

Enterprise Semantic Web

Nombre Estudiante David Gutiérrez Alba
2º ciclo de Ingeniería en Informática

Nombre Consultor Felipe Geva Urbano

2

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-
SinObraDerivada 3.0 España de Creative
Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

3

Licencias alternativas (elegir alguna de las siguientes y sustituir la de la

página anterior)

A) Creative Commons:

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-
SinObraDerivada 3.0 España de Creative
Commons

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-CompartirIgual
3.0 España de Creative Commons

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial 3.0 España de
Creative Commons

Esta obra está sujeta a una licencia de
Reconocimiento-SinObraDerivada 3.0 España
de Creative Commons

Esta obra está sujeta a una licencia de
Reconocimiento-CompartirIgual 3.0 España de
Creative Commons

Esta obra está sujeta a una licencia de
Reconocimiento 3.0 España de Creative
Commons

B) GNU Free Documentation License (GNU
FDL)

Copyright © 2012 David Gutiérrez Alba

Permission is granted to copy, distribute and/or
modify this document under the terms of the
GNU Free Documentation License, Version 1.3
or any later version published by the Free

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-sa/3.0/es/
http://creativecommons.org/licenses/by-nc/3.0/es/
http://creativecommons.org/licenses/by-nc/3.0/es/
http://creativecommons.org/licenses/by-nd/3.0/es/
http://creativecommons.org/licenses/by-nd/3.0/es/
http://creativecommons.org/licenses/by-sa/3.0/es/
http://creativecommons.org/licenses/by-sa/3.0/es/
http://creativecommons.org/licenses/by/3.0/es/
http://creativecommons.org/licenses/by/3.0/es/

4

Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-
Cover Texts.
A copy of the license is included in the section
entitled "GNU Free Documentation License".

C) Copyright

© (el autor/a)
Reservados todos los derechos. Está prohibido
la reproducción total o parcial de esta obra por
cualquier medio o procedimiento,
comprendidos la impresión, la reprografía, el
microfilme, el tratamiento informático o
cualquier otro sistema, así como la distribución
de ejemplares mediante alquiler y préstamo,
sin la autorización escrita del autor o de los
límites que autorice la Ley de Propiedad
Intelectual.

5

 FICHA DEL TRABAJO FINAL

Título del trabajo:

Enterprise Semantic Web

Nombre del autor: David Gutiérrez Alba

Nombre del consultor: Felipe Gerva Urbano

Fecha de entrega (mm/aaaa): 12/2012

Área del Trabajo Final: Semantic Web

Titulación: 2º ciclo de Eng. Informática

 Resumen del Trabajo (máximo 250 palabras):

Dada la creciente complejidad y competitividad, organizaciones ahogadas en
una caótica masa de datos necesitan extraer algún valor de dichos datos para
convertirlo en verdaderos activos de negocio. Este caos de datos es el
resultado lógico de la propia naturaleza humana and merece la pena aceptar y
tratar con este escenario en lugar de un entorno sistematizado y rígido que
impida surgir el conocimiento. La gestión del conocimiento es actualmente un
reto al que se enfrenta las organizaciones y el advenimiento de las nuevas
tecnologías tales como Web semántica o novedosas plataformas colaborativas
para ayudar organizaciones a recolectar, representar y distribuir conocimiento
esparcido por toda la organización, nos invita a repensar la gestión del
conocimiento en la organizaciones. Web semántica es una tecnología puntera
diseñada para recolectar datos y representar conocimiento. Microsoft
SharePoint es uno de los casos más destacados de plataformas colaborativas
en las organizaciones, de gran éxito pero carente de semántica. ¿Qué pasa si
Microsoft SharePoint and Web Semántica trabajarán en tándem? ¿Cómo Web
Semántica puede ser convertida en Web Semántica empresarial?

Este documento es un viaje a través de los principios de la Web Semántica y
Microsoft SharePoint para comprender algunas de sus ventajas y desventajas,
y cómo los principios de Web Semántica pueden mimetizarse en una solución
empresarial como SharePoint. Como resultado del estudio, el lector debería
adquirir conocimiento de Web Semántica y Microsoft SharePoint y aprender
cómo pueden ser usadas en las organizaciones.

6

 Abstract (in English, 250 words or less):

Given the increasing complexity and competitiveness, organizations drowned in
mass of chaotic data are in need of extracting some value from that data to
convert them into true business assets. This chaos of data is a logical result of
the own human nature and it was worth accepting this scenario to deal with it
rather than systematized and rigid environments. Knowledge management is
not a new challenge among organizations and the advent of new technologies
such as Semantic Web or novel collaborative platforms, to help harvest,
represent and distribute knowledge scattered throughout an organization,
invites us to rethink knowledge management within organizations. Semantic
Web is now a state-of-art technology designed to gather data and represent
knowledge in the Web. Microsoft SharePoint is the one of the most foremost
cases of collaborative platforms within organizations, successful in collaboration
but lacking in knowledge. What if Microsoft SharePoint and Semantic Web
worked in tandem? How Semantic Web can be converted into Enterprise
Semantic Web?

This document is a journey through Semantic Web principles and Microsoft
SharePoint in order to come to understand some advantages and
disadvantages of theirs, and how Semantic Web principles can be blended into
an enterprise solution like Microsoft SharePoint. As a result of such study,
readership should gain insight into both Semantic Web and Microsoft
SharePoint and learn how they can be used within organizations.

7

Keywords (between 4 and 8):

Knowledge Management, Semantic Web, SharePoint, RDF, RDFS

Index

1. Introduction .. 12

1.2 Project objectives .. 12

1.3 Approach and methodology ... 12

1.4 Project plan .. 12

1.5 Brief summary of deliverables ... 13

1.6 Brief description of the other chapters in the document 13

2. The current situation ... 15

2.1. The uphill battle for the organizations ... 15

2.1.1. Highly-Managed environments .. 15

2.1.2. Chaos and order ... 15

2.2. Microsoft SharePoint: A case of study .. 16

3. Semantic Web ... 19

3.1. Why do we need Semantic Web? ... 19

3.1.1. Anyone can say anything anytime... 19

3.1.2. Putting all together .. 20

3.1.3. Bringing some order to the chaos ... 20

3.2. Semantic web Technology Stack ... 22

3.2.1. The representation of distributed data on the Web 23

3.2.2. Merging data from different data sources 26

3.2.3. The identity problem ... 28

3.2.4. Converting triples into serilizable format 29

3.2.5. Querying data ... 30

3.2.6. Converting Dumb data into Smart data .. 32

3.3. Semantic Web Application Architecture ... 35

3.3.1. The design of a Web Semantic Application 35

3.3.2. Adding inference to our Semantic Web Architecture 36

3.4. A brief summary of Web Semantic concepts learnt 37

4. The journey from Semantic Web to Enterprise Semantic Web 40

4.1. SharePoint Architecture .. 40

4.1.1. Server Farms .. 40

4.1.2. Web Applications .. 43

4.1.3. Service Applications ... 45

4.1.4. Web site .. 45

4.1.5. Site Collection .. 46

4.1.6. Databases .. 47

4.2. SharePoint Data Model ... 47

4.2.1. Green field development ... 48

4.2.1.1. SharePoint Column .. 48

4.2.1.2. SharePoint Content type ... 49

4.2.1.3. SharePoint Content Type hierarchy ... 50

4.2.1.4. SharePoint List and List item .. 51

4.2.1.5. SharePoint List View .. 53

4.2.1.6. Putting columns, content types and lists together 53

4.2.1.7. Lookup column and relationships between lists 56

4.2.2. Brown field development .. 60

4.2.2.1. Business Data Connectivity Service .. 60

4.2.2.2. External Content Types and External lists 61

4.2.2.3. Brown and green field development together 61

4.3. Merging data in SharePoint .. 62

4.4. Giving sense to data in SharePoint ... 70

4.4.1. Ontologies ... 70

4.4.2. Taxonomies and folksonomies in SharePoint 74

4.5. Data access in SharePoint .. 76

5. Conclusions ... 80

6. Bibliography .. 83

10

Figures List

 Figure 3.1. The Map of the Internet

 Figure 3.2 Rice Ontology

 Figure 3.3 A mass of linked data with no sense

 Figure 3.4 A mass of linked data with sense though an ontology

 Figure 3.5 Semantic Web Technology Stack

 Figure 3.6 First approach: Data needs a common schema

 Figure 3.7 Second approach: Data needs to reference entities

 Figure 3.8 Third approach: Data needs to reference both schemas and entities

 Figure 3.9. Simple Triplets

 Figure 3.10. Geographic data from a data source

 Figure 3.11. Literary data from other data source

 Figure 3.12. Merged data from the previous data source

 Figure 3.13 Semantic Web Architecture

 Figure 4.1. SharePoint Design Sample

 Figure 4.2. Web Sites Contoso Sample

 Figure 4.3. Site Collection Contoso Sample

 Figure 5.1 Unrelated database tables

 Figure 5.2 Database tables linked by foreign key constraint (primary key)

 Figure 5.3 Unrelated database tables

 Figure 5.4 Database tables linked by foreign key constraint (primary key)

 Figure 5.5 Database tables linked by foreign key constraint

 Figure 5.6 Lookup column relationship between SharePoint lists

 Figure 5.7 many-to-many relationship between SharePoint lists

 Figure 6.1 List aggregation patterns

 Figure 6.2 Union List aggregation pattern

 Figure 6.3 Denormalized List aggregation pattern

 Figure 6.4 Large Lists patterns

 Figure 6.5 Partitioned view pattern

 Figure 6.6 Partitioned List with view pattern

11

Tables List

 Table 2.1 SharePoint topologies

 Table 3.1. Tabular Data about Elizabethan Literature

 Table 3.2. Sample Triples

 Table 3.3. Shakespeare’s Plays as qnames

 Table 3.4. Geographical data as qnames

 Table 3.5. Triples referring to URIS

 Table 3.6. Geographical data as qnames

 Table 3.7. rdf:Property for Table 3.5

 Table 3.8 Semantic Web modeling language constructions

 Table 3.9. Comparison between Relational databases and Semantic Web

 Table 3.10 Semantic Web concepts

 Table 5.1 SharePoint, Relational database and Semantic Web

 Table 5.2 Orders SharePoint List

 Table 5.3 Triples representing data stored in Orders SharePoint list

 Table 5.4 Triples representing Type information

 Table 5.5 Triples representing entire information

 Table 7.1 Products SharePoint List in Manufacturing Web Site

 Table 7.2 Products SharePoint List in partner Web site

12

1. Introduction

1.2 Project objectives

The main objectives of this project were to

 look into current challenges organizations face in regards to knowledge
 gain insight into concepts of Semantic Web

 investigate most common knowledge representation languages
 evaluate how Microsoft SharePoint 2010 deals with Semantic Web con

1.3 Approach and methodology

Due to the fact that Semantic Web finds itself in a state of art, the work
entailed a deep investigation into concepts of Semantic Web along with its
application to organizations. Once principles of Semantic Web were
understood, the remaining work mainly had a focus on gathering SharePoint
documentation and researching into how to combine Semantic Web and
Microsoft SharePoint together within organizations.

1.4 Project plan

 PEC1 Work Plan is due no late than 01/10/2012
 PEC 2 Report is due no later than 05/11/2012
 Final Report is due no later than 17/12/2012
 Virtual presentation is due no later than 08/01/2013
 Debate virtual must start on 21/01/2013
 Project Completed must finish on23/01/2013

13

1.5 Brief summary of deliverables

The project hands in the following deliverables:

 PEC 1 Work Plan

PEC1 Work plan is a project deliverable which describes how the work is
completed. The project scope is broken down into deliverables, work
packages and activities. Addition to a project scope, the Work Plan also

includes a project schedule, roles and responsibilities description as well as
risk identification, risk analysis and risk response planning. The Work Plan was
revised by the subject matter's consultant to check that the Work Plan meets
the subject matter objectives laid down.

 PEC 2 Report

PEC2 Report is a simple proof of acquired knowledge of Web Semantic to

complete the subsequent project activities in the project. The book
“Semantic Web for the Working Ontologist, Second Edition: Effective
Modelling in RDFS and OWL” by Dean Allemang and James Hendler and other
documents related to Microsoft SharePoint were used as basis to catch up on
Semantic Web and Microsof SharePoint..

 Final Report

Final Product Report is a project deliverable which summarizes the work that

has been carried out and describes how the objectives have been met
throughout the project. The Final Report is written by using the template
provided by the subject matter's consultant.

 Virtual Presentation

The Virtual Presentation is a project deliverable which summarizes the work

carried out and results produced throughout the project.

1.6 Brief description of the other chapters in the document

The document is broken down into four parts. The first part explains the
current situation of organizations with regard to Knowledge Management.
Additionally, it introduces Microsoft SharePoint as a case of study. The second
part describes the main principles of Semantic Web as well as some tools and
standards called Semantic Web Technology Stack. The third part spells out
Microsoft SharePoint with a focus on Semantic Web. The third part is also
divided into different sections. Firstly, SharePoint data model is described as
well as SharePoint integration with both local and external systems. Secondly,

the process of merging data from distinct data sources and giving sense to
data is explained in SharePoint. Finally, the way of how SharePoint accesses
to data is outlined. The document concludes with some conclusions on both
SharePoint and Semantic Web.

14

PART I

"If only HP knew what it knows it would make three times more profit
tomorrow" - Lew Platt, ex CEO Hewlett Packard

15

2. The current situation

Managing an organization, getting services from it as a client or collaborating

with it as partner is nowadays much more complex and involves handling a
great deal of information than it was in the past. To cope with this
complexity, an organization depends more and more on their capacities to
identify, create, represent, and distribute knowledge among organization
members.

2.1. The uphill battle for the organizations

Currently, not only does an organization face technological challenges but it

also has to change its mentality about how to manage itself. The
management’s challenge may be far harder than the technological one and it
can become an uphill battle for the organization. We shall have a look at
some of these changes which an organization has to be carried out in order to
identify, create, represent, and distribute knowledge.

2.1.1. Highly-Managed environments

Managers in the organization and allied efforts often allow their thinking to be

shaped by highly structured and tightly governed management derived
entirely from a production environment. Such organizations usually think of
people as parts of the big organizational machine that must blindly follow the
processes, policies and procedures that are defined in order to share out their
knowledge.

However, to manage thinking workers effectively and a highly collaborative
environment from which the knowledge of organizations can surface, we need
to foster an atmosphere in which processes are not systematized by imposing
rigid processes. Fostering an atmosphere that doesn't allow workers to have a
say simply makes people defensive and the team sociology can suffer
grievously. However, an organization in which workers always have a say in
something and are allowed to raise their voices is a thinking organization –
that is, capable of creating, representing and distribute knowledge.

2.1.2. Chaos and order

Following our discourse on highly-managed environment, we can observe the
manager’s anxiety for having everything under control. Some managers are
incapable of accepting the crude reality: they are working with people whose

individual views and set of data are chaotic due to the fact that data itself is
created by people. However, this chaotic data can become valuable if right
relationships are established.

Therefore, it appears to be reasonable that an organization should acquire

consciousness of the real nature of data and the origin of data. The
organizational effort should be also aimed at dealing with chaotic data

16

somewhat which allows the organization to put data in order and provide
them some valuable semantic sense – that is, shaping and modeling an
ordered knowledge from misleading chaotic data.

2.2. Microsoft SharePoint: A case of study

In their eagerness to govern knowledge, organizations have tried out different
collaborative software solutions. Microsoft SharePoint has become a
successful platform whose basis is mainly collaboration. SharePoint provides a
valuable enterprise solution which allows organizations to host multiple Web
sites, in which organization members can collaborate by sharing documents,
publishing reports to help make better decisions... So far, So good! However,
if we delve into SharePoint, it raises some issues which are worthy to be
considered.

The uncontrollable proliferation of untrustworthy data

Although SharePoint ships with excellent collaborative functionalities, when

SharePoint is used in large- and medium-size organizations, the reality will
quickly scale back to “a simply place to store documents”, or to make things
worse, it will soon degenerate to, “a place to lose documents”. It is also
increasingly common for end users (the poor worker operating the Web
Browser) to find inconsistent data, data out of synchronization, and simply
data disconnected from the rest of the organization. Both the enormous mass
of data and its lack of semantic seem to be the root cause of this problem.
Before we come to conclusions, we shall gain a bit more insight into the
problem by deepening a bit into typical SharePoint deployments in numbers to
come to understand its complexity in its entirety. Table 2.1 shows different
kind of topologies from small topologies to large topologies in SharePoint
along with the volume of items and users it can support.

Table 2.1 SharePoint topologies

Type of topology Volume of items Number of users

Limited
deployments

One-tier farm 0-1M < 100 users

Limited
deployments

Two-tier farm 0-1M Up to 10,000 users

Small farm
deployment

Two-tier small
farm

1-10M 10,000-20,000 users

Small farm
deployment

Three-tier small
farm

10 -20M 10,000-20,000 users

Medium farm
deployment

Three-tier
medium farm

20-40M *Typically up to 50,000
users

Large farm
deployment

Topologies with
server groups

40 -100M *Typically up to 50,000
users

* The factor is 10,000 users per Web server deployed.

17

From the data shown above, we can bring some examples that give us some
clues on the nature of the problems that can occur in a typical SharePoint
deployment within an organization.

 Inconsistent data. A worker consults a the public Human Resources Web

site, seeking for the template document about how to get your tickets

restaurant, and he finds a formidable template but it makes reference to
another template which belongs to the Accountability department so that
you can account for every Euro that you spend. So he clicks on the Web
Site link and search for the template. Although the template didn’t appear
in the search results since it does not seem to be a very popular
document, he can find the template in the end but, to his surprise, he
finds out that the template can be applied to account for any expenses
except for tickets restaurant. What is going on here? His boss reminds him
that tickets restaurant will be included in the fringe benefits in the next
days. Does it mean that the tickets restaurant doesn’t exist yet? he
wonders.

 Data disconnected. A project manager is planning to start off a new

important project in the organization and he needs to get the right people
with the appropriate skills and availability. The Human Resources Web Site
lists the resources, however, no sign of their skills or availability. Then, he
goes to the Project Center Web Site with the hope of finding the

information he needs, when all of a sudden, he finds out that there is
information about people’s skills but not about their availability. As his
patience is getting thinner, he gives up searching for further information
and decides to get down to working in the project. No time to waste. As
soon as the project kicks off, he will learn that the most of resources he
had booked will be already committed. He wonders why nobody simply got
all the information together.

 Data out of synchronization. A CEO in a European branch is looking into

about the organization’s objectives and principles about the organization,
and he finds a comprehensive Web page in the Central Web Site in USA
about the organization objectives this year. However, when he accesses to
his branch’s Web Site in his regional site, to his surprise, he finds out that
his branch in Europe have different objectives to the company, what’s
more, it is likely that a great many people had been working on many
useless projects. It is now when he realizes because there had been so
many misunderstanding between managers and workers in the last few
months. He wonders why the organization didn’t simply update the Web

Page. They would have saved the branch from a great deal of useless
work.

In conclusion, even though SharePoint ships with powerful search and
collaborative tools to deal with mass of data, it still remains the familiar
limitation of today’s Web pages - a proliferation of untrustworthy content

with nonsense.

18

PART II

“Have you tried to turn it off and turn it on, again?”
Roy Trenneman (The IT crowd)

19

3. Semantic Web

So far, we have analyzed the problem and we have observed that despite
having a good collaborative solution such as SharePoint, it does not guarantee
that we can identify, create, represent, and distribute knowledge. It is now
the time to introduce Semantic Web as a possible solution to the question
given.

3.1. Why do we need Semantic Web?

3.1.1. Anyone can say anything anytime

The essential notion of the Web is the idea of an open community: Anyone
can say anything anytime (AAA Slogan). This openness has resulted in massive
load of Web pages that covers comprehensively topics, so to speak, almost
everything you can address in your Web Browser is a Web Page. Surfing the
Web for information is sometimes a dreadful nightmare. There are billions and
billions of Web pages, links, labels and so on and so forth. Typically,
anywhere offers us information on a topic but nowhere lets us delve
sufficiently into it – that is, the Internet is wide but not deep. Sometimes,
information is misleading and even contradictory at times –that is, data is

often inconsistent and data sources are not integrated. To sum up, we get the
impression that we get lost within such an enormous mass of nonsense
information and even if we find such information, it is unlikely to be
trustworthy. The question is how to build a more integrated, consistent and
deep Web experience with reliable information? The Map of the Internet is
shown is the Figure 3.1 below in which we can observe its complexity in its
entirety.

Figure 3.1. The Map of the Internet

20

3.1.2. Putting all together

The foremost experts of the Web agree that if there are billions and billions
of unmanageable information out there, it makes sense to begin to wonder
why we do not make an effort to put all this information together in a more
manageable way. If so, we need a sort of infrastructure on which data can be
stored, queried, indexed and crawled. But what it is clear is that something
must be done with more structured data and novel query engines. The
following questions can raise when we get down to coming up with a solution
to this problem.

 How do we find the right file?

 How do we integrate the data?

 How do we know all those files belong there?

 How do we keep up with all these data sources?

 How do we filter data to create value?

 How do we avoid filter’s filter’s filter’s filter’s filter’s data?

 How do we give sense to all this mass of data?

 How do we handle the wilderness?

The answers to these questions outlined above are the challenge for the
Semantic Web. However, as we can gather from this vision, Semantic Web
does not fit within the idea of making smarter Web Applications a smarter
Semantic Web Technology infrastructure for integrating information,
providing the consistency and availability of Web data.

3.1.3. Bringing some order to the chaos

With a Semantic Web infrastructure combining data from multiple data
sources and humans constantly messing around out there, the next challenge
is about how to bring any order to the chaos after having put all data
together.

The ontology provides a way to make date sensible from distributed web of
data by using the Semantic Web modeling languages. According to the
definition in the Wikipedia, a ontology “is the philosophical study of the
nature of being, existence, or reality, as well as the basic categories of being
and their relations.”. Figure 3.2 below shows a typical example of the rice
ontology.

http://en.wikipedia.org/wiki/Philosophy
http://en.wikipedia.org/wiki/Being
http://en.wikipedia.org/wiki/Existence
http://en.wikipedia.org/wiki/Reality
http://en.wikipedia.org/wiki/Category_of_being

21

Figure 3.2 Rice Ontology

The ontology is the way we can represent knowledge within a domain in the
wilderness by defining a set of concepts and relationships between them.
Besides this, we also need to come up with a way to provide common
vocabulary and taxonomy that allows people to have a common understanding
on a domain. Figure 3.3 and Figure 3.4 below show an example of
transformation of a mass of linked data into ontology in which concepts and
their relationships provide sense.

Figure 3.3 A mass of linked data with no sense

http://en.wikipedia.org/wiki/Domain_of_discourse

22

Figure 3.4 A mass of linked data with sense though an ontology

3.2. Semantic web Technology Stack

The Semantic Web Technology Stack is set of standards and protocols used to
create a smarter Semantic Web infrastructure. The mission of Semantic Web
Technology Stack is to provide necessary tools to putting together all data
from different data sources and give some order the chaos of data which just
needs to get the right data to the right place so the Web Applications can do
their work. The Semantic Web Technology Stack is shown and described in the
Figure 3.5

Figure 3.5 Semantic Web Technology Stack

23

 Assigning unambiguous names (URI)
 Syntax (Turtle, N-Triples, XML/RDF)
 Expressing data, including metadata (RDF and RDFS)
 Capturing ontologies (OWL)
 Query (SPARQL)
 Rules (RIF, Rule Interchange Format)

 Deployment, application spaces, logic, proofs, trust

In next sections, we will give you a ride along the concepts of Semantic
Web while we introduce Semantic Web Technology Stack standards and
protocols. We do not intend to give you a comprehensive view of Semantic
Web but only those concepts of Semantic Web on which SharePoint can
have a focus. A comprehensive explanation would be far too heavy and
beyond this survey.

3.2.1. The representation of distributed data on the Web

In relational database, data are represented in tabular form. Each row
represents some item, each column refers to some property we are describing
and cells hold the particular values. Table 3.1 shows a tabular data
representation about Elizabethan Literature and Music.

Table 3.1. Tabular Data about Elizabethan Literature

ID Title Author Medium Year
1 As you Like It Shakespeare Play 1599
2 Hamlet Shakespeare Play 1604
3 Othello Shakespeare Play 1603
4 Sonnet 78 Shakespeare Play 1609
5 Astrophil and Stella Sir Philip Sidney Poem 1609
6 Edward II Christopher Marlowe Play 1592
7 Hero and Leander Christopher Marlowe Play 1592

In Distributed Systems, there are a few different approaches to hold this data
over the Web. All these approaches have in common that some part of the
data can be held on one server, whereas other servers hold the other data.
Server is responsible for maintaining the information about one or more
complete rows from the table and answer any query about an entity
corresponding to a set of rows.

First approach: Data needs a common schema

In the First Approach to distributing data over many servers, each server is
responsible for maintaining the information about one or more complete rows

from the table. Any query about an entity can be answered by the computer
that stores its corresponding row. The First Approach is shown in the Figure
3.6 below.

24

Figure 3.6 First approach: Data needs a common schema

Despite the scability this approach can provide, each server must share
information about the columns. Does the second column on one server
correspond to the same information as the second column on another server? –
In other words, it is required an agreed-on common schema that defines
which property each column corresponds to.

Second approach: Data needs to reference entities

In the Second Approach to distributing data over many servers, each server is
responsible for one or more complete columns from the table. This solution is
flexible in a different way to the previous approach in that each server can be
responsible for one or more kinds of information. In case there is some type of
data that is not often queried, we could move to a low-performance server.
The Second Approach is shown in the Figure 3.7 below.

Figure 3.7 Second approach: Data needs to reference entities

25

This approach is similar to the previous one described in that it requires some
coordination between the servers. In this case, the coordination has to do
with the identities of the entities to be described. How do I know that row 3
on one server refers to the same entity as row 3 on another server? – In other
words, this approach requires a global identifier for the entities.

Third approach: Data needs to reference both schemas and entities

In the Second Approach to distributing data over many servers, there is a
combination of the previous approaches, in which information is neither
distributed by row nor by column but is instead distributed by cell. Each
server is responsible for some number of cells from the table. The Third
Approach is shown in the Figure 3.8 below.

Figure 3.8 Third approach: Data needs to reference both schemas and entities

In addition to the strengths of the other previous strategies, this approach
also combines the costs of the other two previous approaches. Not only do we
now need a global reference for the columns, but we also need a global
reference for the rows. In fact, each cell has to be represented with three
values: a global reference for the row, a global reference for the column, and
the value in the cell. This representation of data is called triple and the basic
building block for RDF. This is exactly the sort of flexibility we look for if we
want our data distribution system to really support “Anyone can say Anything
Anytime”. Triple is the basic building block for RDF (Resource Description
Framework)

 The identifier for the row is called the subject of the triple

 The identifier for the column is called the predicate of the triple

 The value in the cell is called the object of the triple.

26

When more than one triple refers to the same thing, sometimes it is
convenient to view the triples as a directed graph as shown in Figure 3.9. The
graph visualization in Figure 3.9 expresses the same information presented in
Table 3.2. However, everything we know about Shakespeare is displayed at a
single node. The process to bring back all data together from different data
sources is known as merge process that will be described soon.

Table 3.2. Sample Triples

Subject Predicate Object
Shakespeare Wrote King Lear
Shakespeare Wrote Macbeth
Anne Hathaway Married Shakespeare
Shakespeare Lived In Stratford
Stratford Is in England
Macbeth Set in Scotland
England Part of The UK
Scotland Part of The UK

Figure 3.9. Simple Triplets

3.2.2. Merging data from different data sources

So far, we have outlined different approaches to distribute data over several
data sources in the Web and we have introduced RDF as the standard to
describe distributed data, the triples. However, when we want to use that
data, it is pretty common that we come across those data spread out in
multiple data sources and we want all them together. Merging information
from two graphs is as simple as gathering the graph of all of the triples from

each individual graph into a single graph. Figure 3.10 below shows geographic
data from a data source whereas Figure 3.11 shows literary data from other
different data source. Finally, Figure 3.12 shows merged graph from the two
previous data sources.

27

Figure 3.10. Geographic data from a data source

Figure 3.11. Literary data from other data source

Figure 3.12. Merged data from the previous data source

28

3.2.3. The identity problem

The process of merge raises the following question: “What if a node in one
graph was the same node as a node in another graph?” This issue is resolved
through the use of Uniform Resource Identifiers (URIS). A URI provides a global
identification for a resource in the Web. If any two agents in the Web want to
refer to the same resource, they must agree to a common URI for such
resources in advance.

RDF applies the notion of the URI to resolve the identity problem in the
process of merging. A node from one graph is merged with a node from
another graph, only if they have the same URI. As a matter of fact, we use
qnames rather than URI in RDF. qnames are URI abbreviation which is
composed of two parts: a namespace and an identifier, written with a colon
between. For example, the qname representation for the identifier England in
the namespace geo is simply geo: England rather than
http://www.geo.com/England#. Table 3.3 and 3.4 show triples as qnames.

Table 3.3. Shakespeare’s Plays as qnames

Subject Predicate Object
li:Shakespeare li:wrote li:AsYouLikeIt
li:Shakespeare li:wrote li:HenryV

li:Shakespeare li:wrote li:LovesLaboursLost
li:Shakespeare li:wrote li:MeasureForMeasures
li:Shakespeare li:wrote li:WinterTale
li:Shakespeare li:wrote li:Hamlet
li:Shakespeare li:wrote li:Othello

Table 3.4. Geographical data as qnames

Subject Predicate Object
geo:Scotland geo:partOf geo:UK
geo:England geo:partOf geo:UK
geo:Wales geo:partOf geo:UK
geo:IsleOfMan geo:partOf geo:UK
geo:Scotland geo:partOf geo:UK

Table 3.5. Triples referring to URIS

Subject Predicate Object
li:Shakespeare li:wrote li:KingLear
li:Shakespeare li:wrote li:Macbeth
bio:AnneHateway bio:married li:Shakespeare
bio:AnneHateway bio:livedIn li:Shakespeare
geo:Stratford geo:isIn Geo:England
geo:Scotland geo:partOf geo:UK
geo:England geo:partOf geo:UK

The RDF standard itself even takes advantage of the power of namespace and
qnames to define its keywords in a namespace defined in the own standard, a
namespace called rdf. In this way, we have rdf:type is a property that
provides an elementary typing system in RDF or rdf:property to indicate when

http://www.geo.com/England

29

other identifier is to be used as a predicate. Table 3.6 and 3.7 show data
defined through rdf:type and rdf:property.

Table 3.6. Geographical data as qnames

Subject Predicate Object
lit:Shakespeare rdf:type lit:Playwright
lit:Marlowe rdf:type lit:Playwright

Table 3.7. rdf:Property for Table 3.5

Subject Predicate Object
lit:Wrote rdf:type rdf:Property
lit:SetIn rdf:type rdf:Property
bio:Married rdf:type rdf:Property
bio:LivedIn rdf:type rdf:Property

geo:IsIn rdf:type rdf:Property
geo:PartOf rdf:type rdf:Property

3.2.4. Converting triples into serilizable format

So far, so good! We already know how to represent distributed data from
multiple sources and how to merge them all into a single data source to be
handled, but we also need a format that can be processed by computers.
Would you not expect us to bring all those data together by hand? There are
some processable-computer formats available to us.

 N-Triples. N-Triples is a line-based, plain text serialization format
for RDF graphs and corresponds directly to the raw RDF triples. It refers
to resources using their fully unabbreviated URIs (no qnames).

<http://www.ElizabethanLiterature.org/Playwrights.rdf#Playwright>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.Geography.org/Europe/UK.rdf#Stanford>

 RDF/XML is a syntax defined by the W3C to express an RDF graph as

an XML document. According to the W3C, "RDF/XML is the normative

syntax for writing RDF".RDF (Resource Description Framework) is the

data model used to represent for semantic web resources. RDF/XML is

seen by some as the machine readable form of RDF with Notation 3 as a

more human-readable form.

<rdf:RDF

xmlns:lit"http://www.ElizabethLiterature.org/Playwrights.rdf#"

xmlns:rdf"http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<lit:Playright>

30

 <lit:Id>1</lit:Id>

<lit:FirstName>William</lit:FirstName >

<lit:LastName>Shakespeare</lit:LastName >

<lit:BirthPlace>Stratford</lit:BirthPlace >

<lit:BirthDate>1564</lit:BirthDate >

</lit:Playright >

</rdf:RDF>

 Turtle (Terse RDF Triple Language) is a serialization format for

the Resource Description Framework (RDF) data model. Turtle does not

rely on XML and is generally recognized as being more readable and

easier to edit than its XML counterpart. SPARQL (we will see it soon),

the query language for RDF, uses a syntax similar to Turtle for

expressing query patterns, hence it will be the serilizable format we

will use in the remainder of the survey.

@prefix lit:

<http://www.ElizabethanLiterature.org/Playwrights.rdf#>

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

lit:Shakespeare rdf:type lit:Playright;

lit:Playright_ID "1";

lit:Playright_FirstName "William";

lit:Playright_LastName "Shakespeare";

lit:Playright_BirthPlace "Stratford";

lit:Playright_BirthDate "1564";

3.2.5. Querying data

A serilizable representation of data is useless without some means of
accessing that data. The standard way of accessing RDF data is a Query
Language called SPARQL (SPARQL Protocol And RDF Query Language). The
SPARQL query language, which shares many similar features with other query
languages such as SQL, is always the way to query data in RDF graph. SPARQL
uses syntax similar to Turtle for expressing query patterns. In addition to
SPARQL, there is an additional extension to the SPARQL, SPARUL,
or SPARQL/Update that provides the ability to insert, delete and
update RDF data held a data repository.

In order to give an idea of how SPARQL query language works, we will show
some simple examples but we will not deepen into it since it is besides the
objective of the survey.

RDF Data serialized in Turtle to be queried by SPARQL

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://en.wikipedia.org/wiki/Resource_Description_Framework

31

lit:Shakespeare lit:wrote lit:KingLear

lit:Shakespeare lit:wrote lit:MacBeth

bio:AnneHathaway bio:married lit:Shakespeare

bio:AnneHathaway bio:livedWith lit:Shakespeare

lit:Shakespeare bio:livedIn geo:Stratford

geo:Stratford geo:isIn geo:England

geo:England geo:partOf geo:UK

geo:Scotland geo:partOf geo:UK

geo:Ireland geo:partOf geo:UK

lit:MacBeth lit:setin geo:Scotland

lit:KingLear lit:setin geo:England

Where did Shakespeare live?

SELECT ?place .

WHERE { lit:Shakespeare bio:livedIn ?place .}

?place

geo:Stratford

What playwrights were written by Shakespeare?

SELECT ?playwright .

WHERE { lit:Shakespeare lit:wrote ?playwright .}

?playwright

lit:KingLear

lit:MacBeth

What playwrights written by Shakespeare were set in Scotland?

SELECT ?playwright .

WHERE { lit:Shakespeare lit:wrote ?playwright .

 ?playwright lit:setIn geo:Scotland .}

?playwright

lit:MacBeth

32

3.2.6. Converting Dumb data into Smart data

Just at the beginning of this survey, in the section “The uncontrollable
proliferation of untrustworthy data”, we introduced the problem of
disconnected, inconsistent and desynchronized data. In the world of Semantic
Web, sometimes this situation is known as “dumb” data and the main
objective of Semantic Web is to provide a more connected Web
infrastructure. RDF ships with a consistent way to represent data so that
information from multiple sources can be brought together and merge into a
single data source to be queried by SPARQL. The problem arises when we
want to use that data, it is just when the differences between data surface
and we need some sort of mechanisms to deal with them.

“Dumb data” example:

Imagine we are in the webpage of Elizabethan Literature organization, and
we search for “Shakespeare” in the category of “Authors.” Our search comes

up empty. We are surprised, because we were quite certain that we know
that Shakespeare is a “Playwright” and, therefore, an “Author”. So we look
up the name “Shakespeare” but on this occasion we search “Shakespeare” in
the category “Playwrights”. There exists “Shakespeare” as a “Playwright.
What is going on? This situation is that Semantic Web would define as “dumb
data”. If “Shakespeare” is a “Playwright” and “Playwright” is a subcategory
of “Author”. Wouldn’t it be logic that “Shakespeare” shows in the search
results for both categories? What would we convert this “dumb data” into
“smarter data”? How can we express this meaning in a way that is consistent
and maintainable?

To make our data look more connected and consistently integrated, we must
be able to make date sensible from distributed web of data by adding
relationships into the data. In this example, we want to be able to express the
relationship between “Author” and “Playwright” that will tell us that any item

in the “Playwright” category should also be in the “Author” category.

The Semantic Web approach to this problem uses a modeling language in
which the relationship between the sources can be described and the meaning
of the modeling language. This is known as ontology. Meaning of data is given
by patterns of inference and data integration is achieved by invoking such
inferences; a query returns not only the asserted data but also inferred data.
The Semantic Web approach also uses taxonomies to provide controlled
vocabularies to guarantee a common background of terms. Just as do
ontologies, taxonomies play an important role since it allows us to define
broad and narrow terms and bring together different name to the same thing.
The Semantic Web Modeling Languages differ mainly in their level of
expressivity and are:

33

 RDF (Resource Description Framework). This is the basic framework that
the rest of the Semantic Web is based on. RDF provides a mechanism for
allowing anyone to make a basic statement about anything.

 RDFS (RDF Schema language). RDFS is a language with the expressivity to

describe the basic notions of commonality and variability familiar from
oriented-object languages — namely classes, subclasses, and properties.

 RDFS-Plus. RDFS-Plus is a subset of OWL that includes enough expressivity
to describe how certain properties can be used and how they relate to one
another. RDFS-Plus is expressive enough but it lacks the complexity that
makes OWL.

 OWL (Web Ontology Language). OWL brings the expressivity of logic to
the Semantic Web. It allows modelers to express detailed constraints

between classes, entities, and properties. OWL was adopted as a
recommendation by the W3C in 2003.

“Smart data” example:

Turning to our previous example of Elizabethan Literature, we will see how
to provide certain meaning to our relationship “Playwright” is a subcategory
of “Author” by using RDFS modeling building blocks. We will use
“rdfs:subclassOf” to express that “Playwright” is a subcategory of “Author”
and “rdf:typeOf” to express that an entity corresponds to a certain category.
To make thing more challenging, we will add movie data from the data
source American Movies organization.

lit:Playwright rdfs:subclassOf lit:Author

lit:Writer rdfs:subclassOf lit:Author

mov:Director rdfs:subclassOf lit:Author

From the figure above, we can laid down that the asserted triples are

34

lit:OscarWilde rdf:type lit:Writer

lit:JamesJoyce rdf:type lit:Writer

lit:Shakespeare rdf:type lit:Playwright

mov:JohnFord rdf:type mov:Director

And we can also infer that the inferred triples are

lit:OscarWilde rdf:type lit:Author

lit:JamesJoyce rdf:type lit:Author

lit:Shakespeare rdf:type lit:Author

mov:JohnFord rdf:type lit:Author

Finally, we can define the following taxonomy: “Both Writer and Playwright
are narrow terms from the broader term Author”.

Table 3.8 shows different Semantic Web constructions classified by Semantic
Web modeling language they belong to.

Table 3.8 Semantic Web modeling language constructions

 Construction Description
RDF rdf:type The relationship between an instance and

its type.
RDF rdf:Property The type of any property in RDF.
RDFS rdfs:subClassOf Relation between classes, that the

members of one class are included in the
members of the other.

RDFS rdfs:subPropertyOf Relation between properties, that the
pairs related by one property are included
in the other.

RDFS rdfs:domain
rdfs:range

Description of a property that determines
class membership of individuals related by
that property.

RDFS rdfs:label No inferential semantics, printable name
RDFS rdfs:comment No inferential semantics, information for

readers of the model
OWL owl:sameAs All statements about one instance hold for

the other.
OWL owl:inverseOf Exchange subject and object
OWL owl:TransitiveProperty Chains of relationships collapse into a

single relationship.
OWL owl:SymmetricProperty A property that is its own inverse.
OWL owl:FunctionalProperty Only one value allowed (as object).
OWL owl:InverseFunctionalProperty Only one value allowed (as subject).
OWL owl:ObjectProperty Property can have resource as object.
OWL owl:DatatypeProperty Property can have data value as object.
OWL owl:Restriction

The building block in OWL that describes
classes by restricting the values allowed
for certain properties.

OWL owl:hasValue A type of restriction that refers to a single
value for a property.

OWL owl:someValuesFrom A type of restriction that refers to a set
from which some value for a property must

35

come.
OWL owl:allValuesFrom A type of restriction that refers to a set

from which all values for a property come.
OWL owl:onProperty

A link from a restriction to the property it
restricts.

OWL owl:unionOf
owl:intersectionOf
owl:complementOf

Basic set operations applied to classes.
Each of these is used to create a new
class, based on the specified set operation
applied to one or more defined classes.

OWL owl:oneOf Specifies that a class consists just of the
listed members

OWL owl:differentFrom Specifies that one individual is not
owl:sameAs another. This is particularly
useful when making counting arguments.

OWL owl:cardinality
owl:minCardinality
owl:maxCardinality

Cardinality specifies information about the
number of distinct values for some
property. Combined with owl:oneOf,
owl:differentFrom, owl:disjointWith,and
so on, it can be the basis of inferences
based on counting the number of values.

3.3. Semantic Web Application Architecture

3.3.1. The design of a Web Semantic Application

Once we have already seen the components of Semantic Web Technology
Stack, it is time to discuss how to come up with a Semantic Web application

and how these components fit together. The Semantic Web Architecture is
shown and described in the Figure 3.13.

Figure 3.13 Semantic Web Architecture

 RDF Parser/Serializer. We have already seen a number of serializations

of RDF in the Semantic Web Technology Stack, including the W3C
standard serialization in XML. An RDF parser reads text in one (or more)

36

of these formats and interprets it as triples in the RDF data model. An
RDF serializer does the reverse process; it takes a set of triples and
creates a file that expresses that content in one of the serialization
forms.

 RDF Store. An RDF store is a database that is tuned for storing and

retrieving data in the form of triples. In addition to the familiar
functions of any database, an RDF store has the additional ability to
merge information from multiple data sources.

-

 RDF Query Engine. Closely related to the RDF store is the RDF Query
engine. The query engine provides the capability to retrieve

information from an RDF store according to structured queries.

 Application. An application has some work that it performs with the
data it processes: analysis, user interaction, archiving, and so on.
These capabilities are accomplished using some programming language
that accesses the RDF store via queries (processed with the RDF query
engine).

Most of these components have corresponding components in a relational
database application as Table 3.9 below shows.

Table 3.9. Comparison between Relational databases and Semantic Web

 Relational Database Semantic Web
Data Repository RDBMS RDF store
Query Engine RDBMS Query Engine RDF Query Engine
Data Definition Language SQL RDF
Query Language SQL SPARSQL
Parser/Searializer No applicable Turtle, NTriples, XML/RDF
Converter/Scrapper No applicable RDFa
Application Custom code Custom code

3.3.2. Adding inference to our Semantic Web Architecture

The inference we outlined in previous sections for describing the meaning of
data is useful, but how does it fit with the architecture we have just defined?
We will need to add a new component in our architecture, something that can
respond to queries based not only on the triples that have been asserted but
also on the triples that can be inferred based on patterns of inference.

The new component, which could be called Inference Query Engine, will be

part of the RDF Query Engine and its power of inferencing should be
determined by the set of inferences that it can support. For example an OWL
Inference Query Engine supports a larger set of inferences than a RDFS one. As
a result of this design, we actually have two different separated processes the
Query Engine architectural component is responsible for. On one hand, we
have a query process which can query all asserted triples as result of merging
from several data sources. On other hand, we also have an inference process

37

which produces all the possible inferred triples based on a particular set of
inference patterns.

You may be wondering why we give so much importance to this nuance. The
process of inference leads to a very important question that can determine
the performance of our system. When does inference actually happen? Where

are inference triples stored?

 Cache inference. This approach stores all inference triples in the RDF
store along with asserted triples. As soon as inference pattern is
identified, any inferred triples are inserted into the RDF store. The
disadvantage of this approach is that the triple store could be overloaded
and affects performance.

 Just in time inference. This approach stores all inference triples in the

RDF store only in response to queries only. The query responses are
produced in such a way as to respect all the appropriate inferences, but no
inferred triple is retained. The drawback of this approach is that inference
work is duplicated but the persistent storage is eased.

3.4. A brief summary of Web Semantic concepts learnt

The aspects of the Semantic Web we outlined here give us a subtle idea of
how unruly the Web can become. We could observe that Semantic Web deals
with the same sort of problem we spelt out at the beginning of this document
— that is, inconsistent, disconnected and out-of-synchronization data. How
can multiple data sources be brought together? How can such a mess become
something useful?

Semantic Web overcomes this challenge by several mediums called Semantic
Web Stack: a representation of distributed web data, a process of merging
data, some modeling tools to give sense to this mass of data, a novel query
engine with support for inference, and even a design model for Semantic Web
applications. Its mission is to make sensible, usable, and durable information
resources.

In certain way, Semantic Web encourages us to carry out a reengineering
process of reconverting our supposed organized data into raw data in such
way to give them a new sense. This is the idea behind Semantic Web.

Table 3.10 shows a summarize of Semantic Web concepts

Table 3.10 Semantic Web concepts

Concept Description
RDF This distributes data on the Web.
Triple The fundamental data structure of RDF. A triple is

made up of a subject, predicate, and object.
Graph A nodes-and-links structural view of RDF data.
Merging The process of treating two graphs as if they were one.
URI A generalization of the URL (Uniform Resource

Locator), which is the global name on the Web.

38

qname An abbreviated version of a URI, it is made up of a
namespace identifier and a name, separated by a colon

rdf:Type The relationship between an instance and its type.
rdf:Property The type of any property in RDF.
rdf:SubclassOf The inheritance relationship in RDFS.
N-triples, N3, RDF/XML The serialization syntaxes for RDF.
Ontology A way to make date sensible distributed data
Taxonomy A way to provide a common understanding on a domain
Asserted triples The triples in a graph that were provided by some data

source.
Inferred triples Triples that were added to a model based on systematic

inference patterns.
Inference patterns

Systematic patterns defining which of the triples should
be inferred.

Inference engine A program that performs inferences according to some
inference rules. It is often integrated with a query
engine.

RDF parser/serializer A system component for reading and writing RDF in one
of several file formats.

RDF store A database that works in RDF. One of its main
operations is to merge RDF stores.

RDF query engine This provides access to an RDF store, much as an SQL
engine provides access to a relational store.

RDF inference query
engine

This provides access to an RDF store, much as an SQL
engine provides access to a relational store.

SPARQL The W3C standard query language for RDF.
SPARQLU Extension for SPARQL to perform CRUD operations
SPARQL endpoint Any application that can answer a SPARQL query,

especially one where the native encoding of
information is not in RDF.

Application interface The part of the application that uses the content of an
RDF store in an interaction with some user.

Scraper A tool that extracts structured information from
webpages.

Converter A tool that converts data from some form (e.g., tables)
into RDF

RDFa Proposed standards for encoding and retrieving RDF
metadata from HTML pages.

39

PART III
“As a general rule, the most successful man in life is the man who has the best

information.” —Benjamin Disraeli

40

4. The journey from Semantic Web to Enterprise Semantic Web

Semantic Web can provide an interesting approach for organizations to deal
with inconsistent, disconnected and out-of-synchronization data. In fact, we
will not be pioneers in this field because there is already a hard proof of its
feasibility.

Success Case in organizations: Data.gov

Data.gov is a successful effort made by the US government to publish public
information from different organizations. There are thousands of data sets in

Data.gov, of which hundreds are made available in RDF. Data.gov is a great
example of how to put order in chaos; the published data sets come from a
wide variety of data sources with different formats and methodologies.
Data.gov showed how Semantic Web can be useful to organizations at once.
So, if they could, we can!

From now on, our mission will be to rename Web Semantic to Enterprise
Semantic Web. We will look into how SharePoint, an enterprise solution, can
be blend into Web Semantic as a knowledge management platform within
organizations.

Calm your horses! If we want to go deeper into Enterprise Semantic Web
through SharePoint, first of all, we need to have a brief look at SharePoint
architecture so as to understand our subsequent steps. Secondly, we will dive
to the depths of SharePoint data model to find out how SharePoint data model

can match with the Semantic Web representation of data. Thirdly, we will
keep on investigating into how SharePoint brings all data together and gives
sense to those data. Finally, we will have a brief look at querying data. Only
then, we will surface. So now let’s get down to business.

4.1. SharePoint Architecture

At its core, SharePoint is a data provisioning engine —that is, its fundamental
design is based on the idea of using Web-based templates to create sites,
lists, and libraries to store and organize data.

SharePoint is particularly helpful to companies and organizations faced with
the task of creating and administering a large number of websites along with
its data. Someone in the IT department or even an ordinary business user can
provision a site in SharePoint in less than a minute.

4.1.1. Server Farms

Every deployment of SharePoint is based on the concept of a farm. A server
farm is a set of one or more server computers working together. A SharePoint

41

farm in a typical production deployment runs several Web servers, Application
servers and Database servers coming together to provide Web Application and
Services Applications to users.

The architecture of SharePoint was specifically designed to operate in a Web
farm environment. Figure 4.1 shows a diagram of a typical Web farm. Our

remainder description of SharePoint architecture will be based on this
diagram.

Scenario: Introducing Contoso

Many of the examples in this document are based on Contoso also known
as Contoso Ltd., a fictional company used by Microsoft as an example
company and domain. Contoso has a long and proud history of manufacturing
and delivering its products in bulk for all its customers. Recently, Constoso

has recently set up an intranet using SharePoint to provide a means of
collaboration between its remote and internal employees. Constoso has also
rolled out an extranet using SharePoint to interact with partners around the
world. Finally, Contoso decided to use SharePoint to erect its Internet-facing
site to advertise and promote its products for customers.

http://en.wikipedia.org/wiki/Microsoft

42

EXTRANET DEFAULT INTRANET INTERNET

LOAD BALANCER LOAD BALANCER

IIS Web Site—“SharePoint Web Services”
IIS Web Site—“SharePoint Web Services”

Business
Data
Connectivity

Search
Service

Managed
Metadata

Secure Store
Service

User Profile
Service

Excel
Calculation

Word
Viewing

PowerPoint

Search
Service

Web application:

Published Intranet Content

Web application:

Team Sites
Web application:

My Sites

Web application:

Partner Web
Web application:

Company Internet Site

INDIVIDUAL PARTNERS
https://partnerweb.contoso.com

REMOTE EMPLOYEES

https://intranet.contoso.com

https://team.contoso.com

https://my.contoso.com

 https://remotepartnerweb.contoso.com

https://contososite.contoso.com (authoring)

INTERNAL EMPLOYEES

http://intranet

http://team

http://my

http://partnerweb

http://contososite (authoring)

CUSTOMERS

http://www.contoso.com

Web Servers

Application Server

Clustered or mirrored database
servers running SQL Server

Web Servers

Application Server

Clustered or mirrored database
servers running SQL Server

HR LEGAL MANUFACTURING

http://Intranet

Databases

Team1 Team2 Team3

http://Teams

Databases

http://my

Databases

Project1

http://PartnerWeb/Sites

Databases

Products Services Support

http://www.contoso.com

Databases

Http://my/personal/
<site_name>

Project2 Project3

Typical SharedPoint Design: Contoso Portal

Users

Server Farm

Application
Services

Web Application

Site collection

Web Site

Figure 4.1. SharePoint Design Sample

43

4.1.2. Web Applications

SharePoint is built on IIS Web server and relies on IIS websites to handle
incoming HTTP requests. We can create additional IIS websites to provide
additional HTTP entry points using different port numbers, different IP
addresses, or different host headers. At a physical level, a SharePoint Web
application is a collection of one or more IIS websites configured to map

incoming HTTP requests to a set of SharePoint sites. The Web application, in
turn, maps each SharePoint site to one or more specific content databases.
SharePoint uses relational databases to store site content such as lists, list
items, documents, and customization information.

Scenario: Web Applications in Contoso

In our scenario, we will use host headers to create HTTP entry points for
domain names such as http://intranet.contoso.com. SharePoint creates an
abstraction on top of IIS that is known as a Web application. Contoso hosts the
following Web applications within the server farm:

Published Intranet Content: Web

sites that allow different internal

departments to host content like

documents, reports, images,

videos or even Web pages…

Team Sites: Web sites that allows

organization members to work

together on Microsoft Office

documents which are stored an

accessed by internal and remote

employees.

http://intranet.contoso.com/

44

My Sites: My Sites are personal

sites that not only display

information about each user in the

organization, but also are used as

a personal landing page and

storage site for individuals. My

Sites can be used to enter

information about yourself, such

as demographics, current projects,

areas of expertise, and so on.

Partner Web: Those project or

services for which are necessary to

work closely with external

collaborators are hosted in

isolated Web Applications.

Company Internet Site: This is the

typical company Web Site whereby

the organization gets into

communication with customers to

offer their products and services.

45

4.1.3. Service Applications

Service applications provide SharePoint functionality and share resources
across sites running in different Web applications and different farms.
SharePoint ships with many built-in service applications like Access Services
Enterprise, Application Registry Services Standard… Each of them provides
interesting functionality but we will not give them much importance since

they are beyond scope of this document.

Scenario: Service Applications in Contoso

In our scenario, Contoso hosts several Service applications within the server farm
but we will mainly have a focus on Business Connectivity Service, Managed
Metadata Service and Search Service. These four key service applications are
worthy of our interest because all of them are closely related to Semantic Web
principles.

 Business Connectivity Service — to allow an organization to connect SharePoint-
based solutions to sources of external data.

 Managed Metadata Service — to allow an organization, team or department to
manage its own taxonomy, hierarchies, keywords, and so on.

 Search Service — to query, index and crawl content and users.

4.1.4. Web site

Now that we understand the high-level architecture of a server farm along
with Web applications and Service applications, we need to have a look at
how SharePoint creates and manages sites within the scope of a Web
application.

What exactly is a SharePoint Web site? A Web site is an endpoint that is
accessible from across a network such the Internet, an intranet, or an
extranet. A site is also a storage container that allows users to store and
manage content such as list, document libraries, list items and documents.

46

Figure 4.2 shows some Web sites hosted in the Web application “Published
Intranet Content” in the Contoso Server farm.

Figure 4.2. Web Sites Contoso Sample

4.1.5. Site Collection

Every Web site must be provisioned within the scope of an existing Web
application. However, a Web site cannot exist as an independent entity within
a Web application. Instead, every Web site must also be created inside the
scope of a site collection. A site collection is a container of sites. Every site
collection has a top-level site from child sites derive.

You might be asking yourself why the SharePoint architecture requires this
special container to hold its sites. Site collections represent a scope for
administrative and security settings. All sites within a site collection maintain
the same administrative and security settings except for some custom setting
at Web site level. Think about the requirements of site management in a large
corporation that’s provisioning thousands of sites per year. Figure 4.3 shows a
site collection hosted in the Web application “Published Intranet Content” in
the Contoso Server farm.

47

Figure 4.3. Site Collection Contoso Sample

4.1.6. Databases

SharePoint uses content relational databases to store site content such as
lists, list items, documents, and customization information. The Web

application also maps each SharePoint site to one or more specific content
databases and each site collection is stored in only single content databases
associated with a Web application. A typical SharePoint server farm could
easily reach up to 50 or more content databases without counting databases
associated with server farm configuration and service applications.

Scenario: Don’t Touch the SharePoint Databases

We could yield to temptation of directly handling SharePoint databases to
resolve our Semantic Web issue but this is not possible. When developing for

SharePoint, we are not permitted to directly access the configuration
database or any of the content databases. For example, we must resist any
temptation to write custom code that reads or writes data from the tables
inside these databases. Instead, we should write code against the SharePoint
programming APIs to reach the same goal, and leave it to SharePoint to
access the configuration database and content database behind the scenes.
This restricts fully the developers to develop custom applications.

4.2. SharePoint Data Model

.

SharePoint distinguishes two different scenarios for data model design. In one
scenario, there is no existing system to worry about and we can start our
internal data model design from scratch. This situation is known as green field

48

development. In the other situation, we have to design the solution in an
existing environment, which could include integration with external systems,
legacy systems and existing databases. This other situation is known (please,
no jokes!) as brown field development.

4.2.1. Green field development

Every custom SharePoint application is a data-driven application in one way or
another and it provides a data model very close to relational database model.
SharePoint is also built on Oriented-Object programming framework and
sometimes it can be seen as an Object-Relational mapping framework. Table
5.1 shows SharePoint data model building blocks that are conceptually similar
to those found in a relational database and Semantic Web.

SharePoint, Relational database and Semantic Web

SharePoint Relational Database Semantic Web
List Table Set of Triples
View Table View rdfs:domain, rdfs:range
Column Table Column rdf:property
List Item Table Row Triple
Content Type Table Schema rdf:type
Content Type Hierarchy No applicable rdfs:subclassOf
No applicable No applicable rdfs:subpropertyOf
Lookup column Foreign key Graph

4.2.1.1. SharePoint Column

A column represents a reusable metadata that we can be assigned to multiple
content types across multiple Web sites within a Site collection. SharePoint
columns are conceptually similar to table columns in that they define data
type and other features columns will store.

SharePoint columns and RDF properties

A RDF property indicates when other identifier is to be used as a predicate in
a triple in such way that it can be assigned to different types to build
sentences like “The order number ZX-3P (subject) costs (predicate) 1.150 €
(object)”. Similar to RDF, SharePoint columns can be assigned to different
content types and build the same sentence: “The order number ZX-3P
(content type) costs (column) 1.150 € (value)”.

SharePoint columns and RDFS range and domain

RDFS domain asserts that a RDF property relates values from a certain domain
whereas RDFS range establishes that a range of values relates a RDF property.
A simple example of RDFS domain in SharePoint could be that a SharePoint
column “OrderNo” relates basic data type like integer or float. This example
is pretty simple and it can be easily applicable to SharePoint columns.

49

Look out for the combination of RDFS domain and RDFS class inheritance

A combination between RDFS domain and RDFS class inheritance can be very
confusing to understand. For example, by using RDF domain we can assert “If
an order inherits from a shippable item and that order has a property called
identification whose domain is Order, then we can infer that any item with
property identification must be an Order, what’s more, it must be also a
shippable item”. This sort of assertions is not possible in SharePoint columns.
The reason is that SharePoint is built on an Oriented-Object framework. In
the Semantic Web, because of the slogan “AAA”, a RDF property can be used
anywhere, and it must be independent of any class. That is, it is never
accurate in the Semantic Web to say that a property is “defined for a class”.
A property is defined independently of any class, and the RDFS relations
specify which inferences can be made. To sum up, RDFS domain and RDFS
range have their counterparts in SharePoint but to a certain extent as long as

they are not used in combination with inheritance.

4.2.1.2. SharePoint Content type

A content type is a reusable collection of metadata (columns) for list items in
a list. Content types enable you to manage the settings for a category of
information in a centralized and reusable way within a Site collection. In
relational database, the only similar concept to content type is a schema
created by Definition Data Language (DDL) for a database table.

SharePoint Content types and RDF type

A RDF type is the property that provides an elementary typing system in RDF
in the same way as is content type in SharePoint. In RDF, we can say “The
order number ZX-3P (subject) is of the type (predicate) Order (object)”. In
SharePoint, we can equally say “The order number ZX-3P (instance of content
type) is of the type (content type associated with list item object) Order
(content type)”.

50

SharePoint Content type hub

We may have let a little nuance escape in the previous definition of content
type before. A content type is defined within a Site collection, but what if
we needed the content type to be used in multiple Site collections. If we
need to use content types across multiple Site collections, we would have to
set up a Content Type hub in Managed Metadata Service Application about
which we will speak soon. This Content Type hub will be responsible for
managing content types that can be published across all Web application and
its Site collections.

4.2.1.3. SharePoint Content Type hierarchy

SharePoint includes many built-in content types that can be organized in a
hierarchy based on inheritance. At the top of the hierarchy is the System
content type which is composed of important built-in columns such as ID. Next
below System is the Item content type, which is derived from System. Item is
made up of only one built-in important column called title that is normally
used to store the name associate with any a content type. All built-in content

types in SharePoint ultimately inheritance from Item. In SharePoint, there are
many content types defined such as Task, Contact, Event and so on and on
forth. Before creating a new content type from scratch, you should wonder
whether it is really worth creating a new content type or extend an existing
content type adding new columns.

SharePoint Content types inheritance and RDFS subclasses

RDFS subclass suits SharePoint content type inheritance very well. In fact,
although SharePoint Content type is built on Oriented-object framework, it
matches better with the concept of inheritance in RDFS.

In Oriented-object programing (OOP, for the sake of brevity), an instance of a
class responds to the same methods in the same way as instances of its
superclass. In SharePoint terms, this is because that instance is also a member
of the superclass, and thus must behave like any such member. For example,
the reason why an instance of class “Document” responds to methods defined
in “System” is because the instance actually is also a member of class
“Document.” This consistency is misleading when, in the OOP system, the
subclass defines an override for a method defined in the superclass. In

SharePoint terms, the instances of “Document” are still instance of “System”
and should respond accordingly. But in most OOP semantics, this is not the
case; the definitions at “Document” take precedence over those at “System”
and thus “Document” need not actually behave like “System” at all. In the
logic of the SharePoint, this is not allowed, there is no polymorphism.

51

SharePoint Content types inheritance and RDFS subproperties

Unfortunately SharePoint lacks the inference pattern RDFS subproperty. It is a
pity indeed since SharePoint columns are independent of any content type.
When we assign columns to content types, what we are actually doing is to
make a copy from the original column and to assign it to the content type –

that is, columns behaves like class-object relationship in OOP. However, it is
not simply right in SharePoint to say that a lonely column has meaning by
itself because it is useless unless they are associated with content types.

Warning: Lists with columns or lists with content types

Although it is possible to define a data model using only lists and columns,
the recommended approach is to use content types to define your entities in
SharePoint. The main reason behind this recommendation is those list items
that are stored in a list with no content type associated with are not actually
typified. For example, if there are some contact list deployed in SharePoint
and those lists have a contact content type associated, you will only have to
modify the content type if a change was required. However, if those contact
lists have no content type associated, you will have to go across all contact
lists to make the new changes. A pain in the neck!

4.2.1.4. SharePoint List and List item

Lists are the storage mechanism in SharePoint and conceptually (watch what
we say conceptually) similar to a relational database table in that, they are
made of columns and rows, that we can define primary keys, and that we can
create relationships between lists. Lists stores a set of rows called list items.
Each list item is typified by a content type and it can see as an instance of a
content type. Conversely, a content type defines the structure of multiple list
items.

SharePoint Lists Item and RDF triples

A RDF triple corresponds to a piece of list item. For example, if in RDF we say
“The order number ZX-3P (subject) costs (predicate) 1.150 € (object)”, this
sentence corresponds to the SharePoint list item with “Order number” column
corresponding to the value “ZX-3P” whose “Cost” column holds the value
“1.150 €”.

An entire set of RDF triples describing a same resource corresponds to an
entire list item. If we have several triples related to the same resource such
as “The order number ZX-3P costs 1.150 €” and “The order number ZX-3P has
an amount of 23 items”, these sentences correspond to the SharePoint list
item whose “Order number”, “Cost” and “Amount” columns hold the values
“ZX-3P”, “1.150 €” and “23” respectively.

52

How the problem of unique identity is resolved in SharePoint

In order to provide an identity to SharePoint objects, SharePoint provides
every list and list item with an identity (ID). A list is uniquely identified by
Web Application, Web site and its list ID. If we want to identify a list item,
we only have to add its ID to the Web Application, Web site and list.

For example, a product list in the Contoso Manufacturing department can be

identified by the URN
http://intranet.contoso.com/manufacturing/ProductList in which
http://intranet.contoso.com corresponds to the Web application that host
the list and the relative URN /manufacturing refers to the Web that host the
list. In case we want to identify a certain product (a list item) stored in the
product list, we should only add its ID to the URN.

As you can see, the URN Web Application/Site Collection/Web/List(/ID) is
pretty similar to the concept of URN in Semantic Web. Unfortunately, no
qnames are provided by SharePoint.

SharePoint Lists and several RDF triples

Many sets of RDF related to the same type of resource that are stored in a RDF
Store correspond to the concept of SharePoint list. Keep in mind that a
SharePoint list is stored in a data repository as a set of RDF triples.

A SharePoint List corresponds to a relational data table in content
database?

Thinking that there is a straight correlation between a SharePoint list and
relational database table in a content database is a typical mistake in
SharePoint. When we defined the relationship between a SharePoint list and
relational database table, we stressed that such relationship was actually
conceptual rather than physical. How is a SharePoint list actually stored in
relational database? We are afraid that it is a Microsoft mystery like many
others. SharePoint does not provide this sort of support. If you ask, you will
receive a gentle advice in exchange: Don’t touch databases!! What it is sure
is that a neither SharePoint list is necessarily to be related to a single
database table nor SharePoint list content is handled by database. For
example, A SharePoint list can be indexed to enhance its performance and

such index is not stored in the database but in the system server files where
Web application is deployed. This pulls down any theory of physical
relationship with database tables.

53

4.2.1.5. SharePoint List View

A list view is conceptually similar to its relational database view counterpart.
We can use views on a list to sort, group, and filter list items. There is no a
Web Semantic building block similar to the concept of view in SharePoint,
SPARQL allows us to define views though. The concept of SharePoint view is
tremendously important when we must deal with large lists later, thus we are

introducing this concept.

4.2.1.6. Putting columns, content types and lists together

It is time we put together all SharePoint data model building block to show

how SharePoint data model can be used in RDF. We will be turning to our
company Contoso to produce a RDF graph that reflects the content of some
SharePoint lists in such a way that the information is preserved and amenable
for RDF operations like merging and querying. Suppose that given the orders
list that is stored in the Web site http://intranet.consoso.com/manufacturing
as it is shown below

Orders SharePoint List

ID
(built in)

OrderNo Amount Cost

1 ZX-3 23 1.150 €
2 ZX-3P 4 120 €
3 ZX-3S 34 6.550 €
4 B-1430 23 875 €
5 B-1430-X 14 300 €

Each list item in the list describes a single entity, all of the same type. That
type is given by the name of the list itself, Order. We know certain
information about each of these items, based on the columns in the list itself
(remember that there is always a content type behind a list), such as Order
NO, Amount, and so on. We want to represent this data in RDF. Since list item
row represents a distinct entity, each list item will have a distinct URI.
Fortunately, as we see the need for unique identifiers is just as present in
SharePoint as it is in the Semantic Web, so there is a (locally) unique
identifier available—namely, the primary list key, in this case the built-in
column called ID.

For the Semantic Web, we need a globally unique identifier. The simplest way
to form such an identifier is by having a single URI for the list itself.
Remember that a list item can be identified by the triple Web
Application/Web Site/List plus its ID (for example,
http://intranet.contoso.com/manufacturing/orders#1. We use that URI as the
namespace for all the identifiers in the list for the sake of brevity. Since this

is a Web site for manufacturing, let’s call that namespace mfg:. Then we can
create an identifier for each order by concatenating the table name “Order”

http://intranet.consoso.com/manufacturing
http://intranet.contoso.com/manufacturing/orders#1

54

with the unique key and expressing this identifier in the mfg: namespace,
resulting in identifiers mfg:Order1, mfg:Order2, and so on.

Each list item in the list says several things about that list item—namely, its
Order number, amount, and so on. To represent this in RDF, each of these will
be a property that will describe the Orders. But just as is the case for the
unique identifiers for the rows, we need to have global unique identifiers for
these properties. We can use the same namespace as we did for the
individuals, but since two list could have the same column name (but they
aren’t the same properties!), we need to combine the list name and the
column name. This results in properties like mfg:Order_OrderNo,

mfg:Order_Amount, and so on.

With these conventions in place, we can now express all the information in
the list as triples. There will be one triple per list item in the list—that is, for
n rows and c columns, there will be n * c triples. The data shown in Table 5.2
has 4 columns and 5 rows, so there are 20 triples, as shown in Table 5.3
below.

Table 5.3 Triples representing data stored in Orders SharePoint list

Subject Predicate Object
mfg:Order1 mfg:Order_ID 1
mfg:Order1 mfg:Order_OrderNo ZX-3
mfg:Order1 mfg:Order_Amount 23
mfg:Order1 mfg:Order_Cost 1.150 €
mfg:Order2 mfg:Order_ID 2
mfg:Order2 mfg:Order_OrderNo ZX-3P
mfg:Order2 mfg:Order_Amount 4
mfg:Order2 mfg:Order_Cost 120 €
mfg:Order3 mfg:Order_ID 3
mfg:Order3 mfg:Order_OrderNo ZX-3S
mfg:Order3 mfg:Order_Amount 34
mfg:Order3 mfg:Order_Cost 6
mfg:Order4 mfg:Order_ID 4
mfg:Order4 mfg:Order_OrderNo B-1430
mfg:Order4 mfg:Order_Amount 23
mfg:Order4 mfg:Order_Cost 875 €
mfg:Order5 mfg:Order_ID 5
mfg:Order5 mfg:Order_OrderNo B-1430-X
mfg:Order5 mfg:Order_Amount 14
mfg:Order5 mfg:Order_Cost 300 €

The triples in the table are a bit different from the triples we have seen so
far. Although the subject and predicate of these triples are RDF resources
(complete with qname namespaces), the objects are not resources but literal

data—that is, strings, integers, and so forth. This should come as no surprise,
since, after all, RDF is a data representation system.

The usual interpretation of a list is that each list item in the list corresponds
to one individual and that the type of these individuals corresponds to the

55

name of a content type. In Table 5.3, each list item actually corresponds to
an Order content type. We can represent this in RDF by adding one triple per
list item that specifies the type of the individual described by each list item,
as shown in Table 5.4.

Table 5.4 Triples representing Type information

Subject Predicate Object
mfg:Order1 rdf:type mfg:Order
mfg:Order2 rdf:type mfg:Order
mfg:Order3 rdf:type mfg:Order
mfg:Order4 rdf:type mfg:Order
mfg:Order5 rdf:type mfg:Order

Wait a moment! For what we have Content type inheritance? Should the Order
content type not inherit from Item content type as we defined before? What
about the properties? Table 5.5 shows the entire representation of data.

Be aware that we have introduced a new qname corresponding to the
SharePoint Item content type called sp: in honor of SharePoint.

Table 5.5 Triples representing entire information

Subject Predicate Object
mfg:Order_ID rdf:type rdf:property
mfg:Order_OrderNo rdf:type rdf:property
mfg:Order_Amount rdf:type rdf:property
mfg:Order_Cost rdf:type rdf:property
mfg:Order_ID rdfs:domain xsd:string
mfg:Order_OrderNo rdfs:domain xsd:string
mfg:Order_Amount rdfs:domain xsd:integer
mfg:Order_Cost rdfs:domain xsd:decimal
mfg:Order rdfs:subClassOf sp:Item
mfg:Order_ID rdfs:subPorperttyOf sp:ID
mfg:Order1 rdf:type mfg:Order
mfg:Order2 rdf:type mfg:Order
mfg:Order3 rdf:type mfg:Order
mfg:Order4 rdf:type mfg:Order
mfg:Order5 rdf:type mfg:Order

From the table above, we can infer the following inferred triples

mfg:Order1 rdf:type sp:item

mfg:Order2 rdf:type sp:item

mfg:Order3 rdf:type sp:item

mfg:Order4 rdf:type sp:item

mfg:Order5 rdf:type sp:item

56

4.2.1.7. Lookup column and relationships between lists

SharePoint allows you to create relationships between lists through a special
type of column in SharePoint call lookup column. The great benefit of this

functionality is that SharePoint allows us for list to be joined by SharePoint
queries languages. This ability to query across lists brings SharePoint data
models very close to relational database model.

In order to explain how to create relationships in SharePoint lists, we will turn
to our company Contoso again – namely our Orders and Order Lines lists that
are stored in the Web site http://intranet.consoso.com/manufacturing. We
shall start with describing relational database tables and after we will go on
to introduce SharePoint and Semantic Web relationships.

Unrelated relational database tables

 Figure 5.3 Unrelated database tables

Database tables linked by foreign key constraint (primary key)

To relate the tables, you could add an OrderID column to the OrderLines
table, and use this column to define a foreign key relationship between the
tables.

Foreign Key Relationship

Figure 5.4 Database tables linked by foreign key constraint (primary key)

Database tables linked by foreign key constraint

Alternatively, you could add an OrderNo column to the OrderLines table, and
use this column to define the foreign key relationship (providing that the

OrderNo column in the Orders table is subject to a unique values constraint).

http://intranet.consoso.com/manufacturing

57

Foreign Key Relationship

Figure 5.5 Database tables linked by foreign key constraint

Lookup column relationship between SharePoint lists

Lookup column relationships in SharePoint are conceptually similar to foreign
key constraints in relational databases, but there is a key difference. Imagine
we want to implement the previous example in a SharePoint data model.
When we enter a new order line to the Order Lines list, we select the
associated Order using the lookup column. SharePoint does not permit us to

handle the foreign key constraint because the built-in ID column (inherited
from content type System) is a sacred and unchangeable primary key that is
internally handled. We should instead choose the column in the target list
that we want to display in the source list, by setting up the list (ShowField
attribute). SharePoint establishes the foreign key constraints for us.

List item Relationship

Show Field

Figure 5.6 Lookup column relationship between SharePoint lists

many-to-many relationship between SharePoint lists

In case we want to model a many-to-many relationship using lists, you must
create an intermediate list to normalize the relationship in the same way that
you should do in relational database design. For example, suppose we want to
model the relationship between parts and machines. A part can be found in
many machines, and a machine can contain many parts. To normalize the
relationship, we would create an intermediate list named PartMachine.
However, from a user experience point of view, this is less than ideal, so at
this point, we would probably add custom code to maintain associations
between parts and machines rather than maintaining the intermediate list.
But keep in mind that we can only handle show view fields not primary keys.

58

List item Relationship

Show Field

List item Relationship

Show Field

Figure 5.7 many-to-many relationship between SharePoint lists

Data relationships in Semantic Web

Leaving aside merging distributed data, the mission of Semantic Web is to
combine data by defining concepts and relationships. Thinking that RDF would
enable us to establish relationships very easily with a minimum of restrictions
are fairly logical. Anything can be related to anything else with the aim to
support the AAA-slogan (Anyone can say anything anytime).

Turning to Contoso, producing a RDFS graph reflecting relationships of some
SharePoint lists must be a walk in the park. Imagine that in Contoso, some
people are directly employed by the firm, whereas others are contractors.
Among these contractors, some of them are directly contracted to the
company on a freelance basis, and others contract through an intermediate
firm. All of these people could be said to work for the Contoso. Nonetheless,
RRHH department in Contoso stores several employee lists different to each
other. Some of them were created by the RRHH department whereas the rest
of them were created by the procurement department. Contoso management
would like to establish some relationships between those employees’ lists.

How can we model this situation in RDFS? First, we need to consider the
inferences we wish to be able to draw and under what circumstances. There
are a number of relationships that can hold between a person and the firm;
we can call them contractsTo, freeLancesTo, indirectlyContractsTo,
isEmployedBy, and works For. If we assert any of these statements about
some person, then we would like to infer that that person worksFor Contoso.
Furthermore, there are intermediate conclusions we can draw—for instance,
both a freelancer and an indirect contractor contract to the firm and indeed
work for the firm. All these relationships can be expressed in RDFS using the
rdfs:subPropertyOf relation:

59

:freeLancesTo rdfs:subPropertyOf contractsTo.

:indirectlyContractsTo rdfs:subPropertyOf contractsTo.

:isEmployedBy rdfs:subPropertyOf worksFor.

:contractsTo rdfs:subPropertyOf worksFor.

To see what inferences can be drawn, we will need some instance data:

Goldman isEmployedBy TheFirm.

Spence freeLancesTo TheFirm.

Long indirectlyContractsTo TheFirm.

The rule that defines the meaning of rdfs:subPropertyOf implies a new triple,
replacing any subproperty with its superproperty. So, since

isEmployedBy rdfs:subPropertyOf worksFor.

we can infer that

Goldman worksFor TheFirm.

And because of the assertions about freelancing and indirect contracts, we
can infer that

Spence contractsTo TheFirm.

Long contractsTo TheFirm.

And finally, since, like asserted triples, inferred triples can be used to make
further inferences, we can further infer that

Spence worksFor TheFirm.

Long worksFor TheFirm.

In general, rdfs:subPropertyOf allows us to describe a hierarchy of related
properties. Just as in class hierarchies, specific properties are at the bottom
of the tree, and more general properties are higher up in the tree. Whenever
any property in the tree holds between two entities, so does every property
above it.

60

worksFor

 contractsTo isEmpoyeedBy

rdfs:subPropertyOf rdfs:subPropertyOf

rdfs:subPropertyOf rdfs:subPropertyOf

 inderectlyContractsTo freelanceTo

As we have just seen, establishing relationships between entities properties in
Semantic Web is incredibly easy but the example above is not possible in
SharePoint. Having lookup columns mess around, we can relate only entities
with lookup columns. What about relating properties? Forget it because it is
not possible since it lacks this sort of inference pattern. Our hopes of relating
anything in SharePoint have just been shattered but we don’t despair yet
because SharePoint remains quite useful to our objectives.

WW3 gives us a hand

WW3 published some interesting documents. As they are good guys and
understand relational databases keeps on underpinning most business,
government and scientific enterprises, they propose some recommendations
to make our relational data RDF data so as to, once translated, we can
combine with data from other sources on the Web. The documents are “A
Direct Mapping of Relational Data to RDF” and “R2RML: RDB to RDF Mapping
Language”.

4.2.2. Brown field development

If you have a memory like a sieve, do not worry because we will again put you
in the picture of what brown field development means again. Brown field
development is a scenario in which there are some existing systems such as
external systems, legacy systems and existing databases. The mission is to
build our data model design based on those systems and integrate those
systems with your SharePoint data model. As we can see, this scenario is
pretty similar to the principles of Semantic Web in which all data from
multiple data sources are put together into a single data repository.

4.2.2.1. Business Data Connectivity Service

In SharePoint, the functionality that enables us to work with external data is
provided by Business Connectivity Services (BCS, for the sake of brevity) that

61

is a Service Application deployed in our Server farm to provide service to all
Web applications and, in turn, their Web sites.

When you develop a SharePoint application around external systems, we must
design external data model similar to typical relational data models that are
stored and managed by the BCS service application. This is known as a
Business Data Connectivity model (BDC model, for the sake of brevity). In a
BDC model, data entities are represented by external content types. An
external content type models an external data entity, such as a database
table or view or a web service connecting to an external system like an ERP,
and defines a set of stereotyped operations on that data entity. In addition to

external content types, a BDC model typically includes an external data
source definition, connection and security details for the external data
source, and associations that describe the relationship between individual
data entities.

4.2.2.2. External Content Types and External lists

An external content type (ECT) is conceptually similar to a regular SharePoint
Content type. Just like a regular content type, an ECT is a collection of
metadata that models a data entity. External data sources describe data
schemas in different ways. For example, Web services describe their data
entities and operations using the Web Service Description Language (WSDL),
while relational databases describe their data entities and operations using a
database schema. When you create a BDC model in SharePoint, these data
definitions are translated into ECTs.

An external list is a BCS component that provides a SharePoint list wrapper for
data entities modeled by an ECT. The external list enables users to view, sort
and filter, create, update, and delete external data entities in the same way
that they would work with data in a regular SharePoint list.

4.2.2.3. Brown and green field development together

The key question of Business Connectivity Services (BCS) lies on Bussiness Data
Connectivity Model (BDC). Developers do not actually have access to physical
data from SharePoint, to put it clearer, developers cannot directly connect to
external databases and query their tables. This is forbidden! SharePoint
instead produces well-tested data entities and associations that describe the
relationship between individual data entities based on the BDC model.
Developers can custom those entities and associations, and even create new
associations that are not in the original model.

As you can see, each BDC model represents a general view of an external
system, its data entities and its associations that can be used in your
SharePoint application because they are converted into familiar (external)
content types and (external) lists. From development point of view, there is
no difference between an external content type and an internal content type
and developers do not need to worry about how data are either retrieved or

62

updated from the external system. This fits very well with the idea of
Semantic Web. SharePoint guys realized that external and legacy systems
underpin most business enterprises and designed this magnificent
functionality very carefully. The brown field development was not so gloomy
as we expected!!

4.3. Merging data in SharePoint

The equivalent SharePoint concept to merging data from multiple data
sources in Semantic Web is to aggregate data from multiple lists into a single
list. For example, in the company Contoso, a high-management member could
have a request for gathering all expense reports belonging to accountability
departments along with information related to orders from manufacturing
department. All data could be stored in a single list to which the manager
only has access. Once all data are brought together, we can develop any
custom logic that implements any business logic, including Semantic Web
inference patterns.

Wait a moment! A list can hold multiple Content types. Are you sure?

A key factor that makes merging data possible is that a list can contain
multiple Content types, including external Content types. This feature
provides you enormous flexibility since a list can contain large amount of

data similar to a relational database table but also allows us to store
different data type. Something that a relational data table cannot do. This
supports our theory of that a SharePoint list is not a relational data table.

According to our description of Semantic Web architecture, this large list can
be seen as a RDF Store that stores and retrieves from different data sources
(internal and external lists) to merge data into a single large list. The RDF
Query Engine using like SPARQL can be represented by the SharePoint Query
Languages such as LINQ (Language Integrated Query) or CAML
(Collaborative Application Markup Language) that are very similar to SQL
query languages. In case we want a more sophisticated query language that
allows us to use Semantic Web inference patterns, we could either extend
LINQ or develop custom code on data stored on the list and store inference
results in the own list. This approach would be quite similar to a JIT RDF
Inference Query Engine.

SharePoint provides a number of mechanisms to solve merging data from
multiple lists called: Aggregation List patterns. Getting a hang of how to
aggregate data from multiple lists into a single list is essential for developers
because it is a usual request from users.

63

4.3.1. List Aggregation Patterns

Figure 6.1 List aggregation patterns

4.3.1.1. Aggregated View

Description

An aggregate view uses the SharePoint APIs to query data from several data
sources and aggregate it into a single view. This approach can return results
from lists in the same Site collection.

Approach to implementation

1. Determine data sources from which we want to retrieve data
2. Determine what data you need to aggregate.
3. Create a custom Web page and use the SharePoint APIs to query the data.

Semantic Web scenario

This SharePoint scenario is slightly similar to Semantic Web scenario in which
it is required to merge data from multiple webs hosted in a same
organization. However, Aggregated View pattern does not seem to have a
real application to Semantic Web scenarios since the scope of Semantic Web
is much larger than few data sources hosted in a same organization.

64

4.3.1.2. Union List Aggregation

Figure 6.2 Union List aggregation pattern

Description

A union-aggregated list stores information from several lists or data sources.
Usually this type of list is centrally accessible. These lists are easy to maintain
because they allow users to manage information from many sources in a single
location. Union-Aggregated lists contain data from data sources that share the
same columns of data.

Approach to implementation

This type of list typically uses custom code to load the union-aggregated list
with data. Timer jobs, asynchronous processes executed by SharePoint,
usually perform this task.

Semantic Web scenario

This SharePoint scenario is quite a lot similar to Semantic Web scenario
because in addition to an organization itself, this scenario can also involve
merging multiple data sources beyond the organization’s borders. Union List
Aggregation is likely to be the best candidate to simulate a Semantic Web
scenario since it allows you to work with internal and external systems.
Remember “Green” and “Brown SharePoint data model scenarios.

65

4.3.1.3. Denormalized List Aggregation

Figure 6.3 Denormalized List aggregation pattern

Description

A Denormalized aggregated list stores information from several lists or data
sources using the same sort of process described in union-aggregated lists to
perform the aggregation. Usually, this type of list is centrally accessible.
These lists are easy to maintain because they allow users to manage
information from many sources in a single location. Denormalized aggregated
lists contain data from data sources whose columns differ.

Approaches to Implementation

The data is denormalized and the aggregated data contains different columns

from several data sources. This approach uses custom code to load the
denormalized aggregated list with data. Timer jobs or other asynchronous
processes typically load this data.

Semantic Web scenario

It is difficult to find a Semantic Web scenario equivalent to this scenario
because the resulting list is pretty similar to a relational database view
rather than a typical Semantic Web representation of data. However, RDF
inference patterns allows you to construct new data structure of data from
other data such as set operations.

66

4.3.1.4. List of Lists

Description

A list of lists contains links to other lists. These lists are usually centrally
accessible. Lists of lists appear in many different scenarios including lists of
lists in the same site collection, multiple site collections, the same web
application, multiple web applications, the same farm, and multiple farms.

Many times you will find that these lists are used to provide easy navigation to
lists in many sites or across site collections, web applications, or SharePoint
Server farms.

Approaches to Implementation

1. Determine the lists you want to provide links to.
2. Create the list to hold the links. (This is the list of lists)
3. Create the links to the other lists in the list of lists.

4.3.1.5. List of Sites

Description

A list of sites stores links to other SharePoint sites, or other web sites. These
lists are usually centrally accessible. Lists of sites appear in many different
scenarios including in lists of sites in the same site collection, multiple site
collections, the same web application, multiple web applications, the same
farm, and multiple farms.

Often you will find that these lists are used to provide easy navigation to sites
across site collections, web applications, or SharePoint Server farms.

Approaches to Implementation

1. Determine the sites you want to provide links to.
2. Create the list to hold the links. (This is the list of sites.)
3. Create the links to the other sites in the list of sites.

Semantic Web scenario

Although both List of lists and List of sites patterns seems a bit dumb, they
are actually tremendously effective and efficient. It might be because it is
always easier to do than the way around but organizations almost always
tend to think in both hierarchal and centralized terms. Either List of lists or
List of sites patterns are painfully often found everywhere at times. The
problem is that there is no equivalent scenario in Semantic Web.

67

4.3.2. Large lists Patterns

The challenge we face when we pull all data together into single lists is that
as lists become larger, they can reduce the ability of SharePoint to operate
efficiently and perform well. For example, viewing more than 2,000 items at
a time from a list will impact performance, as will list queries that touch
more than 5,000 items in the content database during execution. Performance
will always benefit when we minimize the amount of list data retrieved,
limiting it to only the data the user needs to perform his tasks. Large lists are
not necessarily bad, and when properly managed, SharePoint can handle
millions of items of data in a single list. However, large lists require proactive
developer to ensure that they work smoothly on our Web site.

As you can see, both SharePoint large lists and RDF stores can suffer from the
same problem with regard to performance. The great SharePoint large list’s
advantage over RDF store is that a SharePoint large list is unlikely to store as
many data as a RDF store. The reason behind this assertion lies in the scope.
The scope of a SharePoint application is typically an organization itself along
with both its partners and customers, whereas the scope of Semantic Web
Application can involve hundreds of organizations. It seems quite obvious that
storage requirements in a SharePoint application are fewer than a Semantic
Web one, thus the size a SharePoint large list with only a simple backup
storage system like Microsoft SQL Server isn’t a drawback.

SharePoint provides some patterns to deal with large list just in case and we

will look through it just in case.

Figure 6.4 Large Lists patterns

Query Throttling and Indexing

In addition to large list patterns, SharePoint provides some features that
allow us to keep an eye on performance degradation in large-size lists. On
one hand, SharePoint enables you to restrict the number of items that can
be accessed when you execute a query (by default, this limit is set to
5,000 items for users and 20,000 items for administrators). On other hand,

68

SharePoint enables you to index columns in a list. This is conceptually
similar to indexing columns in a database table; however, in the case of
SharePoint lists data, the index is maintained by SharePoint instead of
databases.

4.3.2.1. Partitioned View

Figure 6.5 Partitioned view pattern

Description

View partitioning leaves the data in a single large list, but allows for access to
the data in small segments through targeted views on a list. Often data can be
segmented naturally—for example, by region, by status, by date range, or by
department. This approach also efficiently supports multiple types of views on
the same list because all data is in one place; thus, you could have a view by
date range and by region for the same list. In order for partitioning to be
effective, the columns being used to partition the view must be indexed.

Approach to Implementation

1. Remove default views assigned to lists (All list always has a default view).
2. Determine the column you want to partition on.
3. Create views for the partition.

69

4.3.2.2. Partitioned List with Aggregate View

Figure 6.6 Partitioned List with view pattern

Description

Using the Partitioned List with Aggregate View pattern breaks the same type
of data into individual lists. Typical usage of the list is through the default list
views, but for specific cases items are aggregated across the lists into a

central view. In this case you need to choose your segmentation strategy
carefully because once you have segmented the data, segmenting a different
column will require cross-list querying and filtering, which becomes more and
more costly from a performance perspective as the number of lists grows. In
order to do the aggregation you will need to define custom views to roll up
data across lists. There needs to be a natural segmentation of data for this
approach to work well. In order for partitioning to be effective, the columns
being used to partition the view must be indexed; this will improve
performance for aggregation.

Approach to Implementation

1. Determine the criteria you want to partition on.
2. Partition the data into separate lists based upon the criteria. All lists use

the same content type.
3. Create aggregate views for the list.

70

4.4. Giving sense to data in SharePoint

4.4.1. Ontologies

SharePoint ships with excellent tools to combine data from multiple data
sources as we have seen. Nonetheless, its lack of expressivity becomes
apparent when we want to represent knowledge within a domain by defining a

set of concepts and their relationships between them. This weakness lies in
that SharePoint object model is built on Oriented-object principles and only
allows us to describe basic notions of commonality and variability familiar
from oriented-object languages — namely classes, subclasses, and properties.
This is precisely the level of expressivity RDFS supports.

Should we want a higher level of expressivity like either RDFS-Plus or OWL
offers, we need to develop custom code. But if so, we are no longer talking
about a smart Semantic Web infrastructure but smart Web applications. We
are getting back to the old-fashioned Web applications that are prone to
inconsistent, disconnected and out-of-synchronization data. It is here the real
issue. If the level of expressivity provided by RDFS satisfies our requirements,
SharePoint is fine. But if we want higher level of expressivity, you may as well
write custom .NET converters in such a way to convert SharePoint data mode
into RDF data representation and to work on it.

Is it possible to build new inference patterns in SharePoint?

Apart from Content type inheritance, SharePoint unfortunately lacks more
inference patterns, consequently building ontologies is quite limited. Unless
you have battle-scarred developers work on extending the built-in SharePoint
functionalities and features, implementing new inference patterns is almost
a mission impossible. The problem is that all content types must internally
inherit from the class Microsoft.SharePoint.SPContentType with no exception
and this class is sealed. The same happens to the remainder of SharePoint
data model classes such as SPField, SPList, SPListView, SPDocumentLibrary or
SPListItem. The story is over.

Some inference patterns like those related to sets (union, interest, disjoint…)
could be developed by custom code. Anyhow, we must be aware that those
inference patterns will never be entirely integrated in the built-in SharePoint
Object Model. The reason for this lack of flexibility is that SharePoint is very
reluctant to permitting developers to develop solutions that extend
SharePoint functionality and damage to its stability. SharePoint defines
certain extension points that enable us to develop new functionalities but
always under strict restrictions.

We will show a simple and typical scenario in which lack of inference can limit
our options in SharePoint.

71

We have already seen in previous sections how to interpret information in a
SharePoint list as RDF triples. Each list item in the list became a triple. The
subject of the triple is the individual corresponding to the list item that the
cell is in, the predicate is made up from the list name and the column name,
and the list item’s value is the cell contents. Turning to our Contoso company,
now suppose that we have the product list that is stored in the Web site
http://intranet.consoso.com/manufacturing within the Web application
“Published Intranet Content” aimed for Manufacturing department. Table 7.1.
Let’s look at just the triples having to do with the Manufacture_Location.

mfg:Product1 mfg:Product_Manufacture_Location Sacramento

mfg:Product2 mfg:Product_Manufacture_Location Sacramento

mfg:Product3 mfg:Product_Manufacture_Location Sacramento

mfg:Product4 mfg:Product_Manufacture_Location Elizabeth

mfg:Product5 mfg:Product_Manufacture_Location Elizabeth

mfg:Product6 mfg:Product_Manufacture_Location Seoul

mfg:Product7 mfg:Product_Manufacture_Location Hong Kong

mfg:Product8 mfg:Product_Manufacture_Location Cleveland

mfg:Product9 mfg:Product_Manufacture_Location Cleveland

Table 7.1 Products SharePoint List in Manufacturing Web Site

ID
(built-in)

Model
Number

Division Product Line Manufacture
Location

Available

1 ZX-3 Manufacturing Paper Machine Sacramento 23
2 ZX-3P Manufacturing Feedback Line Sacramento 4
3 ZX-3S Manufacturing Sensor Sacramento 34
4 B-1430 Control Safety valve Elizabeth 23
5 B-1430X Engineering Paper Machine Elizabeth 14
6 B-1431 Engineering Sensor Seoul 0
7 DBB-12 Accessories Monitor Hong Kong 100
8 SP-1234 Safety Safety valve Cleveland 4
9 SPX-1234 Safety Safety valve Safety valve 14

Suppose that an external partner in the company keeps its own list of the
products with information that is useful for that division’s manufacturing
activities— namely, it describes the sort of facility that is required to produce
the part. This list is stored in the site
http://partnerWeb.consoso.com/sites/products within the Web application
“Partner Web” aimed for partners and its data comes from a legacy system
like an ERP, therefore, an external list. We have already seen that integrating
external databases and systems is a piece of cake in SharePoint and an
external list behaves exactly as a normal SharePoint list does. Table 7.2

shows some products and the facilities they require. Some of the products in
Table 7.2 also appeared in Table 7.1, and some did not. It is not uncommon
for different lists to overlap in such an inexact way.

http://intranet.consoso.com/manufacturing
http://intranet.consoso.com/manufacturing

72

Table 7.2 Products SharePoint List in partner Web site

ID
(Built-in)

Model Number Facility

1 B-1430 Assembly Center
2 B-1431 Assembly Center
3 M13-P Assembly Center
4 ZX-3S Assembly Center
5 ZX-3 Factory
6 TC-43 Factory
7 B-1430X Machine Shop
8 P-1234 Machine Shop
9 1180-M Machine Shop

If these two lists had been in the same Web Application, then there could
have been a foreign-key reference from one list to the other by using a lookup
column, and we could have joined these two lists together easily through
lookup columns. Nevertheless, since the list come from two different Web
applications, there is no such common reference.

When we turn both lists into triples, the individuals corresponding to each row
list item assigned global identifiers. Suppose that we use the namespace p:

for this second list. The triples corresponding to the required facilities are as
follows:

p:Product1 p:Product_Facility "Assembly Center"

p:Product2 p:Product_Facility "Assembly Center"

p:Product3 p:Product_Facility "Assembly Center"

p:Product4 p:Product_Facility "Assembly Center"

p:Product5 p:Product_Facility "Factory"

p:Product6 p:Product_Facility "Factory"

p:Product7 p:Product_Facility "Machine Shop"

p:Product8 p:Product_Facility "Machine Shop"

p:Product9 p:Product_Facility "Machine Shop"

Although we have global identifiers for individuals in these tables, those
identifiers are not the same. For instance, p:Product1 is the same as

mfg:Product4 (both correspond to model number B-1430). How can we cross-
reference from one list to the other? The answer is to use a series of
owl:sameAs triples that allows us to establish that all statements about one
instance hold for the other.

p:Product1 owl:sameAs mfg:Product4

p:Product2 owl:sameAs mfg:Product6

p:Product4 owl:sameAs mfg:Product3

p:Product5 owl:sameAs mfg:Product1

p:Product7 owl:sameAs mfg:Product5

p:Product8 owl:sameAs mfg:Product8

73

This solution has addressed the scenario for the particular data in the
example, but the solution relied on the fact that we knew which product from
one list matched with which product from another list. But owl:sameAs only
solves part of the problem. In real data situations, in which the data in the
list change frequently, it is not practical to assert the entire owl:sameAs
triples by hand. In fact, the only sort of implementation we can hope in
SharePoint is by custom code that can establish that two entities are equal:
p.product1.Equals(mfg.product1). So, how can we infer the appropriate
owl:sameAs triples from the data that have already been asserted?

By using RDFS, the right approach is to find an inverse functional property
that is present in both data lists that we can use to bridge between them.

When we examine Tables 7.1 and 7.2, we see that they both have a field
called Model No, which refers to the identifying model number of the product.
As is typical for such identifying numbers, if two products have the same
model number, they are the same product. So we want to declare Model No to
be an inverse functional property, thus:

mfg:Product_ModelNo rdf:type owl:InverseFunctionalProperty

This almost works, but there is still a catch: Each list has its own Model No
property. There is another property, p:Product_ModelNo . So it seems that we
still have more integration to do. Fortunately, we already have the tool we
need to do this; we simply have to assert that these two properties are
equivalent, thus:

p:Product_ModelNoowl:equivalentProperty

mfg:Product_ModelNo

Let’s see how these inferences roll out. We begin with the asserted triples
from both data sources and proceed with inferred triples. The last six triples
are exactly the owl:sameAs triples that we needed.

p:Product1 p:Product_ModelNo "B–1430"

p:Product2 p:Product_ModelNo "B–1431"

p:Product3 p:Product_ModelNo "M13–P"

p:Product4 p:Product_ModelNo "ZX–3S"

p:Product5 p:Product_ModelNo "ZX–3"

p:Product6 p:Product_ModelNo "TC–43"

p:Product7 p:Product_ModelNo "B–1430X"

p:Product8 p:Product_ModelNo "SP–1234"

p:Product9 p:Product_ModelNo "1180–M"

mfg:Product1 mfg:Product_ModelNo "ZX–3"

74

mfg:Product2 mfg:Product_ModelNo "ZX–3P"

mfg:Product3 mfg:Product_ModelNo "ZX–3S"

mfg:Product4 mfg:Product_ModelNo "B–1430"

mfg:Product5 mfg:Product_ModelNo "B–1430X"

mfg:Product6 mfg:Product_ModelNo "B–1431"

mfg:Product7 mfg:Product_ModelNo "DBB–12"

mfg:Product8 mfg:Product_ModelNo "SP–1234"

mfg:Product9 mfg:Product_ModelNo "SPX–1234"

p:Product1 mfg:Product_ModelNo "B–1430"

p:Product2 mfg:Product_ModelNo "B–1431"

p:Product3 mfg:Product_ModelNo "M13–P"

p:Product4 mfg:Product_ModelNo "ZX–3S"

p:Product5 mfg:Product_ModelNo "ZX–3"

p:Product6 mfg:Product_ModelNo "TC–43"

p:Product7 mfg:Product_ModelNo "B–1430X"

p:Product8 mfg:Product_ModelNo "SP–1234"

p:Product9 mfg:Product_ModelNo "1180–M"

p:Product1 owl:sameAs mfg:Product4

p:Product2 owl:sameAs mfg:Product6

p:Product4 owl:sameAs mfg:Product3

p:Product5 owl:sameAs mfg:Product1

p:Product7 owl:sameAs mfg:Product5

p:Product8 owl:sameAs mfg:Product8

This sophisticated sort of inference patterns, typical though it is, is not
possible in SharePoint unless we develop custom code. At this point, we can
draw a very important conclusion on SharePoint inference patterns:

“The level of expressivity in SharePoint is at RDFS level not higher”

4.4.2. Taxonomies and folksonomies in SharePoint

SharePoint ships with a service application that allow for the management of
metadata across the entire organization called Enterprise Metadata
Management. It makes a collection of metadata (columns) and content types
available to all sites within a Server farm. Additionally, Enterprise Metadata
Management allows us to define taxonomies and folksonomies, including
synonyms or thesaurus.

Enterprise Metadata Management offers organizations some distinct
advantages:

 A global framework of content types and columns. Organizations often

want to guide all of their departments to use specific columns and content
types, but also provide some flexibility so that each department can
extend though inheritance to meet its specific needs.

75

 Consistency in data entry. It provides several key features that enable
consistent entry of data. For instance, by configuring preferred values you
can provide alternative selections to users when they are entering values.
For example, if a user enters the term “car” or “vehicle,” an alternate
suggestion of “automobile” can be displayed for their selection. This

feature provides a way to easily guide users to enter the preferred values
for common words. In addition, as users are entering values for keywords,
suggestions of previous keywords are displayed for selection.

Content types and columns for all lists within Server farm

In previous sections, we introduced that typically both content types and
columns could be created and managed at Site Collection level, and conse-
quently they were available to all sites within the Site collection. We lied to
such an extent because SharePoint can alleviates this limitation by providing
the ability to define content types in a central location called “Content type
hub” and have them automatically published to numerous site collections.
This feature provides a larger consistency in data in such way that a same
content type can be used by distinct departments within an organization. For
example, a document content type could be made of “Title”, “Author” and
“Description” columns and be made available to all department lists to make
sure that everyone is using the concept of document properly.

Tagging content in SharePoint

In addition to content types and columns, Enterprise Metadata Management
provides a way for organizations to bring certain order to the process of
tagging content. Tagging content refers to applying metadata to documents
and content within the organization. Tagging contents uses the concepts of
managed metadata and keyword to refer to terms.

What are Managed Metadata and Managed Keyword in SharePoint?

Managed Metadata are actually special type of SharePoint columns. Managed
Metadata can be assigned to content types as though they were normal
columns. The most important difference is that they can be populated with
some default terms in advanced in such way to guarantee that they are used
consistently within the organization. Managed keywords are similar to
managed metadata, with the key difference being that the end user is able
to enter new terms. These are two extreme ends of the spectrum, and most
organizations operate somewhere in the middle depending how tight
governance has been set up in the organization.

Managed metadata in SharePoint are implemented through the use of a term
store. When the Enterprise Metadata Management service application is
provisioned, the term store is created. In order to organize terms, terms are
grouped in term sets that allow us to structure them from broad to narrower

76

terms. At the lowest level are the terms, which are the values selected by
users when they enter values in a column. Each of the terms can have an
associated description, synonyms and even translation into other languages.
Some typical examples of entries within a term store could include some of
the following values: Departments, Offices, Categories, Project Status…

Simple Knowledge Organization System (SKOS)

In certain ways, Enterprise Metadata Management is quite similar to SKOS
that is a family of formal languages designed for representation
of thesauri, classification schemes, taxonomies, subject-heading systems, or
any other type of structured controlled vocabulary. SKOS is built
upon RDF and RDFS, and its main objective is to enable easy publication of
controlled structured vocabularies for the Semantic Web.

4.5. Data access in SharePoint

SharePoint users can access to data easily from a user-friendly Web interface.
But although SharePoint UI ships with SharePoint views that enable us to
filter, sort and group data on SharePoint lists, it does not seem enough to get
up to the level of queries languages like SPARQL.

In order to give support to querying data, SharePoint introduces several ways
in which you can programmatically interact with your data. Most notably,

LINQ to SharePoint allows you to build complex list queries with the user-
friendly language integrated query (LINQ) syntax. LINQ even supports join
predicates in queries, which moves the SharePoint list-based data model close
to the power of a relational database.

Collaborative Application Markup Language (CAML)

SharePoint also allows us to construct queries with the cumbersome
Collaborative Application Markup Language (CAML). CAML is a query XML-
based language that is mainly used to define SharePoint data model building
blocks like content types, lists, views… However, in spite of being
tremendously prone to mistakes, sometimes developers have to resort to
querying lists across Web sites by CMAL. It is undoubtly a large drawback
because CAML has a bad name among developers.

SPARQL CONSTRUCT

As in SPARQL, LINQ has all the typical SQL operations but there is an essential
difference in regard with SPARQL. SPARQL CONSTRUCT allows us to specify
templates of new information based on patterns found in old information. A
specification of this sort is sometimes called a rule, since provides a way to

http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Thesaurus
http://en.wikipedia.org/wiki/Classification_scheme
http://en.wikipedia.org/wiki/Taxonomy
http://en.wikipedia.org/wiki/Authority_control
http://en.wikipedia.org/wiki/Controlled_vocabulary
http://en.wikipedia.org/wiki/Resource_Description_Framework
http://en.wikipedia.org/wiki/RDF_Schema
http://en.wikipedia.org/wiki/Semantic_Web

77

specify things like “Whenever you see this, conclude that”. Examples of rules
include data completeness rules (“If John’s father is Joe, then Joe’s son is
John”),logical rules (“If Socrates is a man, all men are mortals, then Socrates
is mortal”), as well as business rules (“Customers who have done more than
5000€ worth of business with us are preferred customers”)

Example of SPARQL CONSTRUCT

If we know how much business a customer has done with us, we can write a
business rule in SPARQL to sort out our preferred customers.

:ACME :totalBusiness 5253.00
:PRIME :totalBusiness 12453.00
:ABC :totalBusiness 1545.00

The query

SELECT ?c a :PreferredCustomer .

WHERE { ?c :totalBusiness ?tb .

 FILTER (?tb < 5000) .}

will assert all the preferred customers:

:ACME a :PreferredCustomers

:PRIME a :PreferredCustomers

If you might be wondering why SPARQL CONSTRUCT is so essential in SPARQL?
Let us show you how inference triples are worked out from asserted triples
and an inference pattern (also called rule) created by a SPARQL CONSTRUCT.

RDFS Domain inference pattern defined by SPARQL CONSTRUCT

By using SPARQL, you can define the inference rule for rdfs:domain

CONSTRUCT {?x rdf:type ?D } .

WHERE {?P rdfs:domain ?D .

 ?x ?P ?y } .

If we have the following triples

:MarriedWoman rdfs:subClassOf :Woman

:hasMaidenName rdfs:domain :MarriedWoman

:Karen :hasMaindenName “Stephens”

from the domain inference rule, we can infer that

78

:Karen rdf:type :MarriedWoman

And from the inheritance rule, we can also infer that

:Karen rdf:type :Woman

LINQ vs. SPARQL

We already mentioned the lack of inference patterns in SharePoint and LINQ is
claimed to have such problem as well. Nevertheless, SharePoint Object model

plus LINQ has an advantage over SPARQL.

SharePoint ships with a modeling tool called SPMetal.EXE that enables us to
automatically generate typed entities as an Object-Relational Mapping
Framework. Those typed entities can be customized by developers by adding
business logic. This feature overcomes the hardship of non-inference logic.

79

PART IV
“All great things are simple, and many can be expressed in single

words.” —Winston Churchill

80

5. Conclusions

At the first part of the document, we hinted that knowledge management
would require a certain rethink within the organizations. Given the increasing
complexity and competitiveness, organizations drowned in mass of chaotic
data were in need of pulling out more value from that data to convert them
into true business assets. We concluded that this chaos of data was a logical
result of the own human nature and it was worth accepting this scenario to
deal with it rather than systematized and rigid environments.

Knowledge management is not a new challenge among organizations and some
remarkable advances had already made. Knowledge management initially
started off by a focus on content management and collaborative systems that
sought to store and classify information into large data repositories.
Nevertheless, from knowledge management’s point of view, these efforts find
themselves in a formative stage rather than a maturate stage since such
systems rapidly scale back to “a place to lose information” in which data will
wind up in inconsistent, disconnected and out-of-synchronization data. The
platform Microsoft SharePoint is the one of the most foremost case, successful

in collaboration but lacking in knowledge.

The advent of new technologies such as Semantic Web or Big Data, to help
harvest, represent and distribute knowledge scattered throughout an
organization, invites us to rethink knowledge management within
organizations. What if Microsoft SharePoint and Semantic Web worked in
tandem? How can this combination help us push knowledge management to
have greater capabilities and benefit organizations?

At the second part of the document, we set off a journey through Semantic
Web. We learnt that the essential notion of the Web is the idea of an open
community in the Web: Anyone can say anything anytime (AAA Slogan).
Consequently, billions and billions of unmanageable information out there
lacking in consistency, connection and synchronization, as it were “dumb
data”. How to bring order into this chaos?

Semantic Web is based on the idea of a smart technology infrastructure that is
capable of both bringing together all data from multiple distinct data sources

and giving some order to this chaos of data. To achieve it, Semantic Web
defines a set of standards and protocols called Semantic Web Technology
Stack with the ability to work with raw data on which it builds up knowledge.
Semantic Web Technology Stack is mainly made up of:

 a data representation language (RDF) to represent distributed data (triples)

 several domain modeling languages (RDF, RDFS, OWL) in the shape of ontology

 a novel query engine (SPARQL) with extra features added to the familiar SQL

 multiple computer-processable formats (N3, Turtle, XML/RDF)

81

An important stop on our journey through Semantic Web Technology Stack
was the inference patterns or rules. With inference patterns, modeling
languages reach higher level of expressivity beyond the familiar notions of
commonality and variability typical of oriented-object languages. They can
express detailed further constraints between classes, entities, and properties
out of oriented-object languages’ reach.

Finally, in our final stop on the journey, we put ourselves in the picture of a
typical Semantic Web architecture to gain insight into how a Semantic Web
application looks like and we introduced the concept of RDF store as a
database with the additional ability to merge data from multiple data

sources.

At the third part of the document, we got down to SharePoint. We learnt that
at its core, SharePoint is a data provisioning engine and its fundamental
design is based on the idea of using Web-based templates to create sites and
lists to store and organize data.

 SharePoint is designed on the concept of a server farm that is composed
of several Web applications hosting Web sites, service applications
providing additional shared functionality, and relational databases whose
access is forbidden.

 SharePoint data model is conceptually quite similar to relational data

model and, in turn, to RDF data model. However, SharePoint does not

have the same flair for establishing relationships between entities and

properties as does RDF. A hardship that can be overcome by turning from

SharePoint data into RDF data.

 SharePoint data model is made up of columns (or fields), content type,

list and list item. Columns are metadata assignable to content type

analogous to RDF properties. Content types are abstractions of domain

comparable to RDF entities. List item are instances of content type

corresponding to a set of RDF triples. Lists are the storage mechanism akin

to RDF store.

 SharePoint ships with excellent integration tools with existing and

legacy systems since it understands such systems are underpinning most

business within organizations. SharePoint enables us to easily merge data

from distinct data sources as does Semantic Web.

 SharePoint concept equivalent to merging data from multiple data

sources in Semantic Web is to aggregate data from multiple lists into a

single list (RDF Store). SharePoint provides mechanisms to solve merging

82

data called Aggregation List patterns and means to handle large lists

named as Large List patterns.

 SharePoint gets up to the level of expressivity belonging to RDFS except

for property inheritance, that is to say, SharePoint allows us to describe

basic notions of commonality and variability familiar from oriented-object

languages — namely classes, subclasses, and properties. Its weakness lies

in that SharePoint object model is built on Oriented-object framework.

 SharePoint allow us to define taxonomies and folksonomies, even

synonyms or thesaurus. It stands for an excellent way for organizations to

bring certain order to the process of tagging content.

 SharePoint ships with LINQ, a query language to interact with data.
SharePoint views also that enable us to easily filter, sort and group data on
lists. LINQ does not permit us to define inference rules but LINQ makes it
up to by allowing customizable typed entities.

 SharePoint is customizable and business logic can be easily developed

to work on SharePoint data model building blocks and compensate the lack

of inference patterns.

SharePoint ships with excellent tools to integrate data from multiple data
sources. However, its weakness becomes apparent when it is time SharePoint
brought order to those chaotic data. SharePoint does not have the same level
of expressivity as does Semantic Web. Establishing relationships between data
is also far and away harder than Semantic Web. Nevertheless, as we
mentioned throughout the document, the solution to this problem is almost
always compensated by custom code. We consider that since we established
certain foundations, a promising future project could entail developing

custom converters with the ability to convert SharePoint data into RDF and
extent the SharePoint Search to include inference patterns. This was beyond
the scope of this project and it would be very interesting to go further.

As for project objectives, we think that Semantic Web is a state-of-art
technology in a formation stage. Consequently, we found a great many
hardships, particularly at the time we were looking into how to relate
Semantic Web concepts to built-in SharePoint tools. However, despite some
setbacks found, we consider the project objectives were met since we learnt
Semantic Web principles, relation between Semantic Web and knowledge
management, and the semantic side of SharePoint. We also could come to a
very interesting conclusion: Has SharePoint become a place to lose data with
semantic or not, it is mainly owing to the fact that it has not been customized
properly. It seems to us that the problem does more with lack of management
itself rather than a simple technological question. In other words, what data
can benefit most my business? What data must be integrated? What

83

relationships must be established between data? This is more about
management rather than technology. Knowledge raises from people, not
technology.

6. Bibliography

[1] Microsoft MSDN. (2010). Planning guide for server farms and environments

for Microsoft SharePoint Server 2010. Used to describe sections 4.2 “SharePoint

Architecture” . Some figures were directly extracted from the book.

[2] Bill English. (2010). Microsoft SharePoint 2010 Administrator's Companion.

Microsoft. Mainly used to describe sections 4.2 “SharePoint Architecture” .

[3] Todd Klindt. (2010). Professional SharePoint 2010 Administration. Wrox.

Mainly used to describe sections 4.4 “Giving sense to data in SharePoint”.

[4] Reza Alirezaei. (2010). Professional SharePoint 2010 Development. Wrox.

Mainly used to describe sections 4.4 “Giving sense to data in SharePoint”.

[5] Ted Pattison. (2011). Inside Microsoft SharePoint 2010. Microsoft. Mainly

used to describe sections 4.2 “SharePoint Architecture” .

[6] Paolo Pialorsi. (2011). Microsoft SharePoint 2010 Developer Reference.

Microsoft. Mainly used to describe sections 4.2 “SharePoint Data Model” and 4.5 “Data

access in SharePoint”.

[7] Microsoft Patterns and Practices. (2011). Developing Applications Microsoft

SharePoint 2010. Mainly used to describe section 4.2 “SharePoint Data Model” ” and 4.5

“Data access in SharePoint”. Some figures were directly extracted from it.

[8] Dean Allemang. (2011). Semantic Web for the Working Ontologist, Second

Edition: Effective Modeling in RDFS and OWL. Morgan Kauffman. Mainly used

to describe section 3.2 “Semantic Web Technology Stack”. Some excerpts were directly

extracted from it.

[9] Toby Segaran. (2009). Programming the Semantic Web. O’Reilly. Mainly

used to describe section 3.1 “Why do we need Semantic Web?” Some excerpts were

directly extracted from it.

[10] A story about Semantic Web.

(https://www.youtube.com/watch?v=bd8zR0v7Jts)

[11] The Semantic Web

(https://www.youtube.com/watch?v=rhgUDGtT2EM)

[12] The Semantic Wiki – Driving IT Organizational Clarity and Performance

(http://vaughanmerlyn.com/2012/02/21/the-semantic-wiki-driving-it-

organizational-clarity-and-performance/)

http://www.amazon.com/Todd-Klindt/e/B0036CBYDQ/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Dean-Allemang/e/B001ILFMXA/ref=sr_ntt_srch_lnk_1?qid=1352124557&sr=1-1
http://www.amazon.com/Semantic-Web-Working-Ontologist-Second/dp/0123859654/ref=sr_1_1?s=books&ie=UTF8&qid=1352124557&sr=1-1&keywords=semantic+web
http://www.amazon.com/Semantic-Web-Working-Ontologist-Second/dp/0123859654/ref=sr_1_1?s=books&ie=UTF8&qid=1352124557&sr=1-1&keywords=semantic+web
http://www.amazon.com/Toby-Segaran/e/B001I9RQVS/ref=sr_ntt_srch_lnk_2?qid=1352124557&sr=1-2
http://www.amazon.com/Programming-Semantic-Web-Toby-Segaran/dp/0596153813/ref=sr_1_2?s=books&ie=UTF8&qid=1352124557&sr=1-2&keywords=semantic+web
https://www.youtube.com/watch?v=bd8zR0v7Jts
https://www.youtube.com/watch?v=rhgUDGtT2EM
http://vaughanmerlyn.com/2012/02/21/the-semantic-wiki-driving-it-organizational-clarity-and-performance/
http://vaughanmerlyn.com/2012/02/21/the-semantic-wiki-driving-it-organizational-clarity-and-performance/
http://vaughanmerlyn.com/2012/02/21/the-semantic-wiki-driving-it-organizational-clarity-and-performance/

