Learning about Distributed Systems
Francisco Javier de Hoyos
Advisor: Joan Manuel Marqués
javier@dehoyos.es, marquesp@uoc.edu
Master in Free Software Studies
Open University of Catalonia (UOC), Barcelona, 8pai

ABSTRACT

This paper presents the “state of the art” abosiriduted systems and applications and it's
focused on teaching about these systems. It pedéferent platforms where to run distributed
applications and describes some development teolkibse can be used to develop prototypes,
practices and distributed applications. It alsosprés some existing distributed algorithms
useful for class practices, and some tools to h@dpaging distributed environments. Finally,
the paper presents some teaching experiences ifféhedt approaches on how to teach about

distributed systems.
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1. INTRODUCTION

Distributed systems are more and more importantyeday. Future Internet [1] [2] [3]
initiatives propose to use distributed servicedalega at planetary scale to improve scalability
and availability, focusing on robustness and s&cufilany universities and educational
institutions include studies about distributed egst and many researchers around the world are

investigating about this matter.

When a person wants to learn about distributedesystthere are many resources already
available on Internet, but sometimes is complicatekinow where to start. This paper presents
and compares many resources related to distritaytstgms, from platforms where to run the

applications to distributed algorithms, includingmee other aspects interesting to teach and
learn about distributed systems. It presents dé'stithe art” of all matters related to distribilite

systems, focused on engineering education.

PLATFORM section presents different platforms whedoe run distributed applications:
simulators, emulators and real platforms. Firsegaties for these platforms are presented, with
their advantages and disadvantages, and lateppretfare described and classified in to these

categories.



If a person wants to test a new distributed alporjthe can use an existing development toolkit
to avoid programming all application details andcu® on implementing his algorithm.
DEVELOPMENT TOOLKITS section presents some of thes®kits with their programming

languages and licenses.

When teaching or learning about distributed systeitis very interesting to study existing
distributed algorithms. They can be also implemertg students in practices. The section
DISTRIBUTED ALGORITHMS presents some existing distted algorithms and their

implementations, related with Distributed Hash Ea@HT) and Virtual Coordinates areas.

Another important thing when talking about disttdal systems is tools to manage and
monitoring distributed environment. TOOLS sectiorscribes some tools to deploy
applications, execute and monitor applicationsdraflel, change configuration and manage a

large amount of nodes in a distributed environment.

This paper is focused on teaching and learning tatlistributes systems, so we want to present
too some teaching experiences about this mattee. fPoposes to use games to learn about
complex distributed systems, another one proposisgucloud computing instead of a

dedicated cluster, and the last proposal is to Ris@etLab nodes to interact with student

practices.

2. PLATFORMS

There are different ways to execute and test ailolised system. It can be executed in a
software simulated environment, like simulators adulators, or real environments like
testbeds, cloud computing, clusters and giiddle 1 describes these environments and shows

their advantages and disadvantages.

Table 1. Categories of environments for executistributed systems

Category Description
Simulators This kind of applications allows testidgstributed systems under a simulated and
" simplified network model. The application must ldapted to the simulation framework.
- Advantages: Disadvantages:
g « Test conditions can be repeated. » Application must be adapted to the
s « Large number of simulated nodes. framework.
S « Simplified network model. No real
3 network conditions.
% Emulators Like simulators, these systems allowirtgstlistributed systems under a simulated and
= simplified network model, but in this case the amlon doesn’t need to be adapted.
5 Advantages: Disadvantages:
o « Test conditions can be repeated. « Simplified network model. No real
¢ Large number of emulated nodes. network conditions.
« Application don’t need to be adapted.
Testbeds Testbed platforms allow executing distetbapplications in a set of hosts geographically

distributed and connected to a real network. They shared platforms, and uses
virtualization to create different nodes on eachthm this way each application can have
its own dedicated nodes and share hosts with ag@ications.




Real environments

Advantages: Disadvantages:
* |t uses a real network. « Test conditions can’t be repeated, it's a
« Application don’t need to be adapted. real network.
« Dedicated and fully configurable nodes| ¢ It's a shared platform. Applications can
on shared hosts. impact on other applications running in
« Any kind of distributed application can he the same hosts.
deployed.

Cloud Computing

Cloud computing platforms provide @mand and dynamically scalable resources. T|
often use virtualization to share resources andoffan SLAs (service level agreements)
meet client quality of service (QoS) requiremeirifrastructure details are hidden and {
“Cloud” is shown to the user as a single point afess to the infrastructure.

Advantages: Disadvantages:

* |t uses a real network. « Test conditions can’t be repeated, it's a

« Application don’t need to be adapted. real network.

» Dynamically scalable. This allows adapt * Some platforms allow fully configuratior
platform to usage peaks. of nodes, but other ones offer limited

* Pay per usage model. configuration capabilities.

¢ User can sign SLAs to ensure quality
requirements

Clusters

Clusters are a group of linked computerkiwgrtogether closely so that in many aspe
they form a single computer. They are often, but always, homogeneous and 3
connected to each other through fast local areaanks. They are deployed to impro
performance and/or availability over a single cotepuCluster platforms are designed
execute one distributed application at the same.tim

Advantages: Disadvantages:
« It uses a real network. « Test conditions can’t be repeated, it's a
» Fast communication among nodes real network.
(often). « Only applications designed to work with
¢ Fully dedicated platform. the deployed “middleware” can be
« Deployed “middleware” can help to executed.
develop distributed applications. * It's not a shared platform. Often only on
distributed application can be executed
the same time.

Grid Computing

Grids are usually computer clusténgt more focused on distributed computing. G

hey
to
he

cts

to

@

at

rid

computing is optimized for workloads which congi§imany independent jobs or packets

of work, which do not have to share data betweerjahs during the computation proce
Often, grids will incorporate heterogeneous coitewd of computers, possibly distribute
geographically, sometimes administered by unrelatgdnizations.

Advantages: Disadvantages:

« It uses a real network.  Test conditions can’t be repeated, it's a

¢ Fully dedicated platform. real network.

» Deployed “middleware” can help to  Only applications designed for deployed

develop grid computing applications. grid computing “middleware” can be
executed.
« It’s not a shared platform. Often only on

distributed application can be executed
the same time.

Volunteer
Computing

Volunteer computing is a type of network in whiclarficipant nodes donate thei

computing resources when the computer is idle. Sdiaat software consists of a sing
program that combine scientific computation anddtstributed computing infrastructur
but this approach is fixed and can’t be updatedneSmiddleware systems have be
developed to provide a distributed computing irtiiacture independently of the scientif
computation and other middleware has been desitmeanieate a testbed where to t
distributed applications.
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Advantages: Disadvantages:
« It uses a real network.  Test conditions can’t be repeated, it's a
« It uses idle computing resources. real network.
* Heterogeneous systems. « Only applications designed to work with
» Hardware and maintenance cost for noglesthe deployed “middleware” can be
are managed by computer owners executed.
(volunteers). * Nodes are not owned. Availability can’t
be ensured.
« Computation could be repeated in
different nodes to ensure precision.




Simulators and emulators allow us to test new network protocols, servicesdistributed

applications simulating hundreds or thousands ofieso Two great advantages are the
possibility of simulate a large number of nodeshwat single computer and the possibility of
repeat the test under the exactly the same neteamiitions. On the other hand, they use a
simplified network model so some issues found rea network can’'t be modeled. In the case
of simulators the application must be adapted éosimulation framework, but emulators can

execute real distributed applications.

NS-2[4] is an event based network simulator used &working research. It provides support
for simulation of TCP, routing, and multicast proits over wired and wireless networks. It has
a semi-free license, which provides source codeisafrée for non-commercial use. It has been
written in C++ and Object TCL (OTcl).

OPNET [5] [6] is a commercial network simulator, butsitprovided free to universities for
academic research and teaching. It allows creatirdptailed network topology, making a

simulation of network traffic generated by the aggtion and analyzing the network response.

ProtoPeer [7] [8] is a development framework for Java ddsed at section 3. It includes a
simulator, and the same distributed application banexecuted in a real platform or in a

simulated environment, only changing the configorefile.

ModelNet [9] [10] is an emulation environment developedUativersity of California San

Diego. Distributed application instances are exattun virtual nodes, and these nodes are
interconnected using a network core element, wiitfoduces a configurable set of network
characteristics into the communication. Virtual esénd network core are distributed among

one or more computers in a local-area network.

Testbeds are environments designed for researching abowt distributed applications and
services. A testbed consists on a set of hosts ecteh to a real network and often
geographically distributed. Different applicaticasd services can share the platform, so it uses
virtualization to show to the application a dedechenvironment while working in a shared
platform. The user must select in which nodes ttpeement must be executed. Testbeds like
Emulab are able to simulate or emulate the netwask, real network connections or integrate
all of them in the same experiment. Other platfolikes Planetlab are designed mainly to test
distributed services and applications at planetagle, so their hosts are widely distributed

across a lot of countries.



Emulab [11] [12] is a testbed software designed at thévéhsity of Utah. It allows different
network configurations (simulated, emulated or Eainections) and uses virtual nodes where
the user can install and configure necessary soft@nad runs the experiments. It's possible to
install different operating systems on each nodeluding FreeBSD, Windows XP and some
Linux distributions. The most important Emulab fdam is installed at University of Utah, but

there are more Emulab platforms around the world.

PlanetLab [13] [14] [15] is a testbed composed of computtissributed over the globe, more
of them hosted by research institutions. All Plaabt computers run a common software
package called MyPLC that includes a Linux-baseerang system supporting virtualization
and tools to monitor node health and system agtavitd to manage user accounts. A research
group can request a PlanetLab slice to experimetiit planetary-scale services, distributed

applications and network protocols.

SatelliteLab [16] is a network testbed that adds heterogerteitgther testbed platforms like

PlanetLab or Emulab. SatelliteLab architecture tas types of nodes: planets and satellites.
Planets are nodes in charge of run the core expatiapplication, and they must be hosted in
other testbed platform like PlanetLab. Satellitess lghtweight nodes connected to the planets
which only forward network traffic. SatelliteLabgpect provides the software for that satellite
nodes and sample software for the network expetina@plication. SatelliteLab platform

contains only the satellite nodes which can begnated into experiments on other testbeds to

add more heterogeneity.

Cloud computing [17] platforms provide on-demand and dynamicalbalable resources.
Infrastructure details are hidden to the user day follow a pay-per-use model. It's easy to
scale the system when demand increases, or iratigeaf huge distributed systems experiments
it's possible to create nodes only to run the eixpemt. Commercial cloud computing platforms
offer to the client SLAs (service level agreements)meet client quality of service (QoS)
requirements. Platforms as Google App Engine folilhe model “Platform as a Service
(PaaS)”, where they offer a development environnfienapplications with APIs, libraries and
services, and the applications are executed im@bsx. Other environments like Amazon EC2
follow the model “Infrastructure as a Service (Iga% more flexible approach that uses

virtualization to allow the user fully control ovtre distributed system.

Amazon Elastic Cloud Computing (EC2)[18] [19] is part of Amazon Web Services cloud
computing platform. Users can prepare their own 2ZenaMachine Image (AMI) files or select

available generic AMI files containing the desirsaftware, and they can run or stop virtual



machine instances using these AMI files. Users Hallecontrol over installed software, and
different operating systems are available, inclgdiumnix, Linux distributions and Windows
Server. Users have control over geographical lopatif instances. Users pay for the time
servers are running, so it's easy to adapt prastlugtiatforms to peaks of demand. There are
other Amazon Web Services available, like Amazang Storage Service (S3) and Amazon

Relational Database Service (RDS).

Google App Engine[20] [21] is a cloud computing platform for devpiog and hosting web
applications. It's free up to a certain level oédisesources. Currently supported languages are
Python and Java. Developers don't need to instadbofigure any operating system, they only
need to develop their application in Java or Pytteord Google platform handles deploying
code to a cluster and launching application insangs necessary. This approach simplifies
deploying applications, but only applications depeld for this platform can be executed.
Applications are executed inside a sandbox and mastyictions apply to them. The platform

offers a Datastore service to store informatioa mon-relational database.

Windows Azure [22] [23] [24] is the Microsoft approach to clowdmputing. It provides a
cloud operating system and a set of services teldpwand host applications. Windows Azure
is a cloud layer on top of a cluster of computeith Windows Server 2008 and a customized
Hyper-V to provide virtualization of services. Thglatform currently supports .NET
applications, ASP.NET, PHP, Java and Ruby.

Science Clouds[25] are a group of small clouds voluntarily madeailable by some
institutions. It's based omMimbus [26] software, an open source toolkit to create an
Infrastructure-as-a-Service (laaS) cloud. The dhjes of this platform are two: to allow
scientific people experiment with laaS cloud sofeyaand to provide projects developing

software for these clouds with user comments, reqments and suggestions.

A cluster is a group of computers working together closaifahey were a single computer.
It's deployed to improve performance and/or avditglover a single computer. Computers in a
cluster often are homogeneous and connected thradigst local area network. Clusters run an
application at the same time, but some clusteriegtjins can distribute different jobs over
cluster nodes.Grid computing platforms [27] [28] are computer clusters optindizéor
distributed computing, in which the computationgass can be divided into independent jobs
which do not share data among them. Many orgapizaitand institutions have private clusters

and grids.



TeraGrid [29] [30] is a grid computing platform which intege high-end computational
facilities from 11 organizations and institutionsrdugh ultra-fast network links. TeraGrid
unifies software, policies and procedures acrosselfacilities to create a unified system to
support advanced science and engineering rese@echGrid uses middleware like Globus

Toolkit and Condor-G. TeraGrid platform is coordeththrough the University of Chicago.

Grid'5000 [31] is a scientific experimental platform to raseh about large scale parallel and
distributed computing systems. It's initially corspd of resources located at 9 sites in France
connected with a dedicated network link of 10 Gbi#, now it includes also a site at Porto
Alegre, Brazil, and soon it will include a sitelatxemburg. It is designed for scientific research

in the grid domain.

Volunteer computing is a type of network in which participant nodesae their computing
resources when the computer is idle (called also €favenging). Some volunteer computing
platforms are dedicated to computing applicationd are a type of grids, like Boinc and
Condor, and other platforms create a testbed wioetest distributed applications, like Seattle
which is specialized on network experiments in tetogeneous platform, including portable
devices. Condor software can manage together \@@ummiomputing nodes and dedicated grids
and computers, in a mixed environment, and it carnkegrated with Globus Toolkit, a grid

middleware software.

BOINC (Berkeley Open Infrastructure for Network Compg}i32] [33] is an open source
platform for public-resource distributed computiniy.has been designed to run scientific
projects using resources donated by volunteers.p@tan owners can participate in multiple
BOINC projects and can choose these projects. BO@ures include redundant computing,
support for user-configurable application grapharsd a participant credit accounting (a
numeric measure of how much computation particgpaate contributed). BOINC applications
are developed in C, C++ or Fortran and use the BDOfkogramming API [34], a set of C++
functions. BOINC is based at University of CalifaBerkeley.

Seattle[35] [36] is an educational platform which depewasresources donated by users of the
software. Applications for Seattle platform are eleped using a subset of Python language and
a programming API, called Repy, providing some camitations and synchronization
functionality. This APl can be used from Seattlegyams (restricted programs designed to run
inside a sandbox in Seattle nodes) and Seattlécapphs (unrestricted applications which must

be installed by the end-user). The same program agross a wide range of operating systems



and architectures, including Windows, Mac OSX, kindreeBSD and portable devices. Seattle

is based at University of Washington.

Condor [37] [38] is a specialized batch system for manggiompute-intensive jobs. Users
submit their compute jobs to Condor, and it pubsjm a queue, runs them and sends the results
to the user. Condor can manage a cluster of dedicabmputers, idle time from desktop
workstations or resources managed by Globus (uSiagdor-G). Condor supports several
runtime environments, called universes, designeduto different kind of applications. C
applications relinked with condor_compile can beaed in Standard universe and they can
benefit from system calls, transparent checkpanatraigration of jobs if the computer must be
returned to its owner. Non-interactive programsaJapplications or parallel MPI jobs can be

executed in other universes. Condor is based ateBity of Wisconsin.

Table 2includes all platforms described in this section aome characteristics about them to

allow compare the platforms.

Table 2. Platforms
Category >
o =
£ =]
=} o
S|elg 32 5 5 Number of
% S8 % ® | 2| O | Language support Operating System License computers in
EIE|S|IC|E|O| 8 platform
n|u|lF|3 ]
2 5
O] o
>
NS-2 C++, OTcl Unix / Linux / Free for non-
® Windows commercial use Not apply
OPNET ° C/C++ Unix / Linux / Commercial. Free Not apol
Windows for universities pply
ProtoPeer ° Java Java-enabled OS GPL Not apply
ModelNet ° Any application FreeBSD / Linux GPL v2 Not apply
Emulab Any application FreeBSD / Linux/ | AGPL v3
*|°° Windows XP > 350
PlanetLab ° Any application CentOS and Fedora BSD > 1,000
SatelliteLab ° Network Windows, Linux, Copyleft
experiments. MacOS, Java
Amazon EC2 ° Any application Unix / Linux / Private > 40000
Windows Server ’
Windows ° .NET, PHP, Java, | Windows Azure Private > 3.500.000
Azure Ruby T
Google App ° Python, Java Private
Engine
Science Clouds ° Any Linux Apache v2 16
TeraGrid PR Linux Private
Grid'5000 PR REST (HTTP) Linux Private > 5,000
Boinc C, C++, Fortran Linux, Windows, LGPL v3
oo @ MacoS > 500,000
Seattle Python Windows / Unix / MIT
° ° Linux / MacOS / > 1,000
portable devices
Condor C, Java, non- Windows / Unix / Apache v2
® | ®|®| interactive apps Linux / MacOS > 300,000




3. DEVELOPMENT TOOLKITS

In this section we want to introduce some develogmolkits designed to simplify
development of distributed applications. Some tw®llare tied to a specific platform or
middleware, like BOINC APIs or the Globus ToolKiither ones like Appia, Mace or ProtoPeer
can be deployed in a testbed like PlanetLab oiafgr cluster. Some of them are designed for
experimental research or educational applicati@ms] other ones are used in production

applications.

Appia [39] [40] [41] is an open source communicationlkdomplemented in Java. It provides
a core to compose protocols and a set of protdhalsprovide group communications, atomic

broadcasting and more protocols.

Cactus [42] [40] [43] is a project to develop a designdamplementation framework for

supporting dynamic fine-grain Quality of Serviceo®) attributes in distributed systems. The
task support layer provides QoS guarantees fore&skution, and the distribution support layer
provides QoS guarantees for network communicatiBrstotype implementations are available

in C, C++ and Java.

Mace [44] [45] is a development framework designed évedop high performance distributed
applications. It consists of an extension of C+iglaage to describe a distributed application
behavior, a compiler from Mace to C++ and some stodlace provides functionality for
network management, event handling, concurrencynaagbsaging layers. Programmers can use
their C++ tools to compile and debug Mace applwai Many distributed algorithms and

applications have been already implemented in Mashow sample Mace applications.

P2 [46] [47] is a facility that allows constructinggedarative overlay networks. The application
can describe an overlay network using a high-leleelarative language called OverLog, and it
can call P2 runtime library to construct and mamtaat overlay network. A Chord structured

overlay can be done with only 47 rules.

ProtoPeer [7] [8] is a toolkit developed in Java for rapidstiibuted systems prototyping. It
provides functionality for network management, rages passing and queuing, timer
operations, measurement logs and neighbor overtagement. The same application can be
executed in a simulated environment or deployed real distributed platform like PlanetLab

with only changing the configuration file.

Seda(Staged Event-Driven Architecture) [48] [49] islstributed application architecture that

decomposes a complex event-driven application anget of stages connected by queues. It's



implemented in Java and uses the NBIO [50] packagprovide nonblocking I/O support.

Some open source applications use Seda architestdrBIBIO, like OceanStore [81].

Splay [51] [52] is an integrated system designed to ffgnpgeveloping, deployment and testing
of large-scale distributed applications. The usan avrite his distributed application or
algorithm in a language based on LUA [53] and uswiged libraries designed to facilitate the
development of distributed applications and ovexleé§play can deploy, execute and monitor
the application in a large number of hosts on Rlaaie Emulab, ModelNet, networks of idle
computers, personal computers or a mixed envirohrAgplications and libraries are platform-
independent and are executed in a sandbox. Sptaydps a configurable churn manager to
reproduce the dynamics of a real distributed syst@th nodes continuously joining and

leaving.

Some grid computing platforms use middleware safw@grid middieware) which includes
libraries that distributed applications must/care us simplify communications and other
common functionality. Applications developed withese APIs are focused on distributed

computing and are designed to be deployed on ptagfounning this grid middleware software.

Boinc and Seattle are two volunteer computing platforms describedeadtion 2. They have

programming libraries to be used by applicatioreceted in these platforms.

gLite [54] [55] is a lightweight grid middleware softvearused by the CERN (European
Organization for Nuclear Research) LHC (Large Hadf@ollider) experiments and other
scientific organizations. It's used by more thajD@6 researchers at more than 250 sites around
the world. It uses web services approach for soemgices, but currently it's not following
OGSA and WSRF standards. It uses R-GMA [56] foolinfation and monitoring services.

Globus Toolkit (GT) [57] [58] [59] is an open source toolkit dgsed to build Grid systems
and applications. GT architecture is based on thedards Open Grid Services Architecture
(OGSA) [60] developed in the Open Grid Forum (O@F)] and the Web Services Resource
Framework (WSRF) [62] developed by Oasis [63]. $esi stateful webservices, and client
libraries to accessing these web services fromulages like Java, C or Python (Java WS Core,
C WS Core and Python WS Core). This Grid middlewsoéware is used in many Grid

platforms around the world (like TeraGrid).

Unicore (Uniform Interface to Computing Resources) [64arsopen source Grid middleware
software. It is also based on OGSA and WSRF stasdgte Globus Toolkit, but they have



different security model, basic services and imaegs. Unicore includes

software to create a grid platform.

Table 3compares development toolkits described in thiti@e.

server and client

Table 3. Development Toolkits
Language Operating System Platform License
Appia Java Java-enabled OS Any Apache v2
Boinc C, C++, Fortran Linux, Windows, MacO$  Boinc LG
Cactus C, C++ and Java Linux, Unix, Windows Any BSDesty
gLite C, C++, Java, Python|  Linux gLite middleware Apav2
Globus Toolkit | Java, C, Python Linux, Unix, Windows | GT middleware Apache-style
Mace C++ Linux, MacOS, Windowy Any BSD-style
P2 C++ Linux Any BSD-style
ProtoPeer Java Java-enabled OS Any GPL
Seattle Python Windows / Unix / Linux | Seattle MIT
MacOS / portable devices
Seda Java Java-enabled OS Any BSD
Splay Lua Linux, Unix Any GPL v3
Unicore Java Java-enabled OS Unicore middlewale BSD

4. DISTRIBUTED ALGORITHMS AND APPLICATIONS

If we want to learn or teach about distributed sys would be interesting to study already

existing algorithms and implemented distributedli@pfions. In this section we present some

algorithms related with Distributed Hash Table aptqstore key/value pairs among distributed

hosts) and Network Coordinates (use host virtualrdioates to predict network latency

between nodes). These algorithms presents comrsarsigelated to distributed applications

and different approaches to manage them. They doelld good starting point to study and

understood distributed syster@ble 4 shows these proposed algorithms.

Table 4. Proposed Distributed Algorithms
Type Description Algorithms
Distributed Hash | A Distributed Hash Table (DHT) algorithm allows aogp of distributed CAN
Table (DHT) hosts manage a collection of keys and data valugsped to those keysChord
without a fixed hierarchy. DHT algorithms must mgea'churn”, that is| Pastry
hosts being added or removed to the DHT system. Tapestry
Bamboo
Kademlia
Network Network Coordinates algorithms are used to preditgrhet latency betwegnvivaldi
Coordinates (NC) | two nodes based in their network coordinates. Thes@ork coordinates arePharos
calculated using a few messages to neighbor natiese algorithms are used
in distributed applications for optimized messameting.

The first Distributed Hash Table (DHT) algorithmsadable were Content Addressable

Network (CAN), Chord, Pastry and Tapestry. Bambsamnother DHT algorithm based on

Pastry. Common characteristics to DHT systems acemralization (there is not a central

coordination), scalability (system must operatecedhtly even with thousands of nodes) and

fault tolerance (nodes can continuously be failjo@ing or leaving, the "churn" of the DHT).

A good paper describing DHT algorithms is [65].



Content Addressable Network (CAN) [66] uses a virtual multi-dimensional Caites
coordinate space which is dynamically partitionetbag all the hosts in the system. To store
key-value pairs, the key is mapped to a coordinateg a uniform hash function, and the value

is stored in the node in charge of that coordinatee.

Chord [67] [68] uses a SHA-1 hash function to get idiges for nodes and keys. Identifiers

are ordered on a circle called Chord ring. Keys lamsts are distributed among the Chord ring.
Chord is decentralized and symmetric and managés fadlures and joins. It can find the node
responsible for a key using log(N), where N is thuenber of nodes. Some applications using

Chord are:

e DHash [68] is a DHT implementation using Chord wwhprovides a simple put and get

interface to store and retrieve data.

e Cooperative File System (CFS) [69] is a distributeald-only storage system designed
to be efficient and robust. It uses DHost for bletérage, Chord to locate blocks and
the SFS file system toolkit.

e Chord-based DNS [70] provides a DNS-like distrilduteokup service, storing host

names as keys and IP addresses and other hoshation as values.

Pastry [71] [72] uses Plaxton-like [73] prefix routing touild an overlay routing network.
When a node joins the network receives a randomhegated identifier (NodelD) of 128 bits.
Pastry routes messages to the host whose Nodelbmerically closest to the key. Each node
manages a routing table and uses network metriggtimize it. This reduces the cost of routing
packets among nodes. FreePastry [72] and SimHadfrare two available implementations of

Pastry. The following distributed applications Esestry:

Scribe [75] is a distributed publish/subscribe mocakt messaging system. It uses Pastry

to store multicast trees to deliver messages tprbyger group. It supports large groups.

» SplitStream [76] is a high-bandwidth content disition utility based on Pastry and

Scribe. It distributes the forwarding load among plarticipant nodes.

» Squirrel [77] is a decentralized and distributecowache based on Pastry where each

peer request items when browsing the web, stomsiend serve items to other peers.

« PAST [78] is a large scale distributed persistémtagie application based on Pastry.



Tapestry [79] is another DHT algorithm similar to Pastriyalso uses Plaxton-like [73] prefix
routing. The difference between Pastry and Tapasthow they handle network locality and
data replication. Chimera [80] is a C implementatd Tapestry. Some applications based on

Tapestry:
» OceanStore [81] is a high available storage appdicaleployed on PlanetLab.
* Bayeux [82] is an efficient application level matst system.
» SpamWatch [83] is a distributed and decentralizeahsfiltering application.

Bamboo [84] [85] is a open source DHT implementation lthem Pastry, using the same
geometry of neighbor links but different joining aeighbor management algorithms. Its
algorithms are more incremental than Pastry algmst resulting on better efficiency in
environments with large membership changes, cootiswchurn in membership or reduced
network bandwidth. Bamboo DHT was deployed on Rlaate and available as a free service
named OpenDHT.

Kademlia [86] [87] is a DHT algorithm used in Kad Networ&Mule), BitTorrrent, Overnet
Network and Gnutella. A node chooses a unique Nbdahd it uses exclusive or (XOR)
metrics on Nodelds to calculate distance betwealesioThe node manages as many lists as
number of bits on Nodeld to store all contactedasocrranged by distance. In this way, the
first list contains all nodes whose first bit in dddd is different; the second list contains all
nodes with the same first bit in Nodeld and a difé second bit, and so on. These lists are
called k-buckets because they contain a maximurk wbdes per list (k is a constant in the
algorithm, usually 20). Khashmir DHT [88] is a vy implementing Kademlia used by

BitTorrent application.

A distributed application can use Network Coordisatalgorithms to calculate virtual
coordinates for the nodes and predict with morkess accuracy the latency among nodes. This
can be useful to optimize routing protocols andhis way send messages through the short
path or locate nearest nodes. Some algorithmsambmark nodes as references to calculate
node coordinates (like IDMaps [89], GNP [90] or N2g3]), but in this paper we propose two

distributed algorithms whose don't use landmarkegaldi and Pharos.

Vivaldi [92] [93] is a distributed network coordinates aithm which can calculate virtual
coordinates for a node contacting with a few othedes. It doesn't need dedicated network

infrastructure. It's used in Azureus/Vuze [94] Ritfient client.



Pharos [39.1] is another network coordinates algorithtrudes Vivaldi algorithm to calculate

two sets of coordinates, one for long link predics (global NC) and other for short link

predictions (local NC). This improves Internet tatg prediction compared to original Vivaldi

algorithm.

Table 5shows a comparison among implementations of thegsed distributed algorithms.

Table 5. Comparison among implementations of prapdsstributed algorithms

Type Algorithm Implementation  Language  Operatingt&gn License
Distributed CAN (Content
Hash Table | Addressable Network)
(DHT) Chord Chord/DHash C++ Unix, Linux MIT/X11-style
Pastry FreePastry Java Linux, Windows BSD-like
SimPastry C# Windows Free for non-
commercial use
Tapestry Tapestry Java Linux BSD
Chimera C Linux, Windows GPLv2
Bamboo Bamboo DHT Java Linux, Windows| BSD
Kademlia Khashmir DHT Python Linux, Windows MIT
Network Vivaldi Azureus/Vuze Java Linux, Windows GPL
Coordinates | Pharos

5. TOOLS

This section presents tools used in distributedesys with large number of nodes. In these

platforms the user must prepare all the nodes ¢ézwgr the distributed application, and tools

able to execute tasks in a set of hosts at the 8amaecan be very useful.

Table 6 shows the categories used to classify the todlsy Bre related to necessary steps when

executing distributed applications.

Table 6. Categories for tools used in distributestesys

Deployment

This category applies to systems dedigoesimplify deployment of distributed applicat®
among all nodes where they will be executed.

=)

Discovery

In some distributed platforms is necessalect the nodes where the applications shoul
executed. Applications have some resource requitesmand nodes offer some available
resources. This category of tools allows selectindes whose meet application requireme
and can be used to execute the distributed apiplicat

d be

nts

Execute

This category of tools applies to applaratithat simplify the simultaneous execution of
distributed application in all the nodes.

the

Configuration

or service.

This other category applies to toasigned to simplify the configuration of all nodekere
the application will be executed or to manage thefiguration of the distributed applicatig

>

Monitoring

This category applies to tools whoselfiate monitoring of the distributed applicatiom all
the nodes where it is running.

Cfengine [96] [97] is a tool based in a new configuratiamdguage designed to create powerful

administration scripts. These scripts allow testamgl configuring network interfaces, editing

text files, mounting NFS file systems, executingestscripts, managing symbolic links, files,

permissions and ownerships, and other checks.



CoDeeN[98] is a Content Distribution Network (CDN) budh top of PlanetLab testbed. It has
been developed at Princenton University. There aher interesting tools related to the

CoDeeN project:

e CoDeploy[99] distribute content from one source to margneétLab nodes (hundreds).
It uses the CoDeeN content distribution network aad replicate a folder from the
source to other folder in a list of PlanetLab nod&sDeploy calculates the checksum
for the files to compare with the files in the deation folder and copy only the

different ones. It also splits large files to impecefficiency and cacheability.

 CoMon [100] [101] is a web-based monitoring tool desyrepecifically to monitor
activity on PlanetLab nodes. It's extensible andvigles information to both
administrators and users. CoMon allows monitorimgources consumed by an
experiment, identifying problematic nodes or to Wwrnwhat experiments are impacting

on other ones.

» CoTop [102] is a monitoring tool like the top utility,ub showing information about

slices instead of process. It uses the SliceStatosdo gather information from the host.

» CoVisualize [103] shows usage of PlanetLab. It uses CoMonegtojo get some

metrics every five minutes and shows different gregpabout the usage of PlanetLab.

» SliceStat [104] provides information about resources (CPWnmary, bandwidth,

number of processes, etc.) used by slices on daoktPab node.

Distributed Service Management Toolkit(DSMT) [105] can select PlanetLab nodes, deploy
the application to these nodes, and finally exeeutg monitor the application. It can restart

nodes or reallocate nodes as necessary.

Ganglia [106] [107] is a scalable distributed monitoringt®m designed for clusters and grids,
and currently it's working on more than 500 clustround the world. It has been deployed on
PlanetLab successfully, but it was designed fotesgs in a local area network and presents

some performance issues. It uses RRDtool [108joi@ @nd visualize the information.

Gexec [109] is a remote execution tool for parallel addtributed jobs. It uses RSA
authentication and provides transparent forwardihgtdin, stdout, stderr and signals to and
from remote processes. It internally creates a comecation tree between gexec daemons to

distribute the workload and the control informati@exec scales to more than 1000 nodes.

Gush (GENI User Shell) [110] is an extensible executimanagement system for GENI [111].

It can be used to deploy, run, monitor and debagiduted applications on PlanetLab, Emulab



or other resources integrated in GENI. Users cascrie their experiments in a XML
document and Gush can prepare the environment meclite the distributed application. It
supports Nebula [112] as GUI interface. Gush iseasn Plush. It can be integrated with

Sword for discovery or with Stark for package iflateon.

Management Overlay Networks(MON) [113] is a monitoring tool which allows dymécally
querying application status using a SQL-like largguand some commands. It constructs a
monitoring overlay network on demand, collects thtormation and discards the overlay
network. It's a complementary approach to contisumonitoring tools. It has a web interface

to query PlanetLab status and integrates with Collamons.

Nixes [114] is a set of bash scripts to install RPM payds and execute commands on

PlanetLab. All the scripts work in parallel withist of nodes.

PlanetLab Application Manager [115] tool helps to deploy, monitor and run apgiions on a
PlanetLab slice. It uses a web user interface. Sdreer side part requires a web server with
PHP and a PostgreSQL database, and the clienpailds composed of bash scripts. Client

side scripts must be configured.

PlanetLab Experiment Manager (PIMan) [116] is a tool designed to simplify thepdbyment,

execution and monitoring of a PlanetLab experimiritas a GUI to select nodes for the slice
and choose nodes where to run the experiment, yiéijdg, execute commands in parallel on
every node and monitoring the progress of the éxyat. It also presents a scripting interface

to allow be used by scripts written in Perl, PythBaby, Java and C/C++.

PLDeploy [117] is a set of Perl scripts to create slicedy ar remove nodes, deploy and

execute services on PlanetLab nodes.

Plush[118] [119] is a generic platform to control dibtrted applications that can be configured
using XML files. It can manage the application agphent, execution, monitoring and
synchronization. In the case of error, Plush cagcete previously configured actions. Plush
consists on a controller running on the user cospamd a lightweight client running on each
node to be controlled. It can be used on Planetaabrid or a cluster. Nebula [112] is a GUI

interface for Plush.

pShell [120] is a tool with an interface like a Linux $hthat provides some commands to
interact with a PlanetLab slice. These commandsidecadd or remove nodes from the slice,
list nodes in slice and their status, upload or mload files from nodes to local machine and

execute commands in slice nodes.



Pssh[121] package provides parallel versions of thermysh tools. It includes the parallel

versions of ssh, scp, rsync, nuke and slurp: g=sip, prsync, pnuke and pslurp.

SmartFrog [122] [123] (Smart Framework for Object Groups)aidramework to describe a
distributed system and manage deploy, executionnaowitoring of that distributed system. It
defines a language based on prototype supportmpgléges, used to describe all the elements of
the distributed system, their software and conétjon, how they are connected and how they
must be started and stopped. The framework comfigand starts the elements and monitors
their execution. If an element fails it can stadamfigured recovering action or shut down the

system in a controlled way.

Splay [51] [52] is described at section 3. It's an iméegd system designed to simplify

developing, deployment and testing of large-scaiduted applications.

Stork [124] is tool to install Linux packages (tarbatidcaRPM) on PlanetLab nodes. Stork Slice
Manager is a GUI for Stork to simplify the packaganagement on PlanetLab slices. It shares

downloads between nodes and uses public key emmmytot provide package security.

Sword [125] [126] [127] is a decentralized resource digry service for PlanetLab. Sword

uses CoTop to collect measurements per-node (C&dl free memory or free disk space) and
inter-node (latency between nodes or bandwidthhéates in PlanetLab. Users send queries in
XML format requesting nodes matching the queryecid The query can include per-node and

inter-node attributes.

Vxargs [128] provides the parallel version of any arlsgraommand, including ssh, rsync, scp,

wget, curl and whatever. It redirects stdout adestof each individual job to files.

Table 7 shows all these tools, their categories, operairsggem, language and license. It also

shows if the tool support any platform or only soofi¢hem (like PlanetLab).

Table 7. Tools
Category
c
g £| o| Platform Operating Source License
= g‘ N g £ support System Language
81g|3|22
ol2| 2 5|8
Qlald|ol=
Cfengine . Any Linux, Windows | C GPL v3, Commercial
Open Source License)
CoDeeN PlanetLab Linux
CoDeploy ° PlanetLab Linux
CoMon o | PlanetLab Linux
CoTop e | PlanetLab Linux
CoVisualize e | PlanetLab Linux




Distributed Service PlanetLab Linux Java BSD-like

Management Toolkit

Ganglia Any Linux, Unix, PHP, C, BSD
Windows Perl, Python

Gexec Any Linux, Unix C BSD

Gush — GENI User GENI, Linux, Unix C++, Perl

Shell Emulab,

PlanetLab

Management Overlay, PlanetLab Linux C++ BSD-like

Networks (MON)

Nixes PlanetLab Linux Bash scriptg

PlanetLab Application PlanetLab Linux PHP, Bash | BSD-like

Manager scripts

PlanetLab Experiment PlanetLab Linux, MacQOS, | Java

Manager - PIMan Windows

PLDeploy PlanetLab Linux Perl BSD-like

Plush Any Linux, Unix, C++, Perl Academic Free
MacOS License (AFL)

pShell PlanetLab Linux Python

Pssh Any Linux Python BSD-like

SliceStat PlanetLab Linux

SmartFrog Any Linux, Windows | Java LGPL
Unix, MacOS

Splay Any Linux, Unix C, LUA GPL v3

Stork PlanetLab Linux

Sword PlanetLab Linux Java

Vxargs Any Linux, Unix Python LGPL

6. TEACHING EXPERIENCES

This section presents some teaching experiencatedeto distributed systems. They are only

samples and describe different approaches to teqthis subject.

Polytechnic Institute of New York University promss[129] to use games to teach about
distributed systems. Students must analyze and geaascomplex distributed system already
working, and the teacher introduces some errothensystem. Students must look for these
errors and solve them. They work on teams andve@gme points for the time the application
iIs working properly. In this way, using games sttddry to understand how the application

works and learn about common errors in distribafgplications.

StarHPC [130] is a teaching experience from the Massadtsisiestitute of Technology. They
propose to use Amazon Elastic Cloud Computing (Am&zC2) to run practices on distributed
systems. Practices are concentrated on some weekgepr, so the cost of this solution is
cheaper than maintaining a dedicated compute clU3ther advantage is resource availability,
because with a dedicated cluster students mustetenfipr resources to run their practices, and
with EC2 they can use as many instances as theyatdbe same time. They have prepared an
Amazon EC2 virtual machine image to run on thetelasompute cloud, a virtual machine
image to run on the student computer and some #stnaitive scripts to manage Amazon EC2

cluster.



PlanetLab@UOC [131] is another teaching experience from Openvéhgity of Catalonia
(UOC) at Barcelona, Spain. They use a distributethitecture where student instances of a
distributed application communicate and interag¢hwither instances developed by the teacher
and deployed on PlanetLab nodes. Students can fonuslevelop their instance of the
application, and test it in a distributed and realvironment like PlanetLab. Student
implementation can interact with already workingdadeployed implementations of the

application.

7. CONCLUSIONS

In this paper we tried to present a “state of titean distributed systems, showing an overview
on this matter. Not all platforms, toolkits, algbrns and tools are presented here, but we think
more important ones for each category have beesepted. We hope that all resources included

in this paper could be useful for people who wanearn or teach about distributed systems.
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