
Universitat Oberta de Catalunya

Universitat Autònoma de Barcelona

Universitat Rovira i Virgili

Universitat de les Illes Balears

Master Program in Security of Information and Communication Technologies

Marc Santamaria Ortega

The Bitcoin Transaction Graph
Anonimity

Master's Thesis

Barcelona, June 14, 2013

Supervisor: PhD Student Cristina Pérez-Solà, Universitat Autònoma de Barcelona

Acknowledgements

I would like to express my sincere gratitude to my advisor PhD Student

Cristina Pérez-Solà for her continuous support and her ideas.

Also, I would like to thank my parents and my girlfriend for their motivation

and patience, specially these last weeks.

Barcelona, June 14, 2013

Marc Santamaria Ortega

ii

Universitat Oberta de Catalunya

Universitat Autònoma de Barcelona ABSTRACT OF

Universitat Rovira i Virgili MASTER'S THESIS

Universitat de les Illes Balears

Master Program in Security of Information and Communication Technologies

Author: Marc Santamaria Ortega

Title of thesis: The Bitcoin Transaction Graph - Anonimity

Date: June 14, 2013 Pages: 10 + 56

Professorship: Security in Networks and Systems

Supervisor: PhD Student Cristina Pérez-Solà (UAB)

Bitcoin is a decentralized digital currency based on the use of strong

cryptography and an open-source, peer-to-peer internet protocol to op-

erate. The original Bitcoin software was developed by Satoshi Nakamoto

(a pseudonym) in 2008 [9]. This thesis looks into the de�nition of the

protocol, taking special interest in how transactions work, in order to

determine the anonymity of Bitcoin transactions. Previous works explor-

ing anonymity of Bitcoin will be studied. A major goal of this work is

to analyse the anonymity of the Bitcoin network to establish the neces-

sary background for de�ning address aggregation methods and study the

correlation of di�erent addresses that belong to a user. The di�erent ag-

gregation methods which will be speci�ed based in the analysis of some

suppositions will be also developed and compared to determine the best

mechanism to unite entities. An implementation of the di�erent aggre-

gation methods will be shown as well as some reports which o�er a daily

analysis of the anonymization methods and services used in transactions

of the Bitcoin network.

Keywords: Bitcoin, Bitcoin Transaction Graph, BTG, anonimity

aggregation, correlation

Language: English

iii

Contents

1 Introduction 1

1.1 General . 1

1.2 Important Concepts and Design Motivations of Bitcoin 2

1.3 Why anonymity? . 3

1.4 Objectives . 4

1.5 Planning . 4

1.6 Contribution of the thesis . 6

1.7 Outline . 6

2 Bitcoin Description 8

2.1 Basics . 8

2.2 Bitcoin transactions . 9

2.3 Bitcoin transaction graph (BTG) 12

3 Anonimity Analysis 15

3.1 Introduction . 15

3.2 Previous works . 16

3.2.1 An Analysis of Anonymity in the Bitcoin System 16

3.2.2 Black Ops of TCP/IP 2011 19

3.2.3 Structure and Anonymity of the Bitcoin Transaction Graph 20

3.2.4 Zerocoin: Anonymous Distributed E-Cash from Bitcoin . 22

3.3 Anonymity in the Bitcoin Network 24

4 Aggregation of addresses 27

4.1 Introduction . 27

4.2 Suppositions . 28

4.2.1 Linking of inputs . 28

4.2.2 Linking of outputs . 28

4.2.3 Linking of IPs . 29

iv

4.2.4 Linking of periodic transactions 30

4.2.5 Linking of mixing/laundry services 30

4.3 Study of aggregation methods 31

4.3.1 Aggregation Method 1 - Linking of inputs 31

4.3.2 Aggregation Method 2 - Linking of outputs 36

4.3.3 Aggregation Method 3 - Linking of IPs 40

4.3.4 Aggregation Method 4 - Linking of periodic transactions 42

4.4 Anonymity comparison between aggregation methods 43

4.5 Study of anonymity of users . 43

4.6 Analysis temporal correlations 45

5 Future Work 49

6 Summary and Conclusions 51

References 54

A Implementations I

A.1 Aggregation Method 1 . I

A.2 Aggregation Method 1 . XI

A.3 Anonymizing methods .XXII

A.4 Downloading transactions of the last dayXXV

A.5 Temporal correlations .XXXI

A.6 Anonymity of users .XXXVI

B Bitcoin Visualizer XLIV

v

List of Tables

2.1 Format of Bitcoin transactions 10

2.2 Format of Bitcoin blocks . 11

2.3 Fields of table tx . 13

2.4 Fields of table txin . 13

2.5 Fields of table txout . 14

2.6 Fields of table pubkey . 14

vi

List of Figures

2.1 Relational diagram of the Bitcoin Database. 12

4.1 Ocurrences of transactions who have between 3 and 15 inputs. . 32

4.2 Ocurrences of transactions who have between 16 and 80 inputs. 33

4.3 Ocurrences of transactions who have between 81 and 1813 inputs. 33

4.4 Ocurrences of entities who have between 2 and 41 addresses. . . 35

4.5 Ocurrences of entities who have between 42 and 53428 addresses. 36

4.6 Ocurrences of transactions who have between 3 and 15 inputs. . 37

4.7 Ocurrences of transactions who have between 16 and 80 inputs. 39

4.8 Ocurrences of transactions who have between 81 and 1813 inputs. 40

4.9 Ocurrences of entities who have between 2 and 19 addresses. . . 41

4.10 Ocurrences of transactions who have between 20 and 1434 inputs. 42

4.11 Evolution of all transactions, transactions with several inputs

and transactions with two outputs between 2009-01 and 2011-04. 46

4.12 Evolution of all transactions, transactions with several inputs

and transactions with two outputs between 2011-04 and 2012-04. 46

4.13 Evolution of all transactions, transactions with several inputs

and transactions with two outputs between 2012-04 and 2013-03. 47

vii

List of Algorithms

4.1 Pseudocode for aggregation method 1 - Linking of inputs 34

4.2 Pseudocode for aggregation method 2 - Linking of outputs . . . 38

viii

Symbols and Abbreviations

BTG Bitcoin Transaction Graph

BTC Bitcoin (usually used when referring to the currency)

ix

Chapter 1

Introduction

1.1 General

Digital currencies have experienced a boom in the last years. Among them

Bitcoin, the �rst cryptocurrency, has stood out more strongly and is the most

widespread. Its money supply its estimated nowadays at around $1 billion

USD.

A cryptocurrency consists on a digital currency that relies on cryptography,

usually on a proof-of-work scheme, in order to create and handle the currency.

Bitcoin is a decentralized digital currency based on the use of strong cryp-

tography and an open-source, peer-to-peer internet protocol to operate. The

original Bitcoin software was developed by Satoshi Nakamoto (a pseudonym)

in 2008 [9].

Bitcoin does not have a central bank; it only relies on an internet-based peer-to-

peer network. Transactions are made through websites and apps called wallets,

and digital signatures are used to process and verify them. It is designed

to have no in�ation and periodically the number of new bitcoins created is

decreased by half, till the year 2140 when a total number of 21 million bitcoins

will have been achieved and no more bitcoins will be created.

1.2 Important Concepts and Design Motivations of Bitcoin 2

Because Bitcoin addresses can be obtained as necessary, the correlation be-

tween transactions is interesting and has been object of several studies [14] [6] [8] [5].

In this project we will examine how do the Bitcoin network and its transac-

tions work in order to later obtain the Bitcoin Transaction Graph and study

the correlation of di�erent addresses that belong to a user.

Some of the main goals of this Thesis will be to improve the existing aggre-

gation methods and identi�cation processes, de�ne new ones and analyze the

resulting graph from applying these methods.

1.2 Important Concepts and Design Motivations

of Bitcoin

The main aspects that de�ne the Bitcoin currency are:

• It is a cryptocurrency, a type of digital currency that relies on cryptog-

raphy.

• It is decentralized, so it is not necessary to trust and use banks or other

authorities.

• It is peer-to-peer, which means that all the users are equally privileged,

everyone can make and validate Bitcoin transactions.

• It is designed to have no in�ation and periodically the number of new

bitcoins created is decreased by half, till the year 2140 when a total num-

ber of 21 million bitcoins will have been achieved and no more bitcoins

will be created.

• It prevents double-spending because details of every transaction are broad-

casted through the network and included in the blockchain, which con-

tains all transactions ever made.

• It is not possible to modify the blockchain, the blocks are chained in a

way that modifying one forces to recompute all the subsequent blocks.

1.3 Why anonymity? 3

• It is pseudo-anonymous. The Bitcoin addresses are not related to user-

names, e-mails or accounts, but every transaction ever made is public so

money traceability is possible.

1.3 Why anonymity?

Nowadays society is making use of new technologies to constantly share thoughts,

actions, hobbies, ... Most of the time without realizing the reach it will have,

especially in the younger generations.

Till now, one of the aspects that had been kept anonymous with more care was

the monetary transactions when purchasing goods or services. That is changing

with the constant need of sharing everything, but when using Bitcoins is even

more noticeable because all the transactions in Bitcoin history are public, due

to the design of the protocol. Which means that if a Bitcoin Address is at some

point related to a person, everyone will be able to know all the transactions

ever made by that person.

There are several design motivations which supposedly help anonymity of users,

like the possibility of using a new address for every transaction, or several

decisions that a user can take in order to improve its anonymity chances, like

keeping di�erent wallets for di�erent purposes, making use of anonymizing

services such as VPNs, proxies, TOR, ... but we will discover why they are

not enough and why some other measures are needed.

To be able to maintain our anonymity in Internet has been one of the main

goals of a lot of researchers and developers not only because of the right we

have to protect our personal identity and our personal traits, but also because

it is necessary for creating more freedom of expression.

Big companies which their main business consists in the correlation of per-

sonal information surely are very interested in linking transactions with the

users that made them, whether in dollars, in euros, in Bitcoins or any known

currency. This will allow them to know the shopping habits of users, for which

services or objects are they willing to pay, ...

1.4 Objectives 4

Due to all these reasons we should we worried about the anonymity that the

currencies we are using grant, and if their anonymity extent is not far, users

must know the limitations and possible solutions or actions in order to be able

to at least improve the anonymity possibilities.

1.4 Objectives

The main objective of this thesis consists on studying anonymity in the Bitcoin

network. To do so it is important to establish �rst a solid background to

correctly understand how Bitcoin transactions work and the features of the

protocol.

Other important objectives consist of:

• Explain the Bitcoin protocol, focusing specially on transactions.

• De�ne the Bitcoin Transaction Graph representing the entities and trans-

actions.

• Analyze previous works in the subject that will allow a better under-

standing and a broader approach.

• Make assumptions regarding the aggregation of addresses.

• Transform the di�erent assumptions into aggregation methods that can

be developed and tested.

• Compare the results from the di�erent aggregation methods.

• Research how to join external information from Internet with Bitcoin

addresses.

1.5 Planning

The initial plan de�ned consisted on the analysis of aggregation methods using

an application called Bitcoin Visualizer [17], which uses the graph Database

1.5 Planning 5

Neo4j [11], and improving the methods proposed.

Due to the problems encountered when trying to run the application exposed

in Appendix B, it was later decided to drop it and do the anonymity analysis

and the de�nition of aggregation methods regardless of Bitcoin Visualizer.

The initial plan consisted on the following stages:

• Introduction to Bitcoin, workplan de�nition and study of the protocol.

• Analysis of Bitcoin Visualizer and Neo4j and the aggregation methods

implemented.

• Anonymization study and proposal of new or improved aggregation meth-

ods, and comparison of the results.

• Conclusions and �ndings, elaboration of the thesis and virtual presenta-

tion.

The �nal plan was:

• Introduction to Bitcoin, workplan de�nition and study of the protocol.

• Unsuccessful tests with Bitcoin Visualizer, analysis of anonymity in the

Bitcoin network.

• Anonymization study, proposal of aggregation methods and development

of the di�erent methods.

• Analysis of aggregation results, comparison between them, conclusions

and �ndings. Elaboration of the thesis and virtual presentation.

The major deviations have been caused by the changes made in the study of

anonymity aggregations and the reorganization of the plan to adapt to the new

scenario.

1.6 Contribution of the thesis 6

1.6 Contribution of the thesis

In this thesis a detailed description of Bitcoin from its speci�cation [9] will be

given. Special focus will be given to how the Bitcoin transactions work, the

build of a graph of the Bitcoin transactions made and the anonymity of the

protocol. Also a study of previous works exploring the anonymity issues of the

Bitcoin system will be made.

This will establish the knowledge needed for the rest of the sections that will

include an anonymity analysis, a de�nition of di�erent address aggregation

methods, a comparison between aggregations, and a study of anonymization

methods used.

In the anonymity analysis the claims and anonymity considerations of the

speci�cation will be examined, also some possible �aws will be included to try

and determine the importance of it.

The de�nition of di�erent address aggregation methods will allow to explore

and analyze the suppositions made in order to determine how anonymous users

are in the Bitcoin system and if they make use of all the possibilities o�ered.

With the comparison between aggregation methods the relevance of anonymity

will be studied and veri�ed, and the PROs and CONs of each method compared

in order to establish which o�ers a better mechanism to unite entities.

Finally, an implementation of di�erent reports which will o�er a daily analy-

sis of the anonymization methods (VPNs, proxies, TOR, ...) and the services

(eWallet, mixing services, ...) used will be done in order to have a better knowl-

edge of the measures taken by the users in order to improve their anonymity

and determine the extent of it and its relevance.

1.7 Outline

The thesis consists of six main chapters.

1.7 Outline 7

Enclosed in Chapter 1 an introduction to Bitcoin can be found. Also, some

important concepts of the Bitcoin protocol and its design motivations are de-

�ned. The focus on anonymity is stated afterwards. Finally the contribution

of the thesis is speci�ed.

A full overview of Bitcoin [9] is found in Chapter 2. First an introduction to

the protocol is given. Then an explanation of how transactions work. Also an

exposition of the Bitcoin Transaction Graph is given. Finally an explanation

of anonymity in Bitcoin transactions is added to show the importance it should

have.

Moreover an anonymity analysis can be found in Chapter 3 where not only

the protocol features but also some statements about its anonymity will be

analysed. In this Chapter some previous works that exist will also be analyzed

and resumed. Finally a study of anonymity in the Bitcoin Network is exposed.

Enclosed in Chapter 4 can be found the analysis of aggregation of addresses.

First some suppositions that will be analyzed are introduced. Then, a study of

how the di�erent aggregations re�ect on the BTG is provided. Also a compar-

ison of the result of the di�erent aggregation methods proposed is supplied to

better understand which ones pose a better option for identifying or grouping

Bitcoin addresses. Next a study of how users behave when using services and

the impact it can have in their anonymity will be done. Finally an analysis of

temporal correlations is included.

Several ideas for where future work could be headed can be found in Chapter 5.

At long last the conclusions are given in Chapter 6.

Chapter 2

Bitcoin Description

2.1 Basics

Bitcoin [9] [19] [20] is a decentralized peer-to-peer cryptocurrency that has

spread dramatically in the last years, and nowadays is the digital currency

most widely used.

Bitcoin relies on cryptography to generate new coins and ensure the correct

source and destination of a transaction. New coins are generated when creating

blocks, as will be explained in Section 2.2, and is a computationally expensive

operation. It is designed this way to make it harder for malicious users to

change the transaction history once it has been validated by enough clients.

As it is a decentralized protocol, it is not necessary to rely on banks or other

authorities. This is achieved by the construction of the blockchain, which is

public and contains the historic of all transactions ever made. By using this

public blockchain, all Bitcoin users can check the validity of a transaction

and verify the signatures used, because it is based in public key cryptography

signatures.

This �ts its peer-to-peer background because all users are able to make and

validate Bitcoin transactions. It is expected that each user has an updated

version of the blockchain before making a transaction so that they can check the

2.2 Bitcoin transactions 9

validity of the bitcoins they possess. This prevents double-spending because as

details of every transaction are broadcasted through the network and included

in the blockchain, every user can check if the bitcoins used in a transaction

are valid or not. A transaction is considered con�rmed once six blocks are

recorded after the transaction has been included in a block.

The blockchain is constructed by chaining the blocks in a way that modifying

one forces to recompute all subsequent blocks, so it is not possible to easily

modify the blockchain. The easier way for an attacker to modify the blockchain

would be to create a new block that is deceitful. This would mean that at some

point two blockchains with di�erent ending blocks would exist, but for the fake

blockchain to prevail, the attacker would need to have more computing power

than the rest of the Bitcoin users together. This would be necessary because

the predominant blockchain is the one that is veri�ed by a majority of the

Bitcoin network's computing power.

It must also be considered that Bitcoin is not an anonymous protocol, at best

it could be considered pseudo-anonymous because being the blockchain public,

every transaction can be traceable to its origin, although in principle it cannot

be linked to a physical person.

Bitcoin is designed to have no in�ation and periodically the number of new

bitcoins created is decreased by half, till the year 2140 when a total number

of 21 million bitcoins will have been achieved and no more bitcoins will be

created. At present, each blocks creates 25 bitcoins, and every 4 years more

or less, the number of bitcoins that can be mined in a block reduces by 50%.

2.2 Bitcoin transactions

Transactions are one of the bases of the Bitcoin system because they repre-

sent the payments between users and its understanding will be primordial to

this project because the transaction �ow and its analysis is what will allow

conjecturing which addresses belong to the same user.

Transactions consist on a data section digitally signed, these data sets are

2.2 Bitcoin transactions 10

broadcasted to the network and collected into blocks.

Each transaction references previous transactions and speci�es a number of

Bitcoins that are sent from one Bitcoin address to another.

The format of a Bitcoin transaction inside a Block can be seen in table 2.1:

Table 2.1: Format of Bitcoin transactions

FIELD DESCRIPTION SIZE

Version no Currently 1 4 bytes

In-counter Positive integer 1 - 9 bytes

List of inputs The �rst input of the �rst transaction <in-counter>-

is also called "coinbase" (its content was many inputs

ignored in earlier versions)

Out-counter Positive integer 1 - 9 bytes

List of outputs The outputs of the �rst transaction spend <out-counter>-

the mined bitcoins for the block many outputs

Lock time If non-zero and sequence numbers are 4 bytes

< 0xFFFFFFFF: block height or

timestamp when transaction is �nal

Currently there are three types of transactions:

• To an IP address

• To a Bitcoin address

• Generation of new Bitcoins

New Bitcoins can only be generated by mining a new Block, which contains

the last Bitcoin Transactions that have not been recorded before in any block.

Each block records a reference to the previous block, the recent transactions,

and also contains the solution to a di�cult mathematical puzzle, which is

unique to each block. Mining consists in �nding this solution, and as the

mathematical problem has no e�cient solution but is very easy to check if

2.2 Bitcoin transactions 11

a solution is valid, is very useful to limit the number of coins that can be

generated.

This is known as a proof of work system, in Bitcoin this proof consists of

choosing a nonce so that the hash of the block including the nonce contains

a certain number of zeros at the beginning. The number of zeros of the hash

is adjusted over time, in order to adapt the generation of new bitcoins to the

current computing capacity. The desired generation rate is one block every 10

minutes, and the di�culty is calibrated every two weeks.

In order to register the "winner" of the mining process, each block contains

a record of the Bitcoin address that will receive the coins, and is the �rst

transaction of a block.

Once a user has generated a block he will broadcast it to the network so all

the peers can check its validity and add the information to the block they are

trying to compute.

The collection of all blocks is known as Bitcoin chain, and the network is

designed so that in case that there is a split of the chain only one branch

survives. This is done by giving priority to the longest chain of blocks, meaning

the one with a higher di�culty.

The format of a Block is shown in table 2.2:

Table 2.2: Format of Bitcoin blocks

FIELD DESCRIPTION SIZE

Magic no value always 0xD9B4BEF9 4 bytes

Blocksize number of bytes following up to end 4 bytes

of block

Blockheader consists of 6 items 80 bytes

Transaction counter counter positive integer 1 - 9 bytes

Transactions the (non empty) list of transactions <Transaction counter>-

many transactions

The block chain basically consists on a transaction database that is shared

between all the users of the Bitcoin network; it contains all the transactions

2.3 Bitcoin transaction graph (BTG) 12

ever made in Bitcoins.

If a split of the Bitcoin chain is produced, the transactions in blocks that

remain in the short chain that will later be discarded are added to the pool of

pending transactions so that they can be added in a posterior block.

2.3 Bitcoin transaction graph (BTG)

The Bitcoin Transaction Graph (BTG) consists of a Graph representing all

the Bitcoin addresses and transactions up to a certain date.

To represent all this information it is important to choose a proper represen-

tation method, and also an e�cient storage method.

The tutor has provided a MySQL �le containing all the information of the

Bitcoin chain till the 18th of March 2013.

Figure 2.1 Relational diagram of the Bitcoin Database.

The schema of the database can be found in Figure 2.1.

2.3 Bitcoin transaction graph (BTG) 13

The analysis will be focused in transactions, so the main tables used will be tx,

txin, txout and pubkey. In some analysis the block, block_tx and block_txin

will also be used.

The tx table represents all transactions done, its �elds are shown in table 2.3.

Table 2.3: Fields of table tx

FIELD DESCRIPTION TYPE KEY

tx_id Unique id that identi�es a transaction decimal Primary

tx_hash Hash of the transaction char Unique

tx_version Version of the transaction decimal

tx_lockTime Indicates when the transaction is �nal decimal

tx_size Size of the transaction decimal

The txin table represents the inputs of all transactions done, its �elds are

shown in table 2.4, it can be linked with the tx table by the �eld tx_id.

Table 2.4: Fields of table txin

FIELD DESCRIPTION TYPE KEY

txin_id Unique id that identi�es a transaction decimal Primary

input

tx_id Id that identi�es a transaction decimal Multiple

txin_pos Position of an input between all the decimal

inputs of a transaction

txout_id Id that identi�es the output of a decimal Multiple

transaction

txin_scriptSig First part of the script - signature varchar

txin_sequence Sequence number for replacement decimal

The txout table represents the outputs of all transactions done, its �elds are

shown in table 2.5, it can be linked with the tx table by the �eld tx_id and

with the txin table by the �eld txout_id.

The pubkey table represents all the Bitcoin addresses used, its �elds are shown

in table 2.6, it can be linked with the txout table by the �eld pubkey_id.

The block tables are block, block_tx and block_txin and represent respectively

2.3 Bitcoin transaction graph (BTG) 14

Table 2.5: Fields of table txout

FIELD DESCRIPTION TYPE KEY

txout_id Unique id that identi�es a transaction decimal Primary

output

tx_id Id that identi�es a transaction decimal Multiple

txout_pos Position of an output between all the decimal

outputs of a transaction

txout_value Value of BTC decimal

txout_scriptPubKey Second part of the script - pubkey varchar

pubkey_id Id that identi�es a Bitcoin address decimal Multiple

Table 2.6: Fields of table pubkey

FIELD DESCRIPTION TYPE KEY

pubkey_id Unique id that identi�es a Bitcoin address decimal Primary

pubkey_hash Hash of the pubkey char Unique

pubkey Pubkey char

a table representing all the existing blocks, a table that links a block with the

transactions included in that block and a table that links a block with the

inputs from a transaction.

Chapter 3

Anonimity Analysis

3.1 Introduction

Bitcoin is publicized as an anonymous currency because no bank accounts,

email addresses or usernames are necessary to gain or spend Bitcoins, but the

truth is that although it allows certain anonymity, the user must be aware of all

the implications of his actions in order to maintain his anonymity. Even though

the system could support strong anonymity, the current implementation is not

very anonymous.

The only identi�cation a certain quantity of Bitcoins has is the Bitcoin ad-

dress it is associated with, and the public-private key pair that allows signing

transactions with this address.

One of the main characteristics to improve anonymity that Bitcoin has been

designed with is that it allows each user to generate as many Bitcoin addresses

as he wants, allowing even to generate one address for transaction. Another

one is that the relation between a user and its public key is stored only in

the user's wallet in order to di�cult the mapping between users and Bitcoin

addresses.

Another way of improving anonymity is by using TOR to connect to the Bitcoin

network, but is not fool-prove because in certain situations/attacks transac-

3.2 Previous works 16

tions can be identi�ed.

But, as has been explained in the de�nition of the Bitcoin protocol, one of

the characteristics of this system is that all the transactions are logged in the

Bitcoin chain and are public, so that all the Bitcoins can be traced to its

origin, validated and double-spending can be avoided. This means that it is

not possible to prevent analysis of the transactions realized till the current

date even though at some point changed the system's behaviour, which would

be di�cult because the system has been designed without a central authority.

In this chapter anonymity features and �aws of the protocol will be examined,

�rst through the analysis of previous works which have explored this area and

�nally with a study of anonymity in the Bitcoin Network.

3.2 Previous works

First, a review of previous works examining anonymity will be done to establish

the basis on which to continue this work.

3.2.1 An Analysis of Anonymity in the Bitcoin System

The �rst paper analyzing anonymity in the Bitcoin System [14] was �rst pub-

lished in July 2011 and later updated in May 2012. In this paper the authors

re�ect on the construction of two network structures and later they consider

the implications of these network structures for anonymity.

In order to build the structures they used all the Bitcoin transactions from

the �rst transaction on the 3rd January 2009 up to the last transaction on the

12th July 2011. This consists of 1019486 transactions between 1253054 unique

Bitcoin addresses.

The network structures proposed in the paper are the transaction network and

the user network:

3.2 Previous works 17

• The transaction network represents the �ow of Bitcoins between trans-

actions over time. The vertexes of the network represent transactions,

and the directed edges represent the outputs and inputs of a transaction,

which include the value in Bitcoins and the date.

• The user network represents the �ow of Bitcoins between users over time.

The vertexes of the network represent users, and the directed edges be-

tween an issuer and a receiver represent a transaction, which include the

value in Bitcoins and the date.

Later it is explained how both networks are built and some examples of this

representation are shown. The transaction network has 974520 vertices and

1558854 directed edges; the transactions that don't have any connection to

another transaction are not included in the network because they represent

mined Bitcoins or transaction fees not used. As the network does not have

multi-edges nor loops, and the output of a transaction will never be an input

to the same transaction, it is a directed acyclic graph (DAG).

The user network is �rst reduced due to the linking that can be assumed

when a transaction is done with multi-input, which reveals that all the Bitcoin

addresses involved belong to the same user. The initial network has 1253054

vertices (Bitcoin addresses) and 4929950 edges, but the resulting network has

881678 vertices and 1961636 directed edges. Unlike the transaction network,

in this case the network has multi-edges, loops and directed cycles.

In the anonymity analysis they explore several ways to deduce information

about Bitcoin users.

The �rst possibility examined consists on integrating o�-network information.

Since there does not exist a user directory for the Bitcoin system, a partial one

could be generated by relating Bitcoin addresses with o�-network information.

Organization and services that accept Bitcoin transactions, serve as laundry

or mixer services, exchange Bitcoins, ... have identifying information of their

users (email, credit cards, IP addresses, usernames, shipping addresses, ...)

that could be used for dubious purposes. In the paper the use of information

provided by the Bitcoin Faucet at the time as well as other sources like public

3.2 Previous works 18

forums, social networks like twitter, ... allows them to link Bitcoin addresses

that belong to the same user and at the same point to relate some personal

information to some of these addresses.

Next, the analysis of the Bitcoin system from Dan Kaminsky [6] is introduced,

which will be studied in the next subsection.

Other anonymity analysis that the authors propose is to make use of network

visualization and analysis tools to investigate the �ow of Bitcoins and link this

information with the data gathered o�-network from forums, twitter and webs

that donate Bitcoins.

Also they show a case study consisting on the analysis of an alleged theft of

25000 BTC (with a market value at the time of nearly half a million U.S. dol-

lars) on 13/06/2011 at 16:52:23. The theft occurred after the victim's Slush

pool account was compromised. In this case they analyze the transactions sur-

rounding the thief to reduce the search space. They discovered that previously

the thief had taken 1 BTC probably to do a test before the big blow, and also

that there was a fortuitous connection between the victim and the thief trough

LulzSec.

One of the more interesting analysis is the �ow and temporal one, in which

they try to trace signi�cant �ows of Bitcoins over time. They take a di�erent

approach to the same situation from the previous case study, in which they

discover that the �ows of Bitcoins after the theft split continuously and later

merge, suggesting that the BTC are still controlled by the thief. Also, the

involvement of MyBitcoin service in several transactions is shady, as it was

previously related to another Bitcoin theft.

Finally they o�er other forms of analysis and mitigation strategies; of special

interest are the following ideas:

• As many transactions have two outputs which one consist on the return

change to the payer knowing the particular client implementation could

allow to recognise which is the output and which is the change.

• If several Bitcoin addresses are used at similar times through a certain

3.2 Previous works 19

period of time they could belong to the same user.

• Bitcoin values converted from other currencies have eight signi�cant dig-

its and could be used to relate Bitcoin addresses and transactions to the

exchanges.

• A future version of the Bitcoin protocol should support mixing of Bitcoins

to hinder the analysis of user transactions.

3.2.2 Black Ops of TCP/IP 2011

The second work analyzing anonymity that we will study is the analysis of the

Bitcoin system from Dan Kaminsky [6] presented at Black Hat 2011.

He analyzes the main �aws of the Bitcoin system in his opinion, the no-

scalability of the protocol and its lack of anonymity.

To demonstrate the no-scalability problem he shows that if there were as many

transactions with Bitcoins as there are with VISA an average of 1GB per second

would be generated for the Block chain, this means that a network node would

need a 3TB disk every three weeks, but also it would need around 50 cores to

keep up with the �ow of information.

If Bitcoins increases to a point that an average computer is not able to be a

node it would be necessary to create supernodes, but then you end up shifting

the peer-to-peer model to a "regular banking" model.

For the anonymity �aw a di�erent approach as the ones seen on the previous

work analyzed is suggested, and also points out that Reid and Harrigan [14] got

lucky thanks to how the Bitcoin Faucet worked and a user seeking donations.

The method proposed consists on connecting to every node in the Bitcoin

network at once, so that the �rst node that informs you of a transaction will

be the source of that transaction.

The author developed a tool named BlitCoin designed for this purpose.

In order to discover Bitcoin nodes he suggests several approaches:

3.2 Previous works 20

• Scan the Internet on TCP port 8333

• Join Bitcoin IRC channels

• Recursively ask Bitcoin nodes about all the nodes they know about

Although anonymization services like TOR, proxies, VPNs, ... can be used,

in some cases this anonymization can be avoided. For example if you are

using TOR but are also listening on port 8333 you could be detected if some-

one sweeps the Internet, also you could create thousands of nodes to control

outbound links

3.2.3 Structure and Anonymity of the Bitcoin Transac-

tion Graph

The third paper studies the structure and anonymity of the Bitcoin transaction

graph [8] and was published on May 2013. They analyze dynamical e�ects and

study how some of them increase anonymity while other decrease it.

In their paper the Bitcoin block chain is studied till 6th January 2013, specif-

ically to block number 215,399 and they put focus on an adversary trying to

link transactions and discover entities.

The �rst step is estimating the number of active entities and used public keys

(only inputs), and compare them to all the public keys ever used (inputs or

outputs) in transactions. They propose the same aggregation method as Reid

and Harrigan [14], which consists on linking input addresses. They infer that

the increased interest in Bitcoin in several periods of time is related with

public trading of bitcoins (April 2010) or the �rst exchange rate peak (30USD

in June/July 2011). It is also deduced from this aggregation method that on

average every entity has two public keys.

The relation between public keys or existing keys and entities is also analyzed,

and they conclude that due to a greater concern with anonymity the ratio of

public keys that can be related to an entity decreases over time.

3.2 Previous works 21

Their next analysis tries to determine the number of entities and their size over

time, stating that entities with several used public keys are infrequent. Also,

the distribution of the periods of time in which entities are active is explored,

�nding that both ends are quite common. A lot of entities are only active

during one day, but there are many entities that are active during long periods

of time. The best case for maximizing anonymity and avoiding aggregation of

addresses would be if entities consisted on a single address and where active

for a short period of time.

The authors also investigate the activity of the Bitcoin network, determining

how long are entities active over time, and comparing the results with the ex-

change rate of bitcoins and USD, discovering that the number of active entities

is much smaller than the total number of entities and that speculation can be

good for anonymity, because the number of active entities increased greatly

when the exchange rate reached a peak in June/July 2011. This hypothesis is

reinforced with the transaction analysis done in which a peak of transactions

is found when the exchange rate peak took place.

It is also indicated that when linking transactions one must be careful with

laundry or mixing services which di�cult the traceability of bitcoins. And

considering the merging method of aggregating bitcoin addresses which are

the input of the same transaction they deduce that the periods where this

merging is more noticeable is when users where exchanging bitcoins for USD

in June/July 2011 and also due to the emergence of the SatoshiDice game.

Finally they study how dormant coins might be harmful for anonymity, because

it reduces the anonymity set and is easier to identify entities. It is estimated

that nearly a 60% of the bitcoins are dormant, which equals around 6.3 million

bitcoins as of January 2013.

The main contributions of the paper are that entity merging is a challenge

to Bitcoin anonymity, merged entities follow a scale-free distribution, large

entities are less frequent so anonymity increases over time and dormant coins

might reduce the anonymity set.

3.2 Previous works 22

3.2.4 Zerocoin: Anonymous Distributed E-Cash from Bit-

coin

The fourth paper proposes an extension to the Bitcoin protocol called Zero-

coin [5] published on April 2013. This extension's main objective is to add

anonymity to Bitcoin transactions.

This system is proposed so that third party laundry or mixing services are not

needed, because these services can be a danger to user's founds or anonymity

if for example the operators decide to steal coins, track transactions or the

business closes.

Zerocoin is a distributed e-cash system designed to break the relation between

Bitcoin transactions without having to trust third parties. It uses crypto-

graphic techniques and the main di�erence between other e-cash systems is

that it is not centralized and each Bitcoin user can generate their own zero-

coins.

It uses provably secure cryptographic techniques to guarantee that Bitcoin

transactions cannot be traced. Even if a portion of the Bitcoin network was

compromised the no-traceability property would still hold because Zerocoin is

built on top of Bitcoin, so the Bitcoin protocol should be compromised for the

Zerocoin to be a�ected.

Zerocoin is de�ned as a separated currency that will work alongside Bitcoin

with the same block chain, and zerocoins are changeable with bitcoins. To

purchase zerocoins a user has to make a special transaction which includes a

special mint, and once this transaction has been validated and is part of the

Bitcoin block chain, the same user can transform the zerocoins into bitcoins.

The �rst step of the process is known as "Zerocoin Mint" and the second part as

"Zerocoin Spend", and the extension is de�ned so that it is not possible to link

a Mint transaction with a Spend transaction. It could be said that redeeming

zerocoins gives back a completely di�erent set of bitcoins than the ones used

initially. This is achieved by using several cryptographic components, mainly

digital commitments, one-way accumulators and zero-knowledge proofs.

3.2 Previous works 23

The authors of the paper de�ne the protocol as the world's biggest laundry,

which can handle millions of users, does not need a trusted party and can't be

compromised.

The Mint process consists on encrypting a random serial number with a fast

commitment algorithm, obtaining a coin that is connected to the chosen num-

ber. This "Mint" has to be broadcasted to the Bitcoin network inside a stan-

dard Bitcoin transaction which contains in bitcoins the desired equivalent of

zerocoins. The block chain will accept this new transaction and add the "Mint"

to the global accumulator, so that it cannot be identi�ed among other zerocoin

transactions and the currency will not be available except through a Zerocoin

Spend.

The Spend process is a bit trickier. In it the client will use the trapdoor

(serial number) obtained when the mint was generated to make a new Bitcoin

transaction, also adding a zero-knowledge proof of two statements. First, that

the user has previously inserted zerocoins in the block chain, and second,

that these particular zerocoins contain the serial number used in the Spend

transaction. Everyone is able to verify this proof and check that this particular

number had never been Spent before, but it does not reveal other information

like which particular transaction was the corresponding Mint one.

The Bitcoins used in a Mint transaction form part of a "deposit" that can only

be accessed by Bitcoin users that have previously introduced zerocoins to the

Bitcoin block chain, and have not used the serial number from their deposit.

The main problems exposed are regarding the time and space needed in order

to verify zerocoin transactions and the di�culty of deploying the protocol.

They are working in order to reduce the size and cost of verifying the proof

and will post an implementation at the end of June. The problem of deploying

the protocol is more complicated because it requires that every Bitcoin client

is updated to incorporate these changes. Probably several studies and analysis

will be made before there is public support of this extension.

3.3 Anonymity in the Bitcoin Network 24

3.3 Anonymity in the Bitcoin Network

One of the common points between the analysis of the previous studies and

this work is that there are several weak points that make anonymity di�cult.

The main one is that all the transactions are logged in the Bitcoin chain, which

allows seeing the transaction �ow. All the Bitcoins can be traced to its origin,

even though it can be an unidenti�ed one.

Also, it is only possible to send Bitcoins from an address that has received

them, and although one could choose from which address wants to send Bit-

coins to another user, the Bitcoin client doesn't allow this which can mean

that at some point several Bitcoin addresses can be related to the same user.

A method that has been proposed to anonymize the balance of a user is creating

a eWallet account and transfer through there all the Bitcoins to a new address.

The main problem with this method is that you have to trust the eWallet

service with your coins, and you don't have any guarantee that you will be

able to recover them.

Related with the eWallet method, some proposals have been made to use

external mixers which don't store the transaction logs in order to protect the

identity and origin of the coins sent, but it has the same disadvantage as the

previous one because it is indispensable that the Bitcoin user's trust these

services.

Keeping anonymity in Internet has always proved di�cult when making use

of services that expose user information partially. There have been several

studies that show attacks in which they learn whether social links exist between

di�erent people or social entities [7] or where users from a certain social network

can be re-identi�ed in other social networks [10].

The objective of keeping anonymity is double, in one hand it is desirable that

a Bitcoin address is not linked to a person, a mail, a username, IP, ... on the

other hand that several Bitcoin addresses cannot be related to each other. If

only one part is compromised, even though anonymity is in danger the other

part can be prevailed with care, but if both sides have been jeopardized it is

3.3 Anonymity in the Bitcoin Network 25

best to spend or convert all available Bitcoins and start from zero taking more

care in how the Bitcoin network is used from that point.

From all this we can observe that maintaining complete anonymity in the

Bitcoin network is complicated and with the current protocol is not possible

without depending on third parties (eWallet, external mixers, ...) that would

act as virtual banks or money exchange. In using these third parties, their

reputation and reliability is essential, and they will never be 100% reliable

because at any time they can decide to keep all the Bitcoins that they are

managing. Also, these centralized services would be capable of identifying and

tracking a considerable amount of transactions and analyze user activity.

In Bitcoin undeclared income cannot exist because all the transactions are

registered and everyone has access to them. This has several strong points

like people not being able to create their own money, or spending twice the

same money, but at the same time it does not allow to transfer money from

one address to another without being publicly known. For example, in the

"real world" one can get cash from his account and give it to anyone or pay in

any shop without anyone knowing except the receiver of that money, and the

receiver wouldn't even have to know or have any identi�cation of the origin.

I think a method in which two users could send Bitcoins from one to an-

other without having to publicly announce it, but maintaining the controls

for double-spending or creating fake coins, and also ful�lling the integrity and

con�dentiality of a transaction, at least allowing the source to remain hidden

is necessary so that Bitcoin becomes a currency more widely used.

All of these problems are mainly caused because Bitcoins are not a tangible

asset, and they cannot be taken outside the "economic circuit" and return

them to it later. I think it is important to �nd a workaround for this if third

parties are to be avoided in transactions while wanting to ensure anonymity.

In some proposals where they suggest external mixers in which logs would be

deleted, a user would never have the reliability that they would do so, and in

case that the third party keep the logs, it would have a privileged knowledge of

the economy and transactions taking place and could later sell this information

to the highest bidder (governments, ma�as, black-market, ...).

3.3 Anonymity in the Bitcoin Network 26

In short, I think that is necessary to design a protocol that allows making

transactions more anonymously, where the �ow of them is not easily followed,

and where no third parties are needed in order to be a real alternative to

"conventional" currency, because if not it will always will coexist with it, and

depend on it. Although, as has been explored in subsection 3.2.2, if Bitcoin

continues growing it will probably reach a point in which it will not be possible

for most users to be able to cope with the �ow of information, regarding not

only the space needed but also the computation required.

Recently, an extension to the Bitcoin protocol has appeared, which is explored

in subsection 3.2.4. Although this extension o�ers great chances of improving

anonymity in the Bitcoin network it poses several main problems.

Mainly the computational and space costs, because in the tests done in the

Zerocoin paper [5] if a high amount of the transactions are supplanted by Zero-

coin transactions the e�ort needed to calculate a block increases considerably,

and could pose a big problem if the number of Bitcoin transactions grows

signi�cantly. It could become a choke point before the scalability problem

exposed by Dan Kaminsky [6].

Another important problem is the di�culty of deploying the protocol, because

it will require collaboration of all the Bitcoin clients, and before it is widely

accepted the extension will be probably examined and tested thoroughly.

Also it must be noted, that although transactions could be anonymous once

the Zerocoin extension is built in, this will not avoid that all past transactions

will continue being weak against aggregation methods, because this extension

will only a�ect future transactions.

Chapter 4

Aggregation of addresses

4.1 Introduction

In the de�nition of the Bitcoin protocol anonymity was not one of the key

features as has been analyzed in the previous section.

In this Chapter the extent of this problem will be explored. In order to do

this, several methods to relate Bitcoin Addresses between themselves or obtain

additional information from Internet sources akin to particular addresses will

be studied.

The objective is to be able to link the Bitcoin addresses so that even if it is

not possible to nominally identify a user, it can be known or estimated which

Bitcoin addresses are related, and also, in some situations, to gather additional

info of the owner of a Bitcoin address like a username in forums, an IP address,

an email, a service name, a web, ...

First, some suppositions will be introduced which will help de�ne the ag-

gregation methods and explain its reasoning. Then the di�erent aggregation

methods will be explained and it will be shown what new information can be

provided with each one.

A comparison of the di�erent methods will follow, analyzing which method

4.2 Suppositions 28

o�ers better possibilities or which outcomes can be mixed in order to obtain

better success.

Next an analysis of anonymity of users will be done, examining how they

behave when using some services and what information can be gathered.

Finally some temporal correlations will be studied.

4.2 Suppositions

Before being able to de�ne the aggregation methods that will be analyzed, it

is important to examine and understand the reasoning behind each one.

4.2.1 Linking of inputs

In previous studies the linking mentioned by Nakamoto [9] has been explored,

which basically consists that if a transaction has several inputs, all these inputs

will belong to the same owner.

Here this method will be also analyzed as is the most basic but one that has

a 100% chance of being correct. More than a supposition, this case is a fact.

4.2.2 Linking of outputs

In most occasions where the transactions have two outputs or more, one of

the outputs will belong to the owner and will consist in the change from the

transaction.

To identify which output is the change we can suppose that the one with more

decimals in the transaction is the change. This assumption will not always

be true, but it is the most approximate because usually the decimals of a

transaction are reduced due to the following situations:

4.2 Suppositions 29

• The price/amount corresponds to another currency transaction, which

will be a quantity that will be several magnitudes bigger than a Satoshi

unit.

• The price/amount corresponds to a transaction between users or pay-

ment of services/goods, which will usually consist on a number with few

decimals to simplify things.

• Prizes tend to be rounded for simplicity and comfort.

• Analyzing prices in Euros/Dollars and other currencies we can easily see

that the lower units are rarely used. For example, except when buying

things by weight it is unusual to �nd prices which are not multiples of 5

cents.

One necessary condition for this supposition to be true is that one of the

outputs is the change of a transaction. We cannot be sure of it, but we can

assume that in most cases it will be this way because it is a quite common

occurrence that the bitcoin value of 1 or more addresses of a user don't exactly

correspond exactly with the amount of bitcoins that they want to transfer,

especially considering how small a satoshi is, which is the base unit of Bitcoin.

In transactions with more outputs we could also make the same assumptions,

but the higher the number of outputs, the higher the possibility of choosing a

wrong address as the change.

4.2.3 Linking of IPs

Although IP addresses are not stored in the Bitcoin Blockchain it is possible

to obtain the IP address used in a transaction.

The easiest way to do so is to run a Bitcoin client and connect to as many

nodes as possible as was explored by Dan Kaminsky in Black Hat 2011 [6].

Being a Peer-to-Peer system, if someone is able to connect to all the nodes he

will be able to always identify the �rst node that noti�es a transaction and

relate its IP with that particular transaction.

4.2 Suppositions 30

It must also be taken in mind that most IP addresses of users are not static

and can change overtime, but if several transactions are made with the same

IP in a short span of time, it can be assumed that these transactions have been

made by the same user.

One way to avoid linking of IPs is the use of anonymizing services like TOR,

proxies, VPNs, ... so it is a good idea to let out of the analysis transactions

made from IPs that have been identi�ed as an anonymizing service.

4.2.4 Linking of periodic transactions

Usually there are transactions which are made periodically, whether with Eu-

ros, Dollars, Bitcoins, ...

It could be interesting to relate these transactions as they will probably be

done from di�erent addresses considering the design of the Bitcoin protocol.

In order to aggregate these addresses we can suppose that transactions made

over time with the same destination at similar times can be from the same

origin. The certainty of this aggregation is lower than with other suppositions.

4.2.5 Linking of mixing/laundry services

The use of mixing or laundry services di�cults anonymity analysis due to the

inclusion of third parties in the transaction �ow. But it is still possible to make

some suppositions that will help aggregate user addresses.

Usually, when using mixing or laundry services, a user will want to transfer

Bitcoins from one of his addresses to a di�erent one without anyone analyzing

the Bitcoin Blockchain being able to identify this transfer.

In order to be able to relate the origin and destination address it will be

necessary �rst to detect the initial transfer to the mixing service and later the

�nal transfer to the destination address.

4.3 Study of aggregation methods 31

The easiest supposition is to relate a transaction with a certain amount of

coins from the origin address to a transaction with the same amount of coins

to the destination address.

In some occasions this supposition will not be enough, and what will have to

be linked is the initial transaction with several transactions to the destination

node which consist of the same amount after adding all of them.

In this aggregation method it will be very important to recognise and classify

all the addresses belonging to mixers or laundries.

4.3 Study of aggregation methods

The methods proposed in the previous section will be analyzed here, and an

explanation of how the aggregation process has been carried out will be given.

4.3.1 Aggregation Method 1 - Linking of inputs

This �rst method, consisting of relating the Bitcoin addresses that appear as an

input in the same transaction, although simple in appearance is quite di�cult

computationally, taking into account the big number of Bitcoin transactions

done in all the Bitcoin history.

In this method the �rst step has been to determine the number of inputs of a

transaction. In order to do this the BBDD explained in section 2.3 has been

used. The query 4.1 is quite simple and consists on grouping the transaction

inputs by the id of the transaction they are an input to.

1 s e l e c t tx_id , count (∗) from tx in group by tx_id order by count (∗)
desc

Listing 4.1: Query - Number of inputs of transactions

With the list obtained we can observe that nearly a third of all Bitcoin transac-

tions have two or more inputs. From a total of 14515692 di�erent transactions,

4520210 have more than one input, that is a 31,14%.

4.3 Study of aggregation methods 32

If we analyze the occurrences of the number of inputs that transactions have,

we can easily see that a lot of them have only two inputs (2355366), that

represents a 52,1% of the transactions with several inputs, and a 16,22% of all

transactions.

With the results from this query we can also see that the total transaction

inputs consists of 30086387 elements, and that with only the 21000 transactions

that have more inputs (representing a 0,14% of all the transactions) nearly a

10% of all transaction inputs is used (3007435).

In the following charts we will examine the values that are out of the average.

The values have been divided in three ranges to be visualized better, which

can be found in Figures 4.1 4.2 and 4.3.

Figure 4.1 Ocurrences of transactions who have between 3 and 15 inputs.

It can be observed easily that the transactions with 4, 100, 200 and 250 inputs

have a di�erent behaviour. It seems that these transactions could be related

with attacks trying to di�cult the computing time required for verifying a

transaction [3].

In order to accomplish the aggregation method of inputs a script was developed

in Bash that aggregates the pubkeys which are inputs of the same transaction.

Two versions of this script can be found in Listing A.1 and Listing A.2. The

�rst one stores the results in a �le, the other one creates a new table in the

4.3 Study of aggregation methods 33

Figure 4.2 Ocurrences of transactions who have between 16 and 80 inputs.

Figure 4.3 Ocurrences of transactions who have between 81 and 1813 inputs.

database and updates its values.

The pseudocode of the script is de�ned in Algorithm 4.1.

With 5803108 inputs analyzed a total of 1719312 Bitcoin Addresses have been

processed and have resulted in only 32956 di�erent identities. It must be taken

into account that the transactions analyzed (128240) are the ones with a higher

number of inputs, although they only represent the 0,88% of all transactions it

corresponds with an analysis of the 19,28% of all the transaction inputs, and

28,88% of all the transaction inputs where a transactions has 2 or more inputs.

4.3 Study of aggregation methods 34

Algorithm 4.1 Pseudocode for aggregation method 1 - Linking of inputs
L⇐list of all transactions with several inputs

I ⇐ 0

PK ⇐aggregation �le where all the pubkeys and their identity will be stored

for all element E of L do

PK ⇐list of pubkeys involved in transaction E

F ⇐pubkeys of PK found on aggregation �le

if F = 0 then

Put PK in aggregation �le with identity I

I ⇐ I + 1

else {F > 0}

if F = 1 then

J ⇐identity of the only pubkey found in the pubkey �le

Put PK not found in aggregation �le with identity J

else {F > 1}

J ⇐identity of one of the pubkeys found in the pubkey �le

Change identity to J of all pubkeys that have one of the identities

from the pubkeys found

Put PK not found in aggregation �le with identity J

end if

end if

end for

4.3 Study of aggregation methods 35

The current aggregation has related an average of 52,17 bitcoin addresses per

entity. Which is a pretty high number but we have to take into account that

the transactions analyzed �rst are those with a higher number of inputs, that

is, the ones resulting in a better aggregation.

It has been detected that in some cases there is no aggregation because in a

transaction with several inputs all the inputs are the same bitcoin address.

This is usually because it corresponds to small transactions from gambling

sites like SatoshiDice, and it can result in a Bitcoin address having a big sum

of di�erent inputs of varying value. So far in 6894 cases this situation has

arisen.

In the following charts we will examine the quantity of entities with the same

number of addresses obtained from the script A.1. The values have been

divided in two ranges to be visualized better, which can be found in Figures 4.4

and 4.5.

Figure 4.4 Ocurrences of entities who have between 2 and 41 addresses.

In both charts we can see that as expected that entities are more common with

less addresses and become less regular the more addresses it has. In Figure 4.4

we can observe that entities between 15 and 20 addresses are more common

than other entities similar in size. In Figure 4.5 we can detect that entities with

60, 200 and 1000 addresses are much more common that other near situations,

this is probably due to services that have a lot of addresses for its transactions.

4.3 Study of aggregation methods 36

Figure 4.5 Ocurrences of entities who have between 42 and 53428 addresses.

4.3.2 Aggregation Method 2 - Linking of outputs

This second method, consisting of relating the Bitcoin addresses that appear as

an output with the input of the same transaction, relies on the supposition that

in a transaction with more of one output, one of these outputs will correspond

with the change of the transaction. The focus is going to be in transactions

with only two outputs because the probability of choosing correctly the change

is higher.

As in the previous method, this aggregation is quite di�cult computationally

also, due to the high number of transactions.

In this method the �rst step has been to determine the number of outputs

of a transaction. The query 4.2 is quite simple and consists on grouping the

transaction outputs by the id of the transaction they are an input to.

1 s e l e c t tx_id , count (∗) from txout group by tx_id order by count (∗)
desc

Listing 4.2: Query - Number of outputs of transactions

With the list obtained we can observe that nearly a 90% of all Bitcoin trans-

actions have two outputs. From a total of 14515692 di�erent transactions,

13061821 have two outputs, that is a 89,98%.

4.3 Study of aggregation methods 37

In the following charts we will examine the values that are out of the average.

The values have been divided in three ranges to be visualized better, which

can be found in Figures 4.6 4.7 and 4.8.

Figure 4.6 Ocurrences of transactions who have between 3 and 15 inputs.

It can be observed easily that the transactions with 40, 41, 51, 65, 81, 101,

102, 201, 257, 301 , 401, 513, 807 and 1803 outputs have a di�erent behaviour.

The most interesting case is the one with 41 and 102 outputs, because their

occurrences are 8 times higher than near numbers. It would require further

analysis to better understand why this particular situation is obtained.

In order to accomplish the aggregation method of outputs a script was de-

veloped in Bash similar to the one developed in the previous method that

aggregates the pubkeys which are inputs of the same transaction. Two ver-

sions of this script can be found in Listing A.3 and Listing A.4. The �rst one

stores the results in a �le, the other one creates a new table in the database

and updates its values.

The pseudocode of the script is de�ned in Algorithm 4.2.

With 274298 transactions analyzed a total of 383990 Bitcoin Addresses have

been processed and have resulted in only 32261 di�erent identities. In this

4.3 Study of aggregation methods 38

Algorithm 4.2 Pseudocode for aggregation method 2 - Linking of outputs
L⇐list of all transactions with 2 outputs

I ⇐ 0

PK ⇐aggregation �le where all the pubkeys and their identity will be stored

for all element E of L do

A⇐�nd output of E with more decimals

B ⇐�nd inputs of E

PK ⇐list of pubkeys from A and B

F ⇐pubkeys of PK found on aggregation �le

if F = 0 then

Put PK in aggregation �le with identity I

I ⇐ I + 1

else {F > 0}

if F = 1 then

J ⇐identity of the only pubkey found in the pubkey �le

Put PK not found in aggregation �le with identity J

else {F > 1}

J ⇐identity of one of the pubkeys found in the pubkey �le

Change identity to J of all pubkeys that have one of the identities

from the pubkeys found

Put PK not found in aggregation �le with identity J

end if

end if

end for

4.3 Study of aggregation methods 39

Figure 4.7 Ocurrences of transactions who have between 16 and 80 inputs.

case the transactions have not been ordered because all of them have the

same number of outputs. The 274298 transactions analyzed represent only a

2,09% of all the transactions with two outputs (13061821). Due to the limited

resources of the computer used it has not been possible at this moment to

advance further the analysis.

The current aggregation has linked an average of 11,9 bitcoin addresses per

entity, we have to consider that in this case, the transactions have not been

ordered with any method, so I suppose this aggregation rate will be more or

less constant when the analysis is more complete.

It has been detected that in some cases there is no aggregation because in a

transaction all the inputs are the same bitcoin address and one of the output

address is also the same. This happens in very few cases, so far, only 39 of

them have appeared in the transactions analyzed.

In the following charts we will examine the quantity of entities with the same

number of addresses obtained from the script A.1. The values have been

divided in two ranges to be visualized better, which can be found in Figures 4.4

and 4.5.

In both charts we can see that as expected that entities are more common

4.3 Study of aggregation methods 40

Figure 4.8 Ocurrences of transactions who have between 81 and 1813 inputs.

with less addresses and become less regular the more addresses it has. In

Figure 4.9 we can observe that entities from 6 addresses and more become

very uncommon quickly. In Figure 4.10 we can see that entities continue

decreasing in size without big peaks that showed strange situations. The most

common case is the one with two addresses per entity with 11808 di�erent

entities representing more that a third of all the entities de�ned (36,6%).

It must be noted that an entity appears with 170472 bitcoin addresses linked.

It would be best to wait till the aggregation process has been completed and

observe if it continues growing or it has reached its maximum.

4.3.3 Aggregation Method 3 - Linking of IPs

The linking of IPs method depends on the IP information of a transaction.

In the BBDD used in other methods the IP address does not appear so it is

necessary to use other sources of information.

For this particular analysis we have opted for the web Blockchain [4] where

Bitcoin transactions can be explored, and where they o�er a lot of services and

resources.

4.3 Study of aggregation methods 41

Figure 4.9 Ocurrences of entities who have between 2 and 19 addresses.

Several scripts have been developed which download daily all the transactions

from the previous day and perform di�erent analysis. These scripts consists

of one that downloads all the blocks of the blockchain from yesterday A.6.

Another that given a block it descomposes it in transactions A.7. And the last

script takes a transaction and stores it in the �lesystem so it can be analyzed

afterwards A.8.

The �rst script after it has downloaded all the info from the previous day it

computes some statistics. Including total number of transactions, number of

anonymizing transactions, percentage, total number of di�erent IPs, number

of anonymizing IPs and its percentage.

These last few days the number of transactions of a day ranges from 54000 to

69000 and the number of di�erent IPs is between 4100 and 4400.

The IPs most used are 5.9.24.81 and 127.0.0.1, they represent 22,89% (66514)

and 18,21% (52921) respectively of all transactions made these last 5 days.

The most used IP belongs to Nogleg [12] as can be discovered with Robtex [15].

The second one represents the Blockchain site [4].

Also to determine which transactions are being made from anonymizing IPs

some scripts have been developed to download list from known proxies and

4.3 Study of aggregation methods 42

Figure 4.10 Ocurrences of transactions who have between 20 and 1434 inputs.

TOR nodes in order to identify the transactions made from these nodes and

treat them di�erently when analyzing them. The script A.5 consults di�erent

sites to obtain free TOR and proxies lists of IPs, it gathers all the information

and then creates a �le with all of them.

In the last 5 days between 200 and 600 transactions per day have been made

with some of the anonymizing IPs identi�ed, they have never surpassed the

1% of all transactions. The IPs used have been around 25-40 di�erent IPs per

day.

4.3.4 Aggregation Method 4 - Linking of periodic trans-

actions

With the info collected from the scripts that download the blockchain daily A.6 A.7 A.8

it would be interesting to analyze if some transactions are done periodically

taking into account the IPs and/or Bitcoin addresses involved and the amount

transferred.

Because the information is downloaded daily it would be easier computation-

ally to calculate the relation of transactions between several days. Also some

index could me generated to better navigate through the information.

4.4 Anonymity comparison between aggregation methods 43

4.4 Anonymity comparison between aggregation

methods

Between the di�erent aggregation methods studied the most reliable is the

aggregation of inputs, because is the only one where we are absolutely sure

that we are right about the aggregation choosen. In other methods like the

aggregation of outputs or the linking of IPs we can never be 100% sure of the

suppositions.

That is why when designing the script for computing the aggregation of out-

puts it was done in a way that it implemented at the same time both the

aggregation of inputs and the aggregation of outputs, so in a way, it is a mix

of both aggregations. What would be needed after processing the aggregation

of outputs, would be to execute the aggregation of inputs over all the transac-

tions where the number of outputs is di�erent from two. This can be computed

with the query 4.3, where not only this list of transactions is computed, but

also are only chosen orderly the transactions with several inputs.

1 s e l e c t tx_id , count (∗) from tx in where tx_id in (s e l e c t tx_id from

txout group by tx_id having count (∗) !=2) group by tx_id having

count (∗)>1 order by count (∗) desc

Listing 4.3: Query - Transactions where the number of outputs is not two

From the results obtained so far it seems the aggregation of inputs is more

e�cient (52,17 vs 11,9), but it must be taken into account that it has an

advantage because it begins computing the transactions ordered by the number

of inputs. In contrast, the output method where no previous ordering is done

it o�ers a quite good aggregation, but it would be best to dispose of the �nal

computations to make determinant conclusions.

4.5 Study of anonymity of users

In order to study the anonymity of the Bitcoin users it can be helpful to

use the scripts developed in subsection 4.3.3. They allow to discover which

4.5 Study of anonymity of users 44

transactions are being made from IPs belonging to anonymizing services like

TOR or proxies. Also, it could be used to obtain the list of addresses and

geolocalize them, that way statistics of which countries are most represented

in the Bitcoin network, or where is located the biggest �ow of Bitcoins would

be easy to compute.

To study the anonymity of users in Internet it is useful to monitor services

that are common in the Bitcoin community like forums, mixers, laundries, ...

In this project several scripts have been developed to obtain information re-

lated with Bitcoin in order to identify users or detect information that can be

important.

The �rst script A.11 consists on a spider that navigates in the last posts from

bitcointalk [2] and tries to �nd Bitcoin addresses and associate them to users.

In each post, the �rst occurrence of an address is asigned to that user, because

posterior appareances will probably caused by replies. The particular post an

address has been found on is stored so that it can be checked if necessary.

The second script A.12 downloads the latest info posted in Bitbin [1] and tries

to �nd Bitcoin addresses or information related with Bitcoin. It stores not

only this information but also the link where it was found.

The third script A.13 does the same as the previous one but for Pastebin [13].

In Pastebin due to the high amount of info being posted constantly and that

I was downloading all of it I was banned while I began working on the script.

In order to avoid that, some commands were included to select randomly a

free proxy from the list created in subsection 4.3.3, this way the ban to my IP

could be avoided.

This scripts have proven quite useful, especially the Bitcointalk one. In the

forums a lot of users post Bitcoin addresses and is quite easy to link them

to the �rst user that posted the address. For example, in the last two weeks

around 4000 Bitcoin addresses have been collected from the forums, both from

present posts and some old ones and have been linked to a user of that forum,

also, they have been assigned to 1825 di�erent users because some of them

include not one but several di�erent addresses through their posts.

4.6 Analysis temporal correlations 45

The results from bitcointalk should be revised to discover addresses that do

not belong to users but instead belong to services. This can be done without

much di�culty taking into account how usual is for services and applications

to publish their Bitcoin address, usually asking for donations or because it is

needed for their business.

All the scripts developed have to be executed every 2 minutes in order to

constantly download the latest information, for doing this the best option is to

use crontab in Linux so that you can automatically obtain all the information

constantly.

These scripts can be easily replicated to do the same in other forums or services

used by the Bitcoin community, allowing to correlate the information found in

all of them and in that way eliminate the false positives found.

4.6 Analysis temporal correlations

This section is mainly centred in the comparison between the number of trans-

actions overtime and the data used in the aggregation methods of inputs and

outputs explored in Section 4.3, to help us determine the reliability of each

data considering the historic events.

For this analysis it was necessary to group transactions over time, it was de-

cided to make a month aggregation that would easily show the historic �ow of

transactions. In order to accomplish this aggregation for the three cases men-

tioned (all transactions, transactions with several inputs, transactions with

two outputs) two scripts were developed in Bash.

The �rst one calculates all the transactions which belong to each group and

the second one calculates the data needed for a chart representation. They

can be found in Listings A.9 and A.10 respectively.

From the results obtained, three charts have been drawn to analyze the data.

The values have been divided in three ranges to be visualized better, which

can be found in Figures 4.11 4.12 and 4.13.

4.6 Analysis temporal correlations 46

Figure 4.11 Evolution of all transactions, transactions with several inputs

and transactions with two outputs between 2009-01 and 2011-04.

Figure 4.12 Evolution of all transactions, transactions with several inputs

and transactions with two outputs between 2011-04 and 2012-04.

In Figure 4.11 several signi�cant peaks can be observed. The �rst one in July

2010 matches the release of Bitcoin v0.3 which was mentioned on slashdot [18].

The second peak occurred on November 2010 and is related with a single large

transaction that was followed with many more trying to hide where the bitcoins

were going, and analysis can be found on a paper by D. Ron and A. Shamir [16].

We can assume that the transactions involved moved all the bitcoins from one

address to another instead of making a payment and receiving the change in

another address due to how the lines representing all the transactions and the

transactions with two outputs diverge. The third peak was produced on March

2011 and was related to a low exchange rate BTC/BSD that lasted 6 weeks

and which was produced by supposedly automated BTC sales at progressively

lower prices. We can also observe in this strange case a split between the �ows

4.6 Analysis temporal correlations 47

Figure 4.13 Evolution of all transactions, transactions with several inputs

and transactions with two outputs between 2012-04 and 2013-03.

of transactions.

In Figure 4.12 we can note only one peak, which is related with the exchange

rate boom which reached 31.91 USD and also with several thefts that were

produced in that month.

In Figure 4.13 we observe one big peak at the beginning of 2013 that corre-

sponds with an increase of the exchange rate of bitcoins which surpassed the

previous mark of 31.91 USD, and which continued to rise till the 100 USD

reached the 1st of April 2013. We have to take into account that the data

studied ends on March 18th 2013, and because of that March has so few trans-

actions. Also, in February over 1 million USD in bitcoins was sold by Coinbase

in a single month.

Analyzing the three charts we can conclude that although the transactions

with several inputs are very reliable when associating addresses, it is much

more useful to focus on transactions with two outputs, because, although there

is no 100% certainty that one of the outputs corresponds with the change

and it will not be always easy to discern which of the outputs is the change,

the amount of transactions is much higher and its evolution has a stronger

correlation to the total transactions representation. Regardless of whether

there is speculation or not, as can observed in June 2011 and February 2013

where the representation of the evolution of transactions with two outputs

is more similar to the evolution of all transactions. In the only cases where

4.6 Analysis temporal correlations 48

more divergence can be found is when there has been notable cases of many

automatic transactions which were limited to moving all the bitcoins from one

address to another, in one case to hide bitcoins and in the other to force an

exchange price drop.

Chapter 5

Future Work

Among the aggregation methods proposed one that has not been fully explored

is the linking of mixing/laundry services. Due to lack of time and resources a

complete analysis has not been feasible and it would be interesting to follow

this path.

In order to better understand how di�erent mixing or laundry services work it

would be necessary to do several tests with each of the services to be analyzed.

This will require initially to use these services and do several transactions

through them, after that it will be very important to make an inventory of

as many Bitcoin addresses as possible from these services so that the inner

transactions of a mixing or laundry service can be identi�ed and the inputs

and outputs of the clients of the services can be easily recognized.

This inventory can be made from the information gathered in the initial tests,

with the correlation of addresses done with previous methods and by analyzing

the �ow of transactions in order to detect patterns.

The objective is to be able to link the origin and destination address of an

entity using a mixing or laundry service.

One analysis that remains pending is the union of the complete results from

the input and output aggregation methods. Because of how many Bitcoin

transactions are and how much time each of the aggregation methods takes, it

50

has not been possible to analyze the entire result of these correlation methods.

It would be quite interesting to join both groups of addresses and compute

the resulting set so that a better and more complete aggregation can be deter-

mined.

After �nishing both the aggregation of inputs and outputs from transactions,

and their union to get a resulting set, another path to be pursued would be to

de�ne a daily process that feeds the database with the new blocks generated

and that aggregates the Bitcoin addresses involved in the transactions taking

into account the methods de�ned and the result set obtained from the analysis

done till now.

Finally, a visual program could be developed which shows through a timeline

the aggregation of entities and the transactions between them while being

able to select a certain period of the blockchain, and the detail of the entities

displayed. This would allow to analyze correlations from the beginning of the

Bitcoin currency to di�erent times in Bitcoin's lifetime and it would be easier

to analyze the impact of important historic events for the currency.

Some features could be implemented to show the aggregations that could be

done with the knowledge from that period regarding transactions and cor-

relations, and also with all the data from the present moment, so that the

behaviour of users can be better analyzed.

Chapter 6

Summary and Conclusions

The main goal of this thesis was to study the anonymity in the Bitcoin net-

work. Initially by understanding how the Bitcoin protocol works, specially

the transactions, later by doing an anonymity analysis with a background of

previous studies and �nally by de�ning aggregation methods and analyzing its

results.

The anonymity analysis has shown that Bitcoin although very useful and secure

in preventing attacks or double-spending, has a problem with anonymity that if

not resolved could cause that the protocol loses importance if other alternatives

that o�er more safety in the anonymity �eld appear.

In Chapter 4 the aggregation methods studied have shown how important

it is for users to be careful with the transactions they make if they want

to maintain anonymity in the network. There are several options available

for this, ranging from being more careful while using the Bitcoin protocol

(using TOR to anonymize the IP, keep Bitcoin addresses separated, not abuse

of transactions with several inputs, make transactions with more than two

outputs,..), making use of mixers or laundry services, ... or even the announced

proposed extension Zerocoin [5], which could become an important element in

improving anonymity in Bitcoin if it gets enough support.

Among the aggregation methods explored it has been shown that using the

relation of several inputs of a transaction, or the link between a payment and its

52

change can be quite useful to generate entities that represent several Bitcoin

addresses. The full extent of this analysis has not been reached due to the

slowness of the process but it is quite promising.

To di�cult both the aggregation of inputs or outputs it depends on the Bitcoin

users and how careful they are. To avoid the linking of transactions through

the inputs the best method would be to keep di�erent wallets depending on

how they will be used, so that addresses from di�erent wallets can never be

linked. For preventing the linking of outputs the best option would be to

include in each transaction some output with a small value but with a lot of

decimals so it di�cults the analysis and prevents from easily relating inputs

and outputs of a transaction.

It is also important that users are more careful of the information they post in

the network, this applies not only to Bitcoin, but lately it seems that a lot of

information can be easily obtained from people. In a way, important Bitcoin

addresses should be protected as much as a bank account, nobody usually

publishes his bank account on the internet, and the same should be done of

the main Bitcoin addresses we have, or any address that can be linked to our

main ones.

We have to also consider that if the Bitcoin protocol continues to grow at

this rate, it will reach a point where some changes will be needed so that it

does not die due to its success. As explored by Dan Kaminsky [6] the great

quantity of bandwidth, computation and storage required at some point can

be detrimental.

The storage problem could be temporally resolved modifying the client so in-

stead of storing the whole blockchain, it only stores the present day and the

day before. Every day, the blocks from the day before yesterday would be

deleted provided there are enough con�rmations, and the �rst block from yes-

terday would be accepted as the genesis block. Nowadays there are between

45000 and 69000 transactions daily and every large increase in users occurring

will take us closer to that limit. Earlier if some extensions suggested like Zero-

coin [5] are implemented, that although very necessary in order to guarantee

anonymity, the higher e�ort needed to compute transactions and validations

53

could produce an earlier choke point.

Bitcoin is a very interesting currency that has grown a lot in the last few years

but it still has several challenges to overcome until it can be a real alternative

to other legal currency as the dollar or the euro.

References

[1] Bitbin [2013]. Bitbin. [Online; accessed 14-June-2013].

URL: http://www.bitbin.it/index.php

[2] Bitcointalk [2010]. Bitcointalk. [Online; accessed 14-June-2013].

URL: https://bitcointalk.org/

[3] Bitcointalk, S. [2013]. New Bitcoin vulnerability: A transaction that

takes at least 3 minutes to verify. [Online; accessed 14-June-2013].

URL: https://bitcointalk.org/?topic=140078

[4] Blockchain [2007]. Bitcoin Block Explorer. [Online; accessed 14-June-

2013].

URL: https://blockchain.info/

[5] I. Miers, C. Garman, M.G. and Rubin, A.D. [2013]. Zerocoin:

Anonymous Distributed E-Cash from Bitcoin. IEEE Symposium on Secu-

rity and Privacy (Oakland).

[6] Kaminsky, D. [2011]. Black Ops of TCP/IP Presentation.

URL: http://dankaminsky.com/2011/08/05/bo2k11/

[7] L. Backstrom, C.D. and Kleinberg, J. [2007]. Wherefore Art Thou

R3579X? Anonymized Social Networks, Hidden Patterns, and Structural

Steganography. In Proceedings of the 16th International Conference on

World Wide Web, pages 181�190.

[8] M. Ober, S.K. and Hamacher, K. [2013]. Structure and Anonymity

of the Bitcoin Transaction Graph. Future Internet, 5:237�250.

URL: www.mdpi.com/1999-5903/5/2/237/pdf?

REFERENCES 55

[9] Nakamoto, S. [2009]. Bitcoin: A Peer-to-Peer Electronic Cash System.

URL: http://bitcoin.org/bitcoin.pdf

[10] Narayanan, A. and Shmatikov, V. [2009]. De-anonymizing Social

Networks. In Proceedings of the 30th Symposium on Security and Privacy,

pages 173�187.

[11] Neo4j [2007]. Neo4j The Graph Database. [Online; accessed 14-June-

2013].

URL: http://www.neo4j.org/

[12] Nogleg [2011]. Nogleg with Russell Hantz. [Online; accessed 14-June-

2013].

URL: http://nogleg.com/

[13] Pastebin [2002]. Pastebin. [Online; accessed 14-June-2013].

URL: http://pastebin.com/

[14] Reid, F. and Harrigan, M. [2012]. An Analysis of Anonymity in the

Bitcoin System. doi:arXiv:1107.4524v2[physics.soc-ph].

URL: http://arxiv.org/pdf/1107.4524v2.pdf

[15] Robtex [1996]. Robtex Swiss Army Knife Internet Tool. [Online; accessed

14-June-2013].

URL: http://www.robtex.com/

[16] Ron, D. and Shamir, A. [2012]. Quantitative Analysis of the Full

Bitcoin Transaction Graph. IACR Cryptology.

URL: http://eprint.iacr.org/2012/584.pdf

[17] Russell, J. [2012]. Bitcoin Visualizer. [Online; accessed 14-June-2013].

URL: https://github.com/thallium205/BitcoinVisualizer

[18] Slashdot [2010]. Bitcoin-Releases-Version-03. [Online; accessed

14-June-2013].

URL: http://news.slashdot.org/story/10/07/11/1747245/Bitcoin-

Releases-Version-03

[19] wiki, B. [2009]. Bitcoin wiki. [Online; accessed 14-June-2013].

URL: https://en.bitcoin.it

REFERENCES 56

[20] Wikipedia [2009]. Bitcoin Wikipedia, The Free Encyclopedia. [Online;

accessed 14-June-2013].

URL: http://en.wikipedia.org/wiki/Bitcoin

Appendix A

Implementations

In this Appendix can be found all the bash implementations done for the

di�erent aggregation methods de�ned in Section 4.3.

A.1 Aggregation Method 1

For the �rst aggregation method two scripts have been developed. One stores

the aggregation of addresses in a �le and the other creates a new table in the

database and inserts the aggregations when they are computed.

The only parameters needed in both scripts are the user and password of the

database.

1 #!/ bin /bash

3 ###Usage : s c r ip t_aggregat ion_1_f i l e . sh " user " "password"

###Vers ion : 9

5 ###Aggregation method 1 − Linking o f inputs

###I t i s nece s sa ry to inc lude two parameters , the user and

password o f the database .

7

###Bitco in addre s s e s not used don ' t form part o f t h i s f i r s t

a n a l y s i s

9

###Command to determine % analyzed :

A Implementations II

11 #date +'%Y/%m/%d %H:%M:%S ' ; comprobacionTotal ="14515692"; echo "

Total t r an s a c t i on s : " $comprobacionTotal ;

comprobacionUltimaTransaction=` tac resu l t s_aggregat ion_1 /

l o g f i l e _ f i l e . l og | grep "tx_id in tx in : " | head −n1 | grep −o
" [0 −9]∗" ` ; echo "Last t r an sa c t i on : "

$comprobacionUltimaTransaction ; comprobacionPosic ion=`grep −n
"^$comprobacionUltimaTransaction ; " tx id_txin_aggregat ion . txt |

cut −d" :" −f1 ` ; echo " Pos i t i on in t r an sa c t i on f i l e : "

$comprobacionPosic ion ; comprobacionInputsAnal izados=`head −
n$comprobacionPosic ion txid_txin_aggregat ion . txt | cut −d" ;" −
f 2 | awk '{SUM+=$1} END { pr in t SUM} ' ` ; echo " Inputs analyzed : "

$comprobacionInputsAnal izados ; comprobacionTotalInputs

="30086387"; echo "Total inputs : " $comprobacionTotalInputs ;

comprobacionPorcentage=`echo " s c a l e =2;

$comprobacionInputsAnal izados ∗100/ $comprobacionTotalInputs " |

bc − l | sed ' s /^\ ./0\ ./ g ' ` ; echo "Percentage inputs analyzed : "

$comprobacionPorcentage"%"

13 ###Example :

#2013/06/02 22 : 18 : 44

15 #Total t r an s a c t i on s : 14515692

#Last t r an sa c t i on : 12899458

17 #Pos i t i on in t r an sa c t i on f i l e : 20154

#Inputs analyzed : 2940362

19 #Total inputs : 30086387

#Percentage inputs analyzed : 9.77%

21

###In i t data

23 ###In the l o gF i l e w i l l be s to r ed the stdout from the s c r i p t . I t

c o n s i s t s on ba s i c data to determine how much i n f o has been

analyzed

###In the e r r o r F i l e w i l l be s to r ed the s t d e r r o r from the s c r i p t .

I t a l l ows to de t e c t i f the re i s any problem with the database

or the program

25 user=$1

password=$2

27 BASEDIR=$ (dirname $0)

mkdir $BASEDIR/ resu l t s_aggregat ion_1

29 r e s u l t F i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_1 /

address_aggregation_1 . txt " `

rm $ r e s u l t F i l e

31 touch $ r e s u l t F i l e

A Implementations III

l o gF i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_1 / l o g f i l e _ f i l e . l og " `

33 e r r o r F i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_1 / e r r o r f i l e _ f i l e . l og

" `

35 echo "DATE INIT : ` date ` " > $ l o gF i l e

echo "DATE INIT : ` date ` " > $ e r r o rF i l e

37

###Create t r an sa c t i on f i l e i f i t does not e x i s t

39 i f [! −f $BASEDIR/ txid_txin_aggregat ion . txt]

then

41 mysql −u $user −−password="$password" −e " s e l e c t tx_id , count (∗)
from tx in group by tx_id order by count (∗) desc " btg | t r '\ t '

' ; ' > $BASEDIR/ txid_txin_aggregat ion . txt

grep −v " ; 1 $" $BASEDIR/ txid_txin_aggregat ion . txt > $BASEDIR/

txid_txin_aggregat ion_severa l_inputs . txt

43 f i

45 i dent=0

cat $BASEDIR/ txid_txin_aggregat ion_severa l_inputs . txt | grep −v "

tx_id" | whi l e read l i n e

47 do

tx id=`echo $ l i n e | cut −d" ; " −f1 `

49 echo "################################"

echo "tx_id in tx in : $ tx id "

51 echo "tx_id in tx in : " $tx id >> $ e r r o rF i l e

53 a u x i l i a r 1 =`mysql −u $user −−password="$password" −e " s e l e c t

txout_id from tx in where tx_id='$txid ' " btg | grep −v " txout_id

" | s o r t | uniq `

a u x i l i a r 2 =`echo " $ aux i l i a r 1 " | t r '\n ' ' , ' `

55 auxgrep=`echo " ("${ a u x i l i a r 2 : 0 : −1}") " `
aux i l i a rKeys1=`mysql −u $user −−password="$password" −e " s e l e c t

pubkey_id from txout where txout_id in $auxgrep" btg | grep −v
"pubkey" | s o r t | uniq `

57 aux i l i a rKeys2=`echo " $aux i l i a rKeys1 " | t r '\n ' ' | ' `

auxgrepKeys=`echo " ("${ aux i l i a rKeys2 : 0 : −1}") " `
59

foundAl l=` egrep "^$auxgrepKeys ; " $ r e s u l tF i l e `

61 found=`echo " $foundAl l " | cut −d" ; " −f1 `

63 i f [−z "$found"]

then

A Implementations IV

65 ###Case where a l l the pubkeys invo lved have not been analyzed

be f o r e

#The data and a new i d e n t i f i e r i s added to the aggregat ion f i l e

67 echo "num pubkey found in f i l e EQUAL 0"

echo "NEW IDENT: $ ident "

69 aux i l i a rKeys3=`echo " $aux i l i a rKeys1 " | t r '\n ' ' , ' `

auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `
71 mysql −u $user −−password="$password" −e " s e l e c t ∗ from pubkey

where pubkey_id in $auxsqlKeys " btg | grep −v "pubkey" | t r '\

t ' ' ; ' | whi l e read b i t co inAddres s

do

73 echo $b i tco inAddres s " ; " $ ident >> $ r e s u l t F i l e

done

75 l e t ident=$ ident+1

e l s e

77 number=`echo "$found" | wc −l `
i f [[$number −eq 1]]

79 then

###Case where one pubkeys invo lved has been analyzed be f o r e

81 echo "num pubkey found in f i l e EQUAL 1"

83 #Stab l i s h the value o f the analyzed pubkey as r e f e r e n c e

i n i t I d e n t =`echo " $foundAl l " | cut −d" ; " −f4 `

85 echo " only IDENT FOUND: $ i n i t I d e n t "

#Add the r e f e r e n c e i d e n t i f i e r to the pubkeys invo lved in the

cur rent t r an sa c t i on

87 aux i l i a rKeys3=`echo " $aux i l i a rKeys1 " | egrep −v "^

$found$" | t r '\n ' ' , ' `

i f [! −z " $aux i l i a rKeys3 "]

89 then

auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `
91 mysql −u $user −−password="$password" −e " s e l e c t ∗

from pubkey where pubkey_id in $auxsqlKeys " btg | grep −v "

pubkey" | t r '\ t ' ' ; ' | wh i l e read b i t co inAddres s

do

93 echo $b i tco inAddres s " ; " $ i n i t I d e n t >> $ r e s u l t F i l e

done

95 f i

e l s e

97 ###Case where s e v e r a l pubkeys invo lved have been analyzed be f o r e

echo "num pubkey found in f i l e GREATER THAN 1"

99

A Implementations V

#Stab l i s h the value o f one o f these analyzed pubkeys as r e f e r e n c e

101 i n i t I d e n t =`echo " $foundAl l " | head −n1 | cut −d" ; " −f4 `

echo " f i r s t IDENT FOUND: $ i n i t I d e n t "

103 #Get l i s t o f i d e n t i f i e r s be long ing to the pubkeys found

auxChangeValues=`echo " $foundAl l " | cut −d" ; " −f 4 |

s o r t | uniq `

105 auxValues=`echo "$auxChangeValues" | t r '\n ' ' | ' `

auxGrepValues=`echo " ("${auxValues : 0 : −1}") " `
107 #Change the i d e n t i f i e r o f the pubkeys that have the same

i d e n t i f i e r as the pubkeys found to the r e f e r e n c e value

egrep " ; $auxGrepValues$" $ r e s u l t F i l e | cut −d" ; " −f1−3
| s o r t | uniq | whi l e read l i n e

109 do

echo $ l i n e " ; " $ i n i t I d e n t >> $BASEDIR/

resu l t s_aggregat ion_1 /address_aggregation_1v8 . aux

111 done

egrep −v " ; $auxGrepValues$" $ r e s u l t F i l e >> $BASEDIR/

resu l t s_aggregat ion_1 /address_aggregation_1v8 . aux

113 mv $BASEDIR/ resu l t s_aggregat ion_1 /

address_aggregation_1v8 . aux $ r e s u l t F i l e

#Add the r e f e r e n c e i d e n t i f i e r to the pubkeys invo lved in the

cur rent t r an sa c t i on

115 aux i l i a rKeys3=`echo " $aux i l i a rKeys1 " | egrep −v "^

$found$" | t r '\n ' ' , ' `

i f [! −z " $aux i l i a rKeys3 "]

117 then

auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `
119 mysql −u $user −−password="$password" −e " s e l e c t ∗

from pubkey where pubkey_id in $auxsqlKeys " btg | grep −v "

pubkey" | t r '\ t ' ' ; ' | wh i l e read address

do

121 echo $address " ; " $ i n i t I d e n t >> $ r e s u l t F i l e

done

123 f i

f i

125 f i

echo "################################"

127 echo ""

echo ""

129 echo ""

done >> $ l o gF i l e 2>> $ e r r o rF i l e

131

A Implementations VI

133 #How many d i f f e r e n t e n t i t i e s have been s t ab l i s h ed from the Bi t co in

t r an s a c t i on s

cut −d" ; " −f 4 $ r e s u l t F i l e | s o r t | uniq | wc − l
135

#How many Bi t co in addre s s e s have been used as sou rc e s in B i t co in

t r an s a c t i on s

137 cut −d" ; " −f 1 $ r e s u l t F i l e | s o r t | uniq | wc − l

139 #Bitco in addre s s e s not used don ' t form part o f t h i s f i r s t a n a l y s i s

141 echo "DATE FI : ` date ` " > $ l o gF i l e

echo "DATE FI : ` date ` " > $ e r r o rF i l e

Listing A.1: Script for aggregation method 1 - Linking of inputs - File

#!/ bin /bash

2

###Usage : scr ipt_aggregat ion_1_sql . sh " user " "password"

4 ###Vers ion : 9

###Aggregation method 1 − Linking o f inputs

6 ###I t i s nece s sa ry to inc lude two parameters , the user and

password o f the database .

8 ###Bitco in addre s s e s not used don ' t form part o f t h i s f i r s t

a n a l y s i s

10 ###Command to determine % analyzed :

#date +'%Y/%m/%d %H:%M:%S ' ; comprobacionTotal ="14515692"; echo "

Total t r an s a c t i on s : " $comprobacionTotal ;

comprobacionUltimaTransaction=` tac resu l t s_aggregat ion_1 /

l o g f i l e_ s q l . l og | grep "tx_id in tx in : " | head −n1 | grep −o
" [0 −9]∗" ` ; echo "Last t r an sa c t i on : "

$comprobacionUltimaTransaction ; comprobacionPosic ion=`grep −n
"^$comprobacionUltimaTransaction ; " tx id_txin_aggregat ion . txt |

cut −d" :" −f1 ` ; echo " Pos i t i on in t r an sa c t i on f i l e : "

$comprobacionPosic ion ; comprobacionInputsAnal izados=`head −
n$comprobacionPosic ion txid_txin_aggregat ion . txt | cut −d" ;" −
f 2 | awk '{SUM+=$1} END { pr in t SUM} ' ` ; echo " Inputs analyzed : "

$comprobacionInputsAnal izados ; comprobacionTotalInputs

="30086387"; echo "Total inputs : " $comprobacionTotalInputs ;

comprobacionPorcentage=`echo " s c a l e =2;

$comprobacionInputsAnal izados ∗100/ $comprobacionTotalInputs " |

A Implementations VII

bc − l | sed ' s /^\ ./0\ ./ g ' ` ; echo "Percentage inputs analyzed : "

$comprobacionPorcentage"%"

12

###Example :

14 #2013/06/02 22 : 18 : 44

#Total t r an s a c t i on s : 14515692

16 #Last t r an sa c t i on : 12899458

#Pos i t i on in t r an sa c t i on f i l e : 20154

18 #Inputs analyzed : 2940362

#Total inputs : 30086387

20 #Percentage inputs analyzed : 9.77%

22 ###In i t data

###In the l o gF i l e w i l l be s to r ed the stdout from the s c r i p t . I t

c o n s i s t s on ba s i c data to determine how much i n f o has been

analyzed

24 ###In the e r r o r F i l e w i l l be s to r ed the s t d e r r o r from the s c r i p t .

I t a l l ows to de t e c t i f the re i s any problem with the database

or the program

user=$1

26 password=$2

BASEDIR=$ (dirname $0)

28 mkdir $BASEDIR/ resu l t s_aggregat ion_1

r e s u l t F i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_1 /

address_aggregation_1 . txt " `

30 rm $ r e s u l t F i l e

touch $ r e s u l t F i l e

32 l o gF i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_1 / l o g f i l e_ s q l . l og " `

e r r o r F i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_1 / e r r o r f i l e_ s q l . l og "

`

34

echo "DATE INIT : ` date ` " > $ l o gF i l e

36 echo "DATE INIT : ` date ` " > $ e r r o rF i l e

38 ###Create aggregat ion tab l e i f i t does not e x i s t

#Same f i e l d s as pubkey tab le , but with one more r ep r e s en t i ng the

i d e n t i t y

40 mysql −u $user −−password="$password" −e "CREATE TABLE IF NOT

EXISTS aggregat ion1 (

pubkey_id DECIMAL(26 ,0) DEFAULT NULL,

42 pubkey_hash CHAR(40) NOT NULL,

pubkey CHAR(130) NULL,

A Implementations VIII

44 i dent DECIMAL(26 ,0) NOT NULL,

PRIMARY KEY (pubkey_id) ,

46 UNIQUE (pubkey_hash)

) ; " btg

48

###Create t r an sa c t i on f i l e i f i t does not e x i s t

50 i f [! −f $BASEDIR/ txid_txin_aggregat ion . txt]

then

52 mysql −u $user −−password="$password" −e " s e l e c t tx_id , count (∗)
from tx in group by tx_id order by count (∗) desc " btg | t r '\ t '

' ; ' > $BASEDIR/ txid_txin_aggregat ion . txt

grep −v " ; 1 $" $BASEDIR/ txid_txin_aggregat ion . txt > $BASEDIR/

txid_txin_aggregat ion_severa l_inputs . txt

54 f i

56 i dent=0

cat $BASEDIR/ txid_txin_aggregat ion_severa l_inputs . txt | grep −v "

tx_id" | whi l e read l i n e

58 do

tx id=`echo $ l i n e | cut −d" ; " −f1 `

60 echo "################################"

echo "tx_id in tx in : $ tx id "

62 echo "tx_id in tx in : " $tx id >> $ e r r o rF i l e

64 a u x i l i a r 1 =`mysql −u $user −−password="$password" −e " s e l e c t

txout_id from tx in where tx_id='$txid ' " btg | grep −v " txout_id

" | s o r t | uniq `

a u x i l i a r 2 =`echo " $ aux i l i a r 1 " | t r '\n ' ' , ' `

66 auxgrep=`echo " ("${ a u x i l i a r 2 : 0 : −1}") " `
aux i l i a rKeys1=`mysql −u $user −−password="$password" −e " s e l e c t

pubkey_id from txout where txout_id in $auxgrep" btg | grep −v
"pubkey" | s o r t | uniq `

68 aux i l i a rKeys2=`echo " $aux i l i a rKeys1 " | t r '\n ' ' , ' `

auxgrepKeys=`echo " ("${ aux i l i a rKeys2 : 0 : −1}") " `
70

foundAl l=`mysql −u $user −−password="$password" −e " s e l e c t

pubkey_id , ident from aggregat ion1 where pubkey_id in

$auxgrepKeys" btg | t r '\ t ' ' ; ' | grep −v "pubkey" | s o r t |

uniq `

72 found=`echo " $foundAl l " | cut −d" ; " −f1 `

74 i f [−z "$found"]

A Implementations IX

then

76 ###Case where a l l the pubkeys invo lved have not been analyzed

be f o r e

#The data and a new i d e n t i f i e r i s added to the aggregat ion f i l e

78 echo "num pubkey found in f i l e EQUAL 0"

echo "NEW IDENT: $ ident "

80 aux i l i a rKeys3=`echo −e " $aux i l i a rKeys0 ""\\n"" $aux i l i a rKeys1 " |

egrep −v "^$" | t r '\n ' ' , ' `

i f [! −z " $aux i l i a rKeys3 "]

82 then

auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `
84 mysql −u $user −−password="$password" −e "INSERT INTO

aggregat ion1 (pubkey_id , pubkey_hash , pubkey , ident) SELECT

pubkey_id , pubkey_hash , pubkey , ' $ ident ' AS ident FROM pubkey

WHERE pubkey_id in $auxsqlKeys " btg

l e t ident=$ ident+1

86 f i

e l s e

88 number=`echo "$found" | wc −l `
i f [[$number −eq 1]]

90 then

###Case where one pubkeys invo lved has been analyzed be f o r e

92 echo "num pubkey found in f i l e EQUAL 1"

94 #Stab l i s h the value o f the analyzed pubkey as r e f e r e n c e

i n i t I d e n t =`mysql −u $user −−password="$password" −e " s e l e c t

ident from aggregat ion1 where pubkey_id='$found ' " btg | grep −v
" ident " `

96 echo " only IDENT FOUND: $ i n i t I d e n t "

#Add the r e f e r e n c e i d e n t i f i e r to the pubkeys invo lved in the

cur rent t r an sa c t i on

98 aux i l i a rKeys3=`echo " $aux i l i a rKeys1 " | egrep −v "^$found$" |

egrep −v "^$" | t r '\n ' ' , ' `

i f [! −z " $aux i l i a rKeys3 "]

100 then

auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `
102 mysql −u $user −−password="$password" −e "INSERT INTO

aggregat ion1 (pubkey_id , pubkey_hash , pubkey , ident) SELECT

pubkey_id , pubkey_hash , pubkey , ' $ i n i t I d en t ' AS ident FROM

pubkey WHERE pubkey_id in $auxsqlKeys " btg

f i

104 e l s e

A Implementations X

###Case where s e v e r a l pubkeys invo lved have been analyzed be f o r e

106 echo "num pubkey found in f i l e GREATER THAN 1"

108 #Stab l i s h the value o f one o f these analyzed pubkeys as r e f e r e n c e

i d en t s=`echo " $foundAl l " | cut −d" ; " −f 2 | s o r t | uniq `

110 i n i t I d e n t =`echo " $ iden t s " | head −n1 `
echo " f i r s t IDENT FOUND: $ i n i t I d e n t "

112 #Change the i d e n t i f i e r o f the pubkeys that have the same

i d e n t i f i e r as the pubkeys found to the r e f e r e n c e value

auxChangeValues=`echo " $ iden t s " | egrep −v "^$ i n i t I d en t $ " |

egrep −v "^$" | t r '\n ' ' , ' `

114 i f [! −z "$auxChangeValues"]

then

116 auxUpdateValues=`echo " ("${auxChangeValues : 0 : −1}") " `
mysql −u $user −−password="$password" −e "UPDATE

aggregat ion1 SET ident=' $ i n i t I d en t ' WHERE ident in

$auxUpdateValues" btg

118 f i

120 #Add the r e f e r e n c e i d e n t i f i e r to the pubkeys invo lved in the

cur rent t r an sa c t i on

aux i l i a rKeys4=`echo " $aux i l i a rKeys1 " | egrep −v "^$found$" |

egrep −v "^$" | t r '\n ' ' , ' `

122 i f [! −z " $aux i l i a rKeys4 "]

then

124 auxsqlKeys=`echo " ("${ aux i l i a rKeys4 : 0 :

−1}") " `
mysql −u $user −−password="$password" −e "INSERT INTO

aggregat ion1 (pubkey_id , pubkey_hash , pubkey , ident) SELECT

pubkey_id , pubkey_hash , pubkey , ' $ i n i t I d en t ' AS ident FROM

pubkey WHERE pubkey_id in $auxsqlKeys " btg

126 f i

f i

128 f i

echo "################################"

130 echo ""

echo ""

132 echo ""

done >> $ l o gF i l e 2>> $ e r r o rF i l e

134

136 #How many d i f f e r e n t e n t i t i e s have been s t ab l i s h ed from the Bi t co in

A Implementations XI

t r an s a c t i on s

cut −d" ; " −f 4 $ r e s u l t F i l e | s o r t | uniq | wc − l
138

#How many Bi t co in addre s s e s have been used as sou rc e s in B i t co in

t r an s a c t i on s

140 cut −d" ; " −f 1 $ r e s u l t F i l e | s o r t | uniq | wc − l

142 #Bitco in addre s s e s not used don ' t form part o f t h i s f i r s t a n a l y s i s

144 echo "DATE FI : ` date ` " > $ l o gF i l e

echo "DATE FI : ` date ` " > $ e r r o rF i l e

Listing A.2: Script for aggregation method 1 - Linking of inputs - SQL

A.2 Aggregation Method 1

For the second aggregation method two scripts have also been developed, one

using �les and the other inserting data directly in the database.

The only parameters needed in both scripts are the user and password of the

database.

1 #!/ bin /bash

3 ###Usage : s c r ip t_aggregat ion_2_f i l e . sh " user " "password"

###Vers ion : 3

5 ###Aggregation method 2 − Linking o f outputs

###I t i s nece s sa ry to inc lude two parameters , the user and

password o f the database .

7

###Bitco in addre s s e s not used don ' t form part o f t h i s f i r s t

a n a l y s i s

9

###Command to determine % analyzed :

11 #date +'%Y/%m/%d %H:%M:%S ' ; comprobacionTotal ="13061821"; echo "

Total t r an s a c t i on s : " $comprobacionTotal ;

comprobacionUltimaTransaccion=` tac resu l t s_aggregat ion_2 /

l o g f i l e _ f i l e . l og | grep "tx_id in txout : " | head −n1 | grep −o
" [0 −9]∗" ` ; echo "Last t r an sa c t i on : "

$comprobacionUltimaTransaccion ; comprobacionPosic ion=` egrep −n

A Implementations XII

"^$comprobacionUltimaTransaccion$ "

txid_txout_aggregation_double_output . txt | cut −d" :" −f1 ` ; echo

" Pos i t i on in t r an sa c t i on f i l e : " $comprobacionPosic ion ;

comprobacionPorcentage=`echo " s c a l e =2; $comprobacionPosic ion

∗100/ $comprobacionTotal " | bc − l | sed ' s /^\ ./0\ ./ g ' ` ; echo "

Percentage t r an s a c t i on s analyzed : " $comprobacionPorcentage"%"

13 ###Example :

#2013/06/14 22 : 18 : 44

15 #Total t r an s a c t i on s : 13061821

#Last t r an sa c t i on : 1167652

17 #Pos i t i on in t r an sa c t i on f i l e : 268016

#Percentage inputs analyzed : 2 ,05%

19

###In i t data

21 ###In the l o gF i l e w i l l be s to r ed the stdout from the s c r i p t . I t

c o n s i s t s on ba s i c data to determine how much i n f o has been

analyzed

###In the e r r o r F i l e w i l l be s to r ed the s t d e r r o r from the s c r i p t .

I t a l l ows to de t e c t i f the re i s any problem with the database

or the program

23 user=$1

password=$2

25 BASEDIR=$ (dirname $0)

mkdir $BASEDIR/ resu l t s_aggregat ion_2

27 r e s u l t F i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_2 /

address_aggregation_2 . txt " `

rm $ r e s u l t F i l e

29 touch $ r e s u l t F i l e

l o gF i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_2 / l o g f i l e _ f i l e . l og " `

31 e r r o r F i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_2 / e r r o r f i l e _ f i l e . l og

" `

33 echo "DATE INIT : ` date ` " > $ l o gF i l e

echo "DATE INIT : ` date ` " > $ e r r o rF i l e

35

###Create t r an sa c t i on f i l e i f i t does not e x i s t

37 i f [! −f $BASEDIR/ txid_txout_aggregation . txt]

then

39 mysql −u $user −−password="$password" −e " s e l e c t tx_id ,

count (∗) from txout group by tx_id order by count (∗) desc " btg

| t r '\ t ' ' ; ' > $BASEDIR/ txid_txout_aggregat ion . txt

A Implementations XIII

f i

41

i f [! −f $BASEDIR/ txid_txout_aggregation_double_output . txt]

43 then

cat $BASEDIR/ txid_txout_aggregation . txt | grep " ; 2 $" | cut −d" ; "
−f 1 > $BASEDIR/ txid_txout_aggregation_double_output . txt

45 f i

47 i dent=0

cat $BASEDIR/ txid_txout_aggregation_double_output . txt | grep −v "

tx_id" | whi l e read tx id

49 do

51 echo "################################"

echo "tx_id in txout : " $tx id

53 echo "tx_id in txout : " $tx id >> $ e r r o rF i l e

55 #Obtain pubkey o f the outputs

aux i l i a rData=`mysql −u $user −−password="$password" −e " s e l e c t

pubkey_id , txout_value from txout where tx_id='$txid ' " btg | t r

'\ t ' ' ; ' | grep −v "pubkey" | s o r t | uniq `

57

#Find the output with more dec imals (l e s s 0 s)

59 aux i l i a rVa lu e=`echo " $aux i l i a rData " | cut −d" ; " −f 2 | rev | s o r t

| t a i l −n1 | rev `

aux i l i a rOutput=`echo " $aux i l i a rData " | egrep − i " ;

$aux i l i a rVa lue$ " | head −n1 `
61 aux i l i a rKeys0=`echo " $aux i l i a rOutput " | cut −d" ; " −f 1 | s o r t |

uniq `

63 #Obtain pubkays o f the inputs invo lved

a u x i l i a r 1 =`mysql −u $user −−password="$password" −e " s e l e c t

txout_id from tx in where tx_id='$txid ' " btg | grep −v " txout_id

" | s o r t | uniq `

65 a u x i l i a r 2 =`echo " $ aux i l i a r 1 " | egrep −v "^$" | t r '\n ' ' , ' `

auxgrep=`echo " ("${ a u x i l i a r 2 : 0 : −1}") " `
67 aux i l i a rKeys1=`mysql −u $user −−password="$password" −e " s e l e c t

pubkey_id from txout where txout_id in $auxgrep" btg | grep −v
"pubkey" | s o r t | uniq `

69 #Check i f any o f the pubkeys invo lved has been analyzed be f o r e

aux i l i a rKeys2=`echo −e " $aux i l i a rKeys0 ""\\n"" $aux i l i a rKeys1 " |

A Implementations XIV

egrep −v "^$" | t r '\n ' ' | ' `

71 auxgrepKeys=`echo " ("${ aux i l i a rKeys2 : 0 : −1}") " `

73 foundAl l=` egrep "^$auxgrepKeys ; " $ r e s u l tF i l e `

found=`echo " $foundAl l " | cut −d" ; " −f1 `

75 i f [−z "$found"]

then

77 ###Case where a l l the pubkeys invo lved have not been analyzed

be f o r e

#The data and a new i d e n t i f i e r i s added to the aggregat ion f i l e

79 echo " inputs or outputs in f i l e EQUAL 0"

echo "NEW IDENT: $ ident "

81

aux i l i a rKeys3=`echo −e " $aux i l i a rKeys0 ""\\n"" $aux i l i a rKeys1 " |

egrep −v "^$" | t r '\n ' ' , ' `

83 i f [! −z " $aux i l i a rKeys3 "]

then

85 auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `
mysql −u $user −−password="$password" −e " s e l e c t ∗ from

pubkey where pubkey_id in $auxsqlKeys " btg | grep −v "pubkey" |

t r '\ t ' ' ; ' | wh i l e read b i t co inAddres s

87 do

echo $b i tco inAddres s " ; " $ ident >> $ r e s u l t F i l e

89 done

l e t ident=$ ident+1

91 f i

e l s e

93 number=`echo "$found" | wc −l `
i f [[$number −eq 1]]

95 then

###Case where one pubkeys invo lved has been analyzed be f o r e

97 echo " inputs or outputs in f i l e EQUAL 1"

99 #Stab l i s h the value o f the analyzed pubkey as r e f e r e n c e

i n i t I d e n t =`echo " $foundAl l " | cut −d" ; " −f4 `

101 echo " only IDENT FOUND: $ i n i t I d e n t "

#Add the r e f e r e n c e i d e n t i f i e r to the pubkeys invo lved in the

cur rent t r an sa c t i on

103 aux i l i a rKeys3=`echo −e " $aux i l i a rKeys0 ""\\n"" $aux i l i a rKeys1 "

| egrep −v "^$found$" | egrep −v "^$" | t r '\n ' ' , ' `

i f [! −z " $aux i l i a rKeys3 "]

105 then

A Implementations XV

auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `
107 mysql −u $user −−password="$password" −e " s e l e c t ∗ from

pubkey where pubkey_id in $auxsqlKeys " btg | grep −v "pubkey" |

t r '\ t ' ' ; ' | wh i l e read b i t co inAddres s

do

109 echo $b i tco inAddres s " ; " $ i n i t I d e n t >> $ r e s u l t F i l e

done

111 f i

e l s e

113 ###Case where s e v e r a l pubkeys invo lved have been analyzed be f o r e

echo " inputs or outputs in f i l e GREATER THAN 1"

115

#Stab l i s h the value o f one o f these analyzed pubkeys as r e f e r e n c e

117 i n i t I d e n t =`echo " $foundAl l " | head −n1 | cut −d" ; " −f4
`

echo " f i r s t IDENT FOUND: $ i n i t I d e n t "

119 #Get l i s t o f i d e n t i f i e r s be long ing to the pubkeys found

auxChangeValues=`echo " $foundAl l " | cut −d" ; " −f 4 | s o r t |

uniq `

121 auxValues=`echo "$auxChangeValues" | egrep −v "^$" |

t r '\n ' ' | ' `

auxGrepValues=`echo " ("${auxValues : 0 : −1}") " `
123 #Change the i d e n t i f i e r o f the pubkeys that have the same

i d e n t i f i e r as the pubkeys found to the r e f e r e n c e value

egrep " ; $auxGrepValues$" $ r e s u l t F i l e | cut −d" ; " −f1−3
| s o r t | uniq | whi l e read l i n e

125 do

echo $ l i n e " ; " $ i n i t I d e n t >> $BASEDIR/

resu l t s_aggregat ion_2 /address_aggregation_2 . aux

127 done

egrep −v " ; $auxGrepValues$" $ r e s u l t F i l e >> $BASEDIR/

resu l t s_aggregat ion_2 /address_aggregation_2 . aux

129 mv $BASEDIR/ resu l t s_aggregat ion_2 /

address_aggregation_2 . aux $ r e s u l t F i l e

#Add the r e f e r e n c e i d e n t i f i e r to the pubkeys invo lved in the

cur rent t r an sa c t i on

131 aux i l i a rKeys3=`echo −e " $aux i l i a rKeys0 ""\\n""

$aux i l i a rKeys1 " | egrep −v "^$found$" | egrep −v "^$" | t r '\n '

' , ' `

i f [! −z " $aux i l i a rKeys3 "]

133 then

auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `

A Implementations XVI

135 mysql −u $user −−password="$password" −e " s e l e c t ∗
from pubkey where pubkey_id in $auxsqlKeys " btg | grep −v "

pubkey" | t r '\ t ' ' ; ' | wh i l e read address

do

137 echo $address " ; " $ i n i t I d e n t >> $ r e s u l t F i l e

done

139 f i

f i

141 f i

echo "################################"

143 echo ""

echo ""

145 echo ""

done >> $ l o gF i l e 2>> $ e r r o rF i l e

147

149 #How many d i f f e r e n t e n t i t i e s have been s t ab l i s h ed from the Bi t co in

t r an s a c t i on s

cut −d" ; " −f 4 $ r e s u l t F i l e | s o r t | uniq | wc − l
151

#How many Bi t co in addre s s e s have been used as sou rc e s in B i t co in

t r an s a c t i on s

153 cut −d" ; " −f 1 $ r e s u l t F i l e | s o r t | uniq | wc − l

155 echo "DATE FI : ` date ` " > $ l o gF i l e

echo "DATE FI : ` date ` " > $ e r r o rF i l e

Listing A.3: Script for aggregation method 2 - Linking of outputs - File

#!/ bin /bash

2

###Usage : scr ipt_aggregat ion_2_sql . sh " user " "password"

4 ###Vers ion : 3

###Aggregation method 2 − Linking o f outputs

6 ###I t i s nece s sa ry to inc lude two parameters , the user and

password o f the database .

8 ###Bitco in addre s s e s not used don ' t form part o f t h i s f i r s t

a n a l y s i s

10 ###Command to determine % analyzed :

#date +'%Y/%m/%d %H:%M:%S ' ; comprobacionTotal ="13061821"; echo "

Total t r an s a c t i on s : " $comprobacionTotal ;

A Implementations XVII

comprobacionUltimaTransaccion=` tac resu l t s_aggregat ion_2 /

l o g f i l e_ s q l . l og | grep "tx_id in txout : " | head −n1 | grep −o
" [0 −9]∗" ` ; echo "Last t r an sa c t i on : "

$comprobacionUltimaTransaccion ; comprobacionPosic ion=` egrep −n
"^$comprobacionUltimaTransaccion$ "

txid_txout_aggregation_double_output . txt | cut −d" :" −f1 ` ; echo

" Pos i t i on in t r an sa c t i on f i l e : " $comprobacionPosic ion ;

comprobacionPorcentage=`echo " s c a l e =2; $comprobacionPosic ion

∗100/ $comprobacionTotal " | bc − l | sed ' s /^\ ./0\ ./ g ' ` ; echo "

Percentage t r an s a c t i on s analyzed : " $comprobacionPorcentage"%"

12

###Example :

14 #2013/06/14 22 : 18 : 44

#Total t r an s a c t i on s : 13061821

16 #Last t r an sa c t i on : 1167652

#Pos i t i on in t r an sa c t i on f i l e : 268016

18 #Percentage inputs analyzed : 2 ,05%

20 ###In i t data

###In the l o gF i l e w i l l be s to r ed the stdout from the s c r i p t . I t

c o n s i s t s on ba s i c data to determine how much i n f o has been

analyzed

22 ###In the e r r o r F i l e w i l l be s to r ed the s t d e r r o r from the s c r i p t .

I t a l l ows to de t e c t i f the re i s any problem with the database

or the program

user=$1

24 password=$2

BASEDIR=$ (dirname $0)

26 mkdir $BASEDIR/ resu l t s_aggregat ion_2

l o gF i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_2 / l o g f i l e_ s q l . l og " `

28 e r r o r F i l e =`echo $BASEDIR"/ resu l t s_aggregat ion_2 / e r r o r f i l e_ s q l . l og "

`

30 echo "DATE INIT : ` date ` " > $ l o gF i l e

echo "DATE INIT : ` date ` " > $ e r r o rF i l e

32

###Create aggregat ion tab l e i f i t does not e x i s t

34 #Same f i e l d s as pubkey tab le , but with one more r ep r e s en t i ng the

i d e n t i t y

mysql −u $user −−password="$password" −e "CREATE TABLE IF NOT

EXISTS aggregat ion2 (

36 pubkey_id DECIMAL(26 ,0) DEFAULT NULL,

A Implementations XVIII

pubkey_hash CHAR(40) NOT NULL,

38 pubkey CHAR(130) NULL,

ident DECIMAL(26 ,0) NOT NULL,

40 PRIMARY KEY (pubkey_id) ,

UNIQUE (pubkey_hash)

42) ; " btg

44 ###Create t r an sa c t i on f i l e i f i t does not e x i s t

i f [! −f $BASEDIR/ txid_txout_aggregation . txt]

46 then

mysql −u $user −−password="$password" −e " s e l e c t tx_id ,

count (∗) from txout group by tx_id order by count (∗) desc " btg

| t r '\ t ' ' ; ' > $BASEDIR/ txid_txout_aggregat ion . txt

48 f i

50 i f [! −f $BASEDIR/ txid_txout_aggregation_double_output . txt]

then

52 cat $BASEDIR/ txid_txout_aggregation . txt | grep " ; 2 $" | cut −d" ; "
−f 1 > $BASEDIR/ txid_txout_aggregation_double_output . txt

f i

54

#Para cada t ran sac c i on que t i e n e unicamente 2 s a l i d a s

56 i dent=0

cat $BASEDIR/ txid_txout_aggregation_double_output . txt | grep −v "

tx_id" | whi l e read tx id

58 do

60 echo "################################"

echo "tx_id in txout : " $tx id

62 echo "tx_id in txout : " $tx id >> $ e r r o rF i l e

64 #Obtain pubkey o f the outputs

aux i l i a rData=`mysql −u $user −−password="$password" −e " s e l e c t

pubkey_id , txout_value from txout where tx_id='$txid ' " btg | t r

'\ t ' ' ; ' | grep −v "pubkey" | s o r t | uniq `

66

#Find the output with more dec imals (l e s s 0 s)

68 aux i l i a rVa lu e=`echo " $aux i l i a rData " | cut −d" ; " −f 2 | rev | s o r t

| t a i l −n1 | rev `

aux i l i a rOutput=`echo " $aux i l i a rData " | egrep − i " ;

$aux i l i a rVa lue$ " | head −n1 `
70 aux i l i a rKeys0=`echo " $aux i l i a rOutput " | cut −d" ; " −f 1 | s o r t |

A Implementations XIX

uniq `

72 #Obtain pubkays o f the inputs invo lved

a u x i l i a r 1 =`mysql −u $user −−password="$password" −e " s e l e c t

txout_id from tx in where tx_id='$txid ' " btg | grep −v " txout_id

" | s o r t | uniq `

74 a u x i l i a r 2 =`echo " $ aux i l i a r 1 " | egrep −v "^$" | t r '\n ' ' , ' `

auxgrep=`echo " ("${ a u x i l i a r 2 : 0 : −1}") " `
76 aux i l i a rKeys1=`mysql −u $user −−password="$password" −e " s e l e c t

pubkey_id from txout where txout_id in $auxgrep" btg | grep −v
"pubkey" | s o r t | uniq `

78 #Check i f any o f the pubkeys invo lved has been analyzed be f o r e

aux i l i a rKeys2=`echo −e " $aux i l i a rKeys0 ""\\n"" $aux i l i a rKeys1 " |

egrep −v "^$" | t r '\n ' ' , ' `

80 auxgrepKeys=`echo " ("${ aux i l i a rKeys2 : 0 : −1}") " `

82 foundAl l=`mysql −u $user −−password="$password" −e " s e l e c t

pubkey_id , ident from aggregat ion2 where pubkey_id in

$auxgrepKeys" btg | t r '\ t ' ' ; ' | grep −v "pubkey" | s o r t |

uniq `

found=`echo " $foundAl l " | cut −d" ; " −f1 `

84 i f [−z "$found"]

then

86 ###Case where a l l the pubkeys invo lved have not been analyzed

be f o r e

#The data and a new i d e n t i f i e r i s added to the aggregat ion f i l e

88 echo " inputs or outputs in f i l e EQUAL 0"

echo "NEW IDENT: $ ident "

90

aux i l i a rKeys3=`echo −e " $aux i l i a rKeys0 ""\\n"" $aux i l i a rKeys1 " |

egrep −v "^$" | t r '\n ' ' , ' `

92 i f [! −z " $aux i l i a rKeys3 "]

then

94 auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `
mysql −u $user −−password="$password" −e "INSERT INTO

aggregat ion2 (pubkey_id , pubkey_hash , pubkey , ident) SELECT

pubkey_id , pubkey_hash , pubkey , ' $ ident ' AS ident FROM pubkey

WHERE pubkey_id in $auxsqlKeys " btg

96 l e t ident=$ ident+1

f i

98 e l s e

A Implementations XX

number=`echo "$found" | wc −l `
100 i f [[$number −eq 1]]

then

102 ###Case where one pubkeys invo lved has been analyzed be f o r e

echo " inputs or outputs in f i l e EQUAL 1"

104

#Stab l i s h the value o f the analyzed pubkey as r e f e r e n c e

106 i n i t I d e n t =`mysql −u $user −−password="$password" −e " s e l e c t

ident from aggregat ion2 where pubkey_id='$found ' " btg | grep −v
" ident " `

echo " only IDENT FOUND: $ i n i t I d e n t "

108 #Add the r e f e r e n c e i d e n t i f i e r to the pubkeys invo lved in the

cur rent t r an sa c t i on

aux i l i a rKeys3=`echo −e " $aux i l i a rKeys0 ""\\n"" $aux i l i a rKeys1 "

| egrep −v "^$found$" | egrep −v "^$" | t r '\n ' ' , ' `

110 i f [! −z " $aux i l i a rKeys3 "]

then

112 auxsqlKeys=`echo " ("${ aux i l i a rKeys3 : 0 : −1}") " `
mysql −u $user −−password="$password" −e "INSERT INTO

aggregat ion2 (pubkey_id , pubkey_hash , pubkey , ident) SELECT

pubkey_id , pubkey_hash , pubkey , ' $ i n i t I d en t ' AS ident FROM

pubkey WHERE pubkey_id in $auxsqlKeys " btg

114 f i

e l s e

116 ###Case where s e v e r a l pubkeys invo lved have been analyzed be f o r e

echo " inputs or outputs in f i l e GREATER THAN 1"

118

#Stab l i s h the value o f one o f these analyzed pubkeys as r e f e r e n c e

120 i d en t s=`echo " $foundAl l " | cut −d" ; " −f 2 | s o r t | uniq

`

i n i t I d e n t =`echo " $ iden t s " | head −n1 `
122 echo " f i r s t IDENT FOUND: $ i n i t I d e n t "

#Change the i d e n t i f i e r o f the pubkeys that have the same

i d e n t i f i e r as the pubkeys found to the r e f e r e n c e value

124 auxChangeValues=`echo " $ iden t s " | egrep −v "^$ i n i t I d en t $ " |

egrep −v "^$" | t r '\n ' ' , ' `

i f [! −z "$auxChangeValues"]

126 then

auxUpdateValues=`echo " ("${auxChangeValues : 0 : −1}") " `
128 mysql −u $user −−password="$password" −e "UPDATE

aggregat ion2 SET ident=' $ i n i t I d en t ' WHERE ident in

$auxUpdateValues" btg

A Implementations XXI

f i

130

#Add the r e f e r e n c e i d e n t i f i e r to the pubkeys invo lved in the

cur rent t r an sa c t i on

132 aux i l i a rKeys4=`echo −e " $aux i l i a rKeys0 ""\\n"" $aux i l i a rKeys1 "

| egrep −v "^$found$" | egrep −v "^$" | t r '\n ' ' , ' `

i f [! −z " $aux i l i a rKeys4 "]

134 then

auxsqlKeys=`echo " ("${ aux i l i a rKeys4 : 0 :

−1}") " `
136 mysql −u $user −−password="$password" −e "INSERT INTO

aggregat ion2 (pubkey_id , pubkey_hash , pubkey , ident) SELECT

pubkey_id , pubkey_hash , pubkey , ' $ i n i t I d en t ' AS ident FROM

pubkey WHERE pubkey_id in $auxsqlKeys " btg

f i

138 f i

f i

140 echo "################################"

echo ""

142 echo ""

echo ""

144 done >> $ l o gF i l e 2>> $ e r r o rF i l e

146

#How many d i f f e r e n t e n t i t i e s have been s t ab l i s h ed from the Bi t co in

t r an s a c t i on s

148 cut −d" ; " −f 4 $ r e s u l t F i l e | s o r t | uniq | wc − l

150 #How many Bi t co in addre s s e s have been used as sou rc e s in B i t co in

t r an s a c t i on s

cut −d" ; " −f 1 $ r e s u l t F i l e | s o r t | uniq | wc − l
152

echo "DATE FI : ` date ` " > $ l o gF i l e

154 echo "DATE FI : ` date ` " > $ e r r o rF i l e

Listing A.4: Script for aggregation method 2 - Linking of outputs - SQL

A Implementations XXII

A.3 Anonymizing methods

In this script several webs where anonymizing IPs are published have been

used. The scripts consults the di�erent sites and downloads the lists. It also

joins all of them in a common list with all the anonymization IPs.

#!/ bin /bash

2

f e cha=`date +%Y/%m/%d `

4

BASEDIR=$ (dirname $0)

6 mkdir −p $BASEDIR/cuaderno/ $ fecha

mkdir −p $BASEDIR/cuaderno/ $ fecha / anonimizadores

8

10 #########

###TOR###

12 #########

wget −O /tmp/ to r l i s t_dan . txt −−r e f e r e r="http ://www. goog l e . com" −−
user−agent="Moz i l l a /5 .0 (Windows ; U; Windows NT 5 . 1 ; en−US; rv

: 1 . 8 . 1 . 6) Gecko/20070725 F i r e f ox / 2 . 0 . 0 . 6 " −−header="Accept :
t ex t /xml , app l i c a t i o n /xml , app l i c a t i o n /xhtml+xml , t ex t /html ; q=0.9 ,

t ex t / p l a i n ; q=0.8 , image/png , ∗ / ∗ ; q=0.5" −−header="Accept−Language
: en−us , en ; q=0.5" −−header="Accept−Encoding : gzip , d e f l a t e " −−
header="Accept−Charset : ISO−8859−1, utf −8;q=0.7 ,∗ ; q=0.7" −−
header="Keep−Al ive : 300" −dnv https : //www. dan .me . uk/ t o r l i s t /

14

cat /tmp/ to r l i s t_dan . txt | s o r t | uniq | whi l e read l i n e

16 do

echo $ l i n e " ; dan .me . uk"

18 done >> $BASEDIR/cuaderno/ $ fecha / anonimizadores / t o r l i s t . txt

20 wget $H='Accept−Language : en−us , en ; q=0.5 ' $H='Accept : t ex t /html ,

app l i c a t i o n /xhtml+xml , app l i c a t i o n /xml ; q=0.9 ,∗/∗ ; q=0.8 ' $H='

Connection : keep−a l i v e ' −U ' Moz i l l a /5 .0 (Windows NT 5 . 1 ; rv

: 1 0 . 0 . 2) Gecko/20100101 F i r e f ox /10 . 0 . 2 ' −−r e f e r e r=http ://www.
askapache . com/ "http :// proxy . org / to r . shtml" −O /tmp/

to r l i s t_proxyo rg . txt

22 html2text /tmp/ to r l i s t_proxyorg . txt | egrep "^[0−9]" | t r '\n ' '#'

| echo −e $ (sed ' s/&#x/\\x/g ') | t r −d ' ; ' | t r '# ' '\n ' | cut

−d" " −f 2 | egrep "[0−9]+\.[0−9]+\.[0−9]+\.[0−9]+" | whi l e

A Implementations XXIII

read l i n e

do

24 echo $ l i n e " ; proxyorg "

done >> $BASEDIR/cuaderno/ $ fecha / anonimizadores / t o r l i s t . txt

26

wget −O /tmp/ to r l i s t_r e su l t s e t_b lu tmag i e . txt http :// t o r s t a t u s .

blutmagie . de/query_export . php/Tor_query_EXPORT. csv

28 wget −O /tmp/ tor l i s t_ip_blutmag ie . txt http :// t o r s t a t u s . blutmagie .

de/ i p_ l i s t_a l l . php/Tor_ip_list_ALL . csv

wget −O /tmp/ to r l i s t_ex i t_b lu tmag i e . txt http :// t o r s t a t u s . blutmagie

. de/ i p_ l i s t_ex i t . php/Tor_ip_list_EXIT . csv

30

cp /tmp/ to r l i s t_r e su l t s e t_b lu tmag i e . txt $BASEDIR/cuaderno/ $ fecha /

anonimizadores /

32 cp /tmp/ tor l i s t_ip_blutmag ie . txt $BASEDIR/cuaderno/ $ fecha /

anonimizadores /

cp /tmp/ to r l i s t_ex i t_b lu tmag i e . txt $BASEDIR/cuaderno/ $ fecha /

anonimizadores /

34

cat /tmp/ to r l i s t_r e su l t s e t_b lu tmag i e . txt | cut −d" , " −f 5 | egrep "

[0 −9]∗\ . [0 −9]∗\ . [0 −9]∗\ . [0 −9]∗ " | s o r t | uniq | whi l e read l i n e

36 do

echo $ l i n e " ; blutmagie . r e s u l t s e t "

38 done >> $BASEDIR/cuaderno/ $ fecha / anonimizadores / t o r l i s t . txt

40 cat /tmp/ tor l i s t_ip_blutmag ie . txt | cut −d" , " −f 5 | egrep "

[0 −9]∗\ . [0 −9]∗\ . [0 −9]∗\ . [0 −9]∗ " | s o r t | uniq | whi l e read l i n e

do

42 echo $ l i n e " ; blutmagie . i p a l l "

done >> $BASEDIR/cuaderno/ $ fecha / anonimizadores / t o r l i s t . txt

44

cat /tmp/ to r l i s t_ex i t_b lu tmag i e . txt | cut −d" , " −f 5 | egrep "

[0 −9]∗\ . [0 −9]∗\ . [0 −9]∗\ . [0 −9]∗ " | s o r t | uniq | whi l e read l i n e

46 do

echo $ l i n e " ; blutmagie . i p e x i t "

48 done >> $BASEDIR/cuaderno/ $ fecha / anonimizadores / t o r l i s t . txt

50 cat $BASEDIR/cuaderno/ $ fecha / anonimizadores / t o r l i s t . txt | cut −d" ;
" −f 1 | s o r t | uniq > $BASEDIR/cuaderno/ $ fecha / anonimizadores /

t o r i p l i s t . txt

52 rm /tmp/ t o r l i s t ∗

A Implementations XXIV

54

#############

56 ###PROXIES###

#############

58 i=1

num=1

60 rm /tmp/ proxyl i s t_vpngeeks3 . txt

whi l e [$num −ge 1]

62 do

url_vpngeeks=`echo "http ://www. vpngeeks . com/ p r o x y l i s t . php? from="

$ i "&#pag inat ion " `

64 wget $url_vpngeeks −O /tmp/ proxyl i s t_vpngeeks . txt

html2text /tmp/ proxyl i s t_vpngeeks . txt > /tmp/proxyl i s t_vpngeeks2

. txt

66 num=` cat /tmp/ proxyl i s t_vpngeeks2 . txt | egrep "

[0−9]+\.[0−9]+\.[0−9]+\.[0−9]+" | wc −l `
cat /tmp/ proxyl i s t_vpngeeks2 . txt | egrep "

[0−9]+\.[0−9]+\.[0−9]+\.[0−9]+" >> $BASEDIR/cuaderno/ $ fecha /

anonimizadores / proxyl i s t_vpngeeks . txt

68 cat /tmp/ proxyl i s t_vpngeeks2 . txt | egrep "

[0−9]+\.[0−9]+\.[0−9]+\.[0−9]+" | cut −d" | " −f 2 | t r −d '_' >>

/tmp/ proxyl i s t_vpngeeks3 . txt

l e t i=$ i+50

70 echo "###########" $ i ;

echo "###########"$num ;

72 done

74 cat /tmp/ proxyl i s t_vpngeeks3 . txt | s o r t | uniq | whi l e read l i n e

do

76 echo $ l i n e " ; vpngeeks "

done >> $BASEDIR/cuaderno/ $ fecha / anonimizadores / p r o x y l i s t . txt

78

cat $BASEDIR/cuaderno/ $ fecha / anonimizadores / p r o x y l i s t . txt | cut −d
" ; " −f 1 | s o r t | uniq > $BASEDIR/cuaderno/ $ fecha / anonimizadores

/ p r o x y i p l i s t . txt

80

82 #Master l i s t un i f y i ng the TOR, p rox i e s and VPN IP l i s t s

cat $BASEDIR/cuaderno/ $ fecha / anonimizadores /∗ i p l i s t . txt | s o r t |

uniq | whi l e read l i n e

84 do

A Implementations XXV

a u x l i s t =`grep "^$ l i n e $ " $BASEDIR/cuaderno/ $ fecha / anonimizadores

/∗ i p l i s t . txt `
86 aux l i s t 2 =`echo " $ aux l i s t " | cut −d"/" −f 13 | cut −d" . " −f 1 | t r

'\n ' ' | ' `

l i s t =`echo ${ aux l i s t 2 : 0 : −1}`
88 echo $ l i n e " ; " $ l i s t

done > $BASEDIR/cuaderno/ $ fecha / anonimizadores / ma s t e r l i s t . txt

90

rm /tmp/ proxy l i s t_ ∗

Listing A.5: Script for obtaining anonymization IPs

A.4 Downloading transactions of the last day

Several scripts have been developed for downloading the transactions from the

last day . The �rst one A.6 downloads all the last blocks of the blockchain till

it �nds one from the day before yesterday, and for the blocks downloaded that

are from yesterday executes the script A.7. This second script takes a block

and separates it in transactions which are then sent to script A.8. The last

script takes a transaction and stores it in the �lesystem so it can be analyzed

afterwards.

The �rst script after it has downloaded all the info from the previous day it

computes some statistics.

1 #!/ bin /bash

3 ###############

###FUNCTIONS###

5 ###############

7 #Recurs ive func t i on to get the b locks from yesterday

yesterdayBlock () {

9 l o c a l loca lHashBlock=$1

wget −q http :// b lockcha in . i n f o / rawblock/ $loca lHashBlock −O /tmp/

aux_block_$localHashBlock . txt

11 localTimeBlock=`grep " time" /tmp/aux_block_$localHashBlock . txt |

head −n1 | cut −d" : " −f 2 | cut −d" , " −f1 `

l oca lDateBlock=`date +'%Y−%m−%d ' −−date="@${ localTimeBlock }" `

A Implementations XXVI

13 l o ca lhashPrev iousB lock=`grep "prev_block" /tmp/

aux_block_$localHashBlock . txt | head −n1 | cut −d ' " ' −f4 `

15 i f [" $today" == " $loca lDateBlock "]

then

17 yesterdayBlock $ loca lhashPrev iousBlock

e l i f [" $yesterday " == " $loca lDateBlock "]

19 then

yesterdayBlock $ loca lhashPrev iousBlock

21 $BASEDIR/ scr ipt_extract_transact ions_from_block . sh "/tmp/

aux_block_$localHashBlock . txt "

f i

23 rm /tmp/aux_block_$localHashBlock . txt

re turn 0

25 }

27 ###############

###MAIN CODE###

29 ###############

31 #Create the f o l d e r where we w i l l save the t r an s a c t i on s

yesterday=`date +%Y/%m/%d −−date=yesterday `

33 BASEDIR=$ (dirname $0)

mkdir $BASEDIR/cuaderno/ $yesterday / t r an s a c c i on e s

35

#Save the date from yesterday

37 today=`date +'%Y−%m−%d ' `
yes terday=`date +'%Y−%m−%d ' −−date=yesterday `

39 yes t e rdayS la sh=`date +%Y/%m/%d −−date=yesterday `

41 #Obtain l a t e s t b lock from blockcha in . i n f o

wget −q http :// b lockcha in . i n f o / l a t e s t b l o c k −O /tmp/ aux_lates tb lock

. txt

43

#Get the hash o f the l a s t b lock

45 hashLastBlock=`grep "hash" /tmp/ aux_lates tb lock . txt | head −n1 |

cut −d ' " ' −f4 `

47 #Obtain i n f o from the l a s t b lock

wget −q http :// b lockcha in . i n f o / rawblock/ $hashLastBlock −O /tmp/

aux_block_$hashLastBlock . txt

49

A Implementations XXVII

hashPreviousBlock=`grep "prev_block" /tmp/aux_block_$hashLastBlock

. txt | cut −d ' " ' −f4 `

51

#Cal l r e c u r s i v e func t i on

53 yesterdayBlock $hashPreviousBlock

55 rm /tmp/ aux_lates tb lock . txt

rm /tmp/aux_block_$hashLastBlock . txt

57

59 ###Di f f e r e n t IPs used

cat $BASEDIR/cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s / s imple . txt |

cut −d" ; " −f 3 | s o r t | uniq −c | s o r t −nr | awk '{ p r i n t $2 " ; "

$1 } ' > $BASEDIR/cuaderno/ $yes te rdayS lash / t r an s a c c i on e s /

ip_t ransac c i one s_d i f e r en t e s . txt

61

63 ###IPs o f anoniymizing s e r v i c e s

cat $BASEDIR/cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s / s imple . txt |

cut −d" ; " −f 3 | s o r t | uniq | whi l e read l i n e

65 do

l i s t =`grep "^$ l i n e ; " $BASEDIR/cuaderno/ $yes te rdayS lash /

anonimizadores / ma s t e r l i s t . txt `

67 r e s u l t =`echo $? `

i f [" $ r e s u l t " == "0"]

69 then

echo $ l i s t

71 f i

done > $BASEDIR/cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s /

ip_transacc iones_anonimizadoras . txt

73

75 #Anonymizing t r an s a c t i on s

cat $BASEDIR/cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s /

ip_transacc iones_anonimizadoras . txt | cut −d" ; " −f 1 | s o r t |

uniq | whi l e read l i n e

77 do

num=`grep " ; $ l i n e ; " $BASEDIR/cuaderno/ $yes te rdayS lash /

t r an s a c c i on e s / s imple . txt | wc −l `
79 echo $ l i n e " ; "$num

done > $BASEDIR/cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s /

transacc iones_anonimizadoras . txt

A Implementations XXVIII

81

83 #S t a t i s t i c s

tota lTrans=`wc − l $BASEDIR/cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s /

s imple . txt | cut −d" " −f1 `

85 echo " to t a l_t r an sa c t i on s ; " $tota lTrans >> $BASEDIR/cuaderno/

$yes te rdayS la sh / t r an s a c c i on e s / e s t ad i s t i c a s_ t r an s a c c i o n e s . txt

87 numberAnoTrans=` cat $BASEDIR/cuaderno/ $yes te rdayS la sh /

t r an s a c c i on e s / transacc iones_anonimizadoras . txt | cut −d" ; " −f 2
| awk '{SUM=SUM+$1} END { pr in t SUM} ' `

echo "number_anonymizing_transactions ; "$numberAnoTrans >> $BASEDIR

/cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s /

e s t ad i s t i c a s_ t r an s a c c i o n e s . txt

89

percentage=`echo " s c a l e =2; $numberAnoTrans∗100/ $tota lTrans " | bc −
l | sed ' s /^\ ./0\ ./ g ' `

91 echo " percentage_anonymizing_transact ions ; " $percentage >> $BASEDIR

/cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s /

e s t ad i s t i c a s_ t r an s a c c i o n e s . txt

93 t o t a l IP s=`wc − l $BASEDIR/cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s /

ip_t ransac c i one s_d i f e r en t e s . txt | cut −d" " −f1 `

echo " to ta l_ ip s ; " $ t o t a l IP s >> $BASEDIR/cuaderno/ $yes te rdayS lash /

t r an s a c c i on e s / e s t ad i s t i c a s_ t r an s a c c i o n e s . txt

95

numberAnoIPs=`wc − l $BASEDIR/cuaderno/ $yes te rdayS la sh /

t r an s a c c i on e s / ip_transacc iones_anonimizadoras . txt | cut −d" " −
f1 `

97 echo "number_anonymizing_ips ; "$numberAnoIPs >> $BASEDIR/cuaderno/

$yes te rdayS la sh / t r an s a c c i on e s / e s t ad i s t i c a s_ t r an s a c c i o n e s . txt

99 percentageIPs=`echo " s c a l e =2; $numberAnoIPs∗100/ $ to t a l IP s " | bc − l
| sed ' s /^\ ./0\ ./ g ' `

echo "percentage_anonymizing_IPs ; " $percentageIPs >> $BASEDIR/

cuaderno/ $yes te rdayS la sh / t r an s a c c i on e s /

e s t ad i s t i c a s_ t r an s a c c i o n e s . txt

Listing A.6: Script for downloading the blocks from yesterday

#!/ bin /bash

2

b l o ckF i l e=$1

A Implementations XXIX

4 BASEDIR=$ (dirname $0)

6 cat $b l o ckF i l e | sed ' s / ^ [[: space :]] ∗ / / ' | sed ' s#^"tx":\[##g ' |

sed ' s#},{" time ":#} ,\n{" time":#g ' | grep '{" time " ' >>

$b l o ckF i l e . aux

8 cat $b l o ckF i l e . aux | whi l e read l i n e

do

10 $BASEDIR/ sc r ip t_save_transac t i ons_to_f i l e . sh " $ l i n e "

done

12

rm $b l o ckF i l e . aux

Listing A.7: Script for taking transactions out of a block

1 #!/ bin /bash

3 yesterday=`date +%Y/%m/%d −−date=yesterday `

BASEDIR=$ (dirname $0)

5

tx=$1

7

txHash=`echo $tx | sed ' s#,# ,\n#g ' | grep "hash" | cut −d ' " ' −f 4 |

grep −v "^$" | head −n1 `
9 echo $txHash

echo $tx | sed ' s#,# ,\n#g ' > /tmp/aux_transaction_$txHash . txt

11

#Timestamp o f the t r an sa c t i on

13 txTime=` cat /tmp/aux_transaction_$txHash . txt | grep " time" | cut −
d" : " −f 2 | cut −d" , " −f1 `

15 #IP

txIP=` cat /tmp/aux_transaction_$txHash . txt | grep " relayed_by" |

cut −d ' " ' −f4 `

17

#Number o f inputs

19 txVIN=` cat /tmp/aux_transaction_$txHash . txt | grep "vin_sz" | cut

−d" : " −f 2 | cut −d" , " −f1 `

21 #Inputs

#HACER ALGO ESPECIAL

23 txInputs=`echo $tx | t r '] ' ' [' | cut −d" [" −f2 `

#txInputs=` cat /tmp/aux_transaction_$txHash . txt | grep " inputs " |

A Implementations XXX

cut −d" [" −f 2 | cut −d"] " −f1 `

25

#Number o f outputs

27 txVOUT=` cat /tmp/aux_transaction_$txHash . txt | grep "vout_sz" |

cut −d" : " −f 2 | cut −d" , " −f1 `

29 #Outputs

#HACER ALGO ESPECIAL

31 txOut=`echo $tx | t r '] ' ' [' | cut −d" [" −f4 `

#txOut=` cat /tmp/aux_transaction_$txHash . txt | grep "out" | cut −d
" [" −f 2 | cut −d"] " −f1 `

33

#Vers ion

35 txVers ion=` cat /tmp/aux_transaction_$txHash . txt | grep " ver " | cut

−d" : " −f 2 | cut −d" , " −f1 `

37 #Index

txIndex=`echo $tx | t r '] ' ' [' | cut −d" [" −f1 , 3 , 5 | sed ' s#,#,\n#

g ' | grep "tx_index" | cut −d" : " −f 2 | cut −d" , " −f1 `

39

#Size

41 txS i z e=` cat /tmp/aux_transaction_$txHash . txt | grep " s i z e " | cut −
d" : " −f 2 | cut −d" , " −f1 `

43 #BlockHeight

txBlockHeight=` cat /tmp/aux_transaction_$txHash . txt | grep "

block_height " | cut −d" : " −f 2 | cut −d" , " −f1 `

45

#Formato s imple

47 #time ; hash ; IP ; vIN ; inputs ; vout ; out ; v e r s i on

echo $txTime" ; "$txHash" ; "$txIP" ; "$txVIN" ; " $txInputs " ; "$txVOUT" ; "

$txOut" ; " $txVers ion >> $BASEDIR/cuaderno/ $yesterday /

t r an s a c c i on e s / s imple . txt

49

#Formato completo

51 #time ; hash ; IP ; vIN ; inputs ; vout ; out ; v e r s i on ; index ; s i z e ; b l ockhe ight

echo $txTime" ; "$txHash" ; "$txIP" ; "$txVIN" ; " $txInputs " ; "$txVOUT" ; "

$txOut" ; " $txVers ion " ; " $txIndex " ; " $ txS i z e " ; " $txtxBlockHeight >>

$BASEDIR/cuaderno/ $yesterday / t r an s a c c i on e s / completa . txt

53

rm /tmp/aux_transaction_$txHash . txt

A Implementations XXXI

Listing A.8: Script for storing a transaction

A.5 Temporal correlations

For the analysis of temporal correlations two scripts have been developed,

one calculates all the transactions which belong to each group and other one

calculates the data needed for a chart representation.

In the �rst script only two parameters are needed, the user and password of

the database.

#!/ bin /bash

2

user=$1

4 pass=$2

BASEDIR=$ (dirname $0)

6 mkdir $BASEDIR/ re su l t s_t ransac t i on_evo lu t i on

mkdir $BASEDIR/ re su l t s_transac t i on_evo lut i on_severa l_ input s

8 mkdir $BASEDIR/ results_transact ion_evolut ion_two_outputs

rm $BASEDIR/ re su l t s_t ransac t i on_evo lu t i on / t r an s a c t i on s .∗
10 rm $BASEDIR/ re su l t s_transac t i on_evo lut i on_severa l_ input s /

t ransac t i ons_seve ra l_ input s .∗
rm $BASEDIR/ results_transact ion_evolut ion_two_outputs /

transactions_two_outputs .∗
12 r e s u l t F i l e =`echo $BASEDIR"/ re su l t s_t ransac t i on_evo lu t i on /

t r an s a c t i on s " `

r e s u l t F i l e 2 =`echo $BASEDIR"/

re su l t s_transac t i on_evo lut i on_severa l_ input s /

t ransac t i ons_seve ra l_ input s " `

14 r e s u l t F i l e 3 =`echo $BASEDIR"/

results_transact ion_evolut ion_two_outputs /

transactions_two_outputs " `

l o gF i l e =`echo $BASEDIR"/ re su l t s_t ransac t i on_evo lu t i on / l o g f i l e . l og "

`

16 e r r o r F i l e =`echo $BASEDIR"/ re su l t s_t ransac t i on_evo lu t i on / e r r o r f i l e .

l og " `

18 echo "DATE INIT : ` date ` " > $ l o gF i l e

A Implementations XXXII

echo "DATE INIT : ` date ` " > $ e r r o rF i l e

20

22 i n i tData=`date +%s −−date="2009/01/01 00 : 00 : 00 " `

echo $ in i tData > /tmp/ auxi l iarEndData . txt

24

echo "2009

26 2010

2011

28 2012

2013" | whi l e read year

30 do

in i tData=` cat /tmp/ auxi l iarEndData . txt `

32 echo "01

02

34 03

04

36 05

06

38 07

08

40 09

10

42 11

12" | whi l e read month

44 do

endData=`date +%s −−date="$year /$month/01 00 : 00 : 00 " `

46

echo $ in i tData $endData

48

bloc=`echo $year " . "$month `

50 echo $bloc >> $ e r r o rF i l e

i f [" $b loc " != " 2009.01 "] && [" $bloc " != " 2013.05 "] && ["

$b loc " != " 2013.06 "] && [" $b loc " != " 2013.07 "] && [" $b loc "

!= " 2013.08 "] && [" $bloc " != " 2013.09 "] && [" $bloc " != "

2013.10 "] && [" $b loc " != " 2013.11 "] && [" $b loc " != " 2013.12

"]

52 then

auxBlock1=`mysql −u $user −−password="$pass " −e " s e l e c t

block_id from block where block_nTime>='$in itData ' and

block_nTime<'$endData ' " btg | grep −v "block_id" | s o r t | uniq `

54 auxBlock2=`echo "$auxBlock1" | t r '\n ' ' , ' `

A Implementations XXXIII

auxsqlBlock=`echo " ("${auxBlock2 : 0 : −1}") " `
56

auxTrans1=`mysql −u $user −−password="$pass " −e " s e l e c t

tx_id from block_tx where block_id in $auxsqlBlock " btg | grep

−v "tx_id" | s o r t | uniq `

58

echo "$auxTrans1" > /tmp/ evo lut ion_transact ions_f i l e_aux . txt

60 num=`wc − l /tmp/ evo lut ion_transact ions_f i l e_aux . txt | cut −d
" " −f1 `

i=0

62 whi le [$num −gt 0]

do

64 wc − l /tmp/ evo lut ion_transact ions_f i l e_aux . txt

auxTrans2=`head −n10000 /tmp/

evo lut ion_transact ions_f i l e_aux . txt | t r '\n ' ' , ' `

66 auxsqlTrans=`echo " ("${auxTrans2 : 0 : −1}") " `

68 mysql −u $user −−password="$pass " −e " s e l e c t tx_id , count

(∗) from tx in where tx_id in $auxsqlTrans group by tx_id order

by count (∗) desc " btg | t r '\ t ' ' ; ' > $ r e s u l t F i l e . $year . $month .

$ i . txt

mysql −u $user −−password="$pass " −e " s e l e c t tx_id , count

(∗) from txout where tx_id in $auxsqlTrans group by tx_id

having count (∗)=2" btg | t r '\ t ' ' ; ' > $ r e s u l t F i l e 3 . $year .

$month . $ i . txt

70 sed '1 ,10000d ' /tmp/ evo lut ion_transact ions_f i l e_aux . txt >

/tmp/ evo lut ion_transact ions_f i l e_aux2 . txt

mv /tmp/ evo lut ion_transact ions_f i l e_aux2 . txt /tmp/

evo lut ion_transact ions_f i l e_aux . txt

72 num=`wc − l /tmp/ evo lut ion_transact ions_f i l e_aux . txt | cut

−d" " −f1 `

l e t i=$ i+1

74 done

cat $ r e s u l t F i l e . $year . $month . ∗ . tx t | awk −F ' ; ' '{ p r i n t $2" ; "

$1 } ' | grep −v "count" | s o r t −nr > $ r e s u l t F i l e . $year . $month .

txt

76 cat $ r e s u l t F i l e 3 . $year . $month . ∗ . tx t | awk −F ' ; ' '{ p r i n t $2" ;

"$1 } ' | grep −v "count" | s o r t −nr > $ r e s u l t F i l e 3 . $year . $month .

txt

cat $ r e s u l t F i l e . $year . $month . ∗ . tx t | awk −F ' ; ' '{ p r i n t $2" ; "

$1 } ' | grep −v "count" | grep −v "^1; " | s o r t −nr >

$ r e s u l t F i l e 2 . $year . $month . txt

A Implementations XXXIV

78 f i

80 echo $endData > /tmp/ auxi l iarEndData . txt

in i tData=` cat /tmp/ auxi l iarEndData . txt `

82 done

done >> $ l o gF i l e 2>> $ e r r o rF i l e

84

echo "DATE END: ` date ` " >> $ l o gF i l e

Listing A.9: Script for temporal correlations - Calculate transactions

1 #!/ bin /bash

3 BASEDIR=$ (dirname $0)

mkdir $BASEDIR/ r e s u l t s_ t r an s a c t i o n_evo l u t i o n_s t a t i s t i c s

5 r e s u l t F i l e =`echo $BASEDIR"/ re su l t s_t ransac t i on_evo lu t i on /

t r an s a c t i on s " `

r e s u l t F i l e 2 =`echo $BASEDIR"/

re su l t s_transac t i on_evo lut i on_severa l_ input s /

t ransac t i ons_seve ra l_ input s " `

7 r e s u l t F i l e 3 =`echo $BASEDIR"/

results_transact ion_evolut ion_two_outputs /

transactions_two_outputs " `

f i l e A l l =`echo $BASEDIR"/ r e s u l t s_ t r an s a c t i on_evo l u t i on_s t a t i s t i c s /

t r a n s a c t i o n s_a l l_ s t a t i s t i c s . txt " `

9 f i l e I n p u t =`echo $BASEDIR"/ r e s u l t s_ t r an s a c t i on_evo l u t i on_s t a t i s t i c s

/ t r an s a c t i on s_ inpu t_s t a t i s t i c s . txt " `

f i l eOutput=`echo $BASEDIR"/

r e s u l t s_ t r an s a c t i on_evo l u t i on_s t a t i s t i c s /

t r an sa c t i on s_outpu t_s ta t i s t i c s . txt " `

11 l o gF i l e =`echo $BASEDIR"/ r e s u l t s_ t r an s a c t i on_evo l u t i o n_s t a t i s t i c s /

l o g f i l e . l og " `

e r r o r F i l e =`echo $BASEDIR"/ r e s u l t s_ t r an s a c t i on_evo l u t i on_s t a t i s t i c s

/ e r r o r f i l e . l og " `

13

rm $ f i l e A l l

15 rm $ f i l e I n p u t

rm $ f i l eOutput

17 touch $ f i l e A l l

touch $ f i l e I n p u t

19 touch $ f i l eOutput

21 echo "DATE INIT : ` date ` " > $ l o gF i l e

A Implementations XXXV

echo "DATE INIT : ` date ` " > $ e r r o rF i l e

23

25 i n i tData=`date +%s −−date="2009/01/01 00 : 00 : 00 " `

echo $ in i tData > /tmp/ auxi l iarEndData . txt

27

echo "2009

29 2010

2011

31 2012

2013" | whi l e read year

33 do

in i tData=` cat /tmp/ auxi l iarEndData . txt `

35 echo "01

02

37 03

04

39 05

06

41 07

08

43 09

10

45 11

12" | whi l e read month

47 do

endData=`date +%s −−date="$year /$month/01 00 : 00 : 00 " `

49

echo $ in i tData $endData

51

bloc=`echo $year " . "$month `

53 echo $bloc >> $ e r r o rF i l e

i f [" $b loc " != " 2009.01 "] && [" $bloc " != " 2013.05 "] && ["

$b loc " != " 2013.06 "] && [" $b loc " != " 2013.07 "] && [" $b loc "

!= " 2013.08 "] && [" $bloc " != " 2013.09 "] && [" $bloc " != "

2013.10 "] && [" $b loc " != " 2013.11 "] && [" $b loc " != " 2013.12

"]

55 then

a l lTrans=`wc − l $ r e s u l t F i l e . $year . $month . txt | cut −d" " −f1
`

57 inputTrans=`wc − l $ r e s u l t F i l e 2 . $year . $month . txt | cut −d" "

−f1 `

A Implementations XXXVI

outputTrans=`wc − l $ r e s u l t F i l e 3 . $year . $month . txt | cut −d" "

−f1 `

59 echo $year "−"$month" ; " $a l lTrans >> $ f i l e A l l

echo $year "−"$month" ; " $inputTrans >> $ f i l e I n p u t

61 echo $year "−"$month" ; "$outputTrans >> $f i l eOutput

f i

63

echo $endData > /tmp/ auxi l iarEndData . txt

65 i n i tData=` cat /tmp/ auxi l iarEndData . txt `

done

67 done >> $ l o gF i l e 2>> $ e r r o rF i l e

69 echo "DATE END: ` date ` " >> $ l o gF i l e

Listing A.10: Script for temporal correlations - Present data

A.6 Anonymity of users

Several scripts have been developed for searching in Bitcointalk, pastebin and

bitbin interesting information related with Bitcoin or to detect Bitcoin ad-

dresses. They have to be executed every 2 minutes in order to constantly

download the latests information, for doing this the best option is to use

crontab.

1 #!/ bin /bash

3 today=`date +%Y/%m/%d `

rand=`echo $RANDOM`

5 BASEDIR=$ (dirname $0)

mkdir −p $BASEDIR/cuaderno/$today/ s c r ap e r s

7

t a i l −n100 $BASEDIR/ l i s t ado_ur l s_b i t c o i n t a l k . txt > $BASEDIR/

l i s t ado_ur l s_b i t c o i n t a l k . aux

9 mv $BASEDIR/ l i s t ado_ur l s_b i t c o i n t a l k . aux $BASEDIR/

l i s t ado_ur l s_b i t c o i n t a l k . txt

11 wget −q −O /tmp/ b i t c o i n t a l k_aux f i l e 1 . txt . $rand https : // b i t c o i n t a l k

. org / index . php? ac t i on=recent

A Implementations XXXVII

13 egrep −o "<a hr e f=\" https : // b i t c o i n t a l k . org / index . php\? top i c =[^\"

]∗\ "" /tmp/ b i t c o i n t a l k_aux f i l e 1 . txt . $rand | egrep −o " https : //

b i t c o i n t a l k . org / index . php\? top i c =[^\"]∗ " | whi l e read u r l

do

15 post=`echo $ur l | egrep −o " https : // b i t c o i n t a l k . org / index . php\?

top i c =[0−9]∗" `
getUr l=`grep " $ur l " $BASEDIR/ l i s t ado_ur l s_b i t c o i n t a l k . txt `

17 f i ndUr l=`echo $? `

i f [[$ f i ndUr l −ne 0]]

19 then

echo $ur l >> $BASEDIR/ l i s t ado_ur l s_b i t c o i n t a l k . txt

21 allURL=`echo $ur l " . 0 ; a l l " `

wget −q −O /tmp/ b i t c o i n t a l k_aux f i l e 2 . txt . $rand $allURL

23

egrep −n −o "[^0−9A−Za−z] [1 3] [1 −9A−HJ−NP−Za−km−z]{26 ,33}[^0−9A
−Za−z] " /tmp/ b i t c o i n t a l k_aux f i l e 2 . txt . $rand | whi l e read

address

25 do

l i n e =`echo $address | cut −d" : " −f1 `

27 b i t co inAddres s=`echo $address | egrep −o " [13] [1 −9A−HJ−NP−Za
−km−z]{26 ,33} " `

user=` tac /tmp/ b i t c o i n t a l k_aux f i l e 2 . txt . $rand | t a i l −n$ l i n e
| grep " p r o f i l e o f " | head −n1 | sed ' s / .∗View the p r o f i l e o f

[^>]∗//g ' | cut −d">" −f 2 | cut −d"<" −f1 `

29 i f [−n " $user "]

then

31 echo $b i tco inAddres s " ; " $user " ; " $post

f i

33 done | s o r t | uniq > /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand

35 auxAddress=` cat /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand | cut −d" ;
" −f1 , 2 | s o r t | uniq | cut −d" ; " −f 1 | s o r t | uniq −c | s o r t −
nr | grep "^ ∗1 " `

egrep "^$auxAddress$" /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand |

t e e −a $BASEDIR/cuaderno/$today/ s c r ap e r s /

b i t co in ta lk_Bi tco inAddre s s_l imi t . txt

37 cat /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand | cut −d" ; " −f1 , 2 |

s o r t | uniq | cut −d" ; " −f 1 | s o r t | uniq −c | s o r t −nr | grep

−v "^ ∗1 " | awk '{ p r i n t $2 } ' | whi l e read l i n e

do

39 grep "^$ l i n e ; " /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand | head −
n1

A Implementations XXXVIII

done | t e e −a $BASEDIR/cuaderno/$today/ s c r ap e r s /

b i t co in ta lk_Bi tco inAddre s s_l imi t . txt

41

egrep −n −o " [13] [1 −9A−HJ−NP−Za−km−z]{26 ,33} " /tmp/

b i t c o i n t a l k_aux f i l e 2 . txt . $rand | whi l e read address

43 do

l i n e =`echo $address | cut −d" : " −f1 `

45 b i t co inAddres s=`echo $address | egrep −o " [13] [1 −9A−HJ−NP−Za
−km−z]{26 ,33} " `

user=` tac /tmp/ b i t c o i n t a l k_aux f i l e 2 . txt . $rand | t a i l −n$ l i n e
| grep " p r o f i l e o f " | head −n1 | sed ' s / .∗View the p r o f i l e o f

[^>]∗//g ' | cut −d">" −f 2 | cut −d"<" −f1 `

47 i f [−n " $user "]

then

49 echo $b i tco inAddres s " ; " $user " ; " $post

f i

51

echo "#####" >> $BASEDIR/ b i t c o i n t a l k . l og

53 echo $b i tco inAddres s " ; " $user " ; " $post " ; " $ur l >> $BASEDIR/

b i t c o i n t a l k . l og

egrep −n −o " [13] [1 −9A−HJ−NP−Za−km−z]{26 ,33} " /tmp/

b i t c o i n t a l k_aux f i l e 2 . txt . $rand >> $BASEDIR/ b i t c o i n t a l k . l og

55 echo "#####" >> $BASEDIR/ b i t c o i n t a l k . l og

done | s o r t | uniq > /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand

57

auxAddress=` cat /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand | cut −d" ;
" −f1 , 2 | s o r t | uniq | cut −d" ; " −f 1 | s o r t | uniq −c | s o r t −
nr | grep "^ ∗1 " `

59 egrep "^$auxAddress$" /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand |

t e e −a $BASEDIR/cuaderno/$today/ s c r ap e r s /

b i t co in ta lk_Bi tco inAddre s s_a l l . txt

cat /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand | cut −d" ; " −f1 , 2 |

s o r t | uniq | cut −d" ; " −f 1 | s o r t | uniq −c | s o r t −nr | grep

−v "^ ∗1 " | awk '{ p r i n t $2 } ' | whi l e read l i n e

61 do

grep "^$ l i n e ; " /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand | head −
n1

63 done >> $BASEDIR/cuaderno/$today/ s c r ap e r s /

b i t co in ta lk_Bi tco inAddre s s_a l l . txt

65 rm /tmp/ b i t c o i n t a l k_aux f i l e 2 . txt . $rand

rm /tmp/ b i t c o i n t a l k_aux f i l e 3 . txt . $rand

A Implementations XXXIX

67 f i

done | cut −d" ; " −f1−2 | s o r t | uniq >> $BASEDIR/cuaderno/$today/

s c r ap e r s / b i t co inta lk_Bitco inAddres s_user s_l imi t . txt

69

cat $BASEDIR/cuaderno/$today/ s c r ap e r s /

b i t co inta lk_Bitco inAddres s_user s_l imi t . txt | s o r t | uniq >

$BASEDIR/cuaderno/$today/ s c r ape r s /

b i t co inta lk_Bitco inAddres s_user s_l imi t . aux

71

mv $BASEDIR/cuaderno/$today/ s c r ap e r s /

b i t co inta lk_Bitco inAddres s_user s_l imi t . aux $BASEDIR/cuaderno/

$today/ s c r ape r s / b i tco inta lk_Bitco inAddres s_user s_l imi t . txt

73

rm /tmp/ b i t c o i n t a l k_aux f i l e 1 . txt . $rand

Listing A.11: Script for downloading the addresses found in the lasts posts of

Bitcointalk

#!/ bin /bash

2

today=`date +%Y/%m/%d `

4 rand=`echo $RANDOM`

BASEDIR=$ (dirname $0)

6 mkdir −p $BASEDIR/cuaderno/$today/ s c r ap e r s

8 t a i l −n1000 $BASEDIR/ l i s t ado_ur l s_b i tb in . txt > $BASEDIR/

l i s t ado_ur l s_b i tb in . aux

mv $BASEDIR/ l i s t ado_ur l s_b i tb in . aux $BASEDIR/ l i s t ado_ur l s_b i tb in .

txt

10

wget −q −O /tmp/ b i tb in_aux f i l e 1 . txt . $rand http :// b i tb i n . i t /

l a t e s t_pas t e s . php

12

egrep −o "http :// b i tb i n . i t / [a−zA−Z0−9]{8}" /tmp/ b i tb in_aux f i l e 1 .

txt . $rand | whi l e read f i l e

14 do

getUr l=`grep " $ f i l e " $BASEDIR/ l i s t ado_ur l s_b i tb in . txt `

16 f i ndUr l=`echo $? `

i f [[$ f i ndUr l −ne 0]]

18 then

echo $ f i l e >> $BASEDIR/ l i s t ado_ur l s_b i tb in . txt

20 wget −q −O /tmp/ b i tb in_aux f i l e 2 . txt . $rand $ f i l e

A Implementations XL

found=` cat /tmp/ b i tb in_aux f i l e 2 . txt . $rand | egrep −o "[^0−9A−
Za−z] [1 3] [1 −9A−HJ−NP−Za−km−z]{26 ,33}[^0−9A−Za−z] " | grep −v "

193MHato6vuRXFBm45FnSnFTXeyxpByaSC" | egrep −o " [13] [1 −9A−HJ−NP
−Za−km−z]{26 ,33} " `

22 r e s u l t =`echo $? `

a u x i l i a r =`echo "$found" | s o r t | uniq `

24 i f [[$ r e s u l t −eq 0]]

then

26 echo " $ a u x i l i a r " | whi l e read l i n e

do

28 echo $ l i n e " ; " $ f i l e >> $BASEDIR/cuaderno/$today/ s c r ap e r s /

b i tb in_Bitco inAddress_l imit . txt

done

30 f i

32 found=` cat /tmp/ b i tb in_aux f i l e 2 . txt . $rand | egrep −o " [13] [1 −9
A−HJ−NP−Za−km−z]{26 ,33} " | grep −v "193

MHato6vuRXFBm45FnSnFTXeyxpByaSC" | egrep −o " [13] [1 −9A−HJ−NP−Za
−km−z]{26 ,33} " `
r e s u l t =`echo $? `

34 a u x i l i a r =`echo "$found" | s o r t | uniq `

i f [[$ r e s u l t −eq 0]]

36 then

echo " $ a u x i l i a r " | whi l e read l i n e

38 do

echo $ l i n e " ; " $ f i l e >> $BASEDIR/cuaderno/$today/ s c r ap e r s /

b i tb in_Bitco inAddress_al l . txt

40 done

f i

42

found=` cat /tmp/ b i tb in_aux f i l e 2 . txt . $rand | grep −
v "<meta name=\"keywords\"" | egrep − i " b i t c o i n " `

44 r e s u l t =`echo $? `

a u x i l i a r =`echo "$found" | s o r t | uniq `

46 i f [[$ r e s u l t −eq 0]]

then

48 echo " $ a u x i l i a r " | whi l e read l i n e

do

50 echo $ l i n e " ; " $ f i l e >> $BASEDIR/

cuaderno/$today/ s c r ap e r s / b i tb in_genera l . txt

done

52 f i

A Implementations XLI

54 rm /tmp/ b i tb in_aux f i l e 2 . txt . $rand

f i

56 done

58 rm /tmp/ b i tb in_aux f i l e 1 . txt . $rand

Listing A.12: Script for downloading the addresses or information related to

Bitcoin in Bitbin

#!/ bin /bash

2

today=`date +%Y/%m/%d `

4 rand=`echo $RANDOM`

BASEDIR=$ (dirname $0)

6 mkdir −p $BASEDIR/cuaderno/$today/ s c r ap e r s

8 t a i l −n1000 $BASEDIR/ l i s tado_ur l s_pas teb in . txt > $BASEDIR/

l i s tado_ur l s_pas teb in . aux

mv $BASEDIR/ l i s tado_ur l s_pas teb in . aux $BASEDIR/

l i s tado_ur l s_pas teb in . txt

10

numProxies=`wc − l $BASEDIR/proxy_list_2 . txt | cut −d" " −f1 `

12 l i n eP r ox i e s =`echo $ (($RANDOM%$numProxies)) `

proxy=`awk "NR==$ l i n eP r ox i e s " $BASEDIR/proxy_list_2 . txt `

14 export http_proxy="http :// $proxy"

wget −q −−t r i e s=2 −−r e f e r e r="http ://www. goog l e . com" −−user−agent="
Moz i l l a /5 .0 (Windows ; U; Windows NT 5 . 1 ; en−US; rv : 1 . 8 . 1 . 6)

Gecko/20070725 F i r e f ox / 2 . 0 . 0 . 6 " −−header="Accept : t ex t /xml ,

app l i c a t i o n /xml , app l i c a t i o n /xhtml+xml , t ex t /html ; q=0.9 , t ex t /

p l a i n ; q=0.8 , image/png , ∗ / ∗ ; q=0.5" −−header="Accept−Language : en−
us , en ; q=0.5" −−header="Accept−Encoding : gzip , d e f l a t e " −−header=
"Accept−Charset : ISO−8859−1, utf −8;q=0.7 ,∗ ; q=0.7" −−header="Keep
−Al ive : 300" −dnv −O /tmp/ pas t eb in_aux f i l e1 . txt . $rand http ://

pasteb in . com/ arch ive

16

wc − l /tmp/ pas t eb in_aux f i l e 1 . txt . $rand

18

egrep −o "a h r e f=\" / [a−zA−Z0−9]{8}\"" /tmp/ pas t eb in_aux f i l e1 . txt .

$rand | cut −d ' " ' −f 2 | whi l e read a u x f i l e

20 do

f i l e =`echo "http :// pasteb in . com" $aux f i l e `

22 getUr l=`grep " $ f i l e " $BASEDIR/ l i s tado_ur l s_pas teb in . txt `

A Implementations XLII

f i ndUr l=`echo $? `

24 i f [[$ f i ndUr l −ne 0]]

then

26 echo $ f i l e >> $BASEDIR/ l i s tado_ur l s_pas teb in . txt

wget −q −−t r i e s=2 −−r e f e r e r="http ://www. goog l e . com" −−user−
agent="Moz i l l a /5 .0 (Windows ; U; Windows NT 5 . 1 ; en−US; rv

: 1 . 8 . 1 . 6) Gecko/20070725 F i r e f ox / 2 . 0 . 0 . 6 " −−header="Accept :
t ex t /xml , app l i c a t i o n /xml , app l i c a t i o n /xhtml+xml , t ex t /html ; q=0.9 ,

t ex t / p l a i n ; q=0.8 , image/png , ∗ / ∗ ; q=0.5" −−header="Accept−Language
: en−us , en ; q=0.5" −−header="Accept−Encoding : gzip , d e f l a t e " −−
header="Accept−Charset : ISO−8859−1, utf −8;q=0.7 ,∗ ; q=0.7" −−
header="Keep−Al ive : 300" −dnv −O /tmp/ pas t eb in_aux f i l e2 . txt .

$rand $ f i l e

28

wc − l /tmp/ pas t eb in_aux f i l e 2 . txt . $rand

30

found=` cat /tmp/ pas t eb in_aux f i l e2 . txt . $rand | egrep −o "[^0−9A
−Za−z] [1 3] [1 −9A−HJ−NP−Za−km−z]{26 ,33}[^0−9A−Za−z] " `

32 r e s u l t =`echo $? `

a u x i l i a r =`echo "$found" | egrep −o " [13] [1 −9A−HJ−NP−Za−km−z
]{26 ,33} " | s o r t | uniq `

34 i f [[$ r e s u l t −eq 0]]

then

36 echo " $ a u x i l i a r " | whi l e read l i n e

do

38 echo $ l i n e " ; " $ f i l e >> $BASEDIR/cuaderno/$today/ s c r ap e r s /

pastebin_Bitco inAddress_l imit . txt

done

40 f i

42 found=` cat /tmp/ pas t eb in_aux f i l e2 . txt . $rand | egrep −o "

[13] [1 −9A−HJ−NP−Za−km−z]{26 ,33} " `
r e s u l t =`echo $? `

44 a u x i l i a r =`echo "$found" | s o r t | uniq `

i f [[$ r e s u l t −eq 0]]

46 then

echo " $ a u x i l i a r " | whi l e read l i n e

48 do

echo $ l i n e " ; " $ f i l e >> $BASEDIR/cuaderno/$today/ s c r ap e r s /

pasteb in_Bitco inAddress_al l . txt

50 done

f i

A Implementations XLIII

52

found=` cat /tmp/ pas t eb in_aux f i l e2 . txt . $rand |

egrep − i " b i t c o i n " `

54 r e s u l t =`echo $? `

a u x i l i a r =`echo "$found" | s o r t | uniq `

56 i f [[$ r e s u l t −eq 0]]

then

58 echo " $ a u x i l i a r " | whi l e read l i n e

do

60 echo $ l i n e " ; " $ f i l e >> $BASEDIR/

cuaderno/$today/ s c r ap e r s / pasteb in_genera l . txt

done

62 f i

64 rm /tmp/ pas t eb in_aux f i l e2 . txt . $rand

f i

66 done

68 unset http_proxy

70 rm /tmp/ pas t eb in_aux f i l e1 . txt . $rand

Listing A.13: Script for downloading the addresses or information related to

Bitcoin in Pastebin

Appendix B

Bitcoin Visualizer

At the start of the project the idea was to use the Bitcoin Visualizer [17] appli-

cation to study the aggregation methods that it uses and improve them, due

to the problems encountered it was later decided not to use it, and implement

in another way the aggregations studied.

From the beginning there were problems compiling the jar with the �les up-

dated so I contacted the author to be able to resolve this problems and work

with the application.

After a lot of help from him we were able to init the application and begin

downloading the block chain. The changes done were:

• Get the jar �le directly from the author, as well as a folder with libraries

and a certi�cate.

• Change the neo4j.properties �le by the one obtained from the author.

• When running the application, execute �rst the Neo4jCoordinator appli-

cation.

• Adding to the installation folder a �le named 1.json that represents the

�rst block to be able to begin the download of the rests of the blocks.

• Change the password of root in the mysql installation.

B Bitcoin Visualizer XLV

• Use a di�erent command when running the application the �rst time:

java -jar -Xmx2560m D:\ProgramData\BlockViewer\BlockViewer.jar -

dbPath C:\Bitcoin\neo4j-enterprise-1.8.2\data\graph.db -con�gPath C:

\Bitcoin\neo4j-enterprise-1.8.2\conf\neo4j.properties -validate true -low

-high -scraper

After all this changes and modi�cations I was able of downloading the block

chain in json �les, which had at the moment a size of around 67GB. But

when trying to run the aggregations from the application the process continued

failing with NullPointerException errors.

Seeing that the time was quickly passing and I was not able to advance it was

decided to abandon it and continue with my own programs.

	Introduction
	General
	Important Concepts and Design Motivations of Bitcoin
	Why anonymity?
	Objectives
	Planning
	Contribution of the thesis
	Outline

	Bitcoin Description
	Basics
	Bitcoin transactions
	Bitcoin transaction graph (BTG)

	Anonimity Analysis
	Introduction
	Previous works
	An Analysis of Anonymity in the Bitcoin System
	Black Ops of TCP/IP 2011
	Structure and Anonymity of the Bitcoin Transaction Graph
	Zerocoin: Anonymous Distributed E-Cash from Bitcoin

	Anonymity in the Bitcoin Network

	Aggregation of addresses
	Introduction
	Suppositions
	Linking of inputs
	Linking of outputs
	Linking of IPs
	Linking of periodic transactions
	Linking of mixing/laundry services

	Study of aggregation methods
	Aggregation Method 1 - Linking of inputs
	Aggregation Method 2 - Linking of outputs
	Aggregation Method 3 - Linking of IPs
	Aggregation Method 4 - Linking of periodic transactions

	Anonymity comparison between aggregation methods
	Study of anonymity of users
	Analysis temporal correlations

	Future Work
	Summary and Conclusions
	References
	Implementations
	Aggregation Method 1
	Aggregation Method 1
	Anonymizing methods
	Downloading transactions of the last day
	Temporal correlations
	Anonymity of users

	Bitcoin Visualizer

