimessage
approaches at some point, which would make the point moot.
Even though RR is focused on document retrieval via flooding
mechanisms, it can be easily adapted to point-to-point service
access. A study of the performance of this general approach,
based on logs from a Gnutella network, is addressed in the
original paper [20].

We propose an anonymity layer that causes the minimum
interferences on the JXTA messaging architecture, according
to the review done in Section III-A. The anonymizing service
works within the context of a peer group, meaning that only
peers from the same peer group may exchange anonymous
messages. Each peers is free to deploy the service, or not, and
it is not assumed that every group member always does all the
time. The service is tailored to JXTA’s core services features.
Therefore, the deployment procedure follows the same steps
as for any other peer service, making use of JXTA’s service
model without the need of modifying JXTA’s initial design.
Applications which execute end services or/and clients may
communicate through the anonymity service, which acts as an
invisible layer. However, as a requirement, the peer group must
operate under the PSE Membership Service, guaranteeing that
all group members have a properly initialized keystore.

An overview of the proposed architecture is summarized in
Figure 3.

Fig. 3. Anonymity service operation in the context of JXTA’s architectural
design.

Our proposed RR-based Anonymity Service relies on five
distinct phases: Service Publication, Query Setup, Random
Walk, Response Processing and Backtracking. All peers which
execute the Anonymity Service track rumors as they travel
across the network using a local cache, RumorDB, a table
with the following fields:
• RumorID: Rumor identifier.
• CachedRumor: A cached rumor of any type.
• Inbound: Peer ID from which the rumor was received.
• Outbound: Peer ID the rumor was forwarded to.
• TimeStamp: Time the rumor was routed.
Given the TimeStamp field, all entries expire after some

time and are automatically flushed. This avoids cluttering
from stagnant entries related to messages which have been
dropped for some reason during transit.

1) Service publication: Just like any JXTA service, the
Anonymity Service’s Pipe Advertisement must be distributed
among other peer members before it may receive incoming
requests. Each peer is responsible for the publication of its own
service instance’s pipe and this procedure must be periodically
executed.

In order to maintain the number of advertisements trans-
mitted within the network at a minimum, the service’s Pipe
Advertisement is piggybacked within each peer’s Peer Adver-



tisement, indexed by a hardcoded well-known service iden-
tifier. In fact, this is the same method the PSE Membership
Service employs to readily distribute public key information.
The main advantage of this method is that it is only necessary
to manage a single advertisement type to publish or discover
all data related to the Anonymity Service (service pipe and
peer cryptographic data). Furthermore, the Peer Advertise-
ment’s publication and discovery is already part of JXTA’s
standard procedures, being every peer’s presence mechanism.
Therefore, this advertisement of any group member which is
considered online always is always readily available.

A sample Peer Advertisement is shown in Figure 4 (some
encoded data has been shortened for the sake of readabil-
ity). The topmost grey section (a) denotes the Anonymity
Service parameters for that peer, which only consist of its
Pipe Advertisement. The lower grey section (b) denotes the
PSE Membership Service parameters, the peer’s public key
encapsulated in a digital certificate.

Fig. 4. Peer Advertisement supporting the Anonymity Service, containing
(a) Anonymity Service Pipe Advertisement and (b) PSE public key data.

2) Query Setup: This step starts the whole process and
is executed at the end client application (the initiator, I)
whenever it wishes to send a query to the end service (the
responder, R). A rumor pair is initialized, beginning its trip
through the group members, towards R.

The process is executed as follows:
1) A local application executing on peer I wishes to send a

query message Qry to an end service executing on peer
R.

2) Via the Discovery Service, R’s Peer Advertisement is
retrieved. The following information is looked up in the
parameters section (see Figure 4):
• The end service’s Pipe Advertisement,

EndSvcP ipeAdv. Its ID, EndSvcID, is extracted.

• R’s public key, PKr.
• The Anonymity Service’s Pipe Advertisement,

EndAnonymPipeAdv.
3) If EndSvcP ipeAdv is of the JxtaBiDiPipe type, a

response will be expected. A secret and public key pair,
SKi and PKi, is generated.

4) Two time-to-live values, TTLforward and
TTLbackwards, are established. How they are
chosen will be discussed later.

5) An AnonymData structure is created as follows:
• Message = Qry
• EndService = EndSvcID
• ResponseKey = PKi, if a response is expected.

Otherwise, this field is omitted.
• ResponseTTL = TTLbackwards, if a response

is expected. Otherwise, this field is omitted.
6) AnonymData is encrypted using PKr under a wrapped

key scheme, such as [21], generating the bit string
EncAnonymData.

7) A RumorData structure is generated as follows:
• AnonymMsg = EncAnonymData
• DestinationPipe = EndAnonymPipeAdv

8) An AES [22] symmetric key, K is dynamically gener-
ated.

9) RumorData is encrypted using K, resulting in the
EncRumorData bit string.

10) A random JXTA identifier, RUID is generated.
11) A message rumor, MessageRumor, is created using a

JXTA message with the following name-value pairs:
• RumorData = EncRumorData
• RumorID = RUID
• TTL = TTLforward

12) A key rumor, KeyRumor, is created using a JXTA
message with the following name-value pairs:
• RumorKey = K
• RumorID = RUID
• TTL = TTLforward

13) The Peer Advertisements of two different group mem-
bers which are executing the Anonymity Service are
located. This is achieved by using the Discovery Service
to look up peers which include such service in their Peer
Advertisement, as previously explained in the Service
Publication step.

14) The contained Pipe Advertisements are extracted from
each advertisement. MessageRumor is forwarded to
one pipe and KeyRumor to the other.

Once the rumors have been forwarded, if a response
is expected, two entries, one for each rumor, are created
in RumorDB. The RumorID field is assigned RUID
and the Outbound field is assigned the JXTA ID of the
group member used to forward the rumor. In this case,
CachedRumor and Inbound are left blank, serving as a
special mark indicating that the entries correspond to rumors
created at this peer, which is expecting a response. SKi and



a callback mechanism to the end client application are also
separately stored.

3) Random Walk: Whenever the Anonymity Service is
executing in a peer, it is always listening to its input pipe,
waiting for inbound rumors of any type: message and key. Its
basic operation mode is processing inbound rumors received
from any peer, Pin, and then immediately forwarding them to
a different outbound peer, Pout, acting as a router, immediately
updating RumorDB.

The rumor may be processed in two different manners when
received, random walk or backtracking, depending on whether
an entry already exists in RumorDB for that rumor ID and
type, or not. For now, the former case is explained, since it is
the way rumors are always processed immediately after query
setup. In this scenario, both rumors are iteratively forwarded
through group members until one of them is considered
eligible to become the sower, Si, which will forward the actual
query on behalf of I .

1) A rumor is received from peer Pin.
2) The RumorID field value, RUID, is extracted from the

rumor.
3) The local cache is looked up for a rumor of the same

type with a RumorID field matching RUID.
4) Random walk must be applied if one of these conditions

apply:
• No enty currently exists for this rumor in the local

cache.
• An entry exists, but the value in the Outbound

field is different from Pin’s ID.
5) The complementary rumor type, with a RumorID field

also matching RUID, is looked up in the local cache.
6) If a match exists, the current peer has now a valid

message and key rumor pair, MessageRumor and
KeyRumor, and becomes eligible to become a sower.

a) The RumorKey field value, K, is extracted from
KeyRumor.

b) The RumorData field value in MessageRumor
is decrypted using K. The result is the
RumorData structure.

c) The DestinationPipe field value,
AnonymSvcP ipeAdv, a pipe advertisement,
is extracted from RumorData.

d) The AnonymMsg field value, EncAnonymData,
is extracted from RumorData.

e) A JXTA message, EndMessage is created with
the following field name-value pairs:
• AnonymMsg = EncAnonymData
• RumorID = RUID

f) EndMessage is forwarded using
EndAnonymPipeAdv, which points to R’s
instance of the Anonymity Service. Therefore,
Pout = R

7) If no match exists:
a) The TTL field value is decreased by 1.

b) If TTL = 0, the rumor is discarded. Otherwise it
will be forwarded to another peer, Pout.

c) If no entries existed at step 4, a random value
different from Pin is chosen for Pout.

d) If other entries already existed, Pout is also chosen
at random, but it must different to every entry’s
Inbound and Outbound field values.

8) The rumor is forwarded to Pout.
Once a rumor is forwarded, the local cache is updated.

The RumorID field is assigned RUID and the rumor itself
is stored in the CachedRumor. The JXTA ID’s of Pin

and Pout are respectively assigned to the Inbound and
Outbound fields. It is worth remarking that, during this
step, given its random nature, it is possible that sometimes
the same rumor passes through the same peer more than
once (that would correspond to the second condition in step
4). Rumor processing does not change because of that, an
additional entry is just added to the cache. Successive entries
are differentiated by their timestamp, and, most of the time,
the values in Inbound and Outbound. This situation does
not affect the protocol, as will be explained later, in the
backtracking step.

4) Response Processing: Once the Anonymity Service’s
instance executing in R receives EndMessage from the
sower, this step is executed. Given the nature of the random
walk process, the possibility exists that multiple peers are
eligible to become sowers, and therefore, a few copies of the
same request are received. By temporally storing RUID for
served requests, it is possible to guarantee that, even though
several repeated queries are received, only one is actually
processed and responded. The rest are discarded.

1) Using the PSE Membership Service, R’s secret key,
SKr is looked up.

2) The AnonymMsg field value is decrypted
using SKr, exposing the AnonymData =
{Qry,EndSvcID, PKi, TTLbackwards} structure.

3) Using the Discovery Service, R’s Peer Advertisement
is retrieved. A Pipe Advertisement, EndSvcP ipeAdv,
with an ID equal to EndSvcID, is extracted from the
service parameters section. This is the end service’s
advertisement.

4) A connection is opened using EndSvcP ipeAdv and
Qry is sent through it.

5) If no response is expected (EndSvcP ipeAdv is of the
JxtaUnicast type), the process is over.

6) If a response is expected (EndSvcP ipeAdv is of the
JxtaBidiPipe type), the Anonymity Service waits for the
response, Rsp.

7) At this point, a rumor pair is created, following the same
steps 4-13 in Query Setup, with the following changes:
• The AnonymData structure only has a single field,
Message = Rsp. It is encrypted using PKi.

• The TTL field, in the both the message and key
rumor, is initialized to TTLbackwards.



• The RumorID field in the rumors is initialized to
RUID.

8) Once the rumors have been created, instead of following
two random separate paths, they are both sent back to
the sower using the Anonymity Service’s pipe.

When the sower receives both new rumors, the backtrack
process begins.

5) Backtracking: In the backtrack step, rumors are routed
back to the initiator following the inverse path they used
to reach the sower, until they arrive to I . Whenever a peer
executing the Anonymity Service receives a rumor, it is able
to discern whether a rumor is being backtracked, instead of
executing a random walk, in the following manner. When a
rumor is received from Pin, it is looked up in the local cache.
If an entry already exists and the value in the Outbound field
is equal to Pin’s ID, backtracking is detected, since this is a
circumstance that random walk step ensures will never happen
(see step 7). In this scenario, it is worth remarking that it is
always guaranteed that an entry exists in a peer’s local cache
for a given rumor being processed

1) A rumor of any kind is received from Pin and back-
tracking is detected.

2) RumorDB is checked for entries with RumorID =
RUID.

3) The entries Inbound field is checked. If it any of them
is blank, then this peer was the initiator.

a) The rumor is stored in the CachedRumor field.
b) A rumor of the alternate type but the same ID

is looked up. If no match exists, the peer cannot
proceed and must wait for it.

c) If a match exists, the contained response, Rsp, is
retrieved in a manner similar to the one used by the
sower to unbundle the initial rumors, in step 6 of
the random walk process. SKi is used to decrypt
AnonymData.

d) The response is pushed to the client application
using the stored callback mechanism.

4) Otherwise, the entry with the most recent timestamp is
used in the following manner:

a) The TTL field value in the rumor is decreased by
1. Nevertheless, given then chosen values at the
response processing step, it is guaranteed that the
rumors will reach the initiator before the TTL field
value reaches 0.

b) The rumor is routed back using the Inbound
entry’s value. If the peer has gone momentarily
offline, the message is held for some time, waiting
until it comes back online.

c) Finally, this rumor’s entry is deleted from the local
cache, cleaning up.

C. Discussion on protocol tweaks and improvements

In our adaptation of the Rumor Riding protocol to JXTA,
we have also included some minor tweaks and improvements

over the original proposal. Following, we discuss such them.

1) Rumor matching using identifiers: In the original
proposal, a CRC code is appended to the original query
prior to encryption (Query Setup, step 9). During the
Random Walk process, step 3, rumor matching is achieved
by decrypting each message and checking the CRC code, one
by one, instead. A concordance is considered to be found
when a CRC check passes, meaning that the message has
been correctly decrypted. Otherwise, it is concluded that
no message rumor is currently cached for that key. This
procedure is not motivated by security, since the authors state
that ”...the CRC function is to avoid using a complex text
understanding technique to distinguish a meaningful M...”, M
being the original query. However, in JXTA, it is very easy
to check whether a query has been properly decrypted, since
they have a clear structure. Even if it was not the case, this
is a very costly procedure just to check rumor matching. It
is much more efficient to know whether a message and key
rumor match before even attempting decryption, for example,
using a simple common identifier (RUID).

2) Final query privacy: Originally, once the initial random
walk rumors conflate into a potential sower, the message
is decrypted and the original query is probabilistically
flooded across the whole network in plain text. Even though
anonymity is maintained, a considerable amount of peers
will receive the query and be able to easily eavesdrop
on the transmission. For that reason, we propose that the
query is initially encrypted using the service’s public key in
Query Setup, step 6. Thus, the sower transmits an encrypted
query in Random Walk, step 6, to the final destination, and
privacy is maintained along the full source-destination path.
It must be noted that, using our proposed procedure (by not
flooding the final message), some anonymity is lost, since
the sower, but only the sower, must know which is the final
destination in order to directly transmit the query. However,
other anonymity approaches, such as probabilistic path-based
ones [9], also share this characteristic, and it is considered
an acceptable loss. In addition, even though the sower knows
the final destination peer, in our scheme, it is unable to guess
which specific service is being accessed.

3) TTL value range choice: Given the nature of the
random walk protocol, it is very important to choose an
appropriate TTL value range which ensures a high probability
that both rumors will traverse the same peer at some point,
before their TTL values reach 0. In order to be able to choose
an acceptable value, we have calculated through simulation an
approximate value for the probability of such event happening
given different peer group sizes and TTL values (see Figure 5).
100 million repetitions have been tested for each combination
of group size and TTL value. In the Figure, we just show some
significative results, up to values where the probability almost
reaches 1.0 for all cases. We have considered group sizes up
to 32 peers, since it is is the typical maximum [23].



Fig. 5. Probability that both rumors traverse the same peer.

An initial TTL value may be randomly chosen from any
range which ensure a high probability, given the current group
size. As the figure shows, for TTL values greater than 10
the probability will quickly approach 1.0 for any group size.
TTLforward and TTLbackwards (see Query Setup, step 4)
are calculated from this initial value in a manner that it is not
possible for an attacker to guess the initial TTL vale one the
rumors ar crossing the network, but guarantee that both the
query and the response will reach the intended destination.
A random value between 0-6 is chosen and added to the
initial TTL value to establish TTLbackwards. TTLforward
is calculated by subtracting a random value between 0-3 from
TTLbackwards.

IV. CONCLUSIONS

We have proposed a split message-based anonymity layer
for JXTA, as an alternative to the more popular unimessage-
based ones. The main goal is providing JXTA with a set of
anonymous messaging approaches from which developers may
choose, each suitable to different scenarios. At present time,
we are finishing the implementation and in short will be able
to test its behavior in real JXTA networks and compare our
results with the ones presented in the original proposal.

Apart from providing JXTA with anonymous messaging, the
main contributions of the chosen approach are twofold. First of
all, it is tightly integrated to JXTA’s architecture, working only
within the context of a standard service’s operation method.
Thus, it has not been necessary to define new protocols or
primitives aside from the ones already available in JXTA. A
further advantage of this is that pipe and cryptographic data
publication is seamlessly intergraded within JXTA’s standard
presence mechanism. Thus, the anonymity layer is almost
invisible to the actual service being accessed. From the end
service provider’s standpoint, the original message has been
normally received through its published input pipe. In addition,
we propose some tweaks and improvements over the original
protocol, which we hope increase its overall performance.

Once the implementation is finished, further research goes
to extensive testing of our proposed anonymous service in
real JXTA networks, so it is possible to assess its feasibility in
different scenarios and compare the results to other anonymity

approaches (such as unimesage or replicated message ones).
This testing will allows us to fine tune some of the protocol
parameters, such as some timeouts. Finally, it is also worth
studying how to apply mechanisms that are able to thwart
global attackers.

REFERENCES

[1] Sun Microsystems Inc., “JXTA v2.0 protocols specification”, 2007,
https://jxta-spec.dev.java.net/nonav/JXTAProtocols.html.

[2] ConneX, “Connex Project Homepage”, 2007, http://connex.sourceforge.
net.

[3] Matsuo K., Barolli L., Arnedo-Moreno J., Xhafa F., Koyama A., and
Durresi A., “Experimental results and evaluation of smartbox stimulation
device in a P2P e-learning system”, 2009, pp. 37–44.

[4] Namrata Lele, Le-Shin Wu, Ruj Akavipat, and Filippo Menczer, “Six-
earch.org 2.0 peer application for collaborative web search”, in Proceed-
ings of the 20th ACM conference on Hypertext and hypermedia, 2009,
pp. 333–334.

[5] Project Kenai, “JXSE: The Java Implementation of the JXTA Protocols”,
2011, http://jxse.kenai.com.

[6] Hansen M. Pfitzmann A., “Anonymity, unlinkability, undetectability,
unobserv- ability, pseudonymity, and identity management a consol-
idated proposal for terminology”, 2008, http://dud.inf.tu-dresden.de/
Anon Terminology.shtm.

[7] Goldsclag D. Syverson P. and Reed M., “Anonymous connections and
onion routing”, Proceeding of the IEEE 18th Annual Symposium on
Security and Privacy, pp. 44–54, 1997.

[8] Mathewson N. Dingledine R. and Syverson P., “Tor: The second
generation onion router”, Proceeding of the 13th USENIX Security
Symposium, pp. 303–320, 1998.

[9] Rubin A.D. Meiter M.K., “Crowds: Anonymity for web transactions”,
ACM Transactions on Information and System Security, vol. 1, no. 1,
pp. 66–93, 2004.

[10] M. Doming-Prieto and J. Arnedo-Moreno, “JXTAnonym: An anonymity
layer for JXTA services messaging”, IEICE Transactions on Information
and Systems, vol. E95-D, no. 1, January 2012.

[11] Bhatti S. Rogers M, “How to disappera completely: A survey of
private peer-to-peer networks”, in In Proceedings of International Work-
shop on Sustaining Privacy in Autonomous Collaborative Environments
(SPACE), 2007.

[12] Ren-Yi X., “Survey on anonymity in unstructured peer-to-peer systems”,
Journal of Computer Science and Technology, vol. 23, no. 4, pp. 660–
671, July 2008.

[13] Yvo G. Desmedt and Yair Frankel, “Threshold cryptosystems”, in
CRYPTO ’89: Proceedings on Advances in cryptology, New York, NY,
USA, 1989, pp. 307–315, Springer-Verlag New York, Inc.

[14] Freedman M.J. Dingledine R. and D. Molnar, “The free haven project:
Distributed anonymous storage service.”, Lecture Notes in Computer
Science, p. 67, 2001.

[15] Michael O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance”, J. ACM, vol. 36, pp. 335–348, April
1989.

[16] U. Moeller, L. Cottrell, P. Palfrader, and L. Sassaman, “Mix-master
protocol version 2. technical report”, 2004, Internet-Draft.

[17] J. Bian and R. Seker, “Jigdfs: A secure distributed file system”, in IEEE
Symposium on Computational Intelligence in Cyber Security, 2009.
CICS ’09, 2009, pp. 76 – 82.

[18] Han J., Liu Y., Xiao L., Xiao R., and L.M. Ni, “A mutual anonymous
peer-to-peer protocol design”, in Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, 2005, p. 68a.

[19] Han J. and Liu Y., “Mutual anonymity for mobile p2p systems”, Parallel
and Distributed Systems, IEEE Transactions on, vol. 19, no. 8, pp. 1009
–1019, 2008.

[20] Liu Y., Han J., and Wang J., “Rumor riding: Anonymizing unstruc-
tured peer-to-peer systems”, Parallel and Distributed Systems, IEEE
Transactions on, vol. 22, no. 3, pp. 464–475, 2011.

[21] J. Staddon B. Kaliski, “PKCS1: RSA Cryptography Specifications.
Version 2.0”, 1998.

[22] FIPS Federal Information Processing Standard, “Advanced encryption
standard (aes)”, 2001.

[23] Deters R. Halepovic E., “The JXTA performance model and evaluation”,
2005, vol. 21, pp. 8377–390.


