


Abstract— This paper describes a systematic research about

free software solutions and techniques for art imagery computer

recognition problem. We started researching state-of-the-art

landscape, conducting surveys, shortlisting candidate solutions

aligned to free/open source software and ultimately we carried

out speed and efficacy benchmarking of different techniques

combinations on mobile devices using the popular OpenCV

library. We also compare results to SIFT and SURF methods

which are still reference standards in the field.

Index Terms—image recognition, computer vision, mobile,

benchmarking, homography, free software, OpenCV

I. INTRODUCTION

HE study of techniques of computer image recognition has

been for years one of the most exciting fields of study

within artificial intelligence, both by the algorithmic challenge

posed by the analysis of large volumes of unstructured

information, such as the various practical applications that

may involve such techniques in the field of robotics, security,

automation, document management, augmented reality, etc..

The increasing computing power of information systems,

thanks to increasingly powerful processors, distributed

computing, mobile devices and new ultra-fast analysis

techniques derived from brain research are enabling solutions

and practical applications in many different scenarios like

document reading and automatic indexing, biometrics, traffic

signs recognition and other codes or augmented reality.

The goals of this research are:

–Knowing the current state of art techniques.

–Study the potential of most appropriate free

implementations in this regard.

–Evaluate the ability of found libraries in an experiment,

namely the recognition of artworks.

–List constraints encountered and future research.

II. STATE-OF-THE-ART REVIEW

A. Methods

After a careful review of the scientific literature on the

subject it shows that two of the most promising techniques

used in the computer image recognition are SIFT and SURF

algorithms or variations of them.

We found particularly interesting a study [1] circa 2005 that

examines the effectiveness of different techniques which

concludes that the SIFT-based descriptors, which are based on

regions, are more robust and distinctive, and therefore are best

for picture comparison (this study did not cover SURF).

Regarding SURF, we found an analysis [2] of 2007

showing that it provides similar results to SIFT with the

particularity of being a faster algorithm, thanks to the use of

integer arithmetic.

However, another recent study [3] (2011) suggests that

other techniques (SLF, PHOG, Phow, Geometric Blur and V1-

like) can provide more efficiency in terms of invariance with

respect to transformations, especially when dealing with

photo-realistic images with complex backgrounds.

This literature review was complemented by a survey [4]

conducted in May 2012 in a discussion group on the LinkedIn

professional social network whose results however

recommended using SIFT and SURF, possibly because, as of

today, they still have a higher degree of implementation.

B. Basis of selected techniques

The goal of the techniques discussed (SIFT, SURF, and

others) is to "understand" a reference or training image, by

analyzing their numerical representation, detecting and

extracting elements distinguishable from a geometric point of

view or concerning the histogram (such as points, corners or

edges which have a high degree of contrast with respect to the

contour). These key elements are called features.

The image recognition process, in summary, covers the

following stages:

-Feature detection. The detection algorithm (e.g. FAST or

MSER) analyzes a good quality reference image under

optimal lighting conditions to facilitate detection of the

distinctive elements (features).

-Feature description. We then proceed to describe the

outcome of the previous stage by a numerical matrix or

structure similar. There are several methods of representation

(eg. BRIEF, SIFT, SURF). After this phase we usually obtain

a database of precomputed descriptors from a large bank of

images.

-Scene recoginition. The descriptors are extracted from the

picture to be analyzed (this can be a photograph taken of a

scene at any angle and under different lighting conditions,

possibly containing a previously trained image). At this stage

and for real-time recognition the speed and quality of the

Evaluation of free libraries for visual

recognition of art imagery on mobile devices

Ramiro Oliva Navas, a research project for MSc Free Software (Open University of Catalonia)

T

2

extraction of descriptors is critical, especially in realtime

scenarios.

-Comparison of sets of descriptors and determination of the

degree of similarity. Using probabilistic techniques we

determine which matches are actually false positive hits with

the aim to reduce them to a set of matching pairs that have a

high correlation.

Both SIFT and SURF allow high quality descriptors

extraction which possess high invariance with respect to

brightness, scale, rotation or distortion.

SIFT (Scale-Invariant Feature Transform) was published [5]

by David Lowe in 1999. The algorithm is patented in the

United States of America; the owner of the patent [6] is the

University of British Columbia.

SURF (speeded Up Robust Feature) is a robust detector of

local descriptors, first presented by Herbert Bay et al. in 2006

[37]. It is partially based on SIFT but is much faster. A patent

application can be found in USA [7].

C. Software libraries

To identify image recognition software libraries we

conducted a wide search on the Internet, as well as a survey on

the social network LinkedIn [8]. We found a significant high

number of candidate libraries which implement in more or less

degree image analysis algorithms that can be used in the

recognition such as OpenCV, MatLab, SimpleCV, VIGRA,

VXL, Matrox MIL / ONL, Cognex VisionPro, Halcon, vlfeat,

IPL98, LabView, CCV (Community Core Vision) and Into.

Of these, we found more recommendations and referrals to

OpenCV [9]. This library is distributed under a BSD license

and can be legally used for both academic and commercial

scope. It includes interfaces for a wide variety of

programming languages (such as C, C++ and Python) and is

available for Windows, Linux, Android and iOS platforms.

The library contains over 2500 optimized algorithms and their

applications range from interactive art, inspecting mining,

mapping and robotics.

OpenCV includes implementations for SIFT, SURF and

other algorithms like ORB and RANSAC. Since SIFT and

SURF are subject to patents, we will add ORB to the selection

of techniques in our experiment, along with RANSAC

(traditional method), in order to get richer results and

including methods which are 100% free.

For the remainder of the experiment we then will focus on

OpenCV both because it’s free and also due to the large

number of references and recommendations, as noted above.

D. Similar experiments

Regarding the recognition of images in museums, we have

found several similar experiments:

-April 2012, Project "FACES: Faces, Art, and

Computerized Evaluation Systems" [10]. Three researchers at

the University of California, Riverside, have launched a

research project to test the use of facial recognition software to

help identify these unknown subjects within the portrait, a

project that ultimately can enrich European understanding of

political, social and religious history.

-May 2006, "Interactive museum guide: Fast and robust

recognition of museum objects". H. Bay, B. Fasel, and L. van

Gool analyze the feasibility of software that implements

SURF for recognizing artworks in museums using digital

camera of a mobile phone, although the article does not

specify what libraries have been used.

Besides these projects we have found diverse international

calls that serve as a meeting point for demonstration of

techniques and advances in computer image recognition

solutions, such as ICCV [11] (International Conference on

Computer Vision), CCVEs [12] (European Conference on

Computer Vision) or CVPR [13] (Conference on Computer

Vision Pattern Recognition).

In these events the outcome of open competitions are shown

up describing benefits of the new techniques which have been

applied to two banks of images that have been consolidated as

toolsets for measuring techniques:

- "The PASCAL Visual Object Classes" [14], which aims to

provide a common database of images (including people,

animals, vehicles and other objects) and support tools for

testing the efficacy of new image recognition algorithms . This

toolset is the basis for the PASCAL Challenge annual

competition held since 2005.

The winner algorithms techniques [15] in one of the forms

of competition on 2011, such as NUSPSL_CTX_GPM

NLPR_SS_VW_PLS, combined several algorithms, like SIFT

derivatives for obtaining descriptors, a technique named "Bag

of Words" (BOW) that seeks to relate these descriptors

describing the image in terms of "words", eg, similarly to how

a book is made up of sequences of words, and other

techniques that seek to increase the success rate in recognizing

catalog images.

OpenCV supports partially BOW, so this could be a line of

analysis to consider if the previously selected algorithms do

not offer a satisfactory level of recognition.

"CALTech101/256" [16] is another bank of images which is

also used in various competitions. Any researcher can test

their research progress using these images and comparing the

results with other testers.

III. RESEARCH STRATEGY

Once we carried out a research about the state of the art in

computer image recognition, reviewed the literature and

selected associated libraries (OpenCV) and most appropiate

techniques (SIFT and SURF), the next step is to prove, by

experiment, the following hypothesis:

One) OpenCV is a suitable library for image recognition in

art museums. Specifically: "given a photograph taken arbitraly

with a digital camera on a real scene it can obtain a

correspondence between the scene and some image contained

in an reference art image bank."

Two) SIFT and SURF, available in OpenCV, are the most

effective algorithms for this purpose. That is, "there are no

3

other techniques available in OpenCV with higher rate of

success in recognition for the same set of photographs of real

scenes."

At the time of our research, on August 2012, latest OpenCV

version was 2.4.2 and was available on four platforms:

Windows, Linux, iOS and Android.

We found several comparisons and similar experiments [17,

18], however none of them allows us to test the initial

hypotheses regarding OpenCV and their use in the field of

mobility, so we decided to target the Android port, especially

given the interest aroused around mobile apps and being

Android platform more widespread among smartphones [19].

A preliminary review of the Android version helped us to

discover that both SIFT and SURF were not available in the

Android OpenCV distribution due to patent restrictions

(however, in the desktop version for Linux it is still available,

but in a separate module (non-free) which must be linked

manually).

This situation made us rethink the hypothesis number two

(in relation to the benefits of SIFT and SURF) and we

redirected the experiment to the evaluation of existing

algorithms that support free solutions and mobility

applications, obtaining data that allow us to compare the

effectiveness (% correlation) and efficiency (time required) of

the various techniques available in OpenCV for Android.

Additionally we would contrast the results with the reference

methods available in the desktop version (SIFT, SURF), and

the latest method to the experiment date, BRISK [20]. BRISK

is a relatively new method so we also wanted to know if it

could provide any breakthrough improvement with respect to

to the two former reference methods.

IV. EXPERIMENT DESIGN

The experiment consists of image capture and recognition,

obtaining detection rates and speed as well as comparative

analysis of these data using a mobile application for Android

platform using version 2.4.2 of OpenCV, following systematic

observation scheme .

The reference image bank consists of 10 photographs of

works of art. Each of them will be projected on a monitor and

we will obtain through the mobile application a sequence of

frames extracted from a continuous recording, phone in hand

(flyover).

Fig. 1 Some of the 194 frames extracted from the flyover over reference

image #1.

The difference between the algorithms are based primarily

on their degree of robustness in invariability to changes on the

reference image (such as scaling, rotation, affine

transformation) as well as distortions, noise and lighting

conditions. To incorporate such variables to experiment,

during the recording of the sequence we’ll perform approach

(scaling), rotation (360 °), translation (panning) and

inclination (affine transformation up to about 60 or 70 °)

movements in order to simulate a real usage in which a person

with his/her own personal mobile device wants to identify a

work of art from different angles. In addition, many of these

frames have different degrees of blur or light reflections (we

will apply extra lightning on the dataset #6).

Once frames are captured they will be processed from

within the same mobile application using each of the different

algorithms that OpenCV provides, and data will be obtained

for each sequence and algorithm which will allow

quantitatively comparison of the effectiveness of each

technique for recognition.

A. Data collection

As seen above, the recognition process involves at first the

detection of spots or areas of special interest in the image

(features), extract data representing these features (descriptors)

and comparison (matching) to obtain correlation between pairs

of descriptors.

The number of features / descriptors and data

correspondences will allow us to compare the efficacy of

recognition. In addition to the descriptors matching, we

proceed to calculate the homography, allowing us to locate the

reference image in the scene, which is ultimately the data we

are looking for.

OpenCV includes two algorithms for homography

computation (RANSAC and LMEDS or "Least Median of

Squares"). We will use RANSAC due to a slightly better

performance in complex scenes [21]. The calculation result is

a matrix H such that:

Having:

Then:

Thus, considering a homogeneous geometric space between

the two images (reference and scene), given a point p

contained in the reference image, we can calculate its location

in the scene (p '= Hp). Applying the matrix to the 4 corners of

the reference image we can obtain the location within the

scene.

For comparative data collection, the application will record

continuously and in an unattended fashion the results for each

combination of recognition methods on each of the frames of

4

the sequences of the reference images, dumping the numeric

data into a text file for each combination of methods (see

Annex 2 for technical specifications and combinations of

methods).

Note that the calculated homographies can have a margin of

error because RANSAC (the OpenCV method used for

calculating the transform) uses a probabilistic approach.

Therefore it will be necessary to perform a manual and

individualized observation of the processed frames in order to

validate the perimeter obtained by projecting corners of the

reference image in the scene.

To do this, the application generates a copy of the frame in

the device’s external memory card containing the print out of

the parameters used as well as the corresponding projection of

the reference image.

By manual observation of each of these frame copies we

will dictate whether the homography is valid and complete

data matrix:

-If the homography allows identifying the object in the

scene will be given a score of 1.

-If the homography to identify the object in the scene

accurately fits the contour of the work of art, it will be given a

score of 2.

We found evidences during preliminary testing of this

experiment and work of other researchers showing that the

value of the determinant [22] of the transformation matrix and

the value called SVD (Singular Value Decomposition) [23]

can be used to establish an automatic degenerated

homography filter based on minimum or maximum threshold

values for these values. So, we will also collect both values,

which can be obtained with OpenCV, in order to try to find

later some correlation with the quality of the homography.

Finally, the data dictionary is:

Datum Abbrev. Type Range

Reference image number Img Ordinal [1,10]

Frame number Frame Ordinal [1..X]

(X=frame

count)

Method combination (detector,

descriptor, matcher)

Methods Nominal See annex 2

Number of descriptors D Ratio D>=0

Number of matches M Ratio M<=D

Homography score H Nominal {0, 1, 2}

Number of inliners (valid matches,

which have not been rejected after

applying RANSAC)

I Ratio I<=M

Time required T Ratio >0

Determinant value DT Ratio >0

Singular value decomposition ratio SVD Ratio >0

B. Statistical analysis of results.

For statistical analysis of results we followed the

methodology proposed by Demšar [24] to compare a set of

classifiers over multiple datasets. The first goal of our analysis

was to determine whether the scores of each classifier on each

dataset differ significantly from scores of other classifiers

(which would show us that there are different degrees of

effectiveness or efficiency in the set of classifiers). And, we

also wanted to determine from the results which algorithms

were significantly different from each other (and to conclude

with a ranking of efficiency or speed).

The first step is, therefore, to determine whether the null

hypothesis, which states that all algorithms behave similarly,

may be rejected. Demšar proposes the Friedman test which

compares average ranks of methods,

∑

 . Under the null

hypothesis, all methods are equivalents, so their average ranks

Rj are equal, the Friedman statistic

(D.1)

is distributed according to with k−1 degrees of freedom,

when N and k are big enough (as a rule of a thumb, N > 10 and

k > 5). For a smaller number of algorithms and data sets, exact

critical values have been computed [27-28].

Fig. 3. Imprecise hommography example (this will get only 1 point).

Fig. 2. Computed homography using RANSAC and keypoints and
descriptors obtained with MSER/FREAK. OpenCV supports methods for

matrix calculation which allows the projection of any point P from the

reference image into the scene.

5

Iman and Davenport [29] showed that Friedman’s is

undesirably conservative and derived a better statistic

 (D.2)

which is distributed according to the F-distribution with k−1

and (k−1)(N−1) degrees of freedom. The nul hypothesis can be

rejected only if FF is less than the critical value of F-

distribution for a confident threshold of α. The critical values

can be found on any statistical book or online [26].

If the null hypothesis is rejected, we can continue with a

post-hoc test. The Nemenyi test [30] is used when all

classifiers are compared to each other. The performance of

two classifiers is significantly different if the corresponding

average differs by at least the critical distance

 (D.3)

where critical values qα are based on the Studientized range

statistic divided by √ (see table D.4).

Table D.4 Critical values for the two-tailed Nemenyi test

V. RESULTS

A. Detection test

This test examines the ability of each combination of

techniques to obtain a non-degenerated homography (eg.

excludes deltoides) even if the projected reference image does

not match the scene perfectly.

Of 30 combinations of techniques available in OpenCV for

Android and analyzed in our experiment (see Appendix A),

we have selected those that have more occurrences among the

top 10 of each resulting dataset. Two matchers were used,

BRUTEFORCE-HAMMING2 - BF(H2) from now on - and

FLANN. In all cases where FLANN was involved, except for

FAST/BRIEF, it produced worst recognition rates and the

overall speed was inferior than BF (H2) so we decided to

consider only the matcher BF (H2) for the rest of detectors.

We found that some combinations, such as STAR/FREAK,

throwed in some serious errors in some datasets (inability to

recognize any frame or extracting a very low number of

features from the reference image). These combinations have

been excluded from comparative analysis.

Table 1 shows the percentage of success in the detection of

the reference image for each dataset (each one containing 150-

250 frames corresponding to the recorded flyover) and also the

avg. rank for the selected methods, having into account the

above selection criteria and their availability in the OpenCV

Android port.

Following the methodology suggested by Demšar

introduced in the previous section we used the Friedman test

to check the level of significance of these results and showed

the critical distance with the avg. ranks graphically, which

allows quick visualization of groups of algorithms with similar

performance.

The Friedman test verifies that the recorded average ranks

from the 9 algorithms are significantly different than the mean

rank which would be 4.5. The null hypothesis states that all

algorithms behave similarly. It's what we have to verify.

Applying the formulas [D1] and [D2], we have = 56.28 y

FF = 21.35. With 9 methods and 10 datasets, Friedmann

statistic is distributed according F-distribution with 9-1 = 8 y

(9-1)x(10-1) = 72 degrees of freedom. The critical value of

F(8,72) for a confidence of 5% (p<0.05) is 2.07 which is less

than 21.34, then we can reject the null hypothesis. To

determine whether there is a significant difference in

efficiency between each of the algorithms, otherwise if there

are groups of algorithms with similar performance, we used

the Nemenyi [24] post-hoc test. This test compares all

algorithms between them, allowing us to determine whether

there is a significant difference between families or groups of

algorithms.

The critical distance for p = 0.10, applying [D.3] is 3.50.

Figure 4 shows the critical distance (3.50) together with the

average rank of each of the methods evaluated.

The algorithms whose mean difference of rankings is below

the critical distance are displayed in groups, united by a thick

line, indicating that the results are not significant enough to

conclude that individual methods in those groups are more

effective than others of the same group. Particularly, this post-

hoc analysis indicates that, although the results on the selected

datasets shows us that GFTT/FREAK offers the best average

detection rate, these are not significant enough to conclude

that in all cases this method exceeds ORB, MSER/FREAK,

FAST/FREAK or GFTT/BRIEF although we can conclude

that it can detect images better than ORB/BRIEF,

FAST/BRIEF and MSER/BRIEF.

6

DataSet MSER/

FREAK

ORB GFTT/

FREAK

FAST/

FREAK

ORB/

BRIEF

GFTT/

BRIEF

FAST/

BRIEF/

BF(H2)

FAST/

BRIEF/

FLANN

MSER/

BRIEF

#1 99.48 (1) 93.30 (2) 65.46 (3) 61.86 (4) 54.12 (5) 52.58 (6) 51.55 (7) 26.29 (8) 45.88 (8)

#2 83.60 (4) 91.60 (1) 87.20 (2) 86.40 (3) 67.20 (7) 68.80 (5.5) 68.80 (5.5) 58.80 (9) 60.80 (8)

#3 70.27 (3) 90.81 (1) 74.59 (2) 69.73 (4) 59.46 (5.5) 59.46 (5.5) 56.22 (7) 43.24 (9) 49.19 (8)

#4 56.71 (2.5) 56.71 (2.5) 59.76 (1) 48.78 (4) 42.07 (6) 42.68 (5) 37.80 (7) 20.12 (9) 37.20 (8)

#5 48.47 (5) 51.53 (4) 55.10 (1) 54.08 (3) 29.08 (8) 54.27 (2) 37.24 (6) 27.55 (9) 36.73 (7)

#6 1.78 (9) 17.79 (8) 56.23 (1) 52.31 (2) 29.54 (5) 35.94 (3) 30.25 (4) 21.00 (7) 22.78 (6)

#7 79.12 (1) 59.34 (4) 63.74 (2) 59.89 (3) 39.01 (8) 45.05 (5) 41.76 (7) 28.57 (9) 42.31 (6)

#8 81.48 (1) 75.13 (2) 67.72 (4) 71.43 (3) 51.32 (5.5) 51.32 (5.5) 49.74 (7) 36.51 (9) 48.68 (8)

#9 73.63 (2) 79.12 (1) 67.58 (3) 67.03 (4) 56.04 (6) 61.54 (5) 54.40 (7) 48.35 (9) 51.65 (8)

#10 88.36 (1) 84.13 (2) 74.60 (3) 73.54 (4) 55.03 (6) 68.78 (5) 54.50 (7) 42.33 (9) 50.26 (8)

Avg. Rank 2.95 2.75 2.2 3.4 6.2 4.75 6.45 8.7 7.5

Winners 3 2 1

Table 1 Average rank of methods used in detection test

Figure 4 Avg. rank comparison in detection test. Groups of methods with similar performance are shown linked

Additionally, even though SIFT, SURF and BRISK are not

yet available in the version of OpenCV for smartphones, we

thought it would be interesting to compare the results of the

techniques available in OpenCV for Android with these

reference methods found in the state of the art but that are only

available in the desktop version.

Although the hardware where we ran the experiment is

different, we wanted to compare the effectiveness of the

algorithm itself, not its speed. The table 2 shows the results for

SIFT, SURF, BRISK and GFTT/FREAK (the best

representative of the group of algorithms with better detection

rates in previous test).

Again we apply here the Friedman test. We have = 21.06

and FF = 21.20. With 4 techniques and 10 datasets, Friedman

function is distributed as the F distribution with 4-1 = 3 and

(4-1) x (10-1) = 27 degrees of freedom. The critical value of F

(3.27) for p <0.05 = 2.96 < 21.20, then we reject the null

hypothesis. The Nemenyi post-hoc test showed us that, for a

critical distance of 1.32, the methods can be classified in three

groups according to the significancy of the results (see figure

5). SIFT belongs to the most effective group while

GFTT/FREAK to the worst one. The data is not significant

enough to conclude in which group are neither SURF nor

BRISK. Nevertheless they resulted in second and and third

positions respectively against our datasets.

We can see that from all available OpenCV methods, SIFT

wins in 8 of the 10 datasets, followed by SURF and BRISK:

DataSet SIFT SURF BRISK GFTT/FREAK

#1 100 (2) 100 (2) 100 (2) 65.46 (4)

#2 99.60 (1) 97.20 (2.5) 97.20 (2.5) 87.20 (4)

#3 97.30 (1) 92.97 (3) 94.59 (2) 74.59 (4)

#4 95.12 (1) 81.71 (2) 53.05 (4) 59.76 (3)

#5 92.86 (1) 75.00 (3) 79.59 (2) 55.10 (4)

#6 61.57 (2) 62.28 (1) 45.20 (4) 56.23 (3)

#7 89.01 (1) 86.81 (2) 75.27 (3) 63.74 (4)

#8 92.06 (1) 90.48 (2) 85.19 (3) 67.72 (4)

#9 92.31 (1) 86.81 (3) 87.91 (2) 67.58 (4)

#10 98.94 (1) 89.42 (2) 86.77 (3) 74.60 (4)

Avg. Rank 1.2 2.25 2.75 3.8

Table 2 Avg. detection rank comparison including desktop methods

7

Fig 5. Comparisson of available mobile vs non-mobile methods in OpenCV

B. Location Test

This test is useful to determine which algorithms allow

precise positioning of the work in the scene. To verify this

condition, we had to check visually that each homography

fitted perfectly the image in the scene at a pixel-perfect level.

We followed the same criteria for method selection used in the

detection test. Of 30 techniques combinations, we chose the 10

algorithms with most occurency within the top 10 positions in

each dataset. Table 3 shows the results. We see that, of the

methods available in OpenCV for Android, GFTT/FREAK

has won the best score (rank 1.8), followed by MSER/FREAK

(2.5) and FAST/FREAK (2.7). ORB, which resulted second in

the detection test resulted is fifth place this time (rank 4.8),

probably due to default parameter used for limiting the

detection to 500 features. Increasing this parameter could lead

to greater accuracy of generated homographies but at the cost

of speed. It would be interesting to confirm this with a

recalculation of the critical distance with Bonferroni-Dunn test

[24].

DataSet MSER/
FREAK

ORB GFTT/
FREAK

FAST/
FREAK

MSER/
BRIEF

GFTT/
BRIEF

FAST/
BRIEF/

BF(H2)

FAST/
BRIEF/

FLANN

GFTT/
ORB

#1 94.85 (1) 77.84 (2) 60.82 (3) 57.22 (4) 29.38 (8) 40.21 (5) 38.14 (6) 13.40 (9) 33.51 (7)

#2 77.60 (3) 70.00 (4) 83.60 (1) 81.60 (2) 47.20 (8) 58.80 (5) 52.40 (7) 38.80 (9) 55.20 (6)

#3 57.30 (2) 45.95 (5) 71.89 (1) 54.59 (3) 36.76 (7) 48.65 (4) 32.43 (8) 18.38 (9) 43.78 (6)

#4 33.54 (3) 27.44 (6) 53.05 (1) 42.68 (2) 19.51 (8) 29.88 (4) 25.61 (7) 13.41 (9) 29.27 (5)

#5 40.31 (4) 44.39 (3) 50.51 (1) 50.00 (2) 30.61 (5.5) 30.10 (7) 30.61 (5.5) 21.94 (9) 26.53 (8)

#6 1.07 (8) 0.38 (9) 51.60 (1) 43.06 (2) 11.03 (7) 24.56 (3) 24.20 (4) 14.95 (6) 22.06 (5)

#7 71.98 (1) 48.35 (4) 62.09 (2) 57.14 (3) 36.26 (7) 40.66 (5) 37.36 (6) 23.08 (9) 35.71 (8)

#8 77.25 (1) 68.78 (2) 62.96 (4) 66.67 (3) 43.92 (5.5) 43.92 (5.5) 42.33 (7) 25.93 (9) 38.10 (8)

#9 64.84 (1) 43.96 (6) 63.74 (2) 59.34 (3) 37.36 (7) 46.15 (4) 36.26 (8) 26.37 (9) 44.51 (5)

#10 77.78 (1) 41.80 (7) 70.37 (2) 68.78 (3) 38.10 (9) 44.97 (5) 40.21 (8) 29.10 (10) 42.33 (6)

Avg. Rank 2.5 4.8 1.8 2.7 7.2 4.75 6.65 8.8 6.4

Winners 2 1 3

Table 3. Average rank of methods used in location test

We proceeded with the significancy test. Having = 69.13

y FF = 57.24, 9 methods and 10 datasets, Friedman statistic is

distributed according to the F-distribution with 9-1 = 8 and (9-

1) x (10-1) = 72 degrees of freedom. The critical value of

F(8,72) for p<0.05 is 2.07 < 57.24, then we reject the null

hypothesis.

In terms of individual performance the Nemenyi post-hoc

test tells us that we can classify the 9 algorithms into 3 groups

(CD = 3.50, see Figure 6). The most precise group of methods

includes GFTT/FREAK, MSER/FREAK, FAST/FREAK,

GFTT/BRIEF and ORB, same results as in the detection test.

Our observation showed up that the descriptor FREAK was

rotation-invariant and provided superior recognition rates and

higher quality homographies than BRIEF when combined with

FAST, MSER and GFTT detectors.

8

Figure 6. Avg. rank of precise location capabilities comparisson against the critical distance.

We compared again GFTT/FREAK with reference methods,

SIFT, SURF and BRISK (available only in Desktop version of

OpenCV). We used BF matcher with SIFT and SURF and

BF(H2) in the case of BRISK and remaining methods in

mobility. This time we also included the average percentage of

frames in which the reference image has been successfully

located in the scene. Table 4 shows the results.

Before concluding, we conduct the significancy tests.

Having = 23.16 and FF = 30.47, 4 techniques and 10

datasets, Friedman statistic is distributed according to F-

distribution with 4-1 = 3 and (4-1) x (10-1) = 27 degrees of

freedom. The critical value of F (3, 27) for p <0.05 = 2.96 <

30.47 then we reject the null hypothesis.

The Nemenyi post-hoc test indicates that SIFT is definitely

the most accurate method available and that we have two

groups of algorithms in second and third place, based on the

separation of their avg. rank respect the critical distance

(1.32). In these results, BRISK offers similar accuracy to

SURF or GFTT/FREAK. Figure 7 shows graphically the

differences between algorithms with a confidence level of

10% (CD = 1.32).

Interestingly enough, GFTT/FREAK had a behavior similar

to SIFT in dataset 6, characterized by a bright light which

added extra illumination to the scene. Also, it will be

necessary to increase the number of images to determine if

there’s really a significant difference regarding SURF, BRISK

and GFTT/FREAK methods.

C. Speed test

In this third test we only considered the methods analyzed

in the precise location test, with the aim of comparing the

detection capabilities and the speed efficiency of the same

algorithms. Table 5 shows for each of the combinations

chosen and for each dataset, the average time (in seconds) of

homography computation, including the calculation of the

determinant and the SVD (singular value decomposition),

values which will be used later to automatically detect and

discard degenerated homographies.

Besides rejecting the null hypothesis (= 58.14 and FF =

20.23), the result of the post-hoc test (p = 0.10, critical

distance 3.50) is shown graphically in Figure 8. We see that,

in view of the selected datasets, FAST/BRIEF (both H2 and

with FLANN matchers) is faster, followed by ORB and

GFTT/BRIEF. These three techniques would be faster,

although it should be noted that FAST/BRIEF with FLANN

matcher resulted in the worst rank in our previous precise

location rate. Note how FAST/FREAK won in dataset #6

which had a bad illumination condition.

DataSet SIFT SURF BRISK GFTT/FREAK

#1 100 (1) 98.97 (2) 97.94 (3) 60.82 (4)

#2 96.80 (1) 92.00 (3) 94.00 (2) 83.60 (4)

#3 89.19 (1) 83.78 (2) 65.95 (4) 71.89 (3)

#4 85.98 (1) 76.22 (2) 44.51 (4) 53.05 (3)

#5 87.24 (1) 64.80 (3) 70.92 (2) 50.51 (4)

#6 53.38 (1) 39.86 (3) 33.10 (4) 51.60 (2)

#7 87.91 (1) 85.16 (2) 72.53 (3) 62.09 (4)

#8 92.06 (1) 84.66 (2) 79.89 (3) 62.96 (4)

#9 81.87 (1) 76.37 (2) 70.33 (3) 63.74 (4)

#10 96.30 (1) 81.48 (2) 77.25 (3) 70.37 (4)

Avg. 87% 78% 71% 63%

Avg. Rank 1 2.3 3.1 3.6

Table 4. Efficacy comparison between mobile and desktop reference methods

Figure 7. Avg. rank of precise location capabilities comparisson against the

critical distance.

9

DataSet MSER/

FREAK

ORB GFTT/

FREAK

FAST/

FREAK

MSER/

BRIEF

GFTT/

BRIEF

FAST/

BRIEF/

BF(H2)

FAST/

BRIEF/

FLANN

GFTT/

ORB

#1 1.83 (8) 0.62 (2) 2.18 (9) 1.31 (5) 1.60 (7) 1.13 (4) 0.61 (1) 0.81 (3) 1.37 (6)

#2 1.50 (8) 0.59 (3) 1.91 (9) 0.97 (6) 1.03 (7) 0.94 (5) 0.12 (1) 0.48 (2) 0.84 (4)

#3 1.35 (8) 0.46 (2) 1.58 (9) 0.99 (7) 0.98 (6) 0.86 (4) 0.36 (1) 0.48 (3) 0.88 (5)

#4 0.83 (4) 0.78 (3) 1.18 (8) 1.45 (9) 1.10 (7) 0.94 (5) 0.64 (1) 0.72 (2) 0.95 (6)

#5 1.56 (8) 0.84 (3) 2.07 (9) 1.19 (5) 1.29 (7) 1.11 (4) 0.58 (1) 0.64 (2) 1.24 (6)

#6 0.61 (4) 0.85 (5.5) 0.92 (8) 0.48 (1) 0.95 (9) 0.85 (5.5) 0.52 (2) 0.6 (3) 0.87 (7)

#7 1.84 (7) 0.92 (2) 2.15 (9) 2.07 (8) 1.45 (6) 1.14 (4) 0.98 (3) 0.90 (1) 1.28 (5)

#8 0.98 (6) 0.62 (1) 1.07 (7) 1.35 (9) 1.2 (8) 0.89 (2.5) 0.95 (4.5) 0.89 (2.5) 0.95 (4.5)

#9 0.87 (5) 0.6 (4) 1.16 (9) 0.49 (2) 1.06 (8) 0.9 (6) 0.44 (1) 0.56 (3) 0.93 (7)

#10 0.87 (5) .52 (1) 1.19 (9) 0.77 (4) 1.12 (8) 0.97 (6) 0.63 (2) 0.74 (3) 0.99 (7)

Avg. Rank 6.3 2.65 8.6 5.6 7.3 4.6 1.75 2.45 5.75

Winners 3 1 2

Table 5 Comparativa de velocidad de los métodos disponibles en movilidad

Figure 8. Avg. rank of speed test comparisson against the critical distance

As previously, we also recorded the speeds for desktop

methods, in order to conduct a particular comparative against

SIFT, SURF and BRISK. Since the desktop runtime

environment for these methods is obviously different we have

not considered mixing results in the comparative analysis.

Table 6 shows the average time (in seconds per frame) for

each dataset. The Friedman test (= 15.45 y FF = 30.56)

exceeds the critical value for F(2,18) = 3.56 < 30.56 so we

reject the null-hypothesis

The Nemenyi post-hoc test (shown graphically in Figure 9,

CD = 0.92) shows that SIFT and BRISK, with a similar

performance, are in fact faster than SURF. In our datasets,

surprisingly BRISK was even faster than SIFT in 6 of the 10

datasets, tied in the fourth dataset while SIFT won the

remaining 3 datasets.

DataSet SIFT SURF BRISK

#1 0.22 (2) 0.88 (3) 0.15 (1)

#2 0.17 (2) 0.53 (3) 0.10 (1)

#3 0.17 (2) 0.47 (3) 0.07 (1)

#4 0.19 (1.5) 0.74 (3) 0.19 (1.5)

#5 0.18 (2) 0.60 (3) 0.15 (1)

#6 0.21 (2) 0.5 (3) 0.17 (1)

#7 0.25 (1) 1.02 (3) 0.30 (2)

#8 0.23 (1) 0.94 (3) 0.43 (2)

#9 0.2 (2) 0.65 (3) 0.17 (1)

#10 0.16 (1) 0.81 (3) 0.27 (2)

Avg. Rank 1.65 3 1.35

Table 6. Speed rank comparisson of Desktop methods

10

Figure 9. Avg. speed rank comparison (p=0.10) for reference methods.

D. Mixed chart

As a final comparative we plotted the results of the speed

and location tests in the following 2D chart where we can see

the goodness of the algorithms having into account both

dimensions (accuracy and speed):

The algorithms closer to the bisector are those with a better

quality/efficiency balance (MSER/BRIEF, STAR/FREAK,

GFTT/ORB, GFTT/BRIEF and ORB), while those who are

positioned between the two outer arcs stand out for their

speed, precision or a better balanced behavior than other

combinations.

Among this recommended group of techniques we found

GFTT/FREAK, MSER/FREAK, FAST/FREAK, ORB and

FAST/BRIEF w/BF-(H2) resulted the most recommended

techniques OpenCV for Android can provide according to our

tests.

Discarding wrong homographies

Following analysis of the methods provided by OpenCV,

we wanted to find indicators that allow us to automatically

discard homographies which could lead to false detections or

imprecise locations (what is useful in augmented reality

applications for example).

Our experiment recorded for each frame the value of the

determinant, a value we found in the bibliography review that

can be be used for this purpose. We showed this value for the

frames of the flyovers of in the graph below:

In those frames in which the determinant was outside the

minimum and maximum values shown in the graph, the

homography presented problems or was degenerated and had

to be discarded. So, if we seek greater precision, as a general

rule of thumb we can discard homographies in cases in which

the determinant is outside the range [0.2, 2.5].

We also observed that the homographies tended to

degenerate as the ratio between the first and last singular value

of SVD grows above a certain value. In our tests, it was very

rare to find valid homographies with SVD value above

600,000. Above this value (even 500K for safer zone), we can

safely discard homographies.

VI. CONCLUSION

The experiment has revealed that OpenCV effectively

provides a sufficient variety of techniques in both desktop and

Android versions (using a midrange device) that can be used

effectively for recognizing images of works of art.

Furthermore, regarding mobility methods and according to our

findings, we conclude:

-The combination of methods GFTT (detector) FREAK

(descriptor) and BF (H2) (matcher) provides in most cases the

best recognition accuracy, accurately locating the artwork in

the scene; however the combined speed is the slowest of all

methods tested.

-The combination of FAST (detector), BRIEF (descriptor)

and BF (H2) (matcher) is the fastest one. BRIEF can be

applied only when the processed image is oriented vertically,

since it’s not rotation invariant. If speed is an important factor,

an efficient solution could make use of mobile gyroscope to

automatically rotate the captured image and thus allow the use

of this faster combination.

11

-ORB is an option that combines a high speed (similar to

FAST+BRIEF) and a high detection rate. The ORB

implementation in OpenCV defaults the limit of the number of

descriptors to 500, but you can specify a larger number,

thereby increasing the precission of the homography.

However, the processing time is also increased.

-FAST/FREAK produced excellent results in dataset # 6

(ranked second in location test and first in speed). This dataset

presented a extreme high light condition that made very

difficult the extraction of features, a capability in which FAST

is remarkable.

-MSER/FREAK had similar performance to

GFTT/FREAK, being somewhat less accurate in some cases

but faster.

-Matcher FLANN produced lower recognition rates than

BRUTEFORCE-HAMMING2 in all registered cases and only

in a few isolated cases involving a large number of keypoints

(obtained by FAST) it resulted faster.

Overall, these five mobility methods have produced very

satisfactory results, considering that the device used for the

experiment was not a first-class. We used default parameters

for all methods, except for FAST for which we set the

threshold to 50 (default value was 30). Another determining

factor to have into account is the quality of the device builtin

camera. Image must be focused properly at all times as well.

Regarding the reference methods in the industry, we found

that SIFT continues to offer better rates of image recognition.

However, we have found that BRISK significantly exceeds in

speed to both SURF and SIFT, which is remarkable

considering that BRISK also provides a similar recognition

rate compared to SURF. It will be particularly interesting to

analyze the performance of BRISK in mobility against

GFTT/FREAK, MSER/FREAK, FAST/FREAK, ORB and

FAST/BRIEF, once it’s included in the mobile version of

OpenCV. It is likely that, according to the results of our

experiment, BRISK will become soon the reference free

method in many future projects in mobility.

The findings of our research were put into practice with the

development of a complementary mobile application which

we describe in Appendix B. This app allows you to try the

recommended methods (FAST/BRIEF, ORB, GFTT/FREAK

as well as FAST/FREAK, MSER/FREAK) in two modes:

exploration mode (real-time capture and recognition) and

frozen/static image recognition.

APPENDIX A

The mobile device used in the experiment was a LG

Optimus SOL E730 smartphone, with a 5 MPX camera and

operating system Android 2.3.4 (Gingerbread).

Number of images used: 10

Total flyover keyframes: 2.012

Method combinations used: 36

Total number of homographies checked: 61.348

For data logging and frame analyzing and recording a

custom application was developed in Java and C++ for

OpenCV interfacing through JNI on a Linux system. We

downloaded the source code for BRISK and recompiled

OpenCV for the desktop experiment. At the time BRISK code

was OpenCV-ready but was not part of any OpenCV

distribution yet.

The images were stored by the application in PNG format

on the external micro-SD memory card after converting them

to grayscale and rescaling to the device screen resolution

(768x432 pixels, landscape mode).

Individual images can be viewed online at Web Gallery of Art

(http://www.wga.hu):

"Allegory", AACHEN, Hans von,
http://www.wga.hu/art/a/aachen/allegory.jpg

"Bacchus, Ceres and Cupid", AACHEN, Hans von,
http://www.wga.hu/art/a/aachen/bacchus.jpg

"Joking Couple", AACHEN, Hans von,

http://www.wga.hu/art/a/aachen/j_couple.jpg
"The Archangel Michael", ABADIA, Juan de la,

http://www.wga.hu/art/a/abadia/michael.jpg

"Albarello", ABAQUESNE, Masséot,
http://www.wga.hu/art/a/abaquesn/albarell.jpg

"Ceramic Floor", ABAQUESNE, Masséot,

http://www.wga.hu/art/a/abaquesn/floor1.jpg
"Ceramic Floor", ABAQUESNE, Masséot,

http://www.wga.hu/art/a/abaquesn/floor2.jpg

"The Flood", ABAQUESNE, Masséot,
http://www.wga.hu/art/a/abaquesn/theflood.jpg

"Chimney breast", ABBATE, Niccolò dell',
http://www.wga.hu/art/a/abbate/chimney1.jpg

"Chimney breast", ABBATE, Niccolò dell' (2)

http://www.wga.hu/art/a/abbate/chimney2.jpg

The complete catalog can be downloaded from:

http://www.wga.hu/frames-e.html?/database/download/index.html

http://www.wga.hu/
http://www.wga.hu/art/a/aachen/allegory.jpg
http://www.wga.hu/art/a/aachen/bacchus.jpg
http://www.wga.hu/art/a/aachen/j_couple.jpg
http://www.wga.hu/art/a/abadia/michael.jpg
http://www.wga.hu/art/a/abaquesn/albarell.jpg
http://www.wga.hu/art/a/abaquesn/floor1.jpg
http://www.wga.hu/art/a/abaquesn/floor2.jpg
http://www.wga.hu/art/a/abaquesn/theflood.jpg
http://www.wga.hu/art/a/abbate/chimney1.jpg
http://www.wga.hu/art/a/abbate/chimney2.jpg
http://www.wga.hu/frames-e.html?/database/download/index.html

12

List of methods involved in our experiment:

DETECTORS DESCRIPTORS MATCHERS

FAST

MSER

GFTT

STAR

ORB

BRIEF

ORB

FREAK

FLANN

BF(H2)

SIFT *

SURF *

FLANN

BF

BRISK* FLANN

BF(H2)

*SIFT, SURF and BRISK were only available in desktop version.

-Feature from Accelerated Segment Test (FAST) is a very fast

corner detector algorithm which considers a circle of 16 pixels

around the corner candidate [31]. The pixels are classified into

dark, similar, and brighter subsets and the ID3 algorithm from

[34] is used to select the pixels which yield the most

information about whether the candidate pixel is a corner.

-Maximally Stable Extremal Regions (MSER) belongs to the

blob detectors family. It extracts from an image a number of

regions, called MSERs, which are connected components of

some level sets of the image [32].

-Good Features to Track (GFTT) is designed to detect

cornerness patterns in an image as described in [33]. The

algorithm seeks to to detect strong corners and to facilitiate

individual object tracking on different frames in a

videostream.

-The STAR detector is derived from the CenSurE (Center

Surround Extrema) detector [35]. Instead of a circle, the

STAR feature detector uses a center-surrounded bi-level filter

of two rotated squares.

-Oriented FAST and Rotated BRIEF (ORB) builds on FAST

keypoint detector and BRIEF descriptor, which have

demonstrated a good performance, adding centroid technique

to provide orientation to the corners and using this operator to

address the in-plane rotation limitation of BRIEF [36].

-Scale Invariant Feature Transform (SIFT) method provides

features that are translation, rotation and scale invariant, using

descriptors based upon gradient histograms with contextual

information [5].

-Speeded Up Robust Features (SURF) is a scale and rotation

nvariant interest point detector/descriptor which relies on

integral images for image convolutions to reduce computation

time [37].

-Binary Robust Invariant Scalable Keypoints (BRISK) is a

very fast detector/descriptor based on the application of a

novel scale-space FAST-based detector in combination with

the assembly of a bit-string descriptor from intensity

comparisons retrieved by dedicated sampling of each keypoint

neighborhood [20].

-Fast Keypoint Retina (FREAK) is a highly reliable descriptor

which uses a cascade of binary strings computed by efficiently

comparing image intensities over a retinal sampling pattern

[39].

-Fast Approximate Nearest Neighbors with Automatic

Algorithm Configuration (FLANN) achieves high

performance in approximate nearest neighbor matching in

high-dimensional problems automatically choosing between k-

means or k-d trees based upon a sample dataset and the

importance of minimizing memory or build time rather than

just search time [38]

-BruteForce (BF) descriptor matcher finds the closest

descriptor (using Euclidean metric) in the second set to the

first one set by trying each one. BF(H2) uses Hamming

distance.

APPENDIX B

In this appendix we describe a sample real application for

detecting art imagery on Android mobile devices which

corroborates the results obtained in our research.

Using this application the user can check the performance

of the OpenCV methods recommended by us: FAST/BRIEF,

ORB, GFTT/FREAK as well as FAST/FREAK and

MSER/FREAK.

At the start, the application allows a basic image catalog

management, for which algorithms will be trained extracting

the descriptors required for subsequent exploration phase.

The first time the application is executed it automatically

adds 10 sample images that have been used for the experiment

of this research and which are listed in Appendix A.

It is possible though to photograph small objects and add

them to the catalog. We recommend placing the object over a

sheet of white paper. Thus, the application automatically crops

the image removing the extra white space.

In the exploration mode, the application takes the captured

frames by the camera and analyzes them in real-time using

different threads so the UI doesn’t get blocked (it got 10-12

frames per second while running the recognition in the

background thread, which depending on the case happened at

intervals from less than 1 second to a few seconds between

each homography computation and visualization).

The default method selected is FAST/BRIEF which is the

fastest one, but clicking on the menu button on your Android

13

device allows you to select among the 5 methods. In this mode

we can fly a camera phone over the trained images, projected

on a monitor or printed on paper, and check the performance

of each algorithm in a real time scenario. When the application

detects an image it fills the perimeter of a quadrilateral

homography in green and displays the name of the artwork

and its artist.

The frozen mode takes a snapshot of the scene and analyzes

it sequentially using the 5 methods. The application then

registers a ranking of success, allocating one point to each

method that successfully detects any trained image.

We can see how FAST/BRIEF fails to detect images if we

rotated the camera. On the other hand we can clearly observe

the difference in speed between GFTT/FREAK (slowest) and

ORB or FAST/BRIEF for example.

The recognition process in real time have to conduct a

match between the current frame descriptors and the

descriptors for each of the reference images in the catalog. Our

application calculates the homography for methods that have

found 10 or more matches (we also implemented a cross-

matching filter) and discards it automatically depending on

determinant and SVD values. We sort the number of matches

and start computing the homography with the most promising

method. If a valid homography is found we assume that the

detected image is correct, ignoring possible successes with

other reference images. In the event that the homography

cannot be computed or it presents errors, the application

attempts with the next choices according to the number of

matches.

This application was developed in Java (for the user

interface) and C++ for interaction with OpenCV 2.4 through

JNI. It’s available for download on Google Play (click below

link or scan QR code to download):

https://play.google.com/store/search?q=%23cvriousity

Source code is available as well on GitHub

(https://github.com/RamiroOliva/CVriousity) and is licensed

under Apache 2.0 License.

FUTURE WORK

There is a significant difference in efficacy between the

methods of desktop and mobility for OpenCV. Since SIFT and

SURF are subject to patents, from a free software view, it

would be very interesting to see BRISK incorporated into

OpenCV mobile versions, a novel method we found far

superior in effectiveness (and possibly quicker) to current

methods in mobility.

The strategy of recognition of images in real time is very

different from batch or sequential recognition. In fact, the real-

time recognition of large banks of images requires appropriate

analysis that has not been addressed in this research. During

the development of the sample application we have found that

the homography computation and verification process is very

time expensive and should be carried out only when there is

adequate evidence of not failing (for example considering a

large number of matchings and their quality). We have

observed that FAST produced higher number of matches

which slows down the RANSAC algorithm used in

homography computation. It is desirable to have a lower

number but highter quality of descriptors which can be

achieved through other methods such as GFTT or MSER.

Reducing the number of features found by boosting techniques

would be another line of possible research [25].

Finally a proper frame pre-processing is critical to

improving the quality of recognition (as the focus or scaling).

Our application focus and rescale the frame to match the

screen resolution and thus reduce the number of features.

When the artwork is far from the user and appears small on

the screen, it would be an interesting possibility, since the

cameras have a higher resolution than the screen, to recognize

different sizes of the same captured frame, cropping around

the center of the scene, producing actually a digital zoom

effect.

https://play.google.com/store/search?q=%23cvriousity
https://github.com/RamiroOliva/CVriousity

14

ACKNOWLEDGMENT

Special thanks to Ph. D. Xavier Baró Solé, for their advice

and assistance both in the field of image recognition by

computer as in the preparation of this article, as well as a Ph.

D. Alexandre Viejo Galicia, who has guided me in the

development of the project and research methodology.

REFERENCES

[1] Mikolajczyk, K., and Schmid, C., "A performance evaluation of local

descriptors", IEEE Transactions on Pattern Analysis and Machine
Intelligence, 10, 27, pp 1615--1630, 2005.

[2] Bauer, J., S¨underhauf, N., & Protzel, P. (2007). Comparing Several

Implementations of Two Recently Published Feature Detectors. In Proc.
of the International Conference on Intelligent and Autonomous Systems,

IAV, Toulouse, France.

[3] Comparing State-of-the-Art Visual Features on Invariant Object
Recognition Tasks, Nicolas Pinto1, Youssef Barhomi1, David D. Cox2,

and James (2011).

[4] En el grupo de la red social LinkedIn “Computer Vision and Pattern
Recognition”, integrado por más de 6000 miembros, se formuló la

pregunta “What is, in your opinion, the most advanced technique for

recognizing objects in a photograph in terms of accuracy?”. Available:
http://lnkd.in/m3NSNk.

[5] Lowe, David G. (1999). "Object recognition from local scale-invariant

features". Proceedings of the International Conference on Computer
Vision. pp. 1150–1157.DOI:10.1109/ICCV.1999.790410.

[6] U.S. Patent 6,711,293, "Method and apparatus for identifying scale

invariant features in an image and use of same for locating an object in
an image", David Lowe's patent for the SIFT algorithm, March 23, 2004.

[7] US 2009238460.

[8] En la red social LinkedIn, en el grupo de discusión “Computer Vision
and Pattern Recognition”, se formuló la pregunta “What is your favorite

framework/library for image understanding/recognition projects?”

obtuviendo 197 votos, de los cuales más del 90% fueron a la librería
libre OpenCV. Available:http://lnkd.in/_dv6X2

[9] Open Source Computer Vision (http://opencv.willowgarage.com/wiki/).
[10] Press reference: http://ucrtoday.ucr.edu/5453

[11] http://www.iccv2011.org

[12] http://eccv2012.unifi.it/
[13] http://www.cvpr2012.org

[14] http://pascallin.ecs.soton.ac.uk/challenges/VOC

[15] http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/results/index.h
tml#KEY_NUSPSL_CTX_GPM

[16] http://www.vision.caltech.edu/Image_Datasets/Caltech256/intro

[17] “Comparison of OpenCV's feature detection algorithms” -
http://computer-vision-talks.com/2011/07/comparison-of-the-opencvs-

feature-detection-algorithms-ii/

[18] Krystian Mikolajczyk and Cordelia Schmid , “A performance evaluation
of local descriptors”, 23 Febrero 2005.

[19] Source: nota de prensa IDC, 8 Agosto 2012, “Android and iOS Surge to

New Smartphone OS Record in Second Quarter, According to IDC”,
http://www.idc.com/getdoc.jsp?containerId=prUS23638712

[20] BRISK: Binary Robust Invariant Scalable Keypoints. Available:

http://www.asl.ethz.ch/people/lestefan/personal/BRISK
[21] Zhaowei Li and David R. Selviah , “Comparison of Image Alignment

Algorithms ”. Available:

http://www.ee.ucl.ac.uk/lcs/previous/LCS2011/LCS1115.pdf
[22] Etienne Vincent and Robert Laganiere, “Detecting Planar Homographies

in an Image Pair”.

[23] Lionel Moisan , Pierre Moulon , Pascal Monasse, “Automatic
Homographic Registration of a Pair of Images, with A Contrario

Elimination of Outliers”. Available:

http://www.ipol.im/pub/art/2012/mmm-oh/article.pdf
[24] Janez Demšar, “Statistical Comparisons of Classifiers over Multiple

Data Sets”, Journal of Machine Learning Research 7 (2006) 1–30.

[25] Xavier Baró i Solé, “Probabilistic Darwin Machines: A new approach to
develop Evolutionary Object Detection Systems”, UAB, Feb 2009,

Appendix B.

[26] http://www.sussex.ac.uk/Users/grahamh/RM1web/F-
ratio%20table%202005.pdf

[27] J.H. Zar. Biostatistical Analysis. Prentice Hall, 1998.

[28] D.J. Sheskin. Handbook of parametric and nonparametric statistical
procedures. Chapman & Hall/CRC, 2000.

[29] R.L. Iman and J.M. Davenport. Approximations of the critical region of

the Friedman statistic. In Communications in Statistics, pages 571-595,
1980.

[30] P.B. Nemenyi. Distribution-free multiple comparisons. PhD thesis,

Princeton University, 1963.
[31] FAST: Edward Rosten and Tom Drummond, “Machine learning for

high-speed corner detection”, 2006. Available:

http://www.edwardrosten.com/work/rosten_2006_machine.pdf
[32] MSER: J. Matas, O. Chum, M.Urban, T. Pajdla, "RobustWide Baseline

Stereo from Maximally Stable Extremal Regions", 2002. Available:

http://cmp.felk.cvut.cz/~matas/papers/matas-bmvc02.pdf
[33] GFTT: Jianbo Shi, Carlo Tomasi, "Good Features to Track", 1994.

Available: http://www.cs.duke.edu/~tomasi/papers/shi/shiCvpr94.pdf

[34] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
pp. 81–106, 1986.

[35] Motilal Agrawal and Kurt Konolige. “CenSurE: Center Surround

Extremas for realtime feature detection and matching”. In ECCV, 2008.
[36] Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary Bradski, "ORB: an

efficient alternative to SIFT or SURF". Available:

http://www.willowgarage.com/sites/default/files/orb_final.pdf
[37] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, "SURF: Speeded Up

Robust Features". Available:

http://www.vision.ee.ethz.ch/~surf/eccv06.pdf
[38] Marius Muja, David G. Lowe, " Fast Approximate Nearest Neighbors

with Automatic Algorithm Configuration (FLANN)”, 2009. Available:
http://people.cs.ubc.ca/~mariusm/uploads/FLANN/flann_visapp09.pdf

[39] Alexandre Alahi, Raphael Ortiz, Pierre Vandergheynst, "FREAK: Fast

Retina Keypoint". In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2012 Open Source Award Winner. Available:

http://www.ivpe.com/papers/freak.pdf

LICENSE

This paper is licensed under Creative Commons (Attribution).

http://lnkd.in/m3NSNk
http://lnkd.in/_dv6X2
http://opencv.willowgarage.com/wiki/
http://ucrtoday.ucr.edu/5453
http://www.iccv2011.org/
http://eccv2012.unifi.it/
http://www.cvpr2012.org/
http://pascallin.ecs.soton.ac.uk/challenges/VOC
http://www.vision.caltech.edu/Image_Datasets/Caltech256/intro
http://computer-vision-talks.com/2011/07/comparison-of-the-opencvs-feature-detection-algorithms-ii/
http://computer-vision-talks.com/2011/07/comparison-of-the-opencvs-feature-detection-algorithms-ii/
http://www.idc.com/getdoc.jsp?containerId=prUS23638712
http://www.asl.ethz.ch/people/lestefan/personal/BRISK
http://www.ee.ucl.ac.uk/lcs/previous/LCS2011/LCS1115.pdf
http://www.ipol.im/pub/art/2012/mmm-oh/article.pdf
http://www.sussex.ac.uk/Users/grahamh/RM1web/F-ratio%20table%202005.pdf
http://www.sussex.ac.uk/Users/grahamh/RM1web/F-ratio%20table%202005.pdf
http://www.edwardrosten.com/work/rosten_2006_machine.pdf
http://cmp.felk.cvut.cz/~matas/papers/matas-bmvc02.pdf
http://www.cs.duke.edu/~tomasi/papers/shi/shiCvpr94.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf
http://people.cs.ubc.ca/~mariusm/uploads/FLANN/flann_visapp09.pdf
http://www.ivpe.com/papers/freak.pdf

