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Construction of Hadamard Z2Z4Q8-codes
P. Montolio and J. Rifà

Abstract—This work deals with Hadamard Z2Z4Q8-codes,
which are binary codes after a Gray map from a subgroup of
the direct product of Z2, Z4 and Q8 groups, where Q8 is the
non-commutative quaternion group. These kind of codes have
five types (“shapes”) and the values or range of values of several
characteristic parameters is analyzed. Specifically, we show that
all these codes can be represented in a standard form from a
set of generators, as well as using the parameters of dimension
of the kernel and rank. In addition, we present several methods
that allow, given some preselected values of these parameters,
the construction of Hadamard Z2Z4Q8-codes fulfilling them.

Index Terms—Dimension of the kernel, error-correcting codes,
Hadamard codes, rank, Z2Z4-codes, Z2Z4Q8-codes.

I. INTRODUCTION

Error-correcting codes, used to correct errors in transmis-
sions, are sequences of elements from a finite set (usually
binary elements, or bits) which contain an enclosed message
and allow to retrieval this message even when some of the
transmitted elements are lost or corrupted. In order to achieve
this objective, any two words in the set of sequences disagree
on several coordinates.

Hadamard codes are a family of error-correcting codes
that enforces their capability to recover a strongly corrupted
message using a high level of redundancy. Hadamard codes
has been extensively used in real world applications, being the
most famous the NASA space probe Mariner 9 in 1971, where
the code was used to transmit photos of Mars back to earth. In
addition, they are also used in cryptography, mainly in stenog-
raphy. Hadamard codes are named after the French math-
ematician Jacques Hadamard (1865-1963) and also known
under the name of Walsh codes or Walsh-Hadamard codes, in
recognition of the American mathematician Joseph Leonard
Walsh (1895-1973).

Non-linear groups (like Z2Z4 or Z2Z4Q8) have received an
increased attention from the Hammons and Kumar work [1]
that shows that most of these codes are ideals in polynomial
rings using Z4, the ring of integers mod 4. In the author’s own
words “this new point of view should completely transform the
study of cyclic codes”. The codes this paper deals with can be
characterized as the image of a subgroup, by a suitable Gray
map, of an algebraic group like the direct product of Z2, Z4

and Q8, the quaternion group of order 8 [2]. Hence it makes
sense to call these codes as Z2Z4-codes or Z2Z4Q8-codes.

In this paper we analyze codes that have both properties,
being Hadamard and Z2Z4Q8-codes. We will see their alge-
braic structure, their classification in several types (“shapes”)
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and the values or range of values of several parameters, like
the dimension of the kernel and rank. Specifically, we focus on
showing how all these codes can be represented in a standard
form using a set of generators and the value of the dimension
of the kernel and rank.

In addition, we present methods that allow, given some
preselected values of the above parameters, the construction
of Hadamard Z2Z4Q8-codes fulfilling them.

The structure of the paper is as follows: Section II intro-
duces the notation and preliminary concepts; Section III shows
the standard form of generators that allows to represent any
Hadamard Z2Z4Q8-code in a unique way; Section IV gives
several methods of constructing codes given a prefixed value
for the dimension of the kernel and/or rank. The paper finishes
with conclusions and bibliographic references.

II. PRELIMINARIES

Almost all the definitions and concepts bellow can be found
in [3].

Let Z2 and Z4 denote the binary field and the ring of
integers modulo 4, respectively. Let Q8 be the quaternion
group on eight elements. The following equalities provides
a presentation and the list of elements of Q8:

Q8 =〈a,b : a4 = a2b2 = 1,bab−1 = a−1〉 =

{1,a,a2,a3,b,ab,a2b,a3b}.

Given three exponents k1, k2 and k3, denote as G the group
Zk12 × Zk24 × Q

k3
8 . Any element of G can be expressed as a

vector where the first k1 components belong to Z2, the next k2
components belong to Z4 and the last k3 components belong
to Q8.

We will use multiplicative notation for G and denote e the
identity element of the group and u the element of order two:
e = (0, k1+k2. . . , 0,1, k3. . .,1) and u = (1, k1+k2. . . , 1,a2, k3. . .,a2).

We will call Gray map the function Φ:

Φ : Zk12 × Zk24 ×Q
k3
8 −→ Zk1+2k2+4k3

2 ,

acting componentwise in such a way that over the binary
part is the identity, over the quaternary part acts as the
usual Gray map, so 0 → (00), 1 → (01), 2 → (11),
and over the quaternionic part acts in the following way:
1→ (0, 0, 0, 0), b→ (0, 1, 1, 0),
a→ (0, 1, 0, 1), ab→ (1, 1, 0, 0),
a2 → (1, 1, 1, 1), a2b→ (1, 0, 0, 1),
a3 → (1, 0, 1, 0), a3b→ (0, 0, 1, 1).
Note that Φ(e) is the all-zeroes vector and Φ(u) is the all-

ones vector.
We are interested in Hadamard binary codes C = Φ(C)

where C is a subgroup of G. All through the paper we are
assuming it.
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We denote as T (C) = {z ∈ C : z2 = e} the subgroup of
elements of order two in C.

Two elements a and b of C commutes if and only if ab = ba.
As an extension of this concept, the commutator of a and b
is defined as the element [a, b] such that ab = [a, b]ba. Note
that all commutators belong to T (C) and any element of T (C)
commutes with all elements of C.

We say that two elements a and b of C swap if and only
if Φ(ab) = Φ(a) + Φ(b). As an extension of this concept,
define the swapper of a and b as the element (a : b) such that
Φ((a : b)ab) = Φ(a) + Φ(b). Note that all swappers belong to
T (G) but they can be out of C.

Both, commutators and swappers can be obtained as a
component-wise expression, if a = (a1, . . . , al) and b =
(b1, . . . , bl) then (a : b) = ((a1 : b1), . . . , (al : bl)) and
[a, b] = ([a1, b1], . . . , [al, bl]). Table I and Table II describes
the values of all swappers and commutators, respectively, in
Z4 and Q8 (the value in Z2 is always 0).

0,2 1,3
0,2 0 0
1,3 0 2

1,a2 a,a3 b,a2b ab,a3b
1,a2 1 1 1 1
a,a3 1 a2 a2 1
b,a2b 1 1 a2 a2

ab,a3b 1 a2 1 a2

TABLE I
SWAPPERS IN Z4 AND Q8

0,2 1,3
0,2 0 0
1,3 0 0

1,a2 a,a3 b,a2b ab,a3b
1,a2 1 1 1 1
a,a3 1 1 a2 a2

b,a2b 1 a2 1 a2

ab,a3b 1 a2 a2 1

TABLE II
COMMUTATORS IN Z4 AND Q8

Using these tables it could be easily checked that, for any
a, b, c ∈ G:

1) [a, b] = [b, a]. Note it is not always true that (a : b) =
(b : a).

2) (ab : c) = (a : c)(b : c) and (c : ab) = (c : a)(c : b)
3) [ab, c] = [a, c][b, c].
4) (a : b)(b : a) = [a, b]

The kernel of a binary code C of length n is K(C) = {z ∈
Zn2 : C + z = C}. It is known [3] the following relationship
between swappers and the kernel. For any element a of C we
have Φ(a) ∈ K(C) if and only if all the swappers(a : b) ∈
C for every b ∈ C.

The dimension of K(C) is denoted by k(C) or simply k.
The rank of a binary code C is the dimension of the linear

span of C. It is denoted by r(C) or simply r.
It is known [3] that the linear span of C can be seen as

Φ(〈C ∪S(C)〉), where 〈C ∪S(C)〉 is the group generated by C
and S(C) the swappers of the elements of C.

Definition II.1. Define M(x) over x ∈ T (G) as the set of
coordinates positions where the value of x is the element of
order two, ∅ ⊆M(x) ⊆M(u).

Example: let x = (1, a2, a2, 1, 1, a2) then M(x) =
{1, 2, 5}, where the first component is 0.

Lemma II.2. Let x, y ∈ G, then

1) M( (x : y) ) ⊆ M(x2) ∩ M(y2) and M([x, y]) ⊆
M(x2)∩M(y2). In the specific case when [x, y] = e we
have M((x : y)) = M(x2)∩M(y2) and M([x, y]) = ∅.

2) if [x, y] = e then wt((xy)2) = wt(x2y2) = wt(x2) +
wt(y2)− 2wt((x : y)).

Proof. Both items follow straightforwardly from Tables I and
II.

Lemma II.3. Let C be a subgroup of Zk12 ×Zk24 ×Q
k3
8 such

that Φ(C) is a Hadamard code. Let a, b, c ∈ C \ T (C).

1) either a2 = u or [a, b] = [b, a] = e or [a, b] = [b, a] = a2.
2) if a2 = u and b2 = c2 = [b, c] 6∈ {e,u} then [a, b] = e

or [a, c] = e or [a, bc] = e.
3) if b2 = c2 = [b, c] and [a, b] = [a, c] = e then (ab)2 =

(ac)2 = u and a2, b2, c2 are not equal to u.

Proof. The first item was already proven in [3, Lemma IV.6].
For the second item we will assume that the first two

possibilities of the conclusion are false. Using the first item
in this Lemma we have [a, b] = [a, c] = b2 = c2, so
[a, bc] = [a, b][a, c] = b2c2 = e. This proves the second item.

For the third item note that (bc)2 = b2c2[b, c] = b2 = c2,
thus M(b2) = M(c2) = M((bc)2). Taken into account that
[a, b] = [a, c] = [a, bc] = e, by Lemma II.2 we have M((a :
b)) = M((a : c)) = M((a : bc)). Hence, (a : b) = (a : c) =
(a : bc). Moreover, (a : bc) = (a : b)(a : c) = (a : b)2 = e
and so (a : b) = (a : c) = e. Now, using again Lemma II.2,
wt(a2b2) = wt(a2)+wt(b2)−2wt((a : b)) = wt(a2)+wt(b2).
As we are working with elements of a Hadamard code, the
weights must be equal to n, n/2 or 0. The last possibility
has been discarded when we state that they do not belong
to T (C), and so the only remainder possibility is wt(a2) =
wt(b2) = wt(c2) = n/2 and wt(a2b2) = n, proving in this
way that a2, b2, c2 are not equal to u and a2b2 = u. The
same argumentation lead to a2c2 = u.

III. THE STANDARD FORM FOR THE GENERATING SET OF A
HADAMARD Z2Z4Q8-CODE

In [3] there was given a classification of Hadamard
Z2Z4Q8-codes from an algebraic point of view. As a con-
sequence each Hadamard Z2Z4Q8-code, seen as a subgroup
C < Zk12 ×Zk24 ×Q

k3
8 is of one shape among the five possible.

To decide the shape of a given subgroup we need to know a
normalized generating set of C. Now, in this section we present
a new point of view which lead to us to construct a standard
generating set which will allow to decide the classification of
a given subgroup in a more efficient way.

In the next theorem we show that a subgroup C, which gives
a Hadamard Z2Z4Q8-code, has an abelian maximal subgroup
A which is normal in C and C/A is an abelian group of order
2a, for a ∈ {0, 1, 2}. We begin by a technical lemma.

Lemma III.1. Let C be a subgroup of Zk12 ×Zk24 ×Q
k3
8 such

that φ(C) = C is a Hadamard Z2Z4Q8-code. Let A be a
subgroup of C containing T (C), the subgroup of the elements
of order two in C. Then A is normal in C.
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Proof. We want to show that c−1ac ∈ A for every a ∈ A, c ∈
C. We have c−1ac = a[a, c] and all commutators belong to
T (C) ⊆ A, so the statement follows.

Theorem III.2. Let C be a subgroup of Zk12 × Zk24 × Qk38
such that φ(C) = C is a Hadamard Z2Z4Q8-code. Then C
has an abelian maximal subgroup A which is normal in C
and | C/A | ∈ {1, 2, 4}.

Proof. The proof will be based on the already known nor-
malized generating sets introduced in [3]. On that paper, five
possible shapes for subgroups C such that φ(C) is Hadamard
Z2Z4Q8-code are described as well as how they are the
elements in their respective normalized generators sets.

A normalized generator set in [3] has the form C =
〈x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ〉, where xi are ele-
ments of order two that generates T (C) = 〈x1...xσ〉
and Z(C) = 〈x1, . . . , xσ; y1, . . . , yδ〉 is the center of C.
Throughout this proof we will use a new generator set for
C, which will be called standardized generator set: C =
〈x1, . . . , xσ, r1, . . . , rτ , s1, . . . , sυ〉 and we always define the
subgroup A as A = 〈x1, . . . , xσ, r1, . . . , rτ 〉, which is normal
in C by Lemma III.1.

For the case when C is of shape 1 we have that the whole
group C is abelian, so A = C and | C/A | = 1.

For the case when C is of shape 2 we have [3] δ = 0,
z21 = z22 = [z1, z2] = u, [zi, zj ] = z2j and [zj , zk] = e for
every i ∈ {1, 2} and 3 ≤ j, k ≤ ρ. We define the standardized
generator set taking x1, . . . , xσ; r1 = z1z2, ri = zi+1 for
every 2 ≤ i ≤ τ ; s1 = z1. Now we want to show that A is
abelian and maximal in C and C/A = 〈s1〉. Indeed, for every
2 ≤ i, j ≤ τ , [r1, ri] = [z1z2, zi+1] = [z1, zi+1][z2, zi+1] =
z2i+1z

2
i+1 = e and [ri, rj ] = [zi+1, zj+1] = e. Hence A is

abelian. To prove the maximality of A in C we show that
[s1, r1] = [z1, z1z2] = [z1, z2] = u 6= e. In addition, for
further use, we see that r21 = (z1z2)2 = z21z

2
2 [z1 : z2] = u and

s21 = z21 = u.
For the case when C is of shape 3 we have [3] δ = 0, z21 =

u 6∈ 〈z22 , . . . , z2ρ〉, [z1, zi] = z2i and [zi, zj ] = e, for every i 6= j
in {2, . . . , ρ}. We define the standardized generator set taking
ri = zi+1 for every 1 ≤ i ≤ τ = ρ−1; s1 = z1. Now we want
to show that A is abelian and maximal in C and C/A = 〈s1〉.
Indeed, for every 1 ≤ i, j ≤ τ , [ri, rj ] = [zi+1, zj+1] = e.
Hence A is abelian. To prove the maximality of A in C we
show that [s1, r1] = [z1, z2] = z22 6= e. In addition, we note
that u 6∈ 〈r21 . . . r2τ 〉 and s21 = z21 = u.

For the case when C is of shape 4 with δ = 0 we have
δ = 0, ρ = 2 and z21 = z22 = [z1, z2] 6∈ {e,u}. We define the
standardized generator set taking r1 = z1, s1 = z2 and define
A = 〈x1, . . . , xσ; r1〉. Note that with this definition υ = 1. As
all generators belong to T (C) except one, it is immediate that
A is abelian and C/A = 〈s1〉. For the maximality, see that
[r1, s1] = [z1, z2] = z21 6= e. Note r21 = s21 6= u.

For the case when C is of shape 4 with δ = 1 we have
ρ = 2 and z21 = z22 = [z1, z2] 6∈ {e,u}. The element y1
commutes with both z1, z2 and so, by item 3 of Lemma II.3
we have y21 6= u and (y1z1)2 = (y1z2)2 = u. We define the
standardized generator set taking r1 = y1z1, r2 = z1, s1 =
z2. Note that with this definition υ = 1. We have [r1, r2] =

[y1z1, z1] = e2 = e and so A is abelian. For the maximality,
see that [r1, s1] = [y1z1, z2] = [z1, z2] = z21 6= e. In addition,
r21 = (y1z1)2 = u 6= r22 = z21 and s21 = z22 6= u

For the case when C is of shape 5 we have δ = 0 and ρ = 4.
We have: z21 = z22 = [z1, z2] = u 6= z23 = z24 = [z3, z4] and
[zi, zj ] ∈ 〈z2j 〉 for every i ∈ {1, 2} and j ∈ {3, 4}. We define
the standardized generator set taking r1 = z1, r2 = f(z1),
s1 = z2, s2 = f(z2), where:

f(z) =

z3 if [z, z3] = e,
z4 if [z, z4] = e,
z3z4 otherwise.

From Lemma II.3 it is easy to check that in the following
matrix  [z1, z3] [z1, z4] [z1, z3z4]

[z2, z3] [z2, z4] [z2, z3z4]
[z1z2, z3] [z1z2, z4] [z1z2, z3z4]


there is one and only one element in each row or column
equal to e, being the other two elements equals to z23 = z24 .
Therefore, [z1, f(z1)] = [z2, f(z2)] = e and [z1, f(z2)] =
[z2, f(z1)] = [f(z1), f(z2)] = z23 = z24 .

We have A = 〈r1, r2〉 and C/A = 〈s1, s2〉. In particular
[r1, r2] = [z1, f(z1)] = e, hence A is abelian. For the
maximality, see that [r1, s1] = [z1, z2] 6= e and [r2, s2] =
[f(z1), f(z2)] 6= e. In addition, note r21 = s21 = u 6= r22 =
s22.

The next corollary summarize the most relevant properties
of the standardized set of generators we just defined.

Corollary III.3. Let C be a subgroup of Zk12 × Zk24 × Q
k3
8

such that C = Φ(C) is a Hadamard code and let {x1, . . . , xσ;
r1, . . . , rτ ; s1, sυ } be a standard set of generators of C.
• The elements xi are of order two and generate T (C),
T (C) = 〈x1...xσ〉.

• The elements ri are of order four that commute to each
other, [ri, rj ] = e for every 1 ≤ i, j ≤ τ .

• When u ∈ 〈r1 . . . rτ 〉 we will take u = r21 and we have
r21 = u 6∈ 〈r22...r2τ 〉.

• The cardinal υ of the set {s1, sυ} is in {0, 1, 2} and when
υ = 2 we have s21 = u 6= s22 = [s1, s2]. Moreover, when
r21 = s21 = u then [r1, s1] = u.

• Any element c ∈ C can be written in a unique way as

c =

σ∏
i=1

xaii

τ∏
j=1

r
bj
j

υ∏
k=1

sckk , where ai, bj , ck ∈ {0, 1}.

The following table summarizes the main characteristics of
each shape and allows their recognition using a standardized
set of generators:

shape τ υ u ∈ 〈r21...r2τ 〉 u ∈ 〈s21, s2υ〉
1 ≥ 0 0 Y/N N
2 ≥ 1 1 Y Y
3 ≥ 1 1 N Y

4 (δ = 0) 1 1 N N
4 (δ = 1) 2 1 Y N

5 2 2 Y Y

Quaternion group Q8 is not a semidirect product of Z4 and
Z2 but it can be seen as a quotient Q8 = Z4 oZ4/〈(a2,a2)〉,
where a is the generator of the multiplicative group Z4
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and the semidirect product is defined by (ai,aj)(ak,as) =

(ai+(−1)k ,aj+s). The element (a2,a2) is in the center of
Z4 o Z4.

In the same way, C is not (in general) a semidirect
product, but a quotient C = A o Z4/〈(ε, ε)〉 (respectively,
C = A o (Z4 × Z4)/〈(ε, ε)〉), where ε ∈ A, ε ∈
Z4(respectively, ε ∈ Z4 × Z4), are of order two. Group A is
normal and the maximal abelian inside C. We can write it as
A = Zσ−τ2 × Zτ4 .

The exact formulation of this quotient is specified in the
next corollary.

Corollary III.4. Let C be a subgroup of Zk12 × Zk24 × Q
k3
8

such that C = Φ(C) is a Hadamard code and let {x1, . . . , xσ;
r1, . . . , rτ ; s1, sυ } be a standard set of generators of C. Let
A = Zσ−τ2 × Zτ4 the maximal abelian and normal subgroup
of C as we shown in Theorem III.2 and let {x1, . . . , xσ;
r1, . . . , rτ ; s1, sυ } be a standardized generator set of C.

Then C is one of the following cases, where Z4 × Z4 =
〈s1, s2〉 in the last case and Z4 = 〈s1〉 for the rest of cases.

Shape C comment
1 A
2 Ao Z4

/
(u, s21) r21 = u

3 Ao Z4

/
(u, s21) r21 6= u

4(δ = 0) Ao Z4

/
(r21, s

2
1) r21 6= u

4(δ = 1) Ao Z4

/
(r22, s

2
1) r21 = u

5 Ao (Z4 × Z4)
/

(r21, s
2
1)(r22, s

2
2) r21 = u

IV. CONSTRUCTION OF HADAMARD Z2Z4Q8-CODES

In this section we describe a method to construct Hadamard
Z2Z4Q8-codes with a preselected dimension of the kernel and
rank.

In the next subsections we will see the conditions that s1 and
s2 must fulfill in order to compose a code with specific values
for the dimension of the kernel and the rank. Then, we will see
how to create a subgroup A(C) a, finally, we construct codes
C from the previous subgroup A(C) by adding the generators
s1 and, optionally, s2.

A. Rules for s1 and s2
In the proof of Theorem III.2 we saw that r21 = u

(shape 2, shape 4 with δ = 1, shape 5 and some cases
of shape 1) and u /∈ 〈r21 . . . r2τ 〉 for the other shapes. Let
A = 〈x1, . . . , xσ, r1, . . . , rτ 〉 and let R be defined by{

R = 〈x1...xσ, r2...rτ 〉; if r21 = u
R = A; if r21 6= u

Let τ̄ = τ − 1 when r21 = u and τ̄ = τ when r21 6= u.
with this definition, we can enunciate and proof the follow-

ing lemma:

Lemma IV.1. Let a, b ∈ R(C)\T (C) which are not in the
same coset of T (C), so b 6= aT (C) then:

1) a2, b2, (ab)2 /∈ {e,u} and wt(a2) = wt(b2) =
wt((ab)2) = n/2.

2) wt((a : b)) = n/4 and so ((a : b)) /∈ C.

3) With the same hypothesis as for a, b, let a′, b′ a different
pair, such that the different elements in {a, b, a′, b′} are
pairwise not in the same coset of T (C). Then (a : b) 6=
(a′ : b′).

Proof.

• Elements a, b are not in T (C) so their square is not
e. Also, the construction of R explicitly excludes any
element with square equal to u. The product ab is also an
element of R, thus their square can not be u. Moreover,
if (ab)2 = e then a = bT (C) which contradicts the
hypothesis. This proves the first item.

• As the elements a, b commute, we have from Lemma II.2
n/2 = wt((ab)2) = wt(a2b2) = wt(a2) + wt(b2) −
2wt((a : b)) = n/2 + n/2 − 2wt((a : b)). Hence,
wt((a : b)) = n/4. This proves the second item.

• Suppose (a : b) = (a′ : b′). Since wt((a : b)) = wt((a′ :
b′)) = n/4 there are some positions (for a total weight
of n/8) where all a, b, a′, b′ share a component of order
four. The rest of components of order four (for a total
weight of n/8) in each a, b, a′, b′ is not shared at all,
since the elements are pairwise not in the same coset of
T (C). This situation is not possible in the case where all
a, b, a′, b′ are different, for we obtain a vector of length
5n/4. If, without loss of generality, we suppose b = a′

we obtain a2b2b′2 = u ∈ R, a contradiction.

We can now enumerate and proof the different rules that s1
and s2 (if exists) must fulfill to reach a code with some kernel
dimension and rank:

Lemma IV.2. Let C be a subgroup of Zk12 ×Z
k2
4 ×Q

k3
8 such that

C = Φ(C) is a Hadamard code generated by 〈A(C), s1...sυ〉.
The values of the rank and kernel dimension depends on the
characteristics of A(C), s1 and s2 (if exists) according to the
following rules:

1) In the case υ = 0 (Abelian Z2Z4-code) we have that if
τ ≤ 1 the code is linear k = r = σ + τ + υ; if τ > 1
then k = σ + 1, r = σ + τ + υ +

(
τ−1
2

)
when r21 = u or

k = σ, r = σ + τ + υ +
(
τ
2

)
when r21 6= u

2) In the case τ = 1, υ = 1 we have that if (s1 : r1) ∈ C the
code is linear; otherwise k = σ and r = σ + τ + υ + 1.

3) In the case τ = 2, τ = 1, υ = 1 we have that if all
swappers are in C then k = r = σ+3. If some swappers,
but not all, are in C then k = σ+1, r = σ+τ +υ+1. If
none of the swappers is in C then k = σ, r = σ+τ+υ+2.

4) In the case τ ≥ τ ≥ 2, υ = 1 we have four excluding
possibilities: if (s1 : a) ∈ C for all a ∈ A(C), then
k = σ + τ − τ + 1, r = σ + τ + υ +

(
τ
2

)
; otherwise if

(s1ra : a) ∈ C for all a ∈ A(C) and some ra ∈ R(C) then
k = σ+τ−τ+1, σ+τ+υ+

(
τ
2

)
≤ r ≤ σ+τ+υ+

(
τ+υ
2

)
;

otherwise if (r1 : s1) ∈ C where r21 then k = σ + 1,
σ + τ + υ +

(
τ
2

)
≤ r ≤ σ + τ + υ +

(
τ+υ
2

)
; otherwise

k = σ, σ + τ + υ +
(
τ
2

)
≤ r ≤ σ + τ + υ +

(
τ+υ
2

)
5) In the case τ = 2 and υ = 2 if both swappers (s2 : r2)

and (s1s2 : r1r2) are in C then we have the linear case;
when only one of these swappers belongs to C we have
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k = σ + 2, r = σ + τ + υ + 1; and when none of them
belongs to C we have k = σ, r = σ + τ + υ + 2

Proof.

1) In the case υ = 0 we have an abelian code, shape=1.
If r21 = u, any element c ∈ C can be written as c = xri1r
with x ∈ T (C), r ∈ R(C) and i ∈ {0, 1}. It belongs to
K(C) if the swapper of c with every element in C are
still in C. Hence, c ∈ K(C) if and only if (c : r1) ∈ C
(always true); (c : r) ∈ C (always true); and for all r ∈
R(C) : (r : r) ∈ C. From Lemma IV.1, we known this
last condition implies r = e, thus K(C) =< T (C), r1 >.
Moreover, from Lemma IV.1 we known all swappers of
two elements in R(C) are different, r = σ+τ+υ+

(
τ−1
2

)
If r21 6= u, any element c ∈ C can be written as c = xr
with x ∈ T (C) and r ∈ R(C). In a totally equivalent
way to previous one, we conclude K(C) = T (C) and
r = σ + τ + υ +

(
τ
2

)
.

2) The case τ = 1 and υ = 1 is a direct application of the
definitions.

3) In the case τ = 2 and υ = 1 and τ = 1 the code C is
of shape 2 with r21 = s21 = u 6= r22 or is of shape 4
with r21 = u 6= s21 = r22 . Any element c ∈ C can be
written as c = xri1r

j
2s
k
1 where x ∈ T (C) and i, j, k ∈

{0, 1}. It belongs to K(C) if the swapper of c with every
element in C are still in C. Hence, c ∈ K(C) if and only
if (sk1 : r1), (sk1 : r2) ∈ C (recall that if (s1 : r1) ∈
C and (s1 : r2) ∈ C then also (s1 : r1r2) ∈ C). If all
the above swappers are in C the code C is linear and
K(C) = 〈T (C), r1, r2, s1〉. Also note that, from Lemma
II.2, if s21 6= u then (s1 : r1r2) ∈ C.
If some swapper does not belong to C, for instance, (s1 :
r1) ∈ C and (s1 : r2) 6∈ C then (s1 : r1r2) = (s1 :
r1)(s1 : r2) /∈ C, hence K(C) = 〈T (C), r1〉. The same
argumentation works for the other instances proving the
statement.
If none of the swappers belong to C then K(C) = T (C).
Note that if s21 6= u then M((r1r2)2) ∩ M(s21) = ∅,
thus, by Lemma II.2, (r1r2 : s1) = e

4) In the case τ ≥ τ ≥ 2 and υ = 1 the code is of shape
2 with r21 = s21 = u or is of shape 3 with s21 = u 6∈
〈r21 . . . r2τ 〉.
When shape=3 any element c ∈ C can be written as c =
xrsi1 where x ∈ T (C), r ∈ R(C) and i ∈ {0, 1}. It
belongs to K(C) if the swapper of c with every element
in C are still in C. Hence, c ∈ K(C) if and only if for
all r ∈ R(C) : (c : r) ∈ C ⇔ (rsks1 : r) ∈ C (condition
”a”) and (c : s1) ∈ C iff (r : s1) ∈ C (condition ”b”).
We need to remark that if a and b are two elements of
R(C)\T (C) and (a : s1) ∈ C and (bs1 : a) ∈ C, then
(b : a) ∈ C and, from Lemma IV.1, one of the following
must be true: a = e or b = e or a = b. In other words,
there are no two non zero and different elements of R(C)
that fulfills conditions ”a” and ”b”. If (s1 : r) ∈ C for all
r ∈ R(C) then, by previous fact, r = e, thus K(C) =<
T (C), s1 >. If there are at least two elements ra and
rb that (s1 : ra) ∈ C and (s1 : rb) ∈ C but at least

one elements rc that (s1 : rb) 6∈ C, then r = e, ks=0,
thus K(C) = T (C). If there are only one element ra
that (s1 : ra) ∈ C and (ras1 : r) for all r ∈ R(C),
then (ks = 0 and r = e) or (ks = 1andr = ra), thus
K(C) =< T (C), ras1 >. If none element of R(C) fulfills
(r : s1) ∈ C then we have the trivial case K(C) = T (C).
When shape=2 any element c ∈ C can be written as c =
xrk11 rsks1 , where x ∈ T (C) and r ∈ R(C). It belongs to
K(C) if the swapper of c with every element in C are
still in C. Hence, c ∈ K(C) if and only if (sks1 : r1) ∈ C;
(sks1 : r) ∈ C; for all r ∈ R(C) : (rsks1 : r) ∈ C; and
(rk11 r : s1) ∈ C. Note that if (r1, s1) ∈ C, these conditions
becomes the same than previous case, the conclusions
still applicable adding r1 to K(C). If (r1, s1) 6∈ C it is
immediate that ks = k1 = 0 and r = e.

5) In the case τ = 2 and υ = 2 the code C is of shape 5
with r21 = s21 = u 6= r22 = s22.
Starting from the standard generator set, define a new
generator set where r1 = r1r2 and s1 = s1s2. Note
that r21 = s21 = ur22 = us22. In this way, we have
a redefined generator set composed by two pairs of
elements with equal square different from u. This fact
implies that M(r21) = M(s21) and M(r22) = M(s22)
form a partition of the components. For this reason,
(r1 : r2) = (r1 : s2) = (s1 : r1) = (s1 : r2) = e.
Any element c ∈ C can be written as c = xri1r

j
2s
k
1 where

x ∈ T (C) and i, j, k ∈ {0, 1}. It belongs to K(C) if the
swapper of c with every element in C are still in C. Hence,
c ∈ K(C) if and only if (sk31 : r1) ∈ C; (sk42 : r2) ∈ C;
(rk11 : s1) ∈ C; and (rk22 : s2) ∈ C. It is immediate to
see that when both (r1 : s2) ∈ C and (r2 : s2) ∈ C
are true we have a linear case K(C) = C; if only one
of these swappers belongs to C we have the case where
k = σ + 1; and if none of these swappers belongs to C
we have k = σ.

B. Construction of A(C)
Start by a Hadamard Z2Z4-code D, that could be con-

structed using the methods described at [7] or [6]. This code
will have σ generators of order two and τ generators of order
four. In addition, an element with square equal to u could or
not be include on it.

Now, we will create the subgroup A(C) mapping the com-
ponents of all the elements in the initial code in the following
way: if the original component belongs to Z2 and has value
x, the new component is a Z4 one of value 2x; if the original
component belongs to Z4, the new component is a Q8 one
of value ax. Note that in the binary space both operations are
equivalent to repeat twice the binary sequence, A is a repetition
code of D.

C. Construction of C
After construction of A(C) following previous previous

subsection steps, we need to choice one or two more gen-
erators, s1 and s2. These generators must not commute with
A(C), thus, we will choice its components of order four in
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{b,ab,a2b,a3b}. As we have see, rank and kernel of the final
code depends on the choice of s1 and s2.

The following table resumes the values of kernel dimension
and rank in each one of the previous cases (except the Abelian
ones) when r21 = u:

k − σ r − σ − τ − υ[rule]

0 1[2b] 2[3c]
(
τ−1
2

)
...
(
τ+1
2

)[4d] −
1 − 1[3b]

(
τ−1
2

)
...
(
τ
2

)[4c] −
2 0[2a] −

(
τ−1
2

)
...
(
τ
2

)[4a,4b] −
3 − 0[3a] − −
4 − − − −

The following table resumes the values of kernel dimension
and rank in each one of the previous cases (except the Abelian
ones) when r21 6= u:

k − σ r − σ − τ − υ[rule]

0 1[2b] −
(
τ
2

)
...
(
τ+1
2

)[4d]
2[5c]

1 − −
(
τ
2

)
...
(
τ+1
2

)[4a,4b] −
2 0[2a] − − 1[5b]

3 − − − −
4 − − − 0[5a]

Example IV.3. Start with the Abelian code generated by:

r1 = (1, a, a2, a3, 1, a, a2, a3,
1, a, a2, a3, 1, a, a2, a3)

with σ = 1, τ = 1, υ = 0, rank r = 2 and dimension of the
kernel k = 2.

A linear code with k = r = σ + τ + υ = 3 can
be constructed applying rule [2a]. This rule request that
(s1 : r1) ∈ C. In addition, we have already said that s21
must belong to the original code. By example, if we choice
s1 = (1, b, a2, b, a2, b, 1, b, 1, b, a2, b, a2, b, 1, b), the new code
has σ = 1, τ = 1, υ = 1, rank r = 3 and dimension of the
kernel k = 3.

A linear code with k = σ = 1 and r = σ + τ + υ + 1 = 4
can be constructed applying rule [2b]. This rule request that
(s1 : r1) 6∈ C. In addition, we have already said that s21 must
belong to the original code. By example, if we choice s1 =
(1, b, a2, b, a2, ab, 1, ab, 1, b, a2, b, a2, ab, 1, ab), the new code
has σ = 2, τ = 2, υ = 1, dimension of the kernel k = 1 and
r = 4.

V. CONCLUSION

In summary, we have analyzed some error-correcting codes
via algebraic methods, giving a with central relevance to
Hadamard error-correcting codes and Z2, Z4 and Q8 algebraic
groups.

The first sections, the ntroduction and the preliminaries,
show how the codes of this kind can be taken, by a suitable
Gray map, as the image of a subgroup of a direct product
of Z2, Z4 and Q8, the quaternion group of order 8 [2]. The
main invariant parameters and other useful characteristics are
defined.

In Section III, it has been presented the analysis of the struc-
ture and main properties (dimension of the kernel, rank,...) of
Hadamard Z2Z4-codes or Z2Z4Q8-codes. We have presented
a new standardized form for the generator set of these codes.
This standardized form is unique (except trivial equivalences)
and allows an easy recognition of the shape of the code,
together with the computation of some remarkable values and
bounds, like the ones for dimension of the kernel and rank.

Next section IV gives a method to construct Hadamard
Z2Z4-codes starting with preselected values for the dimension
of the kernel and rank. The method uses a detailed table of
the conditions that a code must fulfill, as well as exact bounds
for all possible values of the dimension of the kernel and
rank. After looking this table up, the conditions are settled
and the construction method shows how to obtain a generator
set accomplishing these restrictions.

Examples of the construction are provided. The paper finish
with bibliographic references to the main works on this topic.
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propelinear code,” COMB, vol. 1, pp. 100–102, 2001.
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