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Abstract— This paper describes a systematic research about 

free software solutions and techniques for art imagery computer 

recognition problem. We started researching state-of-the-art 

landscape, conducting surveys, shortlisting candidate solutions  

aligned to free/open source software and ultimately we carried 

out speed and efficacy benchmarking of different techniques 

combinations on mobile devices using the popular OpenCV 

library. We also compare results to SIFT and SURF methods 

which are still reference standards in the field. 

 
Index Terms—image recognition, computer vision, mobile, 

benchmarking, homography, free software, OpenCV 

 

I. INTRODUCTION 

HE study of techniques of computer image recognition has 

been for years one of the most exciting fields of study 

within artificial intelligence, both by the algorithmic challenge 

posed by the analysis of large volumes of unstructured 

information, such as the various practical applications that 

may involve such techniques in the field of robotics, security, 

automation, document management, augmented reality, etc.. 

The increasing computing power of information systems, 

thanks to increasingly powerful processors, distributed 

computing, mobile devices and new ultra-fast analysis 

techniques derived from brain research are enabling solutions 

and practical applications in many different scenarios like 

document reading and automatic indexing, biometrics, traffic 

signs recognition and other codes or augmented reality. 

The goals of this research are: 

–Knowing the current state of art techniques. 

–Study the potential of most appropriate free 

implementations in this regard. 

–Evaluate the ability of found libraries in an experiment, 

namely the recognition of artworks. 

–List constraints encountered and future research. 

 

II. STATE-OF-THE-ART REVIEW 

A. Methods 

After a careful review of the scientific literature on the 

subject it shows that two of the most promising techniques 

used in the computer image recognition are SIFT and SURF 

algorithms or variations of them. 

 
 

 

We found particularly interesting a study [1] circa 2005 that  

examines the effectiveness of different techniques which 

concludes that the SIFT-based descriptors, which are based on 

regions, are more robust and distinctive, and therefore are best 

for picture comparison (this study did not cover SURF). 

Regarding SURF, we found an analysis [2] of 2007 

showing that it provides similar results to SIFT with the 

particularity of being a faster algorithm, thanks to the use of 

integer arithmetic. 

However, another recent study [3] (2011) suggests that 

other techniques (SLF, PHOG, Phow, Geometric Blur and V1-

like) can provide more efficiency in terms of invariance with 

respect to transformations, especially when dealing with 

photo-realistic images with complex backgrounds. 

This literature review was complemented by a survey [4] 

conducted in May 2012 in a discussion group on the LinkedIn 

professional social network whose results however 

recommended using SIFT and SURF, possibly because, as of 

today, they still have a higher degree of implementation. 

 

B. Basis of selected techniques 

The goal of the techniques discussed (SIFT, SURF, and 

others) is to "understand" a reference or training image, by 

analyzing their numerical representation, detecting and 

extracting elements distinguishable from a geometric point of 

view or concerning the histogram (such as points, corners or 

edges which have a high degree of contrast with respect to the 

contour). These key elements are called features. 

The image recognition process, in summary, covers the 

following stages: 

-Feature detection. The detection algorithm (e.g. FAST or  

MSER) analyzes a good quality reference image under 

optimal lighting conditions to facilitate detection of the 

distinctive elements (features). 

-Feature description. We then proceed to describe the 

outcome of the previous stage by a numerical matrix or 

structure similar. There are several methods of representation 

(eg. BRIEF, SIFT, SURF). After this phase we usually obtain 

a database of precomputed descriptors from a large bank of 

images. 

-Scene recoginition. The descriptors are extracted from the 

picture to be analyzed (this can be a photograph taken of a 

scene at any angle and under different lighting conditions, 

possibly containing a previously trained image). At this stage 

and for real-time recognition the speed and quality of the 
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extraction of descriptors is critical, especially in realtime 

scenarios. 

-Comparison of sets of descriptors and determination of the 

degree of similarity. Using probabilistic techniques we 

determine which matches are actually false positive hits with 

the aim to reduce them to a set of matching pairs that have a 

high correlation. 

Both SIFT and SURF allow high quality descriptors 

extraction which possess high invariance with respect to 

brightness, scale, rotation or distortion. 

SIFT (Scale-Invariant Feature Transform) was published [5] 

by David Lowe in 1999. The algorithm is patented in the 

United States of America; the owner of the patent [6] is the 

University of British Columbia. 

SURF (speeded Up Robust Feature) is a robust detector of 

local descriptors, first presented by Herbert Bay et al. in 2006 

[37]. It is partially based on SIFT but is much faster. A patent 

application can be found in USA [7]. 

 

C. Software libraries 

To identify image recognition software libraries we 

conducted a wide search on the Internet, as well as a survey on 

the social network LinkedIn [8]. We found a significant high 

number of candidate libraries which implement in more or less 

degree image analysis algorithms that can be used in the 

recognition such as OpenCV, MatLab, SimpleCV, VIGRA, 

VXL, Matrox MIL / ONL, Cognex VisionPro, Halcon, vlfeat, 

IPL98, LabView, CCV (Community Core Vision) and Into. 

Of these, we found more recommendations and referrals to 

OpenCV [9]. This library is distributed under a BSD license 

and can be legally used for both academic and commercial 

scope. It includes interfaces for a wide variety of 

programming languages (such as C, C++ and Python) and is 

available for Windows, Linux, Android and iOS platforms. 

The library contains over 2500 optimized algorithms and their 

applications range from interactive art, inspecting mining, 

mapping and robotics. 

OpenCV includes implementations for SIFT, SURF and 

other algorithms like ORB and RANSAC. Since SIFT and 

SURF are subject to patents, we will add ORB to the selection 

of techniques in our experiment, along with RANSAC 

(traditional method), in order to get richer results and 

including methods which are 100% free. 

For the remainder of the experiment we then will focus on 

OpenCV both because it’s free and also due to the large 

number of references and recommendations, as noted above. 

 

D. Similar experiments 

Regarding the recognition of images in museums, we have 

found several similar experiments: 

-April 2012, Project "FACES: Faces, Art, and 

Computerized Evaluation Systems" [10]. Three researchers at 

the University of California, Riverside, have launched a 

research project to test the use of facial recognition software to 

help identify these unknown subjects within the portrait, a 

project that ultimately can enrich European understanding of 

political, social and religious history. 

-May 2006, "Interactive museum guide: Fast and robust 

recognition of museum objects". H. Bay, B. Fasel, and L. van 

Gool analyze the feasibility of software that implements 

SURF for recognizing artworks in museums using digital 

camera of a mobile phone, although the article does not 

specify what libraries have been used. 

Besides these projects we have found diverse international 

calls that serve as a meeting point for demonstration of 

techniques and advances in computer image recognition 

solutions, such as ICCV [11] (International Conference on 

Computer Vision), CCVEs [12] ( European Conference on 

Computer Vision) or CVPR [13] (Conference on Computer 

Vision Pattern Recognition). 

In these events the outcome of open competitions are shown 

up describing benefits of the new techniques which have been 

applied to two banks of images that have been consolidated as 

toolsets for measuring techniques: 

- "The PASCAL Visual Object Classes" [14], which aims to 

provide a common database of images (including people, 

animals, vehicles and other objects) and support tools for 

testing the efficacy of new image recognition algorithms . This 

toolset is the basis for the PASCAL Challenge annual 

competition held since 2005. 

The winner algorithms techniques [15] in one of the forms 

of competition on 2011, such as NUSPSL_CTX_GPM 

NLPR_SS_VW_PLS, combined several algorithms, like SIFT 

derivatives for obtaining descriptors, a technique named "Bag 

of Words" (BOW) that seeks to relate these descriptors 

describing the image in terms of "words", eg, similarly to how 

a book is made up of sequences of words, and other 

techniques that seek to increase the success rate in recognizing 

catalog images. 

OpenCV supports partially BOW, so this could be a line of 

analysis to consider if the previously selected algorithms do 

not offer a satisfactory level of recognition. 

"CALTech101/256" [16] is another bank of images which is 

also used in various competitions. Any researcher can test 

their research progress using these images and comparing the 

results with other testers. 

 

III. RESEARCH STRATEGY 

 

Once we carried out a research about the state of the art in 

computer image recognition, reviewed the literature and 

selected associated libraries (OpenCV) and most appropiate 

techniques (SIFT and SURF), the next step is to prove, by 

experiment, the following hypothesis: 

One) OpenCV is a suitable library for image recognition in 

art museums. Specifically: "given a photograph taken arbitraly 

with a digital camera on a real scene it can obtain a 

correspondence between the scene and some image contained 

in an reference art image bank." 

Two) SIFT and SURF, available in OpenCV, are the most 

effective algorithms for this purpose. That is, "there are no 
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other techniques available in OpenCV with higher rate of 

success in recognition for the same set of photographs of real 

scenes." 

At the time of our research, on August 2012, latest OpenCV 

version was 2.4.2 and was available on four platforms: 

Windows, Linux, iOS and Android. 

We found several comparisons and similar experiments [17, 

18], however none of them allows us to test the initial 

hypotheses regarding OpenCV and their use in the field of 

mobility, so we decided to target the Android port, especially 

given the interest aroused around mobile apps and being 

Android platform more widespread among smartphones [19]. 

A preliminary review of the Android version helped us to 

discover that both SIFT and SURF were not available in the 

Android OpenCV distribution due to patent restrictions 

(however, in the desktop version for Linux it is still available, 

but in a separate module (non-free) which must be linked 

manually). 

This situation made us rethink the hypothesis number two 

(in relation to the benefits of SIFT and SURF) and we 

redirected the experiment to the evaluation of existing 

algorithms that support free solutions and mobility 

applications, obtaining data that allow us to compare the 

effectiveness (% correlation) and efficiency (time required) of 

the various techniques available in OpenCV for Android. 

Additionally we would contrast the results with the reference 

methods available in the desktop version (SIFT, SURF), and 

the latest method to the experiment date, BRISK [20]. BRISK 

is a relatively new method so we also wanted to know if it 

could provide any breakthrough improvement with respect to 

to the two former reference methods. 

 

IV. EXPERIMENT DESIGN 

 

The experiment consists of image capture and recognition, 

obtaining detection rates and speed as well as comparative 

analysis of these data using a mobile application for Android 

platform using version 2.4.2 of OpenCV, following systematic 

observation scheme . 

The reference image bank consists of 10 photographs of 

works of art. Each of them will be projected on a monitor and 

we will obtain through the mobile application a sequence of 

frames extracted from a continuous recording, phone in hand 

(flyover). 

Fig. 1 Some of the 194 frames extracted from the flyover over reference 

image #1. 

 

The difference between the algorithms are based primarily 

on their degree of robustness in invariability to changes on the 

reference image (such as scaling, rotation, affine 

transformation) as well as distortions, noise and lighting 

conditions. To incorporate such variables to experiment, 

during the recording of the sequence we’ll perform approach 

(scaling), rotation (360 °), translation (panning) and 

inclination (affine transformation up to about 60 or 70 °) 

movements in order to simulate a real usage in which a person 

with his/her own personal mobile device wants to identify a 

work of art from different angles. In addition, many of these 

frames have different degrees of blur or light reflections (we 

will apply extra lightning on the dataset #6). 

Once frames are captured they will be processed from 

within the same mobile application using each of the different 

algorithms that OpenCV provides, and data will be obtained 

for each sequence and algorithm which will allow 

quantitatively comparison of the effectiveness of each 

technique for recognition. 

 

A. Data collection 

As seen above, the recognition process involves at first the 

detection of spots or areas of special interest in the image 

(features), extract data representing these features (descriptors) 

and comparison (matching) to obtain correlation between pairs 

of descriptors. 

The number of features / descriptors and data 

correspondences will allow us to compare the efficacy of 

recognition. In addition to the descriptors matching, we 

proceed to calculate the homography, allowing us to locate the 

reference image in the scene, which is ultimately the data we 

are looking for. 

OpenCV includes two algorithms for homography 

computation (RANSAC and LMEDS or "Least Median of 

Squares"). We will use RANSAC due to a slightly better 

performance in complex scenes [21]. The calculation result is 

a matrix H such that: 

 

Having: 

 

 
 

Then: 

 
 

Thus, considering a homogeneous geometric space between 

the two images (reference and scene), given a point p 

contained in the reference image, we can calculate its location 

in the scene (p '= Hp). Applying the matrix to the 4 corners of 

the reference image we can obtain the location within the 

scene. 

For comparative data collection, the application will record 

continuously and in an unattended fashion the results for each 

combination of recognition methods on each of the frames of 
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the sequences of the reference images, dumping the numeric 

data into a text file for each combination of methods (see 

Annex 2 for technical specifications and combinations of 

methods). 

 

 

Note that the calculated homographies can have a margin of 

error because RANSAC (the OpenCV method used for 

calculating the transform) uses a probabilistic approach. 

Therefore it will be necessary to perform a manual and 

individualized observation of  the processed frames in order to 

validate the perimeter obtained by projecting corners of the 

reference image in the scene. 

To do this, the application generates a copy of the frame in 

the device’s external memory card containing the print out of 

the parameters used as well as the corresponding projection of 

the reference image. 

By manual observation of each of these frame copies we 

will dictate whether the homography is valid and complete 

data matrix: 

-If the homography allows identifying the object in the 

scene will be given a score of 1. 

-If the homography to identify the object in the scene 

accurately fits the contour of the work of art, it will be given a 

score of 2. 

We found evidences during preliminary testing of this 

experiment and work of other researchers showing that the 

value of the determinant [22] of the transformation matrix and 

the value called SVD (Singular Value Decomposition) [23] 

can be used to establish an automatic degenerated 

homography filter based on minimum or maximum threshold 

values for these values. So, we will also collect both values, 

which can be obtained with OpenCV, in order to try to find 

later some correlation with the quality of the homography. 

Finally, the data dictionary is: 

 

Datum Abbrev. Type Range 

Reference image number Img Ordinal [1,10] 

Frame number Frame Ordinal [1..X] 

(X=frame 

count) 

Method combination (detector, 

descriptor, matcher) 

Methods Nominal See annex 2 

Number of descriptors D Ratio D>=0 

Number of matches M Ratio M<=D 

Homography score H Nominal {0, 1, 2} 

Number of inliners (valid matches, 

which have not been rejected after 

applying RANSAC) 

I Ratio I<=M 

Time required T Ratio >0 

Determinant value DT Ratio >0 

Singular value decomposition ratio SVD Ratio >0 

 

B. Statistical analysis of results. 

For statistical analysis of results we followed the 

methodology proposed by Demšar [24] to compare a set of 

classifiers over multiple datasets. The first goal of our analysis 

was to determine whether the scores of each classifier on each 

dataset differ significantly from scores of other classifiers 

(which would show us that there are different degrees of 

effectiveness or efficiency in the set of classifiers). And, we 

also wanted to determine from the results which algorithms 

were significantly different from each other (and to conclude 

with a ranking of efficiency or speed). 

The first step is, therefore, to determine whether the null 

hypothesis, which states that all algorithms behave similarly, 

may be rejected. Demšar proposes the Friedman test which 

compares average ranks of methods,  
 

 
∑   

 
 . Under the null 

hypothesis, all methods are equivalents, so their average ranks 

Rj are equal, the Friedman statistic 

 

 

(D.1) 

is distributed according to  with k−1 degrees of freedom, 

when N and k are big enough (as a rule of a thumb, N > 10 and 

k > 5). For a smaller number of algorithms and data sets, exact 

critical values have been computed [27-28]. 

 

  

 
Fig. 3.  Imprecise hommography example (this will get only 1 point). 

 
Fig. 2.  Computed homography using RANSAC and keypoints and 
descriptors obtained with MSER/FREAK. OpenCV supports methods for 

matrix calculation which allows the projection of any point P from the 

reference image into the scene. 
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Iman and Davenport [29] showed that Friedman’s  is 

undesirably conservative and derived a better statistic 

        

 
      (D.2) 

 

which is distributed according to the F-distribution with k−1 

and (k−1)(N−1) degrees of freedom. The nul hypothesis can be 

rejected only if FF is less than the critical value of F-

distribution for a confident threshold of α. The critical values 

can be found on any statistical book or online [26]. 

If the null hypothesis is rejected, we can continue with a 

post-hoc test. The Nemenyi test [30] is used when all 

classifiers are compared to each other. The performance of 

two classifiers is significantly different if the corresponding 

average differs by at least the critical distance 

 

 
   (D.3) 

 

where critical values qα are based on the Studientized range 

statistic divided by √  (see table D.4). 

 
Table D.4 Critical values for the two-tailed Nemenyi test 

 

 

V.  RESULTS 

A. Detection test 

This test examines the ability of each combination of 

techniques to obtain a non-degenerated homography (eg. 

excludes deltoides) even if the projected reference image does 

not match the scene perfectly. 

Of 30 combinations of techniques available in OpenCV for 

Android and analyzed in our experiment (see Appendix A), 

we have selected those that have more occurrences among the 

top 10 of each resulting dataset. Two matchers were used, 

BRUTEFORCE-HAMMING2 - BF(H2) from now on - and 

FLANN. In all cases where FLANN was involved, except for 

FAST/BRIEF, it produced worst recognition rates and the 

overall speed was inferior than BF (H2) so we decided to 

consider only the matcher BF (H2) for the rest of detectors. 

We found that some combinations, such as STAR/FREAK, 

throwed in some serious errors in some datasets (inability to 

recognize any frame or extracting a very low number of 

features from the reference image). These combinations have 

been excluded from comparative analysis. 

Table 1 shows the percentage of success in the detection of 

the reference image for each dataset (each one containing 150-

250 frames corresponding to the recorded flyover) and also the 

avg. rank for the selected methods, having into account the 

above selection criteria and their availability in the OpenCV 

Android port. 

Following the methodology suggested by Demšar 

introduced in the previous section we used the Friedman test 

to check the level of significance of these results and showed 

the critical distance with the avg. ranks graphically, which 

allows quick visualization of groups of algorithms with similar 

performance. 

The Friedman test verifies that the recorded average ranks 

from the 9 algorithms are significantly different than the mean 

rank which would be 4.5. The null hypothesis states that all 

algorithms behave similarly. It's what we have to verify. 

Applying the formulas [D1] and [D2], we have  = 56.28 y 

FF = 21.35. With 9 methods and 10 datasets, Friedmann 

statistic is distributed according F-distribution with 9-1 = 8 y 

(9-1)x(10-1) = 72 degrees of freedom. The critical value of 

F(8,72) for a confidence of 5% (p<0.05) is 2.07 which is less 

than 21.34, then we can reject the null hypothesis. To 

determine whether there is a significant difference in 

efficiency between each of the algorithms, otherwise if there 

are groups of algorithms with similar performance, we used 

the Nemenyi [24] post-hoc test. This test compares all 

algorithms between them, allowing us to determine whether 

there is a significant difference between families or groups of 

algorithms. 

The critical distance for p = 0.10, applying [D.3] is 3.50. 

Figure 4 shows the critical distance (3.50) together with the 

average rank of each of the methods evaluated. 

The algorithms whose mean difference of rankings is below 

the critical distance are displayed in groups, united by a thick 

line, indicating that the results are not significant enough to 

conclude that individual methods in those groups are more 

effective than others of the same group. Particularly, this post-

hoc analysis indicates that, although the results on the selected 

datasets shows us that GFTT/FREAK offers the best average 

detection rate, these are not significant enough to conclude 

that in all cases this method exceeds ORB, MSER/FREAK, 

FAST/FREAK or GFTT/BRIEF although we can conclude 

that it can detect images better than ORB/BRIEF, 

FAST/BRIEF and MSER/BRIEF. 
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DataSet MSER/ 

FREAK 

ORB GFTT/ 

FREAK 

FAST/ 

FREAK 

ORB/ 

BRIEF 

GFTT/ 

BRIEF 

FAST/ 

BRIEF/ 

BF(H2) 

FAST/ 

BRIEF/ 

FLANN 

MSER/ 

BRIEF 

#1 99.48 (1) 93.30 (2) 65.46 (3) 61.86 (4) 54.12 (5) 52.58 (6) 51.55 (7) 26.29 (8) 45.88 (8) 

#2 83.60 (4) 91.60 (1) 87.20 (2) 86.40 (3) 67.20 (7) 68.80 (5.5) 68.80 (5.5) 58.80 (9) 60.80 (8) 

#3 70.27 (3) 90.81 (1) 74.59 (2) 69.73 (4) 59.46 (5.5) 59.46 (5.5) 56.22 (7) 43.24 (9) 49.19 (8) 

#4 56.71 (2.5) 56.71 (2.5) 59.76 (1) 48.78 (4) 42.07 (6) 42.68 (5) 37.80 (7) 20.12 (9) 37.20 (8) 

#5 48.47 (5) 51.53 (4) 55.10 (1) 54.08 (3) 29.08 (8) 54.27 (2) 37.24 (6) 27.55 (9) 36.73 (7) 

#6 1.78 (9) 17.79 (8) 56.23 (1) 52.31 (2) 29.54 (5) 35.94 (3) 30.25 (4) 21.00 (7) 22.78 (6) 

#7 79.12 (1) 59.34 (4) 63.74 (2) 59.89 (3) 39.01 (8) 45.05 (5) 41.76 (7) 28.57 (9) 42.31 (6) 

#8 81.48 (1) 75.13 (2) 67.72 (4) 71.43 (3) 51.32 (5.5) 51.32 (5.5) 49.74 (7) 36.51 (9) 48.68 (8) 

#9 73.63 (2) 79.12 (1) 67.58 (3) 67.03 (4) 56.04 (6) 61.54 (5) 54.40 (7) 48.35 (9) 51.65 (8) 

#10 88.36 (1) 84.13 (2) 74.60 (3) 73.54 (4) 55.03 (6) 68.78 (5) 54.50 (7) 42.33 (9) 50.26 (8) 

Avg. Rank 2.95 2.75 2.2 3.4 6.2 4.75 6.45 8.7 7.5 

Winners 3 2 1       

 

Table 1 Average rank of methods used in detection test 

  

 
Figure 4 Avg. rank comparison in detection test. Groups of methods with similar performance are shown linked 

 

Additionally, even though SIFT, SURF and BRISK are not 

yet available in the version of OpenCV for smartphones, we 

thought it would be interesting to compare the results of the 

techniques available in OpenCV for Android with these 

reference methods found in the state of the art but that are only 

available in the desktop version. 

Although the hardware where we ran the experiment is 

different, we wanted to compare the effectiveness of the 

algorithm itself, not its speed. The table 2 shows the results for 

SIFT, SURF, BRISK and GFTT/FREAK (the best 

representative of the group of algorithms with better detection 

rates in previous test). 

Again we apply here the Friedman test. We have  = 21.06 

and FF = 21.20. With 4 techniques and 10 datasets, Friedman 

function is distributed as the F distribution with 4-1 = 3 and 

(4-1) x (10-1) = 27 degrees of freedom. The critical value of F 

(3.27) for p <0.05 = 2.96 < 21.20, then we reject the null 

hypothesis. The Nemenyi post-hoc test showed us that, for a 

critical distance of 1.32, the methods can be classified in three 

groups according to the significancy of the results (see figure 

5). SIFT belongs to the most effective group while 

GFTT/FREAK to the worst one. The data is not significant 

enough to conclude in which group are neither SURF nor 

BRISK. Nevertheless they resulted in second and and third 

positions respectively against our datasets. 

We can see that from all available OpenCV methods, SIFT 

wins in 8 of the 10 datasets, followed by SURF and BRISK: 

 

DataSet SIFT SURF BRISK GFTT/FREAK 

#1 100 (2) 100 (2) 100 (2) 65.46 (4) 

#2 99.60 (1) 97.20 (2.5) 97.20 (2.5) 87.20 (4) 

#3 97.30 (1) 92.97 (3) 94.59 (2) 74.59 (4) 

#4 95.12 (1) 81.71 (2) 53.05 (4) 59.76 (3) 

#5 92.86 (1) 75.00 (3) 79.59 (2) 55.10 (4) 

#6 61.57 (2) 62.28 (1) 45.20 (4) 56.23 (3) 

#7 89.01 (1) 86.81 (2) 75.27 (3) 63.74 (4) 

#8 92.06 (1) 90.48 (2) 85.19 (3) 67.72 (4) 

#9 92.31 (1) 86.81 (3) 87.91 (2) 67.58 (4) 

#10 98.94 (1) 89.42 (2) 86.77 (3) 74.60 (4) 

Avg. Rank 1.2 2.25 2.75 3.8 

Table 2 Avg. detection rank comparison including desktop methods



 

 

7 

 

  

 
 

Fig 5. Comparisson of available mobile vs non-mobile methods in OpenCV 

 

B. Location Test 

This test is useful to determine which algorithms allow 

precise positioning of the work in the scene. To verify this 

condition, we had to check visually that each homography 

fitted perfectly the image in the scene at a pixel-perfect level. 

We followed the same criteria for method selection used in the 

detection test. Of 30 techniques combinations, we chose the 10 

algorithms with most occurency within the top 10 positions in 

each dataset. Table 3 shows the results. We see that, of the 

methods available in OpenCV for Android, GFTT/FREAK 

has won the best score (rank 1.8), followed by MSER/FREAK 

(2.5) and FAST/FREAK (2.7). ORB, which resulted second in 

the detection test resulted is fifth place this time (rank 4.8), 

probably due to default parameter used for limiting the 

detection to 500 features. Increasing this parameter could lead 

to greater accuracy of generated homographies but at the cost 

of speed. It would be interesting to confirm this with a 

recalculation of the critical distance with Bonferroni-Dunn test 

[24].

 

DataSet MSER/ 
FREAK 

ORB GFTT/ 
FREAK 

FAST/ 
FREAK 

MSER/ 
BRIEF 

GFTT/ 
BRIEF 

FAST/ 
BRIEF/ 

BF(H2) 

FAST/ 
BRIEF/ 

FLANN 

GFTT/ 
ORB 

#1 94.85 (1) 77.84 (2) 60.82 (3) 57.22 (4) 29.38 (8) 40.21 (5) 38.14 (6) 13.40 (9) 33.51 (7) 

#2 77.60 (3) 70.00 (4) 83.60 (1) 81.60 (2) 47.20 (8) 58.80 (5) 52.40 (7) 38.80 (9) 55.20 (6) 

#3 57.30 (2) 45.95 (5) 71.89 (1) 54.59 (3) 36.76 (7) 48.65 (4) 32.43 (8) 18.38 (9) 43.78 (6) 

#4 33.54 (3) 27.44 (6) 53.05 (1) 42.68 (2) 19.51 (8) 29.88 (4) 25.61 (7) 13.41 (9) 29.27 (5) 

#5 40.31 (4) 44.39 (3) 50.51 (1) 50.00 (2) 30.61 (5.5) 30.10 (7) 30.61 (5.5) 21.94 (9) 26.53 (8) 

#6 1.07 (8) 0.38 (9) 51.60 (1) 43.06 (2) 11.03 (7) 24.56 (3) 24.20 (4) 14.95 (6) 22.06 (5) 

#7 71.98 (1) 48.35 (4) 62.09 (2) 57.14 (3) 36.26 (7) 40.66 (5) 37.36 (6) 23.08 (9) 35.71 (8) 

#8 77.25 (1) 68.78 (2) 62.96 (4) 66.67 (3) 43.92 (5.5) 43.92 (5.5) 42.33 (7) 25.93 (9) 38.10 (8) 

#9 64.84 (1) 43.96 (6) 63.74 (2) 59.34 (3) 37.36 (7) 46.15 (4) 36.26 (8) 26.37 (9) 44.51 (5) 

#10 77.78 (1) 41.80 (7) 70.37 (2) 68.78 (3) 38.10 (9) 44.97 (5) 40.21 (8) 29.10 (10) 42.33 (6) 

Avg. Rank 2.5 4.8 1.8 2.7 7.2 4.75 6.65 8.8 6.4 

Winners 2  1 3      

 

Table 3. Average rank of methods used in location test 

 

We proceeded with the significancy test. Having  = 69.13 

y FF = 57.24, 9 methods and 10 datasets, Friedman statistic is 

distributed according to the F-distribution with 9-1 = 8 and (9-

1) x (10-1) = 72 degrees of freedom. The critical value of 

F(8,72) for p<0.05 is 2.07 < 57.24, then we reject the null 

hypothesis. 

In terms of individual performance the Nemenyi post-hoc 

test tells us that we can classify the 9 algorithms into 3 groups 

(CD = 3.50, see Figure 6). The most precise group of methods 

includes GFTT/FREAK, MSER/FREAK, FAST/FREAK, 

GFTT/BRIEF and ORB, same results as in the detection test. 

Our observation showed up that the descriptor FREAK was 

rotation-invariant and provided superior recognition rates and 

higher quality homographies than BRIEF when combined with 

FAST, MSER and GFTT detectors. 
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Figure 6. Avg. rank of precise location capabilities comparisson against the critical distance. 

 

We compared again GFTT/FREAK with reference methods, 

SIFT, SURF and BRISK (available only in Desktop version of 

OpenCV). We used BF matcher with SIFT and SURF and 

BF(H2) in the case of BRISK and remaining methods in 

mobility. This time we also included the average percentage of 

frames in which the reference image has been successfully 

located in the scene. Table 4 shows the results. 

Before concluding, we conduct the significancy tests. 

Having  = 23.16 and FF = 30.47, 4 techniques and 10 

datasets, Friedman statistic is distributed according to F-

distribution with 4-1 = 3 and (4-1) x (10-1) = 27 degrees of 

freedom. The critical value of F (3, 27) for p <0.05 = 2.96 < 

30.47 then we reject the null hypothesis. 

The Nemenyi post-hoc test indicates that SIFT is definitely 

the most accurate method available and that we have two 

groups of algorithms in second and third place, based on the 

separation of their avg. rank respect the critical distance 

(1.32). In these results, BRISK offers similar accuracy to 

SURF or GFTT/FREAK. Figure 7 shows graphically the 

differences between algorithms with a confidence level of 

10% (CD = 1.32). 

Interestingly enough, GFTT/FREAK had a behavior similar 

to SIFT in dataset 6, characterized by a bright light which 

added extra illumination to the scene. Also, it will be 

necessary to increase the number of images to determine if 

there’s really a significant difference regarding SURF, BRISK 

and GFTT/FREAK methods. 

 

C. Speed test 

 

In this third test we only considered the methods analyzed 

in the precise location test, with the aim of comparing the 

detection capabilities and the speed efficiency of the same 

algorithms. Table 5 shows for each of the combinations 

chosen and for each dataset, the average time (in seconds) of 

homography computation, including the calculation of the 

determinant and the SVD (singular value decomposition), 

values which will be used later to automatically detect and 

discard degenerated homographies. 

Besides rejecting the null hypothesis (  = 58.14 and FF = 

20.23), the result of the post-hoc test (p = 0.10, critical 

distance 3.50) is shown graphically in Figure 8. We see that, 

in view of the selected datasets, FAST/BRIEF (both H2 and 

with FLANN matchers) is faster, followed by ORB and 

GFTT/BRIEF. These three techniques would be faster, 

although it should be noted that FAST/BRIEF with FLANN 

matcher resulted in the worst rank in our previous precise 

location rate. Note how FAST/FREAK won in dataset #6 

which had a bad illumination condition. 
 

DataSet SIFT SURF BRISK GFTT/FREAK 

#1 100 (1) 98.97 (2) 97.94 (3) 60.82 (4) 

#2 96.80 (1) 92.00 (3) 94.00 (2) 83.60 (4) 

#3 89.19 (1) 83.78 (2) 65.95 (4) 71.89 (3) 

#4 85.98 (1) 76.22 (2) 44.51 (4) 53.05 (3) 

#5 87.24 (1) 64.80 (3) 70.92 (2) 50.51 (4) 

#6 53.38 (1) 39.86 (3) 33.10 (4) 51.60 (2) 

#7 87.91 (1) 85.16 (2) 72.53 (3) 62.09 (4) 

#8 92.06 (1) 84.66 (2) 79.89 (3) 62.96 (4) 

#9 81.87 (1) 76.37 (2) 70.33 (3) 63.74 (4) 

#10 96.30 (1) 81.48 (2) 77.25 (3) 70.37 (4) 

Avg. 87% 78% 71% 63% 

Avg. Rank 1 2.3 3.1 3.6 

 

Table 4. Efficacy comparison between mobile and desktop reference methods 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7. Avg. rank of precise location capabilities comparisson against the 

critical distance. 
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DataSet MSER/ 

FREAK 

ORB GFTT/ 

FREAK 

FAST/ 

FREAK 

MSER/

BRIEF 

GFTT/ 

BRIEF 

FAST/ 

BRIEF/ 

BF(H2) 

FAST/ 

BRIEF/ 

FLANN 

GFTT/ 

ORB 

#1 1.83 (8) 0.62 (2) 2.18 (9) 1.31 (5) 1.60 (7) 1.13 (4) 0.61 (1) 0.81 (3) 1.37 (6) 

#2 1.50 (8) 0.59 (3) 1.91 (9) 0.97 (6) 1.03 (7) 0.94 (5) 0.12 (1) 0.48 (2) 0.84 (4) 

#3 1.35 (8) 0.46 (2) 1.58 (9) 0.99 (7) 0.98 (6) 0.86 (4) 0.36 (1) 0.48 (3) 0.88 (5) 

#4 0.83 (4) 0.78 (3) 1.18 (8) 1.45 (9) 1.10 (7) 0.94 (5) 0.64 (1) 0.72 (2) 0.95 (6) 

#5 1.56 (8) 0.84 (3) 2.07 (9) 1.19 (5) 1.29 (7) 1.11 (4) 0.58 (1) 0.64 (2) 1.24 (6) 

#6 0.61 (4) 0.85 (5.5) 0.92 (8) 0.48 (1) 0.95 (9) 0.85 (5.5)  0.52 (2) 0.6 (3) 0.87 (7) 

#7 1.84 (7) 0.92 (2) 2.15 (9) 2.07 (8) 1.45 (6) 1.14 (4) 0.98 (3) 0.90 (1) 1.28 (5) 

#8 0.98 (6) 0.62 (1) 1.07 (7) 1.35 (9) 1.2 (8) 0.89 (2.5) 0.95 (4.5) 0.89 (2.5) 0.95 (4.5) 

#9 0.87 (5) 0.6 (4) 1.16 (9) 0.49 (2) 1.06 (8) 0.9 (6) 0.44 (1) 0.56 (3) 0.93 (7) 

#10 0.87 (5) .52 (1) 1.19 (9) 0.77 (4) 1.12 (8) 0.97 (6) 0.63 (2) 0.74 (3) 0.99 (7) 

Avg. Rank 6.3 2.65 8.6 5.6 7.3 4.6 1.75 2.45 5.75 

Winners  3     1 2  

 
Table 5 Comparativa de velocidad de los métodos disponibles en movilidad 

 

 

 
Figure 8. Avg. rank of speed test comparisson against the critical distance 

 

As previously, we also recorded the speeds for desktop 

methods, in order to conduct a particular comparative against 

SIFT, SURF and BRISK. Since the desktop runtime 

environment for these methods is obviously different we have 

not considered mixing results in the comparative analysis. 

Table 6 shows the average time (in seconds per frame) for 

each dataset. The Friedman test (  = 15.45 y FF = 30.56) 

exceeds the critical value for F(2,18) = 3.56 < 30.56 so we 

reject the null-hypothesis 

The Nemenyi post-hoc test (shown graphically in Figure 9, 

CD = 0.92) shows that SIFT and BRISK, with a similar 

performance, are in fact faster than SURF. In our datasets, 

surprisingly BRISK was even faster than SIFT in 6 of the 10 

datasets, tied in the fourth dataset while SIFT won the 

remaining 3 datasets. 

 

 

 

 

 

 

DataSet SIFT SURF BRISK 

#1 0.22 (2) 0.88 (3) 0.15 (1) 

#2 0.17 (2) 0.53 (3) 0.10 (1) 

#3 0.17 (2) 0.47 (3) 0.07 (1) 

#4 0.19 (1.5) 0.74 (3) 0.19 (1.5) 

#5 0.18 (2) 0.60 (3) 0.15 (1) 

#6 0.21 (2) 0.5 (3) 0.17 (1) 

#7 0.25 (1) 1.02 (3) 0.30 (2) 

#8 0.23 (1) 0.94 (3) 0.43 (2) 

#9 0.2 (2) 0.65 (3) 0.17 (1) 

#10 0.16 (1) 0.81 (3) 0.27 (2) 

Avg. Rank 1.65 3 1.35 

 

Table 6. Speed rank comparisson of Desktop methods 
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Figure 9. Avg. speed rank comparison (p=0.10) for reference methods. 

 

D. Mixed chart 

 

As a final comparative we plotted the results of the speed 

and location tests in the following 2D chart where we can see 

the goodness of the algorithms having into account both 

dimensions (accuracy and speed): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithms closer to the bisector are those with a better 

quality/efficiency balance (MSER/BRIEF, STAR/FREAK, 

GFTT/ORB, GFTT/BRIEF and ORB), while those who are 

positioned between the two outer arcs stand out for their 

speed, precision or a better balanced behavior than other 

combinations. 

Among this recommended group of techniques we found 

GFTT/FREAK, MSER/FREAK, FAST/FREAK, ORB and 

FAST/BRIEF w/BF-(H2) resulted the most recommended 

techniques OpenCV for Android can provide according to our 

tests. 

 

 

 

Discarding wrong homographies 

 

Following analysis of the methods provided by OpenCV, 

we wanted to find indicators that allow us to automatically 

discard homographies which could lead to false detections or 

imprecise locations (what is useful in augmented reality 

applications for example). 

Our experiment recorded for each frame the value of the 

determinant, a value we found in the bibliography review that 

can be be used for this purpose. We showed this value for the 

frames of the flyovers of in the graph below: 

 
In those frames in which the determinant was outside the 

minimum and maximum values shown in the graph, the 

homography presented problems or was degenerated and had 

to be discarded. So, if we seek greater precision, as a general 

rule of thumb we can discard homographies in cases in which 

the determinant is outside the range [0.2, 2.5]. 

We also observed that the homographies tended to 

degenerate as the ratio between the first and last singular value 

of SVD grows above a certain value. In our tests, it was very 

rare to find valid homographies with SVD value above 

600,000. Above this value (even 500K for safer zone), we can 

safely discard homographies. 

VI. CONCLUSION 

The experiment has revealed that OpenCV effectively 

provides a sufficient variety of techniques in both desktop and 

Android versions (using a midrange device) that can be used 

effectively for recognizing images of works of art. 

Furthermore, regarding mobility methods and according to our 

findings, we conclude: 

-The combination of methods GFTT (detector) FREAK 

(descriptor) and BF (H2) (matcher) provides in most cases the 

best recognition accuracy, accurately locating the artwork in 

the scene; however the combined speed is the slowest of all 

methods tested. 

-The combination of FAST (detector), BRIEF (descriptor) 

and BF (H2) (matcher) is the fastest one. BRIEF can be 

applied only when the processed image is oriented vertically, 

since it’s not rotation invariant. If speed is an important factor, 

an efficient solution could make use of mobile gyroscope to 

automatically rotate the captured image and thus allow the use 

of this faster combination. 
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-ORB is an option that combines a high speed (similar to 

FAST+BRIEF) and a high detection rate. The ORB 

implementation in OpenCV defaults the limit of the number of 

descriptors to 500, but you can specify a larger number, 

thereby increasing the precission of the homography. 

However, the processing time is also increased. 

-FAST/FREAK produced excellent results in dataset # 6 

(ranked second in location test and first in speed). This dataset 

presented a extreme high light condition that made very 

difficult the extraction of features, a capability in which FAST 

is remarkable. 

-MSER/FREAK had similar performance to 

GFTT/FREAK, being somewhat less accurate in some cases 

but faster. 

-Matcher FLANN produced lower recognition rates than 

BRUTEFORCE-HAMMING2 in all registered cases and only 

in a few isolated cases involving a large number of keypoints 

(obtained by FAST) it resulted faster. 

 

Overall, these five mobility methods have produced very 

satisfactory results, considering that the device used for the 

experiment was not a first-class. We used default parameters 

for all methods, except for FAST for which we set the 

threshold to 50 (default value was 30). Another determining 

factor to have into account is the quality of the device builtin 

camera. Image must be focused properly at all times as well. 

Regarding the reference methods in the industry, we found 

that SIFT continues to offer better rates of image recognition. 

However, we have found that BRISK significantly exceeds in 

speed to both SURF and SIFT, which is remarkable 

considering that BRISK also provides a similar recognition 

rate compared to SURF. It will be particularly interesting to 

analyze the performance of BRISK in mobility against 

GFTT/FREAK, MSER/FREAK, FAST/FREAK, ORB and 

FAST/BRIEF, once it’s included in the mobile version of 

OpenCV. It is likely that, according to the results of our 

experiment, BRISK will become soon the reference free 

method in many future projects in mobility. 

The findings of our research were put into practice with the 

development of a complementary mobile application which 

we describe in Appendix B. This app allows you to try the 

recommended methods (FAST/BRIEF, ORB, GFTT/FREAK 

as well as FAST/FREAK, MSER/FREAK) in two modes: 

exploration mode (real-time capture and recognition) and 

frozen/static image recognition. 

APPENDIX A 

The mobile device used in the experiment was a LG 

Optimus SOL E730 smartphone, with a 5 MPX camera and 

operating system Android 2.3.4 (Gingerbread). 

Number of images used: 10 

Total flyover keyframes: 2.012 

Method combinations used: 36 

Total number of homographies checked: 61.348 

 

For data logging and frame analyzing and recording a 

custom application was developed in Java and C++ for 

OpenCV interfacing through JNI on a Linux system. We 

downloaded the source code for BRISK and recompiled  

OpenCV for the desktop experiment. At the time BRISK code 

was OpenCV-ready but was not part of any OpenCV 

distribution yet. 

The images were stored by the application in PNG format 

on the external micro-SD memory card after converting them 

to grayscale and rescaling to the device screen resolution 

(768x432 pixels, landscape mode). 

 

 

 

 

 

 

 

Individual images can be viewed online at Web Gallery of Art 

(http://www.wga.hu): 

"Allegory", AACHEN, Hans von, 
http://www.wga.hu/art/a/aachen/allegory.jpg 

"Bacchus, Ceres and Cupid", AACHEN, Hans von, 
http://www.wga.hu/art/a/aachen/bacchus.jpg 

"Joking Couple", AACHEN, Hans von,  

http://www.wga.hu/art/a/aachen/j_couple.jpg 
"The Archangel Michael", ABADIA, Juan de la, 

http://www.wga.hu/art/a/abadia/michael.jpg 

"Albarello", ABAQUESNE, Masséot, 
http://www.wga.hu/art/a/abaquesn/albarell.jpg 

"Ceramic Floor", ABAQUESNE, Masséot, 

http://www.wga.hu/art/a/abaquesn/floor1.jpg 
"Ceramic Floor", ABAQUESNE, Masséot, 

http://www.wga.hu/art/a/abaquesn/floor2.jpg 

"The Flood", ABAQUESNE, Masséot, 
http://www.wga.hu/art/a/abaquesn/theflood.jpg 

"Chimney breast", ABBATE, Niccolò dell', 
http://www.wga.hu/art/a/abbate/chimney1.jpg 

"Chimney breast", ABBATE, Niccolò dell' (2) 

http://www.wga.hu/art/a/abbate/chimney2.jpg 

 
The complete catalog can be downloaded from: 

http://www.wga.hu/frames-e.html?/database/download/index.html 

 

http://www.wga.hu/
http://www.wga.hu/art/a/aachen/allegory.jpg
http://www.wga.hu/art/a/aachen/bacchus.jpg
http://www.wga.hu/art/a/aachen/j_couple.jpg
http://www.wga.hu/art/a/abadia/michael.jpg
http://www.wga.hu/art/a/abaquesn/albarell.jpg
http://www.wga.hu/art/a/abaquesn/floor1.jpg
http://www.wga.hu/art/a/abaquesn/floor2.jpg
http://www.wga.hu/art/a/abaquesn/theflood.jpg
http://www.wga.hu/art/a/abbate/chimney1.jpg
http://www.wga.hu/art/a/abbate/chimney2.jpg
http://www.wga.hu/frames-e.html?/database/download/index.html
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List of methods involved in our experiment: 

 

DETECTORS DESCRIPTORS MATCHERS 

FAST 

MSER 

GFTT 

STAR 

ORB 

BRIEF 

ORB 

FREAK 

 

FLANN 

BF(H2) 

SIFT * 

SURF * 

FLANN 

BF 

BRISK* FLANN 

BF(H2) 

 
*SIFT, SURF and BRISK  were only available in desktop version. 

 

 

-Feature from Accelerated Segment Test (FAST) is a very fast 

corner detector algorithm which considers a circle of 16 pixels 

around the corner candidate [31]. The pixels are classified into 

dark, similar, and brighter subsets and the ID3 algorithm from 

[34] is used to select the pixels which yield the most 

information about whether the candidate pixel is a corner. 

-Maximally Stable Extremal Regions (MSER) belongs to the 

blob detectors family. It extracts from an image a number of 

regions, called MSERs, which are connected components of 

some level sets of the image [32]. 

-Good Features to Track (GFTT) is designed to detect 

cornerness patterns in an image as described in [33]. The 

algorithm seeks to to detect strong corners and to facilitiate 

individual object tracking on different frames in a 

videostream. 

-The STAR detector is derived from the CenSurE (Center 

Surround Extrema) detector [35]. Instead of a circle, the 

STAR feature detector uses a center-surrounded bi-level filter 

of two rotated squares. 

-Oriented FAST and Rotated BRIEF (ORB) builds on FAST 

keypoint detector and BRIEF descriptor, which have 

demonstrated a good performance, adding centroid technique 

to provide orientation to the corners and using this operator to 

address the in-plane rotation limitation of BRIEF [36].  

-Scale Invariant Feature Transform (SIFT) method provides 

features that are translation, rotation and scale invariant, using 

descriptors based upon gradient histograms with contextual 

information [5]. 

-Speeded Up Robust Features (SURF) is a scale and rotation 

nvariant interest point detector/descriptor which relies on 

integral images for image convolutions to reduce computation 

time [37]. 

-Binary Robust Invariant Scalable Keypoints (BRISK) is a 

very fast detector/descriptor based on the application of a 

novel scale-space FAST-based detector in combination with 

the assembly of a bit-string descriptor from intensity 

comparisons retrieved by dedicated sampling of each keypoint 

neighborhood [20]. 

 

 

-Fast Keypoint Retina (FREAK) is a highly reliable descriptor 

which uses a cascade of binary strings computed by efficiently 

comparing image intensities over a retinal sampling pattern 

[39]. 

-Fast Approximate Nearest Neighbors with Automatic 

Algorithm Configuration (FLANN) achieves high 

performance in approximate nearest neighbor matching in 

high-dimensional problems automatically choosing between k-

means or k-d trees based upon a sample dataset and the 

importance of minimizing memory or build time rather than 

just search time [38] 

-BruteForce (BF) descriptor matcher finds the closest 

descriptor (using Euclidean metric) in the second set to the 

first one set by trying each one. BF(H2) uses Hamming 

distance. 

 

APPENDIX B 

 

In this appendix we describe a sample real application for 

detecting art imagery on Android mobile devices which 

corroborates the results obtained in our research. 

Using this application the user can check the performance 

of the OpenCV methods recommended by us: FAST/BRIEF, 

ORB, GFTT/FREAK as well as FAST/FREAK and 

MSER/FREAK. 

At the start, the application allows a basic image catalog 

management, for which algorithms will be trained extracting 

the descriptors required for subsequent exploration phase. 

 

 
The first time the application is executed it automatically 

adds 10 sample images that have been used for the experiment 

of this research and which are listed in Appendix A. 

It is possible though to photograph small objects and add 

them to the catalog. We recommend placing the object over a 

sheet of white paper. Thus, the application automatically crops 

the image removing the extra white space. 

In the exploration mode, the application takes the captured 

frames by the camera and analyzes them in real-time using 

different threads so the UI doesn’t get blocked (it got 10-12 

frames per second while running the recognition in the 

background thread, which depending on the case happened at 

intervals from less than 1 second to a few seconds between 

each homography computation and visualization). 

The default method selected is FAST/BRIEF which is the 

fastest one, but clicking on the menu button on your Android 
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device allows you to select among the 5 methods. In this mode 

we can fly a camera phone over the trained images, projected 

on a monitor or printed on paper, and check the performance 

of each algorithm in a real time scenario. When the application 

detects an image it fills the perimeter of a quadrilateral 

homography in green and displays the name of the artwork 

and its artist. 

 

 
 

The frozen mode takes a snapshot of the scene and analyzes 

it sequentially using the 5 methods. The application then 

registers a ranking of success, allocating one point to each 

method that successfully detects any trained image. 

We can see how FAST/BRIEF fails to detect images if we 

rotated the camera. On the other hand we can clearly observe 

the difference in speed between GFTT/FREAK (slowest) and 

ORB or FAST/BRIEF for example. 

 

 
 

The recognition process in real time have to conduct a 

match between the current frame descriptors and the 

descriptors for each of the reference images in the catalog. Our 

application calculates the homography for methods that have 

found 10 or more matches (we also implemented a cross-

matching filter) and discards it automatically depending on 

determinant and SVD values. We sort the number of matches 

and start computing the homography with the most promising 

method. If a valid homography is found we assume that the 

detected image is correct, ignoring possible successes with 

other reference images. In the event that the homography 

cannot be computed or it presents errors, the application 

attempts with the next choices according to the number of 

matches. 

This application was developed in Java (for the user 

interface) and C++ for interaction with OpenCV 2.4 through 

JNI. It’s available for download on Google Play (click below 

link or scan QR code to download): 

https://play.google.com/store/search?q=%23cvriousity 

 
Source code is available as well on GitHub 

(https://github.com/RamiroOliva/CVriousity) and is licensed 

under Apache 2.0 License. 

 

FUTURE WORK 

There is a significant difference in efficacy between the 

methods of desktop and mobility for OpenCV. Since SIFT and 

SURF are subject to patents, from a free software view, it 

would be very interesting to see BRISK incorporated into 

OpenCV mobile versions, a novel method we found far 

superior in effectiveness (and possibly quicker) to current 

methods in mobility. 

The strategy of recognition of images in real time is very 

different from batch or sequential recognition. In fact, the real-

time recognition of large banks of images requires appropriate 

analysis that has not been addressed in this research. During 

the development of the sample application we have found that 

the homography computation and verification process is very 

time expensive and should be carried out only when there is 

adequate evidence of not failing (for example considering a 

large number of matchings and their quality). We have 

observed that FAST produced higher number of matches 

which slows down the RANSAC algorithm used in 

homography computation. It is desirable to have a lower 

number but highter quality of descriptors which can be 

achieved through other methods such as GFTT or MSER. 

Reducing the number of features found by boosting techniques 

would be another line of possible research [25]. 

Finally a proper frame pre-processing is critical to 

improving the quality of recognition (as the focus or scaling). 

Our application focus and rescale the frame to match the 

screen resolution and thus reduce the number of features. 

When the artwork is far from the user and appears small on 

the screen, it would be an interesting possibility, since the 

cameras have a higher resolution than the screen, to recognize 

different sizes of the same captured frame, cropping around 

the center of the scene, producing actually a digital zoom 

effect.  

  

https://play.google.com/store/search?q=%23cvriousity
https://github.com/RamiroOliva/CVriousity
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