
 -1-

Threading libraries performance when applied to image

acquisition and processing in a forensic application

Carlos Bermúdez

MSc. in Photonics, Universitat Politècnica de Catalunya, Barcelona, Spain

Student of MSc. in Free Software, Universitat Oberta de Catalunya, Barcelona, Spain
Student of Ph.D. in Optical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain

e-mail: carlibp@uoc.edu

Cristina Cadevall

Ph.D. in Optical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain

e-mail: cristina.cadevall@upc.edu

Abstract: Based on concerns during ballistics identification, a new system for ballistics image acquisition and data

processing is proposed. Since image processing consists of high CPU load rates, a comparison of three different threading

libraries is presented, concluding that parallel processing enhances ballistics identification speed.

2013 Optical Society of America

Keywords: Optical Metrology, Forensics, Ballistics, Linescan, Multithreading

References and links

1. Churchman, J (1949). The reproduction of characteristics in signatures of Cooey rifles. RCMP Gazette (vol. 11, issue 5, pp. 133-140).

2. Smith, C.L, (2002) Linescan Imaging of Ballistics Projectile Markings for Identification. Proceedings of the International Carnahan

Conference on Security Technology (pp. 216-222). Atlantic City, NJ: IEEE.

3. Puente, F. (2004) Automated comparison of firearm bullets. Forensic Science International (vol. 156, issue 1, pp. 40-50). Ireland: Elsevier.

4. Li, D.G (2008) Firearm Identification System Based on Ballistics Image Processing. Proceedings of the International Congress on Image and
Signal Processing (pp. 149-154). Sanya, China: IEEE.

5. Rafael C. Gonzalez, Richard E. Woods (2002) Digital Image Processing, Second Edition, (vol. 7, pp. 519-566). Beijing: Publishing House of

Electronics Industry.

6. Li, D. (2009). Ballistics Image Processing and Analysis for Firearm Identification. In: Chen, Y Image Processing. Intech. 141-174.

7. Akhter, S., & Roberts, J. (2006) Multi-core programming. US: Intel Press

8. Breshears, C. (2009) The art of Concurrency. US: O’Reilly

9. Karlsson, B. (2005) Beyond the C++ Standard Library: An introduction to Boost. US: Addison Wesley Professional

10. Reinders, J. (2007) Intel Threading Building Blocks. US: O’Reilly

11. Sanders, J. & Kandrot, E. (2010) CUDA by Example: An Introduction to General-Purpose GPU programming US: Addison Wesley

Professional

12. Chitty, D.M. (2012) Fast parallel genetic programming: multi-core CPU versus many-core GPU. Soft Computing (vol. 16, issue 10, pp. 1795-

1814). New York, US: Springer.Malacara, Interferogram Analysis for Optical Testing, Second Ed. (Marcel Decker, Inc., New York, 1998).

1. Introduction

Ballistics forensics is a criminalistics branch that

studies firearms and projectiles involved in a crime scene.

Apart from the cartridge, bullets provide enough

conclusive information to identify the firearm that fired it

[1]. Nevertheless, nowadays this task is performed

manually by an operator by means of comparison

microscopes and subjective judgment. In this study, it is

presented in Chapter 2 a new automated acquisition system

that performs bullet surface imaging automatically and

compares it against a forensic database already filled with

bullet surface images. This processing operation requires

high-density processing so three different parallel

processing solutions are tested and compared in Chapter 3,

coming to a conclusion in Chapter 4.

2. Image Acquisition

Distinctive features appear in a bullet when is fired.

Those features are like a fingerprint of the firearm that fired

it. Said fingerprint is printed in the bullet surface as grooves

mailto:carlibp@uoc.edu
mailto:cristina.cadevall@upc.edu

 -2-

and lands. At every groove and land appear also small

details related to the gun (Figure 1).

Figure 1 Firearm fingerprint in a bullet. G stands for Groove, L

for Land. Source: US Dpt. of Justice

In order to obtain the bullet surface image or unrolled

image, an optical microscope in combination with a

rotational stage have to be used.

Microscope objectives depth of focus is usually not

enough to obtain an area image of a cylindrical sample,

particularly with high numerical apertures. Therefore, one

way to obtain a well-focused bullet surface image is using

a line-scan camera [2]. In this setup, bullet is rotating

continuously while camera is acquiring lines at a constant

but high frame rate. Said lines are finally stitched to form

the unrolled image, containing surface information of one

bullet section (Figure 2).

Figure 2 Linescan imaging of a rotating cilyndrical object

Nevertheless, Smith proposes using bright field

illumination, which is not a good option to measure bright

samples such as bullets because image contrast is poor.

Taking image from different angles may solve that

situation [3].

Based on the hardware arrangements seen on the

literature, a system composed by an optical microscope and

a rotational stage has been developed.

2.1. Acquisition system

Although all the previous contributions in terms of

bullet rotation are based on a commercial single axis, their

projectile holding principle might cause damage to the

sample. A new fixation and positioning system has been

designed and built in this project, which is composed

mostly of stainless steel parts in order to not to contaminate

the sample.

Image acquisition system is designed to achieve a

lateral resolution up to 1µm at 4000fps, so drive and

control loop repeatability has to be greater than 1µm at the

bullet surface within this rotational speed, in our case 0.63’

at 42.05º/s, with a cylinder diameter of 10.9mm.

In order to achieve said specifications, an optical

system has been designed in such a way that, within a 10X

magnification objective, image obtained at the sample

surface has 1 micron of lateral resolution.

Since a 2D unrolled image has to be composed by a

series of 1D images, a line-scan approach has to be used.

Even so, instead of using a line-scan camera, one can

prepare a CMOS camera to get images of a user selected

region of interest (ROI), in our arrangement the central

line.

Illumination system is a key factor in order to obtain

high quality images, which is not straightforward when

dealing with bright surfaces, like bullets are. Even though

all the reviewed systems are provided with bright field

illumination (Figure 3), it is often not the best setup since

multiple reflections might appear on the bullet surface.

Figure 3 Bright field illumination system

In this project we introduced an illumination system

that has not appeared before in the forensics literature,

called epi-illumination.

Epi-illumination allows illuminating the sample on

the same observation axis avoiding non-desired multiple

reflections. Image quality improvements can be seen in

Figure 4, where contrast is successfully enhanced on

occluded zones (a Vs. b) and in flat areas (b Vs. d), since

bright field illumination provides not enough light on those

zones.

 -3-

Figure 4 Bright field illumination (a,c) Vs. Epi-illumination (b,d)

2.2 Acquisition software

On the one hand, acquisition and processing software

architecture consists of a multi-threaded application since

hardware drivers are themselves one or more threads. An

example is the camera controller thread, which puts images

in a shared buffer. Then, acquisition algorithm that runs in

another thread reads this buffer in a thread-safe way.

Image processing software can be executed in one or

more different threads, depending on the application needs.

This issue will be expanded in Chapter 3.

On the other hand, GUI has been developed as a

separate executable in order to be able to escalate it in a

distributed application. Basically consists of different

threads that operate a communications manager, live image

update and user event handling.

2.3. Preprocessing algorithm

In spite of having designed a rotational stage with

enough precision to acquire quality images, fired bullets

have not a completely cylindrical shape. Therefore,

observation surface is being displaced in Z direction along

the rotation movement, bringing the sample out of focus.

For this reason, focused images are available at a certain Z

planes. In this project, a set of images were acquired at

different Z planes and then were fused by means of the

discrete wavelet transform (DWT) giving priority to high

frequencies (Figure 5).

 (a) (b) (c)

Figure 5 Image preprocessing (a,b) acquired image, (c) fused

image.

In the figure above, (a) and (b) are images acquired at

two different Z planes, where each one has different

focused and unfocused zones and (c) stands for the fused

image by the DWT. Since two consecutive image

acquisition may have had X and Y displacements, a

registration algorithm has to be applied before fusion.

3. Image Processing

Once the system is able to acquire good quality

images of the bullet surface that are useful for extracting

information, a data abstraction can be performed in order

to obtain a unique signature, which contains distinctive

information. Another way to identify projectiles could be

performed by means of a FFT-based analytical system [4],

although an image preprocessing should be performed

before in order to avoid noise and enhance contrast [5]. Li

mentions the possibility that all the images previously

acquired should be stored in a common-access database so

every police department could compare a sample against

said database [6].

Although FFT matching algorithms are the most

common in ballistics identification, they require relatively

high computing capabilities mostly due to high resolution

images. In the proposed system, acquisition, preprocessing

and identification threads are executed at the same time.

In a concurrent system, threads in a single hardware

resource are processed interleaved in time [7]. For this

reason, this application can be parallelized in different

hardware resources, that is, in a multi-core processor.

 -4-

3.1. Bullet identification process

As seen in the literature, bullet identification process

consists of, basically, correlating an image in the frequency

domain against a database full of previously acquired bullet

images. This sort of image processing can be performed by

means of arithmetic operations after applying the DFT

(Discrete Fourier Transform), equivalent to a convolution.

At the end, the cross-correlation spectrum is taken back to

the spatial domain through the Inverse DFT (IDFT) (Figure

6). The value of the maximum peak stands for the image

matching result.

Figure 6 Image processing path

In this study, selected tool for DFT has been the

FFTW library, being used in most image processing

applications because of its simple integration but high

performance and flexibility.

3.2. Threading libraries

Once concurrency has been detected (image

acquisition, preprocessing and identification, they all can

be processed in parallel) [8], paralleling tools have to be

employed. Those tools are called Threading APIs

(Application Programming Interface), which contain

particular resources to enable a software with thread

creation, parallelization, synchronization and shared

resource protection. Those tools can enhance performance

of a multi-threaded application in a multi-core CPU, where

different threads are being executed concurrently.

Even though many threading libraries are currently

available, three different ones have been compared in this

study: Intel Threading Building Blocks, Boost and Nvidia

CUDA.

On the one hand, Intel TBB is a template-based

library at a loop level that, instead of managing threads at

low level like other libraries do, uses an abstraction layer

that process operation as tasks that are distributed

dynamically between the different available CPUs [10].

This library provides thread-safe containers as an

improvement to the C++ STL not thread-safe containers.

On the other hand, Boost is composed by 80 Free

Software threading tools ranging from intelligent pointers

and containers to RegEx and iterators [9], being a suitable

complement to the C++ standard library. Boost allows the

developer to manage threads at low level, which is very

useful in high-performance applications.

CUDA (Compute Unified Device Architecture) is a

development framework based in C for exploiting GPU

(Graphic Processing Unit) [11] outstanding computing

capabilities due to its many-core approach, meaningful for

intensive applications like cryptography, genetic

algorithms or image processing, as this project is [12].

3.3. Results

Since bullet identification is a time-consuming

operation, the outcome of this threading libraries

comparison is the time in image processing and matching.

A C++ program has been enabled with said three

threading libraries and they all perform the same operation:

after image processing, an image matching is performed

against a database that was previously loaded with 50

images.

Said program was executed 20 times in an Intel core

i7-3632QM CPU @ 2.2GHz with Windows 8 64-bit

enabled with a Nvidia GeForce GT 640M .

Taking into account the number of CPU available

cores, Intel TBB processing implements parallel_do

instruction configured to use 8 threads. Boost created one

thread for each loaded image (a total of 50 threads were

created) through thread_group tool. Finally, CUDA was

configured to use cufft tool (a FFTW implementation for

GPU processing) and optimum grid and block sizes for

arithmetic operations (images are divided into small units).

Each execution was comprised of image processing

not only with cited three threading libraries but also with a

serial, one single thread execution. Since processing time

is in the order of milliseconds, it was measured through a

C Time Library clock (Table 1, Figure 7). This

repeatability test was performed with a 512x512 pixels

image.

Acquired

image

Database

image

DFT DFT

Convolution

IDFT

Cross-correlation

 -5-

 Table 1 Execution timings with standard deviation, time is

measured in milliseconds

Figure 7 Average processing time (ms)

In the picture above can be seen the comparison of

the average processing time when using a single-threaded

algorithm against a multi-threaded application. Orange

bars stand for average time of not only image processing

but also image acquisition and database images loading

into memory (in CUDA, loading data to the graphics card

memory). Blue bars consist of average spent time by the

correlation algorithm.

Obviously, operating system is also demanding CPU

time or its own applications, so it may cause processing

time variations along all the repeatability test. In all cases

standard deviation was below 11% (Figure 8).

Figure 8 Box plot of average processing time for one single

image (ms)

3.4. Discussion

In a 4 core CPU where 8 logical threads can be

processed due to Hyper Threading, one may expect

reducing serial processing time by 8. Depending on the

application, it is not achieved because threads may

compete for the same resource, such as cache memory or

the ALU.

As a rule, processing time is not expected to decrease

linearly with number of cores [7]. However, a

multithreading application like this one will increase

performance without software changes as new hardware

platforms with more processing cores are appearing, while

this will not happen with serial algorithms.

In this test, Intel TBB is reducing processing time

almost by 2 as regards serial processing time. Results show

how Boost library reduces image processing time by 10

although total processing time decreases almost by 3. This

indicates clearly that most part of whole processing is spent

in image loading rather than in the correlation algorithm.

CUDA, in a 384-core GPU @ 625Mhz has provided

outstanding figures in that test, reducing by 25 the time

spent by the serialized algorithm, showing image loading

into the graphics card being performed much faster than in

previous tests. Image processing time is reduced by 100 in

respect to serial processing time, yielding the processing

power capabilities when dealing with images.

Multi-threading confirms that performance increases

in regard to a single-threaded application but not linearly

with number of threads simultaneously executing, as

Amdahl’s Law points out [7]. GPU processing or many-

core processing, in the other hand, could not be suitable for

certain applications [12] but can enhance performance

dramatically for image processing [11], as confirmed in

this study.

4. Conclusions

In this paper, a new system for ballistics image

acquisition and processing is proposed. On the one hand,

in terms of hardware, we not only present a novel lighting

arrangement and but also a new, high precision, rotational

stage. This new system enabled us to acquire high-

resolution and high-contrast projectile images.

On the other hand, as regards to software, an image

processing necessity, which executes an identification

algorithm, has been detected. It consists mostly in

performing arithmetic operations in the frequency domain.

In order to enhance image processing performance, said

algorithms have been parallelized and compared through

three different threading libraries.

Threading

Library

Whole Processing Image Processing

- 543.99 ± 11.19 336.57 ± 6.63

TBB 323.13 ± 15.64 115.79 ± 12.86

Boost 235.61 ± 4.48 29.32 ± 3.33

CUDA 22.5 ± 5.58 3.54 ± 0.17

 -6-

The study demonstrates not only that parallel

processing could be much faster than single-threaded

applications but also that different libraries yield

distinctive processing times, being CUDA the singular case

that could execute matching algorithm 100 times much

faster than the serialized application.

