

Spacial Debris Collector Robot

An AI-based and autonomous debris collector satellite simulation

Treball Final de Grau

Author: David Fernàndez López
Tutor: Dr David Isern Alarcón

Space Debris

● Formed by thousands of
different objects.

● Constant growth with no
mitigation.

● Danger for both manned
and unmanned crafts.

● Possible Kessler
syndrome.

● Autonomous Spacecraft.
● Transport out-of-order satellites to a safe area.

Proposed solution

World Model

Position and Orbit

● Each object position is represented, in spherical
coordinates, as the (r, θ, φ) triad.

● Orbits are represented as the (v, α, β) triad.

Object classification

● Objects are classified as Targets or Obstacles.
● Each Object is represented as a point (using spherical

coordinates) and an orbit.

Robot representation

● The robot is represented as a point with an orientation,
expressed as a Cartesian vector.

Robot Operating System (ROS)

● Open-source project.
● Implemented in C++.
● BSD License

● ROS provides libraries and tools to help software
developers create robot applications.

● Uses a graph-like underlying structure.
● Provides easy communication between nodes through

Topics and Services.
● Implements message queues, node tracking, support file

generation and compiling tools.
● Programming language is C++.

Debris Collector Design

Planner node

● The planner node is the agent in charge of devising a
plan to pick up the targets with the minimum fuel
consumption possible.

● The planner node uses a genetic algorithm specifically
tailored to its needs.

● The genetic algorithm is only run on demand.

● This node receives the position of nearby targets from
other nodes, and sends the devised plan to the nodes
that require it.

Pick up time calculations

The mixed algorithm

Brute force algorithm (BFA) Minimum distance algorithm (MDA)

Pick up times are randomly generated. Pick up times are chosen to minimize
distance between the actual point and
the Target.

Pros: Much faster and shorter plans. Pros: Lower costs, more cohesive
results and takes less iterations.

Cons: Higher result dispersion and
higher costs.

Cons: Extremely slow.

● Initial population pick up times are calculated as in the MDA.
● During execution new pick up times are calculated as the time

interval used in the parent.
● The mixed algorithm completion times are similar to those of

the BFA, with results close to those generated by the MDA.

Genetic algorithm

1. Create Initial Population 2. Calculate costs 3. Check for convergence

4. Create new population 5. Standard mutation 6. Time mutation

Locator node

● The locator node is the agent responsible for identifying
the current position of the robot.

● The locator node uses a slightly modified particle filter
algorithm.

● The particle filter algorithm implemented in this node runs
permanently.

● This node receives the “locator beacons” distance to the
robot from other nodes and sends the calculated position
to the nodes that require it.

Simplified Scattered Particle Filter

● 1 - Create a number of particles with random position and
orientation.

● 2 - Calculate the actual distance between each particle
and the localizer beacons.

● 3 - Assign a weight to each particle according to the error
between the actual distance and the expected distance to
the beacons.

● 4 - Generate a new particle population by: resampling
(with replacement) the previous population and applying
scattering.

● 5 - Apply the same movement to the robot and to each
particle.

● 6 – Return to 2.

Executer node

● The executer node is the agent responsible for carrying
out the plan devised by the planner node.

● The executer node uses a finite state machine to
implement its behavior.

● The executer node is also responsible for collision
avoidance during flight.

● The executer node receives the plan and the location of
nearby objects from other nodes and sends the required
rotation and speed to apply to the nodes that require it.

Executer node behavior

● SELECT NEXT
state selects new
task and
calculates target
position at pick up
time.

● The GRAB state
keeps trying to
grab the target
until it succeeds.

● Unending finite
state machine.

Perpendicular Elastic Force

→Movement vector

M⃗= ⃗V robot+∑objects {F⃗r if ∣⃗D∣<DistanceS
0⃗ otherwise

→Virtual repulsion force

F⃗r={F⃗ r+ if
⃗F r

+
− ⃗V robot

∣F⃗ r+∣ ⃗V robot∣∣
>

⃗F r
−
− ⃗V robot

∣F⃗ r
−∣ ⃗V robot∣∣

F⃗ r
− otherwise

→Force possibilities

F⃗ r
+
=(D⃗ '−D⃗)×V⃗

F⃗ r
−
=V⃗×(D⃗ '−D⃗)

● The Perpendicular elastic force uses a virtual repulsion
force to avoid obstacles.

● When an obstacle comes close to the robot the virtual
repulsion force is applied to steer the robot away.

Formulas

Debris Collector Core

● The model data has to be generated and updated.
● The VisualDigester and Pilot nodes need to be simulated.

Conclusions

● Definition of the world model.

● Programming the world model.

● Identifying and defining possible scenarios.

● Programming each defined scenario.

● Modelling the calculated plan as a task sequence.

● Build the Visual Digester and the Pilot Nodes.

● Take into account the error margin between model and reality.

● Build the actual robot.

 Accomplished goals Accomplished goals

 Further work Further work

Thanks for your attention.

David Fernàndez López

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16

