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records thus: Star X, spectral class G0, 4 planets plus debris.
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Abstract

Space Debris is a growing threat to both manned and unmanned missions
in space. The growing number of out-of-order satellites, used rocket boosters
and other debris makes the calculation of safe orbital paths harder and harder,
until a day in which the density of debris will render orbital space unusable. To
avoid this situation a debris removal system is required. In this paper the core
functions of an artificial intelligence (AI) for controlling a debris collector robot
are designed and implemented. Using the robot operating system (ROS) as the
base of this work a multi-agent system is built with abilities for task planning
using a genetic algorithm, self-location through the use of particle filters and
path-planning and collision avoidance through the use of a modified elastic force
algorithm. This MAS contains a simulated world as well, to test its performance.
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2 CHAPTER 1. INTRODUCTION

Since humanity started sending unmanned probes to space thousands of
satellites have been put in orbit. Every year the number of satellites put in
orbit grew, and that, together with the fact that usually satellites are put in
their orbit and left there without any further thought means that space around
earth has become widely populated.
Currently there are more than 19.000 pieces of debris larger than 5 cm tracked,
with more than 300.000 pieces smaller than 1 cm, all of them below 20.000 km
of altitude [1].

Figure 1.1: Tracked space object population growth until January 2009 [1].

This Space Debris is formed by thousands of different objects, from out-
of-order satellites and rocket boosters to flecks of paint and debris created by
previous collisions, but all of them share the same potential for trouble. This
debris presents a huge danger for both manned and unmanned craft, and is
making the calculations of safe orbital paths and exploration missions harder
and harder to the point where they may be almost impossible.
The main reason why space debris must be taken care of is what is known as
the Kessler syndrome [4], a scenario in which the density of space debris is high
enough to create a collision cascade, each collision generating more debris and
thus increasing the likelihood of new collisions, those generating new debris in
turn. If this scenario was reached a single collision could create a cascading
effect that would render every object in that orbital range damaged and useless.
Several solutions to this problem have been proposed, like the MDA Space In-
frastructure Servicing vehicle [2], which includes the capability to move satellites
to a “graveyard orbit” or the use of an electrodynamic tether [3] attached to a
satellite.
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1.1 Proposed Solution

The solution proposed in this paper consists in an autonomous spacecraft, able
to pick up satellites and drag them to a designed “safe point” for later disposal,
either by shipping them back to Earth or by recycling them in a suitable space
facility.
This paper will focus on the Artificial Intelligence (AI) which will be the brain
of the aforementioned robot.

1.2 Goals

This project aims to design and program the AI that will control the Debris
Collector .
It is not in this project’s scope to provide blueprints, nor schematics, nor even
hardware configurations beyond the requirements for the project to work.

• Definition of the world model.

– Define the boundaries of the world model.

– Define the main abilities the Debris Collector will have.

• Program the world model.

• Identify and define scenarios.

– Locate the robot in space.

– Locate the objects around the robot in the same model.

– Calculate the best action plan to capture all objects.

• Program each defined scenario.

• Model the calculated plans as task sequences.

1.3 Work plan

The project has been split in the following tasks:
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Figure 1.2: The work plan for the project.

There are eight tasks:

1 Project Definition Defining the project to be presented, its scope and goals.

2 World representation Designing and defining how will the world be rep-
resented for the Debris Collector .

3 Debris Collector design Designing how will the Debris Collector be im-
plemented.

4 Algorithm programming Programming the various algorithms required
by the Debris Collector and testing them.

4.1 World representation model Programming the model defined in
task 2.

4.2 Genetic algorithm Programming and testing the genetic algorithm
required.

4.3 Particle filter Programming and testing the particle filter algorithm
required.

4.4 Elastic force algorithm Programming and testing the elastic force
algorithm for collision avoidance.

5 Agent programming Programming the intelligent agents required by the
Debris Collector .

5.1 world node Programming the world node intelligent agent.

5.2 planner node Programming the planner node intelligent agent.

5.3 locator node Programming the locator node intelligent agent.

5.4 executer node Programming the executer node intelligent agent.
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6 Paper Writing the paper.

6.1 Chapter 1 Writing the “Introduction” chapter.

6.2 Chapter 2 Writing the “The World” chapter.

6.3 Chapter 3 Writing the “The task planner node” chapter.

6.4 Chapter 4 Writing the “The locator node” chapter.

6.5 Chapter 5 Writing the “The task executer node” chapter.

6.6 Chapter 6 Writing the “Conclusions” chapter.

7 Revision Revision of the paper.

8 Presentation Writing and recording the presentation of the project.

1.4 Deliverables

The resulting program will be delivered as a zip file containing all the required
code and files to compile and execute the Debris Collector . The zip contains
the following files:

• debris collector - This folder contains the ROS package with the source
code ready to be compiled and executed.

• test log - This folder contains the log of a simple test exeution of the code.

1.5 Structure of the document

The following chapter gives a more detailed explanation on how the Debris
Collector’s AI works and its architecture, as well as how it understands the
world.

1.5.1 Chapter 2: The World

This chapter explains how the world surrounding the Debris Collector will be
represented, discusses the chosen architecture and explains the world node, the
node responsible for the simulation of the world.

1.5.2 Chapter 3: The task planner node

This chapter explains how will the Debris Collector plan its work, discusses the
use of genetic algorithms and explains the planner node, the node responsible
for planning the tasks.

1.5.3 Chapter 4: The locator node

This chapter explains how the Debris Collector will localize itself, discusses the
use of particle filters and explains the locator node, the node responsible for
localizing the Debris Collector in the world.
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1.5.4 Chapter 5: The task executer node

This chapter explains how the Debris Collector will carry out the tasks planned
before, discusses the use of elastic force algorithms to avoid collisions, and ex-
plains the executer node, the node responsible for carrying out the planned
tasks.

1.5.5 Chapter 6: Conclusions

This chapter explains the complete agent network built through this paper,
explains the tests performed, and suggests further improvements that could be
made on the Debris Collector .
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This chapter discusses the Debris Collector in greater detail. First I will
define how it understands its surrounding world, to proceed then to examine
its mind, the AI’s software architecture that will be implemented in following
chapters.

2.1 Modeling the world

To be able to think about the world we need to understand the world, and some-
thing similar goes on with robots. For them to be able to extract conclusions
and make decisions about the surrounding world they need a suitable model to
represent it.
For the Debris Collector I will build a geocentric model, meaning that every
object (including itself) will be expressed in terms of their relative position to
the Earth (in fact to a fixed point in Earth, namely it’s mass center). This
model can be extrapolated to whichever planetary body the Debris Collector
should orbit.
To represent every object’s position a spherical coordinate system will be used.
For this coordinate system to work we need to define some important concepts
first:

Figure 2.1: VN (red) and VG
(blue) in relation with the world
sphere.

• The Earth’s center of mass, called c.

• The polar vector, a unitary vector withs
its origin in c pointing towards the north
pole, following the Earths rotation axis
direction, called VN .

• The Greenwich vector, a unitary vec-
tor with its origin in c pointing to-
wards the Greenwich meridian and
perpendicular to VN , called VG
. There are two points in Earth
which satisfy this conditions, it is
not relevant which one is picked
as long as the system is coher-
ent.

It is important to take notice that this model does not consider Earth as a
moving object, but rather as a stationary one. That model is good enough for
the Debris Collector , however, as it will be orbiting Earth and not traveling
through the solar system.
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Once those concepts have been specified I can define every single object’s posi-
tion orbiting Earth as the triad (r, θ, ϕ), where:

r is the distance form the object center of mass to c in meters.

θ ,also called the polar angle, is the angle between VN and the projection of the
distance vector over the plane containing VN and perpendicular to VG .

ϕ , also called the azimuth angle, is the angle between VG and the projection
of the distance vector over the plane containing VG and perpendicular to
VN .

2.1.1 Targets and Obstacles

Besides modeling the world and the Debris Collector’s position in it I need to
model every other object moving around it. Every single object around the
Debris Collector will be classified as either a Target or an Obstacle. Targets
are those objects the Debris Collector has to pick up, and thus it’s position and
trajectories must be tracked. Obstacles, on the other hand, are those objects
that are not targets, and must be avoided by the Debris Collector .
Both objects are very similar in terms of position modeling but, besides its
(r, θ, ϕ) triad we need to know how are they moving, as most objects in space
are not stationary. To model the trajectory we will use another triad (v, α, β),
where:

v is the radial speed, it defines how r changes through time in meters per second.

α is the polar angular speed, it defines how θ changes through time in degrees
per second.

β is the azimuthal angular speed, it defines how ϕ changes through time in
degrees per second.

Thus the orbit’s equation is:

(r1, θ1, ϕ1) = (r0 + vt, θ0 + αt, ϕ0 + βt) (2.1)

Where (r0, θ0, ϕ0) is the object’s original position, t is the elapsed time, (v, α, β)
is the orbital speed as defined above and (r1, θ1, ϕ1) is the objects position after
the elapsed time.

2.1.2 Debris Collector’s movement

Physics in orbit, thought using the same principles that physics on Earth, have
some important differences. Usually movement on Earth is obtained from fric-
tion, like walking or cars do. Instead, in space, movement is obtained from
applying Newton’s second law of movement, “the acceleration of a body is in-
versely proportional to its mass, parallel and proportional to the net force acting
on it and in the same direction that this force” [5].
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Usually this translate in the use of thrusters, devices that generate a force on
the body they are attached to, usually by the expulsion of matter (rockets use
the expulsion of a high-speed fluid exhaust [6], while an ion thruster uses accel-
erated ions [7], though the base principle remains the same).
For the purposes of this paper it matters not which kind of thruster will be used
by the Debris Collector as they operate in a similar fashion as long as movement
is concerned. During the rest of this paper a thruster, or more than one thruster
acting simultaneously, will be modeled as a net force applied on the Debris Col-
lector during a certain amount of time, thus generating an acceleration of the
Debris Collector in the direction of the force.
Besides how the movement is generated there are other forces that must be
considered, as they have an effect on the Debris Collector . Earth’s gravity,
though having a lower pull because of the Debris Collector’s altitude, is still an
important force that should be considered as it will pull the Debris Collector
towards the Earth, degrading its orbit. Other forces, such as the gravity well,
or the push of solar winds should be considered as well, as they can modify the
Debris Collector’s orbit and trajectory.

2.2 The Debris Collector’s Software

To develop the Debris Collector’s AI I need to decide both the operating plat-
form on which this software will run and the goals this software must accomplish.
In the previous chapter I talked about its main goal, collecting space debris and
dragging it to a predefined point. In the following sections, however, I will define
how this general goal should be accomplished and how am I going to make it
possible.

2.2.1 Debris Collector’s behavior

The Debris Collector should be fully autonomous, needing no human operators
to work. In order to provide the Debris Collector of those capabilities I need to
design its behavior by defining a finite-state machine [8] which will guide it.
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Figure 2.2: The UML state diagram defining the finite-state machine for the
Debris Collector .

As shown the Debris Collector will start in its “Localize” state, which is
also its general state when nothing else has to be done. In this state the Debris
Collector will be localizing itself and everything around it within the world.
When the Debris Collector finds a Target it will then move to the “Devise
Plan” state, where it will try to devise the best path to catch and retrieve all
Targets. Once a plan is devised the Debris Collector will move to the “Execute”
superstate, in which most of the heavy work (at least physically) will be done.
Once in the “Execute” superstate the Debris Collector will start by moving to
the first substate “Move to target” to move to a Target, once there it will move
to the “Grab Target” substate and catch it. If it can carry no more Targets,
or there are no more Targets to carry the Debris Collector will then move to
the “Move to drop point” substate and drag the Targets to the predefined drop
point. Otherwise it will, once again, move to the “Move to Target” substate
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and start over. Once it has released its cargo in the drop point, if there are
more Targets in the plan it will move to the “Move to Target” and start over
otherwise the robot will move to the “Localize” state until more targets are
found. As can be easily noted there is no ending state, as the Debris Collector
will be always working unless a forceful shutdown must be done.

2.2.2 Robot Operating System

The Robot Operating System (ROS) is an open source project to provide “li-
braries and tools to help software developers create robot applications” [9],
released under a BSD license. It provides an abstraction layer that allows the
programmer to focus on the actual AI involved instead of hardware driver man-
agement, message passing and such.
The ROS architecture is designed with a distributed approach, with a series of
Nodes interconnected. A Node is a small C++ program doing a specific task.
Each Node can then publish or subscribe to a Topic (in fact to any number of
Topics), sending information to it or receiving the information contained in the
Topic respectively.
Additionally a Node can offer Services, which are functions that can be called
by any other Node.
Both Topics and Services will be used in this project. The fact that ROS han-
dles all the complexity of sending and receiving messages makes it a powerful
tool, as the work can focus on the actual intelligence programmed without losing
time and effort on the underlying architecture.

2.2.3 The Multi-Agent System approach

A multi-agent system [10] consists in a group of intelligent agents working to-
gether towards a common goal. Each intelligent agent [11] is an autonomous
program able to interact with and take decisions about its environment. By
making those agents able to interact with each other and communicate between
them a much more complex and powerful behavior emerges. Thanks to the fact
that the work is divided between multiple agents, each of them fine-tuned to
solve a specific simple problem, complex goals can be easily achieved.
If we take a look at ROS’s architecture it’s trivial to see that this is the preferred
approach to work within it, creating each agent as a ROS Node and communi-
cating them through Topics or Services.
Each node is autonomous, as it works by itself, yet they need to communicate to
send their results to the other nodes, i.e. the executer node needs to know where
the Debris Collector is to decide where to go, information that is computed by
the locator node.

2.2.4 Debris Collector’s node map

As said in previous sections the Debris Collector will use a multi-agent system
architecture, developed using ROS. For this we need to decide which tasks will
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be done by which agents and how they interact with each other.

Figure 2.3: The agent map shows how the different agents interact between
them. Round-cornered rectangles represent the Nodes, round-cornered rect-
angles with dotted borders represent the Topics. The Nodes discussed and
implemented in this paper are highlighted.

As can be seen there are five Nodes, each of them an intelligent agent with
a single purpose. Those Nodes communicate to Topics and read from them.
Some Nodes also read or write from sensors or to actuators respectively.
The five Nodes are:

VisualDigester: This Node will not be implemented, yet its existence is key for
the other Nodes. This Node receives the data from different sensors, either
cameras, laser range sensors, radars or other sensors and transforms it in
positions according to the Debris Collector’s world model. On one hand
the different objects around the Debris Collector have to be located in the
world and put into the “Objects” Topic, on the other hand the information
from the different localizer beacons have to be localized relatively to the
Debris Collector and put into the “Beacons” Topic.

Localizer: This Node reads the localizer beacons relative positions from the
“Beacons” Topic and uses those to deduct the Debris Collector’s actual
position inside the world model we are using, putting this information into
the “Location” Topic.

Planner: This Node reads the information from the “Objects” and “Location”
Topics and uses it to decide which will be the best route to pick all targets,
publishing this route in the “Plan” Topic.
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Plan Executor: This Node reads the information from the “Plan” Topic and
executes the plan using the arms and other actuators. It reads from the
“Location” Topic to know where he is and from the “Objects” Topic to
know its surroundings. It published the required movements to make in
the “Move” Topic.

Pilot: This Node will not be implemented, yet its existence is key for the other
Nodes. This Node recieves the required movement through the “Move”
Topic and calculates which thrusters should be used and for how long.

2.3 World node documentation

The World Node will be the node responsible for modeling the world, main-
taining an absolute position of each and every object through time, checking
for collisions and giving the object’s positions in the geocentric model defined
before. It will also be responsible of simulating those Nodes not implemented
in this paper.

2.3.1 Parametrization

The simulated world, and the objects it contains, can by parametrized by mod-
ifying the following parameters:

targets and obstacles targets and obstacles are two vectors that contain a se-
ries of SpaceObjects (TargetSO and ObstacleSO respectively) representing
the objects present in the simulated world.

SENSOR RANGE specifies the maximum sensor range of the simulated robot.
Objects that are further away than the sensor range will not be “detected”
(published to the Objects Topic).

GRAB DISTANCE specifies the maximum distance allowed between the
robot and the “Target” to be grabbed.

2.3.2 Topics

This node reads information from the following topic:

Move The topic in which every movement the Debris Collector has to make is
published by the executer node.

It also publishes information in the following topics:

Objects Every space object surrounding the Debris Collector is published in
this topic, as a Spherical coordinates position and angular speeds.

Beacon The three closer beacons to the Debris Collector are published here,
as its position and distance to it.
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2.3.3 Services

The World Node provides the “Grab” service, which receives the id of a “Target”
and tries to grab it. This service returns a 0 if it has been successful and a 1
otherwise.
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In this chapter the “Planner” node which will be responsible for devising the
best way to pick up the targets will be built.

3.1 Problem definition

In any given moment the Debris Collector will have a set of targets around it.
The goal of this intelligent agent is to find a way to meet each target while
keeping fuel consumption to the minimum possible.

3.1.1 The Traveling Salesman Problem

This problem is quite similar to the “Traveling Salesman” problem [12]. In this
problem a traveling salesman has to visit a number of cities. The goal is to
calculate the cheapest route between cities which visits every city exactly once.
If “cities” are substituted by “Targets”, the salesman by the Debris Collector
and “smaller cost” by “less fuel consumption” the problems look almost the
same, even if the “Targets” are moving and have to be brought to a predefined
drop point.

3.1.2 Genetic Algorithms

Though the “Traveling Salesman” problem may be easily solved with an A∗
algorithm the time needed by the algorithm increases exponentially with the
number of “cities”. To avoid this situation a number of algorithms have been
developed, one of them being the Genetic Algorithm [13]. The genetic algorithm
imitates the evolution of a population towards the “best fit” for its environment.
The genetic algorithm is as follows:

• First a “Solution Population” is created, for example, in the “Traveling
Salesman” problem every individual is a possible order to visit the cities.

• Then a “Fitness” is calculated for each individual using an heuristic, for
example, in the “Traveling Salesman” problem the heuristic is the total
cost of the proposed route.

• After that a new “Solution Population” is created by randomly picking up
individual pairs according to their “Fitness” (smaller costs will reproduce
more often) an combining those two solutions to create a new one.

• On some randomly chosen individuals a mutation is applied, for example,
in the “Traveling Salesman” problem two cities could be swapped in the
order.

• When convergence is found, the algorithm stops. Convergence can be
defined either as “the best cost hasn’t changed for a number of iterations”
or as “difference between population individuals is smaller than a certain
threshold”. If convergence has not yet been found the algorithm returns
to step 2.
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3.2 Solution

To solve this problem a genetic algorithm will be used. In order to explain more
clearly the proposed solution an iterative description will be used. First the
easiest problem (unmoving “Targets”) will be solved and then the additional
complications of the problem will be added layer after layer.

3.2.1 Stationary satellites

The easiest scenario is when the “Targets” that have to be picked up by the
Debris Collector are all “stationary” (floating over a specific earth coordinate,
and thus immobile in the defined reference frame). In this scenario the problem
to solve is identical to the classic “Traveling Salesman” problem. When building
a genetic algorithm the population, heuristic, reproduction algorithm, mutation
algorithm and convergence have to be defined.

Population: The population for this scenario is formed by a set of individuals,
each one of them a possible order in which to pick up the “Targets”. In
those individuals there could be no duplicated values, as each “Target” can
only be picked up once. Each order-“Target” pair is called a chromosome.
In the built algorithm the size od the population is equal to n ∗ (n − 1),
with n being the number of “Targets” to pick up.

Heuristic: In this scenario the simplest heuristic is to calculate the sum of
distances between consecutive chromosomes. The fitness of an individual
is the inverse of its cost, normalized.

Reproduction: As no duplications can be found in any individual it is not
possible to just mix both answers. To solve the situation a greedy approach
has been used. When two individuals are chosen to reproduce the cost of
moving from the current position to the first chromosome is compared, and
the chromosome with smaller cost is taken. For every next chromosome
the cost to the following chromosome in its parent is compared and the
one with smaller cost is added to the child. This algorithm is repeated
until a new population with the same size than the initial population is
created.

Mutation: When a mutation is applied on an individual the pickup order is
modified by swapping two random “Targets” in the order.

Convergence: Convergence is found when either the total lower cost minus the
total lower cost of the previous iteration is lower than a certain threshold
for a number of consecutive iterations or a predefined number of iterations
have occurred.
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3.2.2 Moving satellites

If “Targets” are moving then the complexity increases, as it’s not enough to
calculate the best order, but when to pick each “Target” is as important because
the cost can change greatly as the distance increases or decreases with time.

Population: To build the population for this scenario the pickup times for
each target should be added. Now a chromosome is the triplet formed by
a “Target”, its order and its pick up time. Obviously pickup times have
to form a strictly increasing sequence.

Heuristic: To adapt the cost calculation the required speed is used to reach
the next chromosome at the desired time, as higher speeds mean higher
accelerations and thus higher fuel costs. The fitness function needs no
modifications.

Convergence: Convergence is not modified.

Reproduction and Mutation are the most heavily modified parts in this scenario.
Though the general algorithm for reproduction is not modified there are several
possibilities to consider as time is concerned.
Two approaches have been tested:

Brute force: Time is randomly selected when the population is generated and,
during reproduction the time increment for the chosen next chromosome
is picked. Time is also mutated, selecting a random time-chromosome in
the individual and changing its value randomly.

Minimum distance: Time is considered a consequence of order, and it is al-
ways chosen as the time in which the distance between the current point
and the next “Target” is minimum. To find the minimum distance a
slightly modified gradient descent algorithm is used.

To compare the performance of both algorithms they have been implemented
and some simulations where performed with the same parameters, ordering 5,
10 and 15 “Targets” with 100 simulations per configuration. Medium total time
and iterations required by the algorithm, medium cost, solution dispersion (how
many different solutions have the algorithm returned) and medium total time
the solution plan will take to execute have been compared to decide which one
is the best solution.
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Figure 3.1: Medium cost

Figure 3.2: Medium iterations
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Figure 3.3: Medium time

Figure 3.4: Medium execution time
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Figure 3.5: Result dispersion

As can be seen in Figures 3.1 to 3.5 the Brute force algorithm is much faster
and the resulting plan takes less time to complete, but is much more dispersed
and has higher costs, which are direct consequence of being a shorter plan. On
the other hand the minimum distance algorithm is far slower to execute, but
takes less iterations and is more cohesive. Though the results from the minimum
distance algorithm are far better in regards of cost and dispersion its to slow to
converge, rendering it unusable.
To try to get both algorithm’s strong points a mixed solution is required. The
mixed solution consists in using the minimum distance algorithm to generate the
initial population. Then, during algorithm execution, the brute force approach
to reproduction is used, while time mutations are introduced in the mutation
process. Time mutations consist in calculating the minimum distance time for
every chromosome in the individual. The results of the same test over this
algorithm are better than any of its parents, as the following figures show.
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Figure 3.6: Medium cost

Figure 3.7: Medium iterations
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Figure 3.8: Medium time

Figure 3.9: Medium execution time
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Figure 3.10: Result dispersion

As shown the mixed algorithm is much faster than the minimum distance
algorithm and not much slower than the brute force algorithm, more cohesive
that either of them, and it usually takes less iterations than any of them. With
the mixed algorithm the benefits of each algorithm can be obtained without the
associated drawbacks, and thus, this is the selected algorithm.
To implement the mixed algorithm, besides the aforementioned modifications
the following operations need to be reimplemented:

Initial population: The initial population is calculated by generating a num-
ber of individuals with random pickup order and the applying the mini-
mum distance algorithm to each one of them.

Reproduction: Reproduction remains quite similar, but the time difference
between the current satellite and the “Target” is passed to the new indi-
vidual as well.

Mutation: There are two different mutation algorithms. On one hand a regular
mutation is performed exactly the same than in the previous algorithm,
by swapping two satellites in the order (time is unmodified). On the other
hand when a “Time mutation” occurs time is recalculated for the whole
individual using the minimum distance algorithm.

3.2.3 Moving Targets and drop point

To complete the algorithm the drop point have to be introduced. The Debris
Collector can only take a number of “Targets” with it before needing to move
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to the drop point to release them. As the number of “Targets” that can be
captured is depending on its hardware, but is always the same value the only
required modifications to the algorithm is to limit the number of “Targets” to
be picked up in a single run. This has the added benefit of reducing memory
consumption.

3.3 Planner node documentation

The Planner node will be responsible for executing the genetic algorithm when-
ever it is required. This node uses both the model and the genetic libraries.

3.3.1 Parametrization

This node’s behavior can be tweaked by modifying the following parameters.

MAX ITERATIONS Maximum number of iterations allowed in the genetic
algorithm. After that many iterations the best result so far will be re-
turned.

CONSECUTIVE BESTS The number of consecutive convergent iterations
to consider the algorithm to have converged.

MAX DIFERENTIAL The goodness of each iteration in relation to the pre-

vious iteration is calculated as |besti−1−besti|
max(besti−1,besti)

, if this number is smaller

than the MAX DIFERENTIAL parameter those two iterations are con-
vergent.

MUTATION PROBABILITY The probability (in percentage) of a order
mutation occurring.

MIGRATION PROBABILITY The probability (in percentage) of a mi-
gration occurring.

TIME MUTATION PROBABILITY The probability (in percentage) of a
time mutation (recalculating all pickup times using the gradient descend)
occurring.

3.3.2 Topics

This node reads information from the following topics:

Objects The Topic in which every surrounding object position is published by
the world node.

Location The Topic in which the robot position is published by the locator
node.

It also publishes information in the following topic:

Plan The Topic in which the devised plan is published as an ordered series of
targets and pickup times.



28 CHAPTER 3. THE TASK PLANNER NODE

3.3.3 Services

This node offers the “NewTaskList” service, which receives no parameters and
returns no parameters. This service requests the plan devising algorithm to be
executed.
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In this chapter the “Locator” node, which will be responsible of finding the
current position of the robot at any time, is built.

4.1 Problem definition

A common problem in every mobile robot is how to find out where it is in a
reliable way. Measurement systems have always a certain margin of error, and
motors and other movement providers may have a certain error too. At the same
time if the initial position is unknown it is usually quite expensive to compute
the position by using triangulation or other trigonometry algorithms.

4.2 Particle filters

One of the most powerful tools to localize a robot is a particle filter [14]. A
particle filter is a simple yet powerful algorithm which takes the uncertainty of
measurements and movements into account to provide an accurate guess of the
current position.
To understand how the particle filters work there are a few definitions that
should be explained first.

• Particle A particle is a possible position and orientation of the robot.

• Localizer beacons For this algorithm to work a set of immobile, easy
to locate points have to be defined. As they do not move the robot can
measure its distance to them as a reference frame.

• Resampling (with replacement) The process of resampling with re-
placement consists in selecting elements from a group at random in ac-
cordance to its probability of being picked up until a new group with the
same cardinality has been created.

The algorithm works as follows:

1 Create a number of particles with random positions.

2 Calculate the actual distance between each particle and the localizer beacons.

3 Assign a weight to each particle depending on the error between the calculated
distances and the real distance between the object and the beacons.

4 Generate a new particle population by resampling the previous population.

5 Apply the same movement to the robot and to every particle.

Return to 2
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As can be seen the algorithm is quite simple. Usually the movement of the robot
and particles is defined as a rotation and a movement speed. As each particle
(and the actual robot) have an orientation the movement is assumed to be in
the same direction as the orientation.

4.3 Simplified Scattered Particle Filter

The Simplified Scattered Particle Filter (SSPF) used makes some minor changes
to the original algorithm. One of the biggest drawbacks of the Particle Filter
is the fact that particles are never modified, just updated (in step 5 the same
movement is applied to both the particles and the robot). Sometimes this leads
to a point where the particles that have survived have a wrong orientation,
and they move away from the robot. As no new particles are added if this
situation appears the algorithm has no way to readapt itself, and the error in
the localization increases with no solution.
To avoid this problem the scattering method has been introduced. In step 4,
every time a new particle is copied, a small possibility of scattering is introduced.
If the particle is scattered it’s location is randomly changed (by a small amount).
If the particle has a bigger measurement error than in the previous iteration
(which means that it has a different orientation than the orientation of the actual
robot) its orientation is changed at random. In both situations (either position
or orientation scattering) is possible to end up with a worst particle, but the
possibility of introducing a new, more correct, particle also appears, making the
algorithm able to adapt itself and solve the increasing error situation described
before.
The algorithm used in the robot has been simplified as well, by ignoring the
possible error in the measurements and movements. Though this makes the
algorithm less reliable, it is easier to implement and test.

4.4 Locator node documentation

This node computes the position of the robot using the SSPF. It uses both the
model and particle libraries.

4.4.1 Parametrization

This node’s behavior can be tweaked by modifying the following parameters.

MAX ERROR The max error allowed. This error is calculates as the mean
error of each particle, which is calculated as the sum of the individual
errors between the particle to beacon distance and its expected distance.
Once the error is smaller or equal to this parameter the node will start
publishing the computed location.
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4.4.2 Topics

This node reads information from the following topics:

Move The topic in which every movement the Debris Collector has to make is
published by the executer node.

Beacon The topic in which each visible beacon and the current distance to it
is published by the world node.

It also publishes information in the following topic:

Location The current position of the Debris Collector is published in this topic.

4.4.3 Services

This node offers and uses no services.
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In this chapter the “Executer” node will be built.

5.1 Problem definition

Once the Debris Collector knows where it is, and what it has to do it need to do
the actual work, translating the devised plan into a series of simple tasks. This
node will also be responsible for avoiding any “Obstacles” the Debris Collector
encounters.

5.2 Decision Making

To transform the devised plan into a series of tasks a finite state machine (fsm)
will be implement. This fsm will choose the action to undertake at every situa-
tion.

Figure 5.1: The UML state diagram defining the finite-state machine for the
executer node.
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As shown on the image the robot will start at the “IDLE STATE” state.
In this state the Executer node will request a plan to the Planner node until
it receives a new plan. Once this happens the Executer will move to the “SE-
LECT NEXT” state. In this state the next element in the plan (if there are
elements in the plan) will be taken as the task at hand and then the Debris
Collector will proceed to the “MOVE TO NEXT” state. In this state the De-
bris Collector will calculate the movement to be done to get to the calculated
pickup point. Once the Debris Collector gets to the pickup point the Debris
Collector will proceed to the “GRAB” state, in which the robot will then try to
grab the “Target”. Once the “Target” has been grabbed the Debris Collector
will proceed to the “SELECT NEXT” state again if there are more tasks in the
plan. If, when in the “GRAB” state, there are no more tasks to be done, or
when in the “MOVE TO NEXT” state the computed movement can’t be done
the Debris Collector proceeds to the “MOVE TO DROP” state. In this state
the robot moves to the predefined drop point to release its payload. Once this
is done the Debris Collector returns to the “IDLE STATE” again.

5.3 The perpendicular elastic force algorithm

Collision avoidance is usually a difficult task. One of the multiple algorithms
for collision avoidance is the elastic force algorithm (or elastic bands as it is
sometimes called) [15]. In this algorithm a force is applied to the robot that
moves it to its intended target. At the same time a virtual repulsion field
around every obstacle is created. If the robot enters this field a repulsion force
is applied to it, forcing it away from the obstacle. This algorithm is devised
for a two dimension situation, but it can be modified for a three dimensional
scenario.
The Perpendicular Elastic Force algorithm (PEF) is a very similar algorithm
that extends the elastic force algorithm to three dimensions. In the PEF an
elastic force between the robot and its intended target is calculated as well,
called ~Vrobot, and a spherical repulsion field is calculated around every target as
in the original algorithm. The repulsive force applied by each object is calculated
as:

~F+
r = ( ~D′ − ~D)× ~V
~F−r = ~V × ( ~D′ − ~D)

(5.1)

Where ~D is the vector from the obstacle to the robot, ~D′ is a vector in the same
direction that ~D with norm equal to the security distance between the robot
and an obstacle and ~V is the vector representing the obstacle speed.
Then the less disruptive force, meaning the one which implies a smaller change
in the original elastic force applied to the robot is chosen, so:

~Fr =

 ~F+
r if

~
F+

r · ~Vrobot

| ~F+
r || ~Vrobot|

>
~
F−

r · ~Vrobot

| ~F+
r || ~Vrobot|

~F−r otherwise
(5.2)
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This repulsive force is always perpendicular to the plane containing the obstacles
movement vector and the distance vector between the robot and the the obstacle,
thus ensuring the robot will either dive under the movement curve of the obstacle
or over it. As the less disruptive one is always chosen this implies that the
resulting path will be a smooth one.
Then the resulting movement is:

~M = ~Vrobot +

N∑
i=0

{
~Fr if | ~D| < Distances
(0, 0, 0) otherwise

(5.3)

With Distances being the the security distance between the robot and an ob-
stacle.

5.4 Node documentation

This node decides what should the robot do at any time. It uses both the model
and the elastic libraries.

5.4.1 Parametrization

This node’s behavior can be tweaked by modifying the following parameters.

DROP SPEED The speed used when moving to the drop point.

REACH The distance to the “Target” in which the “GRAB” state should be
entered.

SAFETY DISTANCE The minimum allowed distance to an obstacle.

MAX SPEED The maximum speed the Debris Collector is allowed to get.

5.4.2 Topics

This node reads information from the following topics:

Objects The Topic in which every surrounding object position is published by
the world node.

Plan The Topic in which the plan is published by the planner node.

Location The Topic in which the robot position is published by the locator
node.

It also publishes information in the following topic:

Move The calculated move, expressed as a quaternion rotation and the cur-
rent speed that should be applied in the orientation direction (after the
rotation), is published in this topic.
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5.4.3 Services

This node uses the following services:

NewTaskList A service provided by the planner node to request a new plan.

Grab A service provided by the world node to grab a “Target”.
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6.1 The Debris Collector Core

During this paper the Debris Collector core (DCc) components has been de-
signed and built. The Dcc is a multi-agent system which controls an unmanned
spacecraft to dispose of spacial debris. The DCc is fully autonomous, being able
to identify the debris pieces that should be collected around him (called “Tar-
gets”), devising a plan to capture as many as possible while keeping fuel con-
sumption to the minimum and capturing and moving them to a predefined drop
point while avoiding collisions with other objects in its neighborhood (called
“Obstacles”).
The DCc makes intensive use of several AI algorithms, such as genetic algo-
rithms to devise a plan, particle filters to identify its current position in the
world and the elastic force algorithm to avoid nearby obstacles. It has been
programed using the Robot Operating System (ROS), which provides a frame-
work for robot intelligences using multi-agent systems.
This paper presents only the core agents of the total agent network for the DCc
as well as a simulator agent which creates a virtual world around the DCc and
supplies the information that other nodes or actuators should supply.

Figure 6.1: The agent map shows how the different agents interact between
them. Round-cornered rectangles represent the Nodes, round-cornered rectan-
gles with dotted borders represent the Topics. The lines ending in a diamond
represent service calls.

As shown in figure 6.1 there are four agents in the DCc:

World The world node is the agent responsible for the simulated world. It
contains a representation of the current state of the model, methods to
update it and cmomunication topics to publish the objects information
and apply the DCc movements.

Locator The locator node is the agent responsible for identifying the current
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DCc position in the world, and communicates this information to the other
nodes through the Location Topic.

Planner The planner node is the agent responsible for devising a plan to cap-
ture as many “Targets” as possible in a single run in the cheapest possi-
ble way (cheapest meaning less fuel-consuming) whenever it is requested
through the “NewTaskList” service. It communicates the devised plan
through the Plan Topic.

Plan executor The plan executor node is the agent responsible for interpreting
the plan and transforming it into a series of simple movements for the
DCc to make. It is also the agent responsible for avoiding collisions with
surrounding Obstacles.

Those four simple intelligent agents create a multi-agent system able to au-
tonomously drive a spacecraft to collect space debris and get it to a safe far
away from the commonly used orbits.

6.2 Tests

The Debris Collector has been developed and tested in the following environ-
ment:

Type of computer: Virtual machine (using VirtualBox).

Operative System: Fedora 18 (Spherical Cow).

CPU: 4 CPU’s, each at 3.07GHz.

RAM: 16384 Mb.

Disk Space: 20 Gb.

ROS version: groovy.

There have been a number of tests through the projects life, summarized here.
Each test shows which nodes should be used for that test and what checks where
performed.

World Node Test Start the world node alone.

• Check: All objects are updated correctly through time.

• Check: Object information is correctly published when an object is
in sensor range.

• Check: Targets are removed when Grab service is called and Targets
are in grapple reach.

Locator Node Test Start the locator node together with the world node.
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• Check: The locator’s internal beacon list is updated correctly through
time.

• Check: The algorithm runs in under a second to avoid clock incoher-
ences.

• Check: The algorithm has a generally decreasing error, meaning that,
even if sometimes the error may increase the error-time function is
usually decreasing.

Planner Node Test Start the planner node together with the world node and
the locator.

• Check: the planner’s internal object list is correctly updated through
time.

• Check: The DCc position is correctly updated through time.

• Check: The algorithm is run when required.

• Check: The algorithm returns a viable plan (strictly increasing pickup
times, all selected Targets in sensor range).

Executor Node Test Start all four nodes (the executor node requires infor-
mation from all other nodes to work).

• Check: the executor’s internal object list is correctly updated through
time.

• Check: The DCc position is correctly updated through time.

• Check: The executor state is coherent with the current situation
through time.

• Check: The elastic force algorithm runs in under a second to avoid
clock incoherences.

• Check: The elastic force algorithm returns the correct rotation quater-
nions.

• Check: The finite-state machine behaves as specified.

DCc Test Start all four nodes.

• Check: The DCc behaves as expected.

• Check: The DCc reports no collisions.

• Check: The DCc captures all Targets.

• Check: The DCc reaches the predefined drop point.

6.3 Further improvements

Besides implementing the remaining nodes (VisualDigester and Pilot), and con-
structing the actual robot, there are some improvements that could be made in
the code.



6.3. FURTHER IMPROVEMENTS 43

6.3.1 Planner improvements

There are some improvements that could be made to the genetic algorithm.
Using three parents on the reproduction step or improving the gradient descent
algorithm should lead to faster and more cohesive results for this algorithm.

6.3.2 Locator improvements

As explained in the corresponding chapter the particle filter algorithm used in
the locator node has been stripped of uncertainty, which should be implemented
back. Besides the uncertainty addition the scattering method should be revis-
ited, and tested thoroughly to make sure that its application usually improves
the resulting particles, which is not guaranteed right now. Additionally the
locator should be able to determine the current orientation.

6.3.3 Executer improvements

The executer node should be tested over highly crowded areas, which slow its
performance and could potentially lead to unavoidable collisions. The GRAB
state should also include the necessary algorithms for repositioning, orbit cou-
pling and actually grabbing the target.

6.3.4 Other uses

The presented nodes are the core of the Debris Collector , but they could easily
be adapted for a number of other robots. The presented core creates a robot
able to navigate a three-dimensional environment to move to a set of points
while avoiding obstacles. With little effort it could be adapted for an oceanic
or airborne environment.
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This appendix cover the documentation for all libraries and classes used in
the code.

A.1 Model Library

The model library (model.h) is a generic library containing classes and methods
to represent the model, thus ensuring its cohesion in every Node of the resulting
system.

Figure A.1: The UML diagram of the classes found on this library.

A.1.1 Classes

The model library contains several classes used to represent the model:

Point The Point class contains a representation of the spherical coordinates
of a given point. It also contains some methods, such as an appropriate
constructor and both equals and differs operator overloads.
Its attributes are:

• r radial distance in meters, stored as a float.

• polar polar angle in degrees, stored as a float.
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• azimuth azimuth angle in degrees, stored as a float.

Its methods are:

• Point(float r, float polar, float azimuth) The constructor method
for this class stores the given values in the corresponding fields. It is
also responsible of ensuring that both polar and azimuth angles fall
in the [0, 360) range.

Orbit The Orbit class contains a representation of an orbit as a starting point
and its trajectory.
Its attributes are:

• starting point the orbit starting point as a Point object.

• v radial speed in meters per second, stored as a float.

• alpha polar speed in degrees per second, stored as a float.

• beta azimuthal speed in degrees per second, stored as a float.

Its methods are:

• Orbit(float r, float polar, float azimuth, float speed, float
polar speed, float azimuthal speed) The constructor method for
this class stores the given values in the corresponding fields, creating
the required starting point with the data provided.

• Point move(float* time) This method takes the elapsed time since
this orbit started as a float argument and returns the current point
as a Point object.

• void move(float* time, Point* p) Updates parameter p to be the
current point after the elapsed time.

• void updateStartingPoint(float r, float polar, float azimuth)
Updates the starting point to the point defined in the parameters.

SpaceObject The SpaceObject class combines the previous classes to provide
a model for every single object in our simulation.
Its attributes are:

• id the object unique identifier, stored as an int. It should be a unique
identifier for each SpaceObject, but it is not ensured in this library.

• current point the current point in space where this object is as a
Point object.

• orbit this object’s orbit as an Orbit object.

• starting time the moment in the general time frame when this ob-
ject was created in seconds, stored as a float.

Its methods are:
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• SpaceObject(int new id, float r, float polar, float azimuth,
float speed, float polar speed, float azimuthal speed, float
time) The constructor method for this class stores the given values
in the corresponding fields, creating the orbit and current point with
the supplied data.

• void updateSpaceObject(float* time) This method takes the
elapsed time since the simulation started as a float argument and
updates the object’s position by setting its current position attribute
to the result of the orbit’s move function, using as a parameter the
time parameter given minus the starting time for this object.

• bool exist(float time) This method takes the elapsed time since the
simulation started as a float argument and test if the object should
exist at that time (if its starting time is smaller than the parameter).

TargetSO The TargetSO class inherits from SpaceObject to represent a target
object.
Its non-inherited attributes are:

• object mass the mass of the object, as an int value.

Its non-inherited methods are:

• TargetSO(int new id, float r, float polar, float azimuth, float
speed, float polar speed, float azimuthal speed, float time,
int mass) The constructor method for this class creates a TargetSO
and stores each value in its corresponding field, creating the required
Point and Orbit objects with the provided data.

ObstacleSO The ObstacleSO class inherits from SpaceObject to represent an
Obstacle object.
This class has no non-inherited attributes. Its non-inherited methods are:

• ObstacleSO(int new id, float r, float polar, float azimuth,
float speed, float polar speed, float azimuthal speed, float
time) The constructor method for this class creates an ObstacleSO
and stores each value in its corresponding field, creating the required
Point and Orbit objects with the provided data.

ProjectableSpaceObject The ProjectableSpaceObject class inherits from the
SpaceObject class to create a projectable object, able to predict its posi-
tion at any given time.
Its non-inherited attributes are:

• projected point The point where this object will be after an amount
of time, stored as a private Point pointer.

• projected time The corresponding time to the projected point,
stored as a float pointer.
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• active This value is used in the executer and the planner nodes to
know if this object is still in sensor reach.

Its non-inherited methods are:

• ProjectableSpaceObject(int new id, float r, float polar, float
azimuth, float speed, float polar speed, float azimuthal speed)
The constructor for this class creates a ProjectableSpaceObject with
the supplied parameters.

• Point* project(float time) This method calculates where will the
object be after time seconds have passed and returns the reference
to projected point. If the same method is called with the same time
value the point is not recalculated as it is stored in projected point.

ProjectableTargetSO The ProjectableTargetSO class inherits from Projecta-
bleSpaceObject to represent a target object.
Its non-inherited attributes are:

• object mass the mass of the object, as an int value.

Its non-inherited methods are:

• ProjectableTargetSO(int new id, float r, float polar, float az-
imuth, float speed, float polar speed, float azimuthal speed,
int mass) The constructor for this class creates a ProjectableTar-
getSO with the supplied parameters.

ProjectableObstacleSO The ProjectableObstacleSO class inherits from Pro-
jectableSpaceObject to represent a target object.
Its non-inherited methods are:

• ProjectableObstacleSO(int new id, float r, float polar, float
azimuth, float speed, float polar speed, float azimuthal speed)
The constructor for this class creates a ProjectableObstacleSO with
the supplied parameters.

Task The Task class represents a task the robot has to do, storing the pickup
point, the time when this point has to be reached and the id of the target.
Its attributes are:

• target id The id of the “Target” object to be picked up, stored as
an int.

• time The time when the object has to be picked up, stored as a float.

• target point The point where the pickup will be made, stored as a
Point object.

Its methods are:
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• Task(int target, float dest time, const std::vector<ProjectableSpaceObject*>&objects)
The constructor of this class receives a list of known objects, finds
the object with the desired id (target parameter) and calculates the
pickup point (at dest time).

EuclideanVector The EuclideanVector vector represents a cartesian vector in
euclidean space. Its attributes are:

• x The x coordinate, stored as a float.

• y The y coordinate, stored as a float.

• z The z coordinate, stored as a float.

Its methods are:

• EuclideanVector() The empty constructor creates an empty vector
(values (0, 0, 0)).

• EuclideanVector(float x0, float y0, float z0) This constructor
initializes an EuclideanVector with the desired coordinates.

• void copy data(EuclideanVector* v) This method copies the Eu-
clideanVector coordinates of v in this EuclideanVector.

Robot The Robot class represents the Debris Collector . It stores its position
and orientation and contains methods to move it. Its attributes are:

• current point The current point where the Debris Collector is,
stored as a Point object.

• movement The orientation the Debris Collector has, stored as an
EuclideanVector object.

Its methods are:

• Robot() The empty constructor initializes this class with an empty
Point and EuclideanVector.

• Robot(float r, float polar, float azimuth, float vx, float vy,
float vz) This constructor initializes the class with the given values.

• void move(float speed) This method moves the object along a vec-
tor with norm speed and in the direction of the movement attribute.

A.1.2 Methods

The model library contains some general methods that should be used when
interacting with the model.

float distance(Point* a, Point* b) This method calculates the euclidean dis-
tance in meters between two Points and returns it as a float.

bool collision(Point* a, Point* b) This method checks if both Points are
equal.
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float to deg(float angle) This method is used to make sure that all angles
have a value between 0 and 360. If the parameter is outside this range it
is projected into it and returned as a float.

float norm(EuclideanVector* v) This method calculates the norm of the
vector v and returns it as a float.

void quaternion to rot(float x, float y, float z, float w, std::vector<std::vector<float>>& rotation)
This method transforms a quaternion received in parameters x, y, z and
w into a rotation matrix, stored in the rotation parameter.

void apply rotation(EuclideanVector* v1, std::vector<std::vector<float>>& rotation)
This method applies the rotation matrix rotation to the vector v1.

A.2 Genetics Library

The genetics library (genetics.h) is a generic library containing the required
methods to apply the genetic algorithm explained in chapter 3. It uses some
classes and methods found in the model library.

Figure A.2: The UML diagram of the classes found on this library.

This library uses some constants defined in the “genetics.cpp” file as well.
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MIN TIME STEP The minimum time step between two pickup times in
seconds.

MIN GRAD If the gradient of the distance function is smaller than this value
the gradient descent is considered to have converged.

MAX CARRIED OBJ The maximum number of objects the Debris Collec-
tor can carry at the same time.

A.2.1 Classes

The genetics library contains several classes used to apply the genetic algorithm:

Roulette The Roulette class is a circular list containing numbers. It is used
to speed up the generation of random, unique numbers.
Its attributes are:

• ball A pointer to a Number object. Each Number object is a struct
containing an int called number, and a pointer to the next Number
in the list, called next.

Its methods are:

• Roulette(int max) The constructor method for this class creates a
circular list with all numbers between 0 and max minus one (inclu-
sive).

• int roll(int passes) This methods moves the ball pointer “passes”
times, returns the corresponding number and removes it from the
circular list.

Individual The Individual class represents a possible solution for the genetic
algorithm. It also contains several of the required methods.
Its attributes are:

• order Represents the order in which “Targets” should be picked up.
It is stored as an int vector.

• time Represents the times in which “Targets” should be picked up.
It is stored as a float vector, each position holding the time in which
the corresponding “Target” in the order vector should be picked up.

• cost This float vector stores the cost of going from the previous
chromosome to the corresponding “Target”.

• total cost The cost of the complete path (the sum of all costs in the
cost vector), stored as float pointer.

• fitness The fitness of the corresponding individual.

Its methods are:
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• Individual(int size) This constructor creates an empty Individual
instance, with its vectors resized to size.

• Individual(int size, const vector<ProjectableTargetSO*>&points,
Point* robot) This constructor creates an individual with order
filled up and time calculated minimizing distance.

• float cost to next(int current) Return the cost from the current
chromosome to its next chromosome in the order.

• int next(int current) Returns the next chromosome in the order.

• float next time(int current) Returns the time increment from
the current chromosome pick up time to the pick up time of the next
chromosome in the order.

• void compute costs(const vector<ProjectableTargetSO*>&points,
Point* robot) Calculates the costs of this individual.

• bool loadValue(int elem, int pos) Loads a new value in position
pos in the order vector if it is not yet present, otherwise returns false.

• bool loadValue(int elem, float new time, int pos) Loads a new
value in position pos in the order vector and its corresponding time
if it is not yet present, otherwise returns false.

• void loadRandomValue(int pos) Loads a random “Target” in the
order in position pos.

• void mutation(int pos1, int pos2) Swaps the “Targets” at posi-
tion pos1 and pos2 in the order vector.

• void migration(const vector<ProjectableTargetSO*>&points,
Point* robot) Loads this individual with a random order and times
calculated with the minimum distance method.

Population The Population class contains all Individual solutions, as well as
some methods required by the genetic algorithm.
Its attributes are:

• best cost The best cost found in the population.

• individuals A vector containing all Individuals in this Population.

Its methods are:

• Population(int size, const vector<ProjectableTargetSO*>&points,
Point* robot This constructor creates a Population of size∗(size−
1) Individuals with its order vectors loaded using the Individual con-
structor with the same parameters.

• Population(int size) This constructor creates a Population of size∗
(size − 1) empty Individuals using the Individual constructor with
the same parameters.
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• int chooseParent() This method returns the position in the in-
dividuals vector of an Individual chosen randomly according to its
fitness.

• int compute costs(const vector<ProjectableTargetSO*>&points,
Point* robot This method calculates the costs of all Individual in-
stances.

A.2.2 Methods

The genetics library contains some general methods that are required for the
genetic algorithm to work.

float random float(float a, float b) This method returns a random float value
between a and b.

float loadTime(Point* a, ProjectableTargetSO* b, float t) This method
runs the gradient descent algorithm with origin point a, function to min-
imize b and minimum time t.

A.3 Particle Library

The particle library (particle.h) is a generic library containing classes required
for the particle filter algorithm. It uses some classes and methods found in the
model library.

Figure A.3: The UML diagram of the classes found on this library.

This library uses some constants defined in the “particle.cpp” file as well.

LIST SIZE Number of particles created in the algorithm.
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SCATTER PROB Probability of scatter occurring (in percentage).

The parameters MAX ERROR (ME), MIN PROBABILITY (MP), BIG ERROR
(BE), BE PROBABILITY (BEP), SMALL ERROR (SE) and SE PROBABILITY
(SEP) define a probability function depending on the error. The equation has
the following formula:

Probability(x) =


MP if x > ME
BEP−MP
BE−ME (x−ME) +MP if ME >= x > BE
SEP−BEP
SE−BE (x−BE) +BEP if BE >= x > SE

1−SEP
0−SE (x− SE) + SEP if SE >= x

A.3.1 Classes

The particle library contains several classes used to apply the particle filter
algorithm:

Distance The Distance struct contains a representation of every distance be-
tween a given particle and one of the localizer beacons.
Its attributes are:

• point The localizer beacon point, stored as a Point object.

• real distance The distance between the particle and the localizer
beacon, stored as a float.

• expected distance The distance between the robot and the local-
izer beacon, stored as a float.

• error The error between distances, stored as a float.

Particle The Particle class contains all the information required in a particle
on the algorithm. It contains several methods for the particle filter.
Its attributes are:

• distances A private vector of Distance objects containing the Dis-
tance objects for all beacons.

• current point The point where this particle is located, stored as a
Point object.

• mov The orientation this particle has, stored as an EuclideanVector
object.

• fitness The fitness (probability of being resampled) of this particle,
stored as a float.

• error The sum of the errors in the distances, stored as a float.

• prev error The error this particle had in the previous iteration,
stored as a float.

Its methods are:
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• Particle() The empty constructor instantiates a Particle object with
its parameters empty.

• Particle(float r, float polar, float azimuth, float vx, float
vy, float vz) This constructor initializes a Particle object with the
desired values of position and orientation.

• void loadDistance(Point* p, float dist) Loads a new Distance
object, with the beacon point and expected distance as specified in
the parameters.

• void loadDistance(float r, float polar, float azimuth, float
dist) Loads a new Distance object, with the beacon point and ex-
pected distance as specified in the parameters.

• void move particle(float speed, std::vector<std::vector<float>>rotation)
Moves the particle. It works exactly as the “move(float speed)” in
the Robot class. After the movement is applied computes the real
distance of all Distance objects in this Particle.

• void load(Particle* particle) Copies the values of the particle
passed as a parameter, applying scattering if required.

ParticleList The ParticleList contains a list of particles, and the methods to
manipulate it. Its attributes are:

• particles The list of particles, stored as a vector of Particle objects.

Its methods are:

• ParticleList(bool random) This constructor initializes the Parti-
cleList object. If random is false it creates an list of empty Particles,
otherwise it creates a list of particles which are situated en three
concentric spheres at radial distances 100, 150 and 200 km.

• double move(float speed, std::vector<std::vector<float>>rotation)
Applies a movement to all particles using the move method of every
Particle. After that it normalizes the fitness of each Particle. It
returns the mean error of the particle list.

• int resample() Returns an index to a randomly selected Particle
according to its fitness.

• void computeMedium(Point* p, EuclideanVector* v) Calcu-
lates the mean point and orientation of the particle list.

A.4 Elastic Library

The elastic library (elastic.h) contains some methods needed for the Perpendic-
ular Elastic Force algorithm. It uses some classes and methods from the model
library.
This library uses some constants defined in the “elastic.cpp” file as well.

MAX DIST The repulsive field radius in meters.
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A.4.1 Methods

The provided methods are:

void cross product(EuclideanVector* v1, EuclideanVector* v2, EuclideanVector* result1, EuclideanVector* result2)
This method calculates the cross product (vector product) of v1 and v2
and stores the results in result1 and result2. It calculates both vector
products, v1× v2 and v2× v1.

float scalar product(EuclideanVector* v1, EuclideanVector* v2) This
method calculates the scalar product of vector v1 and v2 and returns it
as a float.

int choose(EuclideanVector* f0, EuclideanVector* f1, EuclideanVector* v0)
This method chooses the least disruptive vector between f0 and f1 if ap-
plied to v0. It returns 0 if f0 is the least disruptive one and 1 otherwise.

void closeness(EuclideanVector* D) It calculates the closeness vector, de-

fined as ~D′− ~D, where ~D is the bector from the obstacle to the robot, and
~D′ is the vector with the same direction and norm equal to MAX DIST.

void orbit speed(ProjectableSpaceObject* so, EuclideanVector* v) This
vector computes the vector in cartesian coordinates of the orbit passed as
parameter so. The vector is calculates by calculating the cartesian vector
between the current point and the point where this object will be one
second from now. This vector is stored in the parameter v.

void distance vector(Point* p1, Point* p2, EuclideanVector* v) This method
calculates the cartesian vector from p1 to p2 and stores it in the v param-
eter.

void quaternion(EuclideanVector* v1, EuclideanVector* v2, float* x, float* y, float* z, float* w)
This method calculates the quaternion representing the rotation from v1
to v2, sorting its values in parameters x, y, z and w.

A.5 Messages

ROS enforces the use of messages (simple classes generated from a .msg file) for
data publication to a Topic. This section covers all messages used.

A.5.1 SpaceObjectMsg

The SpaceObjectMsg is the class published to the “Objects” Topic. Its fields
are:

uint8 id The object’s unique identifier, stored as an unsigned 8-bit int.

float32 r The Object’s radial distance, stored as a 32-bit float.
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float32 polar The Object’s polar angle, stored as a 32-bit float.

float32 azimuth The Object’s azimuth angle, stored as a 32-bit float.

float32 v The Object’s radial speed, stored as a 32-bit float.

float32 alpha The Object’s polar speed, stored as a 32-bit float.

float32 beta The Object’s azimuthal speed, stored as a 32-bit float.

uint8 mass The Object’s mass, stored as an unsigned 8-bit int.

A.5.2 PlanTaskMsg

The PlanTaskMsg is the class published to the “Plan” Topic. Its fields are:

uint8 task number The sequence number of this task, stored as an unsigned
8-bit int.

uint8 target id The id of the TargetSO to pick up, stored as an unsigned 8-bit
int.

float32 destination time The time at which the TargetSO should be picked
up, stored as a 32-bit float.

uint8 total tasks Total number of tasks in this plan, stored as an unsigned
8-bit int.

A.5.3 MovementMsg

The MovementMsg is the class published to the “Move” Topic. Its fields are:

float32 x The x component of the quaternion, stored as a 32-bit float.

float32 y The y component of the quaternion, stored as a 32-bit float.

float32 z The z component of the quaternion, stored as a 32-bit float.

float32 w The w component of the quaternion, stored as a 32-bit float.

float32 speed The speed of the applied movement, stored as a 32-bit float.

A.5.4 LocationMsg

The LocationMsg is the class published to the “Location” Topic. Its fields are:

float32 r The Debris Collector’s radial distance, stored as a 32-bit float.

float32 polar The Debris Collector’s polar angle, stored as a 32-bit float.

float32 azimuth The Debris Collector’s azimuth angle, stored as a 32-bit float.
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float32 heading x The Debris Collector’s orientation x coordinate, stored as
a 32-bit float.

float32 heading y The Debris Collector’s orientation y coordinate, stored as
a 32-bit float.

float32 heading z The Debris Collector’s orientation z coordinate, stored as
a 32-bit float.

A.5.5 BeaconMsg

The BeaconMsg is the class published to the “Beacon” Topic. Its fields are:

float32 beacon r The beacon’s radial distance, stored as a 32-bit float.

float32 beacon polar The beacon’s polar angle, stored as a 32-bit float.

float32 beacon azimuth The beacon’s azimuth angle, stored as a 32-bit float.

float32 distance The distance between the Debris Collector and this beacon,
stored as a 32-bit float.

A.6 Services

Just as message classes are created for Topics, a similar system is used to define
services, in this case in simple .srv files.
There are two services used in the Debris Collector , the Grab service and the
NewTaskList. The second one uses and empty parameter, defined in the ROS
architecture. On the other hand the Grab service uses its own service file.
Its request parameter is “uint8 id”, the id of the Target to be picked up, stored
as an unsigned 8-bit int.
Its response parameter is “int8 result”, which returns a 0 if the object has been
picked up or a 1 otherwise, stored as an 8-bit int.
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The Debris Collector core delivered with this paper is ready for compilation
and execution. As it is not a complete robot the installation feature of ROS has
not been yet configured, the package is still in development state.

B.1 Preparing the environment

To execute the Debris Collector a ROS environment has to be installed. There
a a number of installation manuals for different operating systems in
http://www.ros.org/wiki/ROS/Installation .
Once ROS is installed in the computer a catkin workspace has to be created.
To do this execute the following script:

$ mkdir -p ∼/catkin ws/src
$ cd ∼/catkin ws/src
$ catkin init workspace

Then copy the extract the zip files in catkin ws/src. Once the debris collector
folder and its subfolders have been copied the environment is ready.

B.2 Building the Debris Collector

To build the Debris Collector the following script should be executed (in the
same terminal than the previous script):

$ cd ..
$ catkin make
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Figure B.1: The Debris Collector being built.

B.3 Executing the Debris Collector

To execute the robot first an instance of roscore is needed. To launch it, in the
same terminal than before, run:

$ roscore
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Figure B.2: The roscore once initialized.

After the roscore is running every node should be launched in a different
terminal. In all terminals before executing anything else the setup files should
be sourced. Assuming ROS is installed in opt the following script should be
executed:

$ cd ∼/catkin ws
$ source /opt/ros/groovy/setup.bash
$ source ./devel/setup.bash

This allows ROS to be able to find the packages and nodes. Then, in a
different terminal each run:

$ rosrun debris collector executer node

$ rosrun debris collector planner node
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$ rosrun debris collector locator node

$ rosrun debris collector world node

Those scripts may be run in any order, but it is strongly recommended that
the world node is last one to be launched. The other nodes will wait for the
world node to be active before doing any work.

Figure B.3: The four nodes ready to be executed.

If everything has been done right there should be five open terminals, one
of them with the roscore and the other four with one of the nodes each.
Once the Nodes have been launched they will start printing their log information
on their corresponding terminal.
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Figure B.4: The four nodes running.


