
High available GNU/Linux systems

Agustín Rivero de la Cruz
ETIS

Ignasi Rius Ferrer

January 8, 2014

http://creativecommons.org/licenses/by/4.0/

Dedication

This work is dedicated to my wife, Eva, who has shown a lot of patience while I was doing this work, and

who has take care of our sons. And also to them, Isaac, which is only three and didn’t understand why I

wasn’t playing with him while I was at home, and Dario, who was born just a month ago.

I am very grateful to all of them.

1

Summary

This paper covers High availability methods available in GNU/Linux environments. It is oriented towards

a practical point of view where companies try to have very short downtimes and reduce data loss in their

services.

It will be written about everything needed to reach those goals. First, it will cover data allocation of

servers, both its service data and its own Operating System. Then it will inform about network connec-

tivity of those servers at both layer two and layer three levels. Next, it will expose some ways to have

available Operating Systems, normally using virtual machines. Finally, it will cover some methods that

can be used directly in applications to be able to keep services alive, even if a server fails or becomes

unreacheable.

This paper is divided into chapters, each one will have three sections: a general overview of consider-

ations to be taken for every chapter scope, a detailed section of how can be GNU/Linux used to achive

those goals and, in the end, an explanatory example using GNU/Linux systems.

There is a final chapter with a summary and some conclusions.

2

Contents

1 General Overview on High Availability 7

1.1 Overview . 7

1.2 Goals . 7

1.3 Procedure to reach those goals . 8

2 Storage 10

2.1 Ways to provide high available storage . 10

2.1.1 Local RAID . 10

2.1.2 Network block device solutions . 10

2.2 Provide Data Recovery . 11

2.2.1 Versioned backups . 11

2.2.2 Fast recovery . 12

2.2.3 Versioned backup versus fast recovery . 12

2.3 The GNU/Linux way . 12

2.3.1 Local RAID . 12

2.3.2 Network Block Devices . 13

2.3.3 Network File-systems . 13

2.3.4 Booting . 13

2.4 Practical Example . 13

2.4.1 Description . 13

2.4.2 Configuration . 14

2.4.2.1 DRBD . 14

2.4.2.2 ISCSI target . 18

2.4.2.3 Heartbeat . 19

2.4.2.4 ISCSI client . 23

2.4.3 Failure test . 25

2.4.4 Possible improvements . 27

3

CONTENTS 4

3 Networking 29

3.1 Ways to provide high available networking . 29

3.1.1 Link Level . 29

3.1.2 Gateway Level . 31

3.1.3 Routing level . 31

3.2 The GNU/Linux way . 31

3.2.1 Link level . 32

3.2.1.1 Balance round robin (mode=0) . 32

3.2.1.2 Active backup (mode=1) . 32

3.2.1.3 Balance XOR (mode=2) . 32

3.2.1.4 Broadcast (mode=3) . 33

3.2.1.5 802.3ad (mode=4) . 33

3.2.1.6 Balance-tlb (mode=5) . 33

3.2.1.7 Balance-alb (mode=6) . 33

3.2.2 Gateway Level . 33

3.2.3 Routing Level . 34

3.3 Practical Example . 34

3.3.1 Description . 34

3.3.2 Configuration . 35

3.3.2.1 host1 and host2 . 35

3.3.2.2 router1 and router2 . 35

3.3.2.3 pathA and pathB . 39

3.3.3 Failure test . 43

4 Operating System clustering Software 47

4.1 Ways to provide high available running systems . 47

4.2 The GNU/Linux way . 48

4.2.1 Virtualization . 48

4.2.1.1 Full virtualization . 48

4.2.1.2 Para virtualization . 49

4.2.1.3 Containers . 49

4.2.2 Cluster applications . 49

4.2.3 Out-of-the-box IaaS solutions . 50

CONTENTS 5

4.3 Practical Example . 50

4.3.1 Description . 50

4.3.2 Installation . 51

4.3.2.1 Changing kernel to support OpenVZ containers 51

4.3.2.2 Installing and configuring Cman . 54

4.3.2.3 Installing the virtual machine . 56

4.3.2.4 Installing rgmanager and defining our cluster service for High Availability 61

4.3.3 Failure test . 68

4.3.4 Possible improvements . 69

5 Application Level High Availability Techniques 71

5.1 Overview . 71

5.2 Example applications . 71

5.2.1 ISC dhcpd . 71

5.2.2 SMTP fail over . 72

5.2.3 DNS service . 72

5.2.4 Mysql servers . 72

5.3 Usual techniques . 72

5.3.1 Client/server reconnection . 72

5.3.2 Farms of servers with no clustered applications . 73

5.3.3 Applications developed on top of cluster frameworks 73

5.4 The GNU/Linux way . 74

5.5 Practical Example . 74

5.5.1 Description . 74

5.5.2 Installation . 75

5.5.2.1 DNS server . 75

5.5.2.2 SIP servers . 78

5.5.2.3 SIP clients . 82

5.5.3 Failure test . 83

6 Conclusions 86

List of Figures

1.1 Availability percentage . 8

1.2 Availability Levels . 9

2.1 Raid Levels . 11

2.2 ISCSI example recoveries . 14

2.3 Multi-path . 28

3.1 Network Redundancy . 30

3.2 OSPF dual-path network . 35

3.3 hosts, bridges and Ethernet devices . 36

4.1 Three-node cluster . 51

5.1 SIP service elements . 74

5.2 Qutecom configuration . 82

5.3 Sipura phone configuration . 83

6

Chapter 1

General Overview on High Availability

1.1 Overview

Nowadays IT services heavily relay on availability of networked applications[25, 31]. In turn those

applications depend on hardware that suffers from outages due to human interaction or instability and

expiration of computer equipments. Sometimes hardware crashes, and some other times someone hangs

a system voluntarily or involuntarily.

To avoid this service outages, organizations can relay on better hardware: dual powered, rugged, rock-

solid components, RAID disks, good levels of temperature and humidity, etc. Those organizations can

also benefit from architectures and applications designed to avoid service downtime and data loss.

It is needed to protect services from individual computer component crashes, from attacks coming from

Internet and from poor handling of system owners. There are maintenance works that can compromise

service availability and, if an outage happens, it is possible that valuable data is lost, so it is important to

be able to recover as much data as possible if this happens.

This whole document explains the goals sought by named High Availability techniques, those used to

provide service continuity at the IT world. Initially it will talk about general considerations, but all

examples will cover the achievement of this objectives from a GNU/Linux point of view.

1.2 Goals

The main goal[6] is to lower costs due to service unavailability and data loss. The cost of downtime

impacts on productivity, reputation revenue and margin of organization business.

There are many ways to measure downtime, one of them is a percentage of service availability per time

unit. Normally, this time unit is a year, and the higher the percentage, the lower the downtime. Figure

1.1[57] shows a table with the equivalence between percentage and downtime per unit of time.

It is easy to notice that this measurement is not enough to have an idea of service quality. This percentage
availability is usually agreed in business contracts that like to offer a good number of nines. It is clearly

not the same to have near to 9 hours of downtime once a year, than one ten-minute outage per month.

7

CHAPTER 1. GENERAL OVERVIEW ON HIGH AVAILABILITY 8

Figure 1.1: Availability percentage

Some businesses won’t tolerate twelve outages per year and some others won’t accept a 9-hour outage,

so this is a poor way to measure unavailability. Thus, some other concepts appear when it is needed to

define service availability, a few stated by vendors and service providers are:

• Mean Time between Failures (MTBF)[48]. Is the average time between a failure and next one, i.e.

the expected average time to wait until next failure occurs.

• Mean Time To Recover (MTTR)[49]. Opposite to MTBF, this is the average time for outages, i.e.

the expected average time to wait between service failure and restoration.

• Data loss limits[6, 31]. Possibility and data loss quantification in outages that normally is measured

in time units. Organizations can offer a data loss limit of a maximum period of time.

All these measurements can be some of the ones offered in contracts to warrant a service. It is the so

called Service Level Agreement[57].

1.3 Procedure to reach those goals

Every organization that wants to narrow service unavailability needs to follow this procedure[6, 31]:

• Complete a business impact analysis and identify and categorize critical business processes with HA

requirements. All business processes should be identified. Also, there should be a quantification

of the risk for outages of these processes. These evaluations categorize the processes depending

on impact severity of outages, and services provided by an organization should be partitioned into

desired levels of availability. For example, a web service needs the website to be all the time

available, but product delivery can be delayed for some time. An example of this aggregation of

CHAPTER 1. GENERAL OVERVIEW ON HIGH AVAILABILITY 9

Availability Levels is summarized in figure 1.2. This figure [6] shows Availability Levels understood

by Citrix to offer their clustering services. This company is following four levels of availability

ranged from more (AL-4) to less (AL-0) critical, defined by IDC terms in 2009. In following lines

RTO and RPO will be explained.

Figure 1.2: Availability Levels

• Formulate cost of downtime. Organizations must know the costs of an outage on every particular

business category identified before. The costs can be produced because business halting lowers

revenue, partner relationship can be affected, reputation can be lowered and there can be legal

consequences.

• Establish RTO and RPO goals. As costs had been evaluated, a Recovery Time Objective (RTO) and

a Recovery Point Objective (RPO) should be established. RTO is related to maximum MTTR[49]

accepted and RPO to maximum data loss permitted. This levels of RTO and RPO heavily depend on

the Availability Level, as defined in previous figure 1.2.

• Understand goals for manageability, TCO and ROI. Once objectives are established, the organization

may need to improve workers knowledge, acquire equipments or rent new services. It should be

taken in cosideration:

– Manageability, which is the real capability of the company to achieve these objectives, may be

some improvements are necessary to achieve them.

– Total Cost of Ownership (TCO) and Return On Investment (ROI). Are needed equipments and

services worth paying now that costs of downtime are known? They should.

Chapter 2

Storage

2.1 Ways to provide high available storage

This section it will be addressed on service availability uptime. When it is thought about high available

storage, it is also thought about a file system that is always ready for an Operating System to be used.

Traditionally computers had disk drives but disk drives may fail. Fortunatelly some techniques exists to

overcome those limitations.

2.1.1 Local RAID

Redundant Array of Inexpensive Disks provide a mechanism to be able to suffer a disk failure without

losing file system and data availability. The system manages an array of disks and some disks contain all

the information needed to know the content of a possible missing disk. Normally a bitwise sum of all

disks is saved on a redundancy disk, so in case of any disk failure this disk can be used to calculate the

data of the missing one. This is the definition or RAID level 5. More levels exist in order to provide better

redundancy or performance. Figure 2.1 shows a list of RAID levels, a description and minimum number

of drives to build it[13].

But RAID disks only allow data to be accessible from a single equipment, if this computer fails, no other

can reach the data to provide high availability of the content, so next sections will show how to offer high

available storage systems.

2.1.2 Network block device solutions

A block device can be offered to networked systems. This device is seen by a computer like a local drive,

which can be partitioned, formatted and used. All storage vendors offer turn-key solutions using this

technique[27, 34]. It’s a multi-purpose general solution.

Those drives can be used even to boot the Operating System by a disk-less computer. For this to work, it is

also needed a BIOS that understands network booting, usually PXE (DHCP/TFTP) or Host Bus Adapters

(HBA) are used to present remote drives as local ones.

10

CHAPTER 2. STORAGE 11

Figure 2.1: Raid Levels

The most used protocol for block device presentation is ISCSI, again all vendors offer this protocol. There

are some alternatives, for example GNU/Linux can use ATA over Ethernet (AoE), but ISCSI is widely

extended and offers the best performance.

2.2 Provide Data Recovery

This is the only chapter addressing Disaster Recovery and data loss prevention. In order to provide Data

Recovery it is needed to have copies of data, so, in case of data corruption or loss, it is possible to recover

it at least from a point in time not much ago.

There should be copies of important data outside from the active production systems. There are many

levels where this can be achieved. At block device level there can be a network copy, at file level there

can also exist copies and at application level, for example a database, there can be copies of data.

Generally speaking, there are two main kinds of data backup strategies: versioned backups or fast recov-

ery ones.

2.2.1 Versioned backups

Organizations can create backups of data in any medium (disk drives, optical drives, network copies...)

at a point in time. It’s usual to make a copy in night hours when services can be stopped or performance

can be reduced because there are less customers accessing them.

This can be enough for Application Levels with low RPO aim. If copies are made daily, then recover point

can be a day before. For small losses of data a fast recovery procedure should be used.

CHAPTER 2. STORAGE 12

With this technique if there is a failure in the data source, normally a human interaction is needed to

recover the service at last backup point in time.

2.2.2 Fast recovery

For smallest data loss, active/passive procedures can be used. There can be an passive or standby system

receiving all data from active one. When active systems fails, there should be a mechanism that redirects

all customer requests to passive (from now on active) system. The loss of data will be the one produced

by active system but not yet received by passive one. For a database, for example, this can be in the order

of milliseconds of produced data, and some databases can work synchronously, i.e. applications working

in active system don’t get the confirmation from their transactions until passive database receives and

processes it.

Databases aren’t the only service that can benefit from this techniques, but they work at application level,

so customers can notice no failure at all. A website for example can detect a database interruption and

autonomously change connection to passive servers.

Fast recovery can also be used at block device level. A block device can be network-copied in real-time

and file services can be restored from those standby systems. Previous example (a website) will normally

suffer an interruption in case a failure.

2.2.3 Versioned backup versus fast recovery

For low RPO, both techniques should be used. Generally Fast recovery will give a better service (at

a higher cost) because recovery time and data loss are very low. But sometimes it’s not enough. An

advantage of versioned backups is that some versions can be stored and if a mistake is made that deletes

some data, standby systems can also delete data. So the best solution is an hybrid system using both

techniques: standby systems receiving data at real-time and versioned backups taken from those passive

systems that normally can suffer from low performance while making backups. Also application level

procedures should be used whenever possible to avoid service interruption (RTO equal to zero)

2.3 The GNU/Linux way

2.3.1 Local RAID

For local RAIDs normally hardware RAID is used because it should provide better performance and lower

CPU usage, also good hardware controllers have batteries that power up buffers, so in case of power

failure there is enough power to write buffers to disk. But some hardware lacks of this kind of hardware

and some inexpensive RAID hardware controllers really are software ones with very poor performance.

In this cases a software RAID is recommended. Furthermore hardware controllers are proprietary and

disk meta-data is not interchangeable between different hardware controllers, with software RAID this

limitation simply doesn’t exist as meta-data is controlled by software.

GNU/Linux comes out-of-the-box with good RAID tools, mdadm supports any RAID level from 0 to 6 and

any layered combination (1+0, etc)

CHAPTER 2. STORAGE 13

2.3.2 Network Block Devices

Most used Network Block Device (NBD) is by far ISCSI, it’s an standard in the industry and all modern

Operating Systems support it. GNU/Linux uses tgt[39] software to provide this protocol support.

Another good NBD is AoE[1] which is fast, reliable and easy to configure, but not as deployed as ISCSI

and only supported in GNU/Linux, BSD and Solaris systems.

2.3.3 Network File-systems

Another way to provide file-systems at a higher level are network file-systems. NFS[51], WebDAV[61]

or CIFS[52] are the most used ones. This technique doesn’t provide a full block device that can be

formatted (or even used as swap space), this protocols directly provide files and directories. It’s a good

way to provide the same files to a lot of hosts simultaneously without needing a shared file-system known

at block device level, like GFS2[37] or OCFS2[33] that must be configured between clients. For example

for DAV even a web browser is enough to access the files.

For NFS, GNU/Linux uses both kernel and user-space native tools, for WebDAV a web server like Apache

httpd can be used, and for CIFS normally Samba is used.

2.3.4 Booting

With no disk, booting is a bit tricky. Hardware Motherboards usually support Ethernet booting by using

PXE[54] protocol, in GNU/Linux the process consists in:

1. DHCP protocol provides an IP address and a TFTP server for booting

2. Host downloads from TFTP server a file with a filename of its Ethernet MAC-Address

3. TFTP service provides a system to boot both kernel and initramdisk

4. Host boots kernel and loads initramdisk at initial Root File-system

5. initramdisk continues the boot. It receives as parameters the final root device which can be an

ISCSI target, a NFS export or whatever network device commented before

This final point is may be the most difficult to build, a good tool to do it is Dracut[22] which supports

ISCSI root, NFS root and more network redundancy support that we will see later.

2.4 Practical Example

2.4.1 Description

It will be built an high available storage block device. Three hosts will be needed, two of them will

provide the file system, in active/passive mode, the third host will have the block device formatted and

mounted. If active server fails, passive one will become active giving service to client host.

CHAPTER 2. STORAGE 14

File system servers will be iscsi-server0 and iscsi-server1 and client will be iscsi-client.

The three of them will have Debian Wheezy Operating System and will be KVM virtual machines. The

servers will have a partition (/dev/vda2) replicated between them using DRBD[10] software. This

application will replicate partition /dev/drbd0 that will be a physical device for a ISCSI network drive.

iscsi-server0 will be the primary server and heartbeat[23] software will teach iscsi-server1 to

give service in case of iscsi-server0 failure. iscsi-client will have this network drive formatted

and mounted on /mnt.

When it is mounted, active ISCSI server will be stopped and it will be seen a fast recovery, in figure 2.2

fast recovery and redundancy recovery idea can be seen.

Figure 2.2: ISCSI example recoveries

2.4.2 Configuration

Virtual machines will be installed but without any software needed.

As all hosts need to connect each other, a DNS would be desirable, but instead, an identical /etc/hosts

file will be configured on all hosts. This will be its content:

127.0.0.1 localhost

192.168.103.99 iscsi-server0

192.168.103.91 iscsi-server1

192.168.103.36 iscsi-server-ha

192.168.103.93 iscsi-client

2.4.2.1 DRBD

First, it will needed to install DRBD software to have both servers with a synchronized partition. There

will be a primary server and a secondary one. Only primary servers can write on a device, secondaries

only write to disk what is received from primaries.

apt-get install drbd8-utils

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

heirloom-mailx

CHAPTER 2. STORAGE 15

Suggested packages:

heartbeat exim4 mail-transport-agent

The following NEW packages will be installed:

drbd8-utils heirloom-mailx

0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.

Need to get 524 kB of archives.

After this operation, 1,141 kB of additional disk space will be used.

Do you want to continue [Y/n]?

Get:1 http://ftp.fi.debian.org/debian/ wheezy/main heirloom-mailx amd64 12.5-2 [274 kB]

Get:2 http://ftp.fi.debian.org/debian/ wheezy/main drbd8-utils amd64 2:8.3.13-2 [250 kB]

Fetched 524 kB in 1s (269 kB/s)

Selecting previously unselected package heirloom-mailx.

(Reading database ... 18431 files and directories currently installed.)

Unpacking heirloom-mailx (from .../heirloom-mailx_12.5-2_amd64.deb) ...

Selecting previously unselected package drbd8-utils.

Unpacking drbd8-utils (from .../drbd8-utils_2%3a8.3.13-2_amd64.deb) ...

Processing triggers for man-db ...

Setting up heirloom-mailx (12.5-2) ...

update-alternatives: using /usr/bin/heirloom-mailx to provide /usr/bin/mailx (mailx) in auto mode

Setting up drbd8-utils (2:8.3.13-2) ...

Now two files should be eddited in those servers. One is /etc/drbd.d/global_common.conf that

will have this content:

global {

usage-count no;

}

common {

protocol C;

}

There are three types of protocols[11]:

1. protocol A: Less safe but best performance. Write IO reported as completed when reached local

disk and TCP send buffer.

2. protocol B: Safer. Write IO reported as completed when reached local disk and remote buffer cache.

3. protocol C: Safest and the only synchronous protocol, RPO equal to zero. Write IO reported as

completed when reached both local and remote disk.

Then it is needed to add a resource, a file named /etc/drbd.d/r0.conf will be created with this

content:

resource r0 {

device /dev/drbd0;

disk /dev/vda2;

meta-disk internal;

on iscsi-server0 {

address 192.168.103.99:7789;

}

on iscsi-server1 {

address 192.168.103.91:7789;

}

}

Then it is needed to initialize the partition on both servers:

drbdadm create-md r0

The server’s response is:

CHAPTER 2. STORAGE 16

node already registered

Writing meta data...

initializing activity log

NOT initialized bitmap

New drbd meta data block successfully created.

success

Now drbd service can be started up. It is needed to be started on both nodes for the startup to finish:

/etc/init.d/drbd start

[ok] Starting DRBD resources:[d(r0) n(r0)]......

It can be seen this at /proc/drbd to see DRBD status:

cat /proc/drbd

version: 8.3.11 (api:88/proto:86-96)

srcversion: F937DCB2E5D83C6CCE4A6C9

0: cs:Connected ro:Secondary/Secondary ds:Inconsistent/Inconsistent C r-----

ns:0 nr:0 dw:0 dr:0 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:225236

It is needed to initialize the partition and label one of the servers as primary, secondary will then syn-

chronize the whole disk (like a mirroring RAID initialization). On desired primary server, it is written:

drbdadm -- --overwrite-data-of-peer primary r0

Then synchronization has started as it can be seen on /proc/drbd:

cat /proc/drbd

version: 8.3.11 (api:88/proto:86-96)

srcversion: F937DCB2E5D83C6CCE4A6C9

0: cs:SyncSource ro:Primary/Secondary ds:UpToDate/Inconsistent C r-----

ns:1872 nr:0 dw:0 dr:2536 al:0 bm:0 lo:0 pe:6 ua:0 ap:0 ep:1 wo:f oos:223388

[>....................] sync’ed: 1.9% (223388/225236)K

finish: 0:13:01 speed: 264 (264) K/sec

Now iscsi-server0 is primary server and its data-source is up to date. Contrary, iscsi-server1 is

secondary and, by now, inconsistent.

And if some time passes it will be seen it has completed syncing and iscsi-server1 is updated:

cat /proc/drbd

version: 8.3.11 (api:88/proto:86-96)

srcversion: F937DCB2E5D83C6CCE4A6C9

0: cs:Connected ro:Secondary/Primary ds:UpToDate/UpToDate C r-----

ns:0 nr:225236 dw:225236 dr:0 al:0 bm:14 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:0

And now that both servers are up to date, they should be turn into primary. It’s important to say that both

servers cannot write at the same time unless who writes knows there are two paths to do it. A typical

file-system like ext3, ext4 or xfs is not suited for two clients mounting the file-system at once. Also both

DRBD servers cannot mount this file-system simultaneously because in this way data will become incon-

sistent. For this to work a shared file-system like GFS[37] or OCFS2[33] is needed. This documentation

is beyond the scope of this document, but the bibliography can be followed to find more information.

So for turning them both primary /etc/drbd.d/global_common.conf should be changed to:

global {

usage-count no;

}

CHAPTER 2. STORAGE 17

common {

protocol C;

net {

allow-two-primaries;

}

}

And /etc/drbd.d/r0.res to:

resource r0 {

device /dev/drbd0;

disk /dev/vda2;

meta-disk internal;

startup {

become-primary-on both;

}

on iscsi-server0 {

address 192.168.103.99:7789;

}

on iscsi-server1 {

address 192.168.103.91:7789;

}

}

And service drbd should be stopped and started on both servers.

On iscsi-server0:

root@iscsi-server0:~# /etc/init.d/drbd stop

[ok] Stopping all DRBD resources:.

On iscsi-server1:

root@iscsi-server1:~# /etc/init.d/drbd stop

[ok] Stopping all DRBD resources:.

on iscsi-server0:

root@iscsi-server0:~# /etc/init.d/drbd start

[....] Starting DRBD resources:[d(r0) n(r0)]..........

And on iscsi-server1 while iscsi-server0 is waiting for the other node:

root@iscsi-server1:~# /etc/init.d/drbd start

[ok] Starting DRBD resources:[d(r0) n(r0)].

Now both of them are primary and up to date. It can be seen at /proc/drbd:

cat /proc/drbd

version: 8.3.11 (api:88/proto:86-96)

srcversion: F937DCB2E5D83C6CCE4A6C9

0: cs:Connected ro:Primary/Primary ds:UpToDate/UpToDate C r-----

ns:0 nr:0 dw:0 dr:664 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:0

Now /dev/drbd0 is ready on both nodes. But again, it should be remembered that normal file-systems

are not suited for two clients simultaneously.

CHAPTER 2. STORAGE 18

2.4.2.2 ISCSI target

The software needed is on a package named tgt. It should be installed on both servers:

apt-get install tgt

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

libclass-isa-perl libconfig-general-perl libibverbs1 librdmacm1 libsgutils2-2 libswitch-perl perl

perl-modules sg3-utils

Suggested packages:

perl-doc libterm-readline-gnu-perl libterm-readline-perl-perl make libpod-plainer-perl

The following NEW packages will be installed:

libclass-isa-perl libconfig-general-perl libibverbs1 librdmacm1 libsgutils2-2 libswitch-perl perl

perl-modules sg3-utils tgt

0 upgraded, 10 newly installed, 0 to remove and 0 not upgraded.

Need to get 8,973 kB of archives.

After this operation, 34.5 MB of additional disk space will be used.

Do you want to continue [Y/n]?

Get:1 http://ftp.fi.debian.org/debian/ wheezy/main libclass-isa-perl all 0.36-3 [12.3 kB]

Get:2 http://ftp.fi.debian.org/debian/ wheezy/main perl-modules all 5.14.2-21+deb7u1 [3,440 kB]

Get:3 http://ftp.fi.debian.org/debian/ wheezy/main perl amd64 5.14.2-21+deb7u1 [4,407 kB]

Get:4 http://ftp.fi.debian.org/debian/ wheezy/main libswitch-perl all 2.16-2 [21.0 kB]

Get:5 http://ftp.fi.debian.org/debian/ wheezy/main libconfig-general-perl all 2.50-1 [70.9 kB]

Get:6 http://ftp.fi.debian.org/debian/ wheezy/main libsgutils2-2 amd64 1.33-1 [80.0 kB]

Get:7 http://ftp.fi.debian.org/debian/ wheezy/main sg3-utils amd64 1.33-1 [651 kB]

Get:8 http://ftp.fi.debian.org/debian/ wheezy/main libibverbs1 amd64 1.1.6-1 [35.3 kB]

Get:9 http://ftp.fi.debian.org/debian/ wheezy/main librdmacm1 amd64 1.0.15-1+deb7u1 [19.0 kB]

Get:10 http://ftp.fi.debian.org/debian/ wheezy/main tgt amd64 1:1.0.17-1 [237 kB]

Fetched 8,973 kB in 22s (392 kB/s)

Selecting previously unselected package libclass-isa-perl.

(Reading database ... 18495 files and directories currently installed.)

Unpacking libclass-isa-perl (from .../libclass-isa-perl_0.36-3_all.deb) ...

Selecting previously unselected package perl-modules.

Unpacking perl-modules (from .../perl-modules_5.14.2-21+deb7u1_all.deb) ...

Selecting previously unselected package perl.

Unpacking perl (from .../perl_5.14.2-21+deb7u1_amd64.deb) ...

Selecting previously unselected package libswitch-perl.

Unpacking libswitch-perl (from .../libswitch-perl_2.16-2_all.deb) ...

Selecting previously unselected package libconfig-general-perl.

Unpacking libconfig-general-perl (from .../libconfig-general-perl_2.50-1_all.deb) ...

Selecting previously unselected package libsgutils2-2.

Unpacking libsgutils2-2 (from .../libsgutils2-2_1.33-1_amd64.deb) ...

Selecting previously unselected package sg3-utils.

Unpacking sg3-utils (from .../sg3-utils_1.33-1_amd64.deb) ...

Selecting previously unselected package libibverbs1.

Unpacking libibverbs1 (from .../libibverbs1_1.1.6-1_amd64.deb) ...

Selecting previously unselected package librdmacm1.

Unpacking librdmacm1 (from .../librdmacm1_1.0.15-1+deb7u1_amd64.deb) ...

Selecting previously unselected package tgt.

Unpacking tgt (from .../tgt_1%3a1.0.17-1_amd64.deb) ...

Processing triggers for man-db ...

Setting up libclass-isa-perl (0.36-3) ...

Setting up libsgutils2-2 (1.33-1) ...

Setting up sg3-utils (1.33-1) ...

Setting up libibverbs1 (1.1.6-1) ...

Setting up librdmacm1 (1.0.15-1+deb7u1) ...

Setting up perl-modules (5.14.2-21+deb7u1) ...

Setting up perl (5.14.2-21+deb7u1) ...

update-alternatives: using /usr/bin/prename to provide /usr/bin/rename (rename) in auto mode

Setting up libconfig-general-perl (2.50-1) ...

Setting up tgt (1:1.0.17-1) ...

Setting up libswitch-perl (2.16-2) ...

CHAPTER 2. STORAGE 19

Debian lacks of an init script and one provided by Debian Bug tracking system[16] can be used. So, now

the service can be started:

/etc/init.d/tgt start

[ok] Starting target framework daemon: tgtd.

Now a new target named iqn.2013-11.edu.uoc:ha-disk can be added as first target id (1):

tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.2013-11.edu.uoc:ha-disk

And finally our ha disk can be added to it:

tgtadm --lld iscsi --op new --mode logicalunit --tid 1 --lun 1 -b /dev/drbd0

This command can be issued to have a look at ISCSI exported targets:

tgtadm --lld iscsi --op show --mode target

Target 1: iqn.2013-11.edu.uoc:ha-disk

System information:

Driver: iscsi

State: ready

I_T nexus information:

LUN information:

LUN: 0

Type: controller

SCSI ID: IET 00010000

SCSI SN: beaf10

Size: 0 MB, Block size: 1

Online: Yes

Removable media: No

Readonly: No

Backing store type: null

Backing store path: None

Backing store flags:

LUN: 1

Type: disk

SCSI ID: IET 00010001

SCSI SN: beaf11

Size: 231 MB, Block size: 512

Online: Yes

Removable media: No

Readonly: No

Backing store type: rdwr

Backing store path: /dev/drbd0

Backing store flags:

Account information:

ACL information:

Now this configuration should be saved, exported to iscsi-server1 and the service can be stopped,

heartbeat will be responsible of starting it in active node:

tgt-admin --dump > /etc/tgt/targets.conf

scp /etc/tgt/targets.conf iscsi-server1:/etc/tgt/

root@iscsi-server1’s password:

2.4.2.3 Heartbeat

Heartbeat[23] will define a primary node for serving ISCSI target service. It will undertake the task of

starting tgt service and adding a heartbeat IP address to one and only one server. A heartbeat IP address

CHAPTER 2. STORAGE 20

is an IP that will only have the active system. All clients will connect to this IP, so they won’t need to

know the complexity of the cluster nodes, it will just contact that IP address.

First of all, Heartbeat software should be installed on both servers:

apt-get install heartbeat

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

ca-certificates cluster-glue dbus file gawk libcap2 libcfg4 libcib1 libconfdb4 libcoroipcc4

libcoroipcs4 libcorosync4 libcpg4 libcrmcluster1 libcrmcommon2 libcurl3 libdbus-1-3 libdbus-glib-1-2

libesmtp6 libevs4 libffi5 libglib2.0-0 libglib2.0-data libheartbeat2 libldap-2.4-2 liblogsys4

liblrm2 libltdl7 libmagic1 libnet1 libnspr4 libnspr4-0d libnss3 libnss3-1d libopenhpi2 libopenipmi0

libpcre3 libpe-rules2 libpe-status3 libpengine3 libperl5.14 libpils2 libpload4 libplumb2libplumbgpl2

libquorum4 librtmp0 libsam4 libsasl2-2 libsasl2-modules libsensors4 libsigsegv2 libsnmp-base

libsnmp15 libssh2-1 libstonith1 libstonithd1 libsystemd-login0 libtimedate-perl libtotem-pg4

libtransitioner1 libvotequorum4 libxml2 libxml2-utils libxslt1.1 mime-support openhpid openssl

pacemaker psmisc python python-minimal python2.7 python2.7-minimal resource-agents sgml-base

shared-mime-info xml-core

Suggested packages:

dbus-x11 gawk-doc libsasl2-modules-otp libsasl2-modules-ldap libsasl2-modules-sql

libsasl2-modules-gssapi-mit libsasl2-modules-gssapi-heimdal lm-sensors snmp-mibs-downloader

python-doc python-tk python2.7-doc binutils binfmt-support sgml-base-doc debhelper

The following NEW packages will be installed:

ca-certificates cluster-glue dbus file gawk heartbeat libcap2 libcfg4 libcib1 libconfdb4

libcoroipcc4 libcoroipcs4 libcorosync4 libcpg4 libcrmcluster1 libcrmcommon2 libcurl3 libdbus-1-3

libdbus-glib-1-2 libesmtp6 libevs4 libffi5 libglib2.0-0 libglib2.0-data libheartbeat2 libldap-2.4-2

liblogsys4 liblrm2 libltdl7 libmagic1 libnet1 libnspr4 libnspr4-0d libnss3 libnss3-1d libopenhpi2

libopenipmi0 libpcre3 libpe-rules2 libpe-status3 libpengine3 libperl5.14 libpils2 libpload4

libplumb2 libplumbgpl2 libquorum4 librtmp0 libsam4 libsasl2-2 libsasl2-modules libsensors4

libsigsegv2 libsnmp-base libsnmp15 libssh2-1 libstonith1 libstonithd1 libsystemd-login0

libtimedate-perl libtotem-pg4 libtransitioner1 libvotequorum4 libxml2 libxml2-utils libxslt1.1

mime-support openhpid openssl pacemaker psmisc python python-minimal python2.7 python2.7-minimal

resource-agents sgml-base shared-mime-info xml-core

0 upgraded, 79 newly installed, 0 to remove and 0 not upgraded.

Need to get 25.7 MB of archives.

After this operation, 71.1 MB of additional disk space will be used.

Do you want to continue [Y/n]?

[...]

Fetched 25.7 MB in 1min 17s (330 kB/s)

Extracting

templates from packages: 100%

Preconfiguring packages ...

[...]

Now /etc/ha.d/ha.cf can be created with this content:

logfacility daemon

node iscsi-server0

node iscsi-server1

keepalive 1

warntime 2

deadtime 3

udpport 694

ucast eth0 192.168.103.99

ucast eth0 192.168.103.91

auto_failback off

CHAPTER 2. STORAGE 21

It says there will be two nodes named iscsi-server0 and iscsi-server1, they will communicate

by unicast on eth0 interface to their private IP addresses, and there will be a keep-alive heartbeat every

second. A warning will be reached on 2 second delay and at three seconds a fail-over will occur. So, it is

configured a RTO of three seconds plus service startup time.

auto_failback off is used to avoid a new outage when primary node comes back again, secondary

node keeps being active one.

Now /etc/ha.d/authkeys is configured to define authentication between nodes, in production sys-

tems RandomSecretPassword should be substituted by a real password:

auth 1

1 sha1 RandomSecretPassword

And finally /etc/haresources should contain the services and the initial node that will provide them:

iscsi-server0 192.168.1.36/24 tgt

If those three files are synced between servers, heartbeat can be started now, again on both of them:

/etc/init.d/heartbeat start

Starting High-Availability services: IPaddr[10744]: INFO: Resource is stopped

Done.

If looked at system logs, it will be seen what happened to the services:

Nov 2 20:10:46 iscsi-server0 heartbeat: [12849]: WARN: Core dumps could be lost if multiple dumps occur.

Nov 2 20:10:46 iscsi-server0 heartbeat: [12849]: WARN: Consider setting non-default value in /proc/sys/

kernel/core_pattern (or equivalent) for maximum supportability

Nov 2 20:10:46 iscsi-server0 heartbeat: [12849]: WARN: Consider setting /proc/sys/kernel/core_uses_pid (or

equivalent) to 1 for maximum supportability

Nov 2 20:10:46 iscsi-server0 heartbeat: [12849]: info: Pacemaker support: false

Nov 2 20:10:46 iscsi-server0 heartbeat: [12849]: WARN: Logging daemon is disabled --enabling logging daemon

is recommended

Nov 2 20:10:46 iscsi-server0 heartbeat: [12849]: info: **************************
Nov 2 20:10:46 iscsi-server0 heartbeat: [12849]: info: Configuration validated. Starting heartbeat 3.0.5

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: heartbeat: version 3.0.5

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: Heartbeat generation: 1383418327

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: glib: ucast: write socket priority set to

IPTOS_LOWDELAY on eth0

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: glib: ucast: bound send socket to device: eth0

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: glib: ucast: bound receive socket to device: eth0

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: glib: ucast: started on port 694 interface eth0 to

192.168.103.99

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: glib: ucast: write socket priority set to

IPTOS_LOWDELAY on eth0

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: glib: ucast: bound send socket to device: eth0

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: glib: ucast: bound receive socket to device: eth0

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: glib: ucast: started on port 694 interface eth0 to

192.168.103.91

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: Local status now set to: ’up’

Nov 2 20:10:46 iscsi-server0 heartbeat: [12850]: info: Link iscsi-server0:eth0 up.

Nov 2 20:10:52 iscsi-server0 heartbeat: [12850]: info: Link iscsi-server1:eth0 up.

Nov 2 20:10:52 iscsi-server0 heartbeat: [12850]: info: Status update for node iscsi-server1: status up

Nov 2 20:10:52 iscsi-server0 heartbeat: [12860]: debug: notify_world: setting SIGCHLD Handler to SIG_DFL

Nov 2 20:10:52 iscsi-server0 harc[12860]: info: Running /etc/ha.d//rc.d/status status

Nov 2 20:10:53 iscsi-server0 heartbeat: [12850]: debug: get_delnodelist: delnodelist=

Nov 2 20:10:53 iscsi-server0 heartbeat: [12850]: info: Comm_now_up(): updating status to active

Nov 2 20:10:53 iscsi-server0 heartbeat: [12850]: info: Local status now set to: ’active’

Nov 2 20:10:53 iscsi-server0 heartbeat: [12850]: info: Status update for node iscsi-server1: status active

Nov 2 20:10:53 iscsi-server0 heartbeat: [12878]: debug: notify_world: setting SIGCHLD Handler to SIG_DFL

Nov 2 20:10:53 iscsi-server0 harc[12878]: info: Running /etc/ha.d//rc.d/status status

Nov 2 20:11:03 iscsi-server0 heartbeat: [12850]: info: remote resource transition completed.

CHAPTER 2. STORAGE 22

Nov 2 20:11:03 iscsi-server0 heartbeat: [12850]: info: remote resource transition completed.

Nov 2 20:11:03 iscsi-server0 heartbeat: [12850]: info: Initial resource acquisition complete (T_RESOURCES(

us))

Nov 2 20:11:04 iscsi-server0 IPaddr[12936]: INFO: Resource is stopped

Nov 2 20:11:04 iscsi-server0 heartbeat: [12901]: info: Local Resource acquisition completed.

Nov 2 20:11:04 iscsi-server0 heartbeat: [12850]: debug: StartNextRemoteRscReq(): child count 1

Nov 2 20:11:04 iscsi-server0 heartbeat: [12973]: debug: notify_world: setting SIGCHLD Handler to SIG_DFL

Nov 2 20:11:04 iscsi-server0 harc[12973]: info: Running /etc/ha.d//rc.d/ip-request-resp ip-request-resp

Nov 2 20:11:04 iscsi-server0 ip-request-resp[12973]: received ip-request-resp 192.168.103.36/24 OK yes

Nov 2 20:11:04 iscsi-server0 ResourceManager[12994]: info: Acquiring resource group: iscsi-server0

192.168.103.36/24 tgt

Nov 2 20:11:04 iscsi-server0 IPaddr[13021]: INFO: Resource is stopped

Nov 2 20:11:04 iscsi-server0 ResourceManager[12994]: info: Running /etc/ha.d/resource.d/IPaddr

192.168.103.36/24 start

Nov 2 20:11:04 iscsi-server0 IPaddr[13097]: INFO: Using calculated nic for 192.168.103.36: eth0

Nov 2 20:11:04 iscsi-server0 IPaddr[13097]: INFO: Using calculated netmask for 192.168.103.36:

255.255.255.0

Nov 2 20:11:04 iscsi-server0 IPaddr[13097]: INFO: eval ifconfig eth0:0 192.168.103.36 netmask 255.255.255.0

broadcast 192.168.103.255

Nov 2 20:11:04 iscsi-server0 IPaddr[13076]: INFO: Success

Nov 2 20:11:04 iscsi-server0 ResourceManager[12994]: info: Running /etc/init.d/tgt start

Nov 2 20:11:05 iscsi-server0 tgtd: semkey 0x610e403c

Nov 2 20:11:05 iscsi-server0 tgtd: tgtd daemon started, pid:13216

Nov 2 20:11:05 iscsi-server0 tgtd: tgtd logger started, pid:13218 debug:0

Nov 2 20:11:05 iscsi-server0 tgtd: work_timer_start(146) use timer_fd based scheduler

Nov 2 20:11:05 iscsi-server0 tgtd: bs_init(312) use signalfd notification

And now if it is checked if services had been started, they can be seen, both IP address is set, and tgt is

exporting out ISCSI target:

root@iscsi-server0:~# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

link/ether 52:54:00:ba:cf:e6 brd ff:ff:ff:ff:ff:ff

inet 192.168.103.99/24 brd 192.168.103.255 scope global eth0

inet 192.168.103.36/24 brd 192.168.103.255 scope global secondary eth0:0

inet6 fe80::5054:ff:feba:cfe6/64 scope link

valid_lft forever preferred_lft forever

root@iscsi-server0:~# tgtadm --lld iscsi --op show --mode target

Target 1: iqn.2013-11.edu.uoc:ha-disk

System information:

Driver: iscsi

State: ready

I_T nexus information:

LUN information:

LUN: 0

Type: controller

SCSI ID: IET 00010000

SCSI SN: beaf10

Size: 0 MB, Block size: 1

Online: Yes

Removable media: No

Readonly: No

Backing store type: null

Backing store path: None

Backing store flags:

LUN: 1

Type: disk

SCSI ID: IET 00010001

SCSI SN: beaf11

Size: 231 MB, Block size: 512

Online: Yes

CHAPTER 2. STORAGE 23

Removable media: No

Readonly: No

Backing store type: rdwr

Backing store path: /dev/drbd0

Backing store flags:

Account information:

ACL information:

ALL

2.4.2.4 ISCSI client

Client should now connect to exported ISCSI target. From now on all work will be done on iscsi-client.

ISCSI should be configured, needed client software is open-iscsi:

root@iscsi-client:~# apt-get install open-iscsi

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:

open-iscsi

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

Need to get 532 kB of archives.

After this operation, 2,166 kB of additional disk space will be used.

Get:1 http://ftp.fi.debian.org/debian/ wheezy/main open-iscsi amd64 2.0.873-3 [532 kB]

Fetched 532 kB in 2s (266 kB/s)

Selecting previously unselected package open-iscsi.

(Reading database ... 18431 files and directories currently installed.)

Unpacking open-iscsi (from .../open-iscsi_2.0.873-3_amd64.deb) ...

Processing triggers for man-db ...

Setting up open-iscsi (2.0.873-3) ...

To see all exported targets from iscsi-server-ha the service can be started and this command written:

root@iscsi-client:~# /etc/init.d/open-iscsi start

[ok] Starting iSCSI initiator service: iscsid.

[....] Setting up iSCSI targets:

iscsiadm: No records found

. ok

[ok] Mounting network filesystems:.

root@iscsi-client:~# iscsiadm --mode discovery --type sendtargets --portal iscsi-server-ha

192.168.103.36:3260,1 iqn.2013-11.edu.uoc:ha-disk

Now iscsi-client should connect to this target:

root@iscsi-client:~# iscsiadm --mode node --targetname iqn.2013-11.edu.uoc:ha-disk --portal iscsi-server-ha

--login

Logging in to [iface: default, target: iqn.2013-11.edu.uoc:ha-disk, portal: 192.168.103.36,3260] (multiple)

Login to [iface: default, target: iqn.2013-11.edu.uoc:ha-disk, portal: 192.168.103.36,3260] successful.

Now a new disk (/dev/sdb) is attached to this system, looking at /var/log/syslog it can be seen:

Nov 2 20:41:14 iscsi-client kernel: [25432.581082] scsi2 : iSCSI Initiator over TCP/IP

Nov 2 20:41:15 iscsi-client kernel: [25433.256887] scsi 2:0:0:0: RAID IET Controller

0001 PQ: 0 ANSI: 5

Nov 2 20:41:15 iscsi-client kernel: [25433.303447] scsi 2:0:0:0: Attached scsi generic sg2 type 12

Nov 2 20:41:15 iscsi-client kernel: [25433.305431] scsi 2:0:0:1: Direct-Access IET VIRTUAL-DISK

0001 PQ: 0 ANSI: 5

Nov 2 20:41:15 iscsi-client kernel: [25433.309740] sd 2:0:0:1: Attached scsi generic sg3 type 0

Nov 2 20:41:15 iscsi-client kernel: [25433.317589] sd 2:0:0:1: [sdb] 450472 512-byte logical blocks: (230

MB/219 MiB)

Nov 2 20:41:15 iscsi-client kernel: [25433.318455] sd 2:0:0:1: [sdb] Write Protect is off

Nov 2 20:41:15 iscsi-client kernel: [25433.318458] sd 2:0:0:1: [sdb] Mode Sense: 49 00 00 08

CHAPTER 2. STORAGE 24

Nov 2 20:41:15 iscsi-client kernel: [25433.319215] sd 2:0:0:1: [sdb] Write cache: enabled, read cache:

enabled, doesn’t support DPO or FUA

Nov 2 20:41:15 iscsi-client kernel: [25433.408323] sdb: unknown partition table

Nov 2 20:41:15 iscsi-client kernel: [25433.441373] sd 2:0:0:1: [sdb] Attached SCSI disk

Nov 2 20:41:15 iscsi-client iscsid: Connection1:0 to [target: iqn.2013-11.edu.uoc:ha-disk, portal:

192.168.103.36,3260] through [iface: default] is operational now

iscsi-client can partition, format and mount it:

root@iscsi-client:~# fdisk /dev/sdb

Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel

Building a new DOS disklabel with disk identifier 0x19dc69dd.

Changes will remain in memory only, until you decide to write them.

After that, of course, the previous content won’t be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Command (m for help): n

Partition type:

p primary (0 primary, 0 extended, 4 free)

e extended

Select (default p): p

Partition number (1-4, default 1): 1

First sector (2048-450471, default 2048):

Using default value 2048

Last sector, +sectors or +size{K,M,G} (2048-450471, default 450471):

Using default value 450471

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

root@iscsi-client:~# mkfs.ext4 /dev/sdb1

mke2fs 1.42.5 (29-Jul-2012)

Filesystem label=

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

Stride=0 blocks, Stripe width=0 blocks

56224 inodes, 224212 blocks

11210 blocks (5.00%) reserved for the super user

First data block=1

Maximum filesystem blocks=67371008

28 block groups

8192 blocks per group, 8192 fragments per group

2008 inodes per group

Superblock backups stored on blocks:

8193, 24577, 40961, 57345, 73729, 204801, 221185

Allocating group tables: done

Writing inode tables: done

Creating journal (4096 blocks): done

Writing superblocks and filesystem accounting information: done

root@iscsi-client:~# mount /dev/sdb1 /mnt/

root@iscsi-client:~# df -h

Filesystem Size Used Avail Use% Mounted on

rootfs 3.8G 580M 3.0G 16% /

udev 10M 0 10M 0% /dev

tmpfs 50M 188K 50M 1% /run

/dev/disk/by-uuid/cab98ef2-c703-4e3e-883e-3c62ca200a97 3.8G 580M 3.0G 16% /

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 143M 0 143M 0% /run/shm

/dev/sdb1 213M 6.1M 196M 3% /mnt

root@iscsi-client:~# ls -l /mnt/

total 12

CHAPTER 2. STORAGE 25

drwx------ 2 root root 12288 Nov 2 20:45 lost+found

And at ISCSI server the client connection can be seen:

root@iscsi-server0:~# tgtadm --lld iscsi --op show --mode target

Target 1: iqn.2013-11.edu.uoc:ha-disk

System information:

Driver: iscsi

State: ready

I_T nexus information:

I_T nexus: 1

Initiator: iqn.1993-08.org.debian:01:e4faf112bfb0

Connection: 0

IP Address: 192.168.103.93

LUN information:

LUN: 0

Type: controller

SCSI ID: IET 00010000

SCSI SN: beaf10

Size: 0 MB, Block size: 1

Online: Yes

Removable media: No

Readonly: No

Backing store type: null

Backing store path: None

Backing store flags:

LUN: 1

Type: disk

SCSI ID: IET 00010001

SCSI SN: beaf11

Size: 231 MB, Block size: 512

Online: Yes

Removable media: No

Readonly: No

Backing store type: rdwr

Backing store path: /dev/drbd0

Backing store flags:

Account information:

ACL information:

ALL

2.4.3 Failure test

Heartbeat should be shut down on iscsi-server0 and iscsi-server1 will takeover the services.

On iscsi-server0:

root@iscsi-server0:~# /etc/init.d/heartbeat stop

Stopping High-Availability services: Killed

And then on iscsi-server1 the services are started, and iscsi-client is already connected:

root@iscsi-server1:/etc/ha.d# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

link/ether 52:54:00:ce:65:76 brd ff:ff:ff:ff:ff:ff

inet 192.168.103.91/24 brd 192.168.103.255 scope global eth0

inet 192.168.103.36/24 brd 192.168.103.255 scope global secondary eth0:0

CHAPTER 2. STORAGE 26

inet6 fe80::5054:ff:fece:6576/64 scope link

valid_lft forever preferred_lft forever

root@iscsi-server1:/etc/ha.d# tgtadm --lld iscsi --op show --mode target

Target 1: iqn.2013-11.edu.uoc:ha-disk

System information:

Driver: iscsi

State: ready

I_T nexus information:

I_T nexus: 1

Initiator: iqn.1993-08.org.debian:01:e4faf112bfb0

Connection: 0

IP Address: 192.168.103.93

LUN information:

LUN: 0

Type: controller

SCSI ID: IET 00010000

SCSI SN: beaf10

Size: 0 MB, Block size: 1

Online: Yes

Removable media: No

Readonly: No

Backing store type: null

Backing store path: None

Backing store flags:

LUN: 1

Type: disk

SCSI ID: IET 00010001

SCSI SN: beaf11

Size: 231 MB, Block size: 512

Online: Yes

Removable media: No

Readonly: No

Backing store type: rdwr

Backing store path: /dev/drbd0

Backing store flags:

Account information:

ACL information:

ALL

On iscsi-client those system logs can be seen:

Nov 2 20:54:05 iscsi-client iscsid: Kernel reported iSCSI connection 1:0 error (1020 -

ISCSI_ERR_TCP_CONN_CLOSE: TCP connection closed) state (3)

Nov 2 20:54:08 iscsi-client iscsid: connection1:0 is operational after recovery (1 attempts)

So, just a 3 seconds downtime was suffered. It is fair to say heartbeat was stopped correctly on iscsi-server0,

in case of power failure, detection would last 3 seconds, there will be an startup of a pair more seconds

and client will not see a TCP FIN, instead it will see the server host (the new active one) says TCP

connection doesn’t exist and a longer downtime will occur.

This scenario should be tried. At laboratory, a brute-force shutting down of active ISCSI server (iscsi-server1)

gives this result:

iscsi-server0 detects the node has fallen down and starts services in two seconds:

Nov 2 21:15:15 iscsi-server0 heartbeat: [2147]: WARN: node iscsi-server1: is dead

Nov 2 21:15:15 iscsi-server0 heartbeat: [2147]: WARN: No STONITH device configured.

Nov 2 21:15:15 iscsi-server0 heartbeat: [2147]: WARN: Shared disks are not protected.

Nov 2 21:15:15 iscsi-server0 heartbeat: [2147]: info: Resources being acquired from iscsi-server1.

Nov 2 21:15:15 iscsi-server0 heartbeat: [2147]: info: Link iscsi-server1:eth0 dead.

Nov 2 21:15:15 iscsi-server0 heartbeat: [2336]: debug: notify_world: setting SIGCHLD Handler to SIG_DFL

Nov 2 21:15:15 iscsi-server0 harc[2336]: info: Running /etc/ha.d//rc.d/status status

Nov 2 21:15:15 iscsi-server0 mach_down[2370]: info: /usr/share/heartbeat/mach_down: nice_failback: foreign

resources acquired

CHAPTER 2. STORAGE 27

Nov 2 21:15:15 iscsi-server0 mach_down[2370]: info: mach_down takeover complete for node iscsi-server1.

Nov 2 21:15:15 iscsi-server0 heartbeat: [2147]: info: mach_down takeover complete.

Nov 2 21:15:15 iscsi-server0 heartbeat: [2147]: debug: StartNextRemoteRscReq(): child count 1

Nov 2 21:15:15 iscsi-server0 IPaddr[2394]: INFO: Resource is stopped

Nov 2 21:15:15 iscsi-server0 heartbeat: [2337]: info: Local Resource acquisition completed.

Nov 2 21:15:15 iscsi-server0 heartbeat: [2147]: debug: StartNextRemoteRscReq(): child count 1

Nov 2 21:15:15 iscsi-server0 heartbeat: [2457]: debug: notify_world: setting SIGCHLD Handler to SIG_DFL

Nov 2 21:15:15 iscsi-server0 kernel: [1265.688587] block drbd0: PingAck did not arrive in time.

Nov 2 21:15:15 iscsi-server0 kernel: [1265.688925] block drbd0: peer(Primary -> Unknown) conn(Connected

-> NetworkFailure) pdsk(UpToDate -> DUnknown)

Nov 2 21:15:15 iscsi-server0 kernel: [1265.688990] block drbd0: new current UUID 8241221A753008EF:209

F54EACEE19147:707A82C51BBD9A73:707982C51BBD9A73

Nov 2 21:15:15 iscsi-server0 harc[2457]: info: Running /etc/ha.d//rc.d/ip-request-resp ip-request-resp

Nov 2 21:15:15 iscsi-server0 kernel: [1265.705233] block drbd0: asender terminated

Nov 2 21:15:15 iscsi-server0 kernel: [1265.705237] block drbd0: Terminating drbd0_asender

Nov 2 21:15:15 iscsi-server0 kernel: [1265.713601] block drbd0: Connection closed

Nov 2 21:15:15 iscsi-server0 kernel: [1265.713608] block drbd0: conn(NetworkFailure -> Unconnected)

Nov 2 21:15:15 iscsi-server0 kernel: [1265.713611] block drbd0: receiver terminated

Nov 2 21:15:15 iscsi-server0 kernel: [1265.713613] block drbd0: Restarting drbd0_receiver

Nov 2 21:15:15 iscsi-server0 kernel: [1265.713615] block drbd0: receiver (re)started

Nov 2 21:15:15 iscsi-server0 kernel: [1265.713618] block drbd0: conn(Unconnected -> WFConnection)

Nov 2 21:15:15 iscsi-server0 ip-request-resp[2457]: received ip-request-resp 192.168.103.36/24 OK yes

Nov 2 21:15:15 iscsi-server0 ResourceManager[2478]: info: Acquiring resource group: iscsi-server0

192.168.103.36/24 tgt

Nov 2 21:15:15 iscsi-server0 IPaddr[2505]: INFO: Resource is stopped

Nov 2 21:15:15 iscsi-server0 ResourceManager[2478]: info: Running /etc/ha.d/resource.d/IPaddr

192.168.103.36/24 start

Nov 2 21:15:16 iscsi-server0 IPaddr[2581]: INFO: Using calculated nic for 192.168.103.36: eth0

Nov 2 21:15:16 iscsi-server0 IPaddr[2581]: INFO: Using calculated netmask for 192.168.103.36: 255.255.255.0

Nov 2 21:15:16 iscsi-server0 IPaddr[2581]: INFO: eval ifconfig eth0:0 192.168.103.36 netmask 255.255.255.0

broadcast 192.168.103.255

Nov 2 21:15:16 iscsi-server0 IPaddr[2560]: INFO: Success

Nov 2 21:15:16 iscsi-server0 ResourceManager[2478]: info: Running /etc/init.d/tgt start

Nov 2 21:15:16 iscsi-server0 kernel: [1266.797245] tgtd (2700): /proc/2700/oom_adj is deprecated, please

use /proc/2700/oom_score_adj instead.

Nov 2 21:15:16 iscsi-server0 tgtd: semkey 0x610e17ce

Nov 2 21:15:16 iscsi-server0 tgtd: tgtd daemon started, pid:2700

Nov 2 21:15:16 iscsi-server0 tgtd: tgtd logger started, pid:2702 debug:0

Nov 2 21:15:17 iscsi-server0 tgtd: work_timer_start(146) use timer_fd based scheduler

Nov 2 21:15:17 iscsi-server0 tgtd: bs_init(312) use signalfd notification

iscsi-client detects the outage when service is reestablished and then reconnects in three seconds:

Nov 2 21:15:17 iscsi-client iscsid: Kernel reported iSCSI connection 1:0 error (1020 -

ISCSI_ERR_TCP_CONN_CLOSE: TCP connection closed) state (3)

Nov 2 21:15:20 iscsi-client iscsid: connection1:0 is operational after recovery (1 attempts)

In this case a downtime of a total of eight seconds is reached:

• 3 seconds for heartbeat detection

• 2 seconds for service restoration

• 3 seconds for client reconnection

2.4.4 Possible improvements

These numbers can be improved in real production systems:

• heartbeats can be sent more often than once per second, and detection can be done in less than a

second.

CHAPTER 2. STORAGE 28

• tgt service can be always up, it’s a bit dangerous because no clients should connect no normal IP ad-

dress, this can be assured by other means like iptables, so finally service restoration can be achieved

in the time an IP address is assigned, current IP assignment is done by /etc/ha.d/resources.d/

IPaddr script. This script can also be optimized.

• client reconnection will be more difficult to improve as it depends on iscsid application and

Network connectivity. A faster connection may help and may be ISCSI client software can be sub-

stituted, also other techniques can be used. ISCSI multi-path permits a system to maintain more

than one path to the same target. No reconnection is needed to put or retrieve data, as other paths

are available. See figure 2.3 for a graphical explanation.

Figure 2.3: Multi-path

Chapter 3

Networking

3.1 Ways to provide high available networking

For two hosts to communicate, there are many possible points of failure. Usually vendors, for example

Sun Microsystems[40] and Cisco[5] classify these points in three categories or levels:

• Link level: used to provide Network Interface Card or Switch redundancy.

• Gateway level: used to provide Gateway router redundancy.

• Routing level: used to provide topology failure redundancy.

Figure 3.1 shows a diagram with all these levels combined. Normally all of them should be used to

provide a no single point of failure redundancy.

Let’s explain each one in detail in next sections.

3.1.1 Link Level

A network card (NIC) may fail, so a host should have more than one card to provide connectivity in case

this happens. Also a switch may fail, so it’s a good practice to have more than one switch for the same

network, and hosts connected to more than one of them, so in case of failure there is another switch that

can carry on with connectivity. This is named Link Aggregation.

So, at least two switches are needed and all high available hosts should have a minimum of two interface

cards.

There are also many ways to provide link aggregation, some of them only provide fail over, some others

also provide higher throughput than single cards.

Those are the most commonly used link aggregations methods that provide network redundancy:

• Active/passive: one host has one active card connected to one switch, is case this switch powers

down or network card fails, the host promotes another card to active one. Normally the way to

trigger fail over is to detect link failure. Also ARP queries may be used. All network cards are

29

CHAPTER 3. NETWORKING 30

Figure 3.1: Network Redundancy

presented with a single MAC address. Switches should be connected between each other at layer 2

level because some hosts may use one as active and others, another one. Some hosts may not have

more than one NIC and act as a bonding with a single active card. No special Switch capability is

needed.

• LACP[17]: one host has more than one card connected to the same host. They speak 802.3ad

protocol to sum bandwidth of all network cards. With this method also all network cards are

presented with the same MAC address, each Ethernet packet is sent using round robin through

all NICs. This method increases throughput, but only uses one switch, so switch failure is not

supported. Switch capability is needed two support this method.

• Adaptive Load Balancing[9]: one host has more than one card and each one connected to a different

switch. All are active at once. To share bandwidth when a host receives a ARP request, it replies

with the MAC associated to least used card. So all cards have different MAC address. No special

switch capability is needed. This is may be the preferred way to provide network redundancy as

CHAPTER 3. NETWORKING 31

increases throughput and provides full redundancy.

At figure 3.1 we can see an example link aggregation redundancy network on both networks.

3.1.2 Gateway Level

All hosts may have multiple NICs to connect each other at a layer 2 network. But all of them will have

a default gateway to connect to other hosts outside their network. The default gateway router may also

have multiple NICs, but the whole host may fail so it is needed a way to provide more than one default

router transparent to network hosts.

This redundancy can be in active/active mode but a lot of work will be need in every host to support it,

so normally active/passive systems are used. A Virtual IP address is shared by all routers an only active

one uses it and replies to ARP requests using that IP address. A protocol is used to talk between potential

routers. There is a standard named VRRP[59] if different vendors want to be used. But normally all

routers are from the same vendor and proprietary protocols are used. In GNU/Linux Heartbeat[23] is an

application that can be used to have this Virtual IP address, and BSD systems use one software named

CARP[45].

Also, there can be techniques to share network sessions to be able to fail over a firewall without disrupting

active sessions.

At figure 3.1 both network border routers represent the system explained in this section

3.1.3 Routing level

For bigger interconnected networks Gateway Level methods are not used because of complexity. Also

there are a lot of network routes that should be configured and this routes, in case of topology failure,

should be reconfigured. So it is needed a way to propagate network routes between a group of routers.

When all routes have arrived to all routers and have been applied it is said that they have reach conver-

gence.

There are may routing protocols[55]. Internet uses BGP[43] that doesn’t route routes but Autonomous
Systems, because there are so many routes that won’t be practical to route them individually at large scale.

Inside an Autonomous System other protocols[55] are used, they are named Interior Border Protocols.

For fast convergence, in case of network failure, preferred protocol is OSPF[53]. But all of them provide

the same functionality. Each router publishes known routes to foreign routers and stores best gateways

to reach not directly connected networks.

Figure 3.1 shows an example routing connection between seven routers. On convergence, all routers will

have IP routes defined to use gateways that get the shortest path to reach them.

3.2 The GNU/Linux way

GNU/Linux owns open source solutions for all these network redundancy targets.

CHAPTER 3. NETWORKING 32

3.2.1 Link level

In vanilla Linux kernel, the bonding driver[9] supports all mentioned levels and some others. They are

numbered from 1 to 6. There are two ways to configure it:

• By loading the bonding driver with mode=XX parameter. This is only suited for single bonding

devices in a host.

• By loading the driver and interacting with /sys/class/net/bonding_masters file and /sys/

class/net/bondX folders. This is the preferred method for hosts connected to multiple net-

works, as more than one bonding device and different modes can be used. cat and echo can

be used to add/remove or modify configuration. Debian and Redhat/CentOS network parameters

at /etc/network/interfaces and /etc/sysconfig/network/ifcfg-bondX respectively

uses this method.

Some modes will require that switches are connected, some others will require the contrary.

We will explain all modes in detail in next subsections.

3.2.1.1 Balance round robin (mode=0)

Round-robin policy: Transmit packets in sequential order from the first available slave through
the last.[9]

Each single packet uses a network device. For outgoing traffic it is balanced, for incoming traffic switches

will have cached the MAC address in a particular port.

It is needed to connect all switches between them because a host many have a failing device to one

switch. May use a lot of bandwidth between switches.

3.2.1.2 Active backup (mode=1)

Active-backup policy: Only one slave in the bond is active. A different slave becomes active if, and
only if, the active slave fails.[9]

One active card, in case of failure another one is promoted to active.

Switches should be connected between each other.

3.2.1.3 Balance XOR (mode=2)

XOR policy: Transmit based on the selected transmit hash policy. The default policy is a simple
[(source MAC address XOR’d with destination MAC address) modulo slave count].[9]

Destination hosts are balanced depending on MAC address. It’s a kind of sharing of destination hosts

between network devices. As gateway has only one MAC address, default gateway will always use just

one card.

Switches should also be connected.

CHAPTER 3. NETWORKING 33

3.2.1.4 Broadcast (mode=3)

Broadcast policy: transmits everything on all slave interfaces.[9]

Repeated through all network interfaces, packets will be received duplicated.

It is better to not connect switches between each other. A lot of network traffic. Redundancy is provided

because each host sends traffic to all switches.

3.2.1.5 802.3ad (mode=4)

IEEE 802.3ad Dynamic link aggregation. Creates aggregation groups that share the same speed
and duplex settings. Utilizes all slaves in the active aggregator according to the 802.3ad specifi-
cation. [9]

Standard LACP[17], all ports should be connected to the same switch. That need to support LACP and

has to be configured to define a group with all ports this host is connected to.

3.2.1.6 Balance-tlb (mode=5)

Adaptive transmit load balancing: channel bonding that does not require any special switch
support. The outgoing traffic is distributed according to the current load (computed relative to
the speed) on each slave. Incoming traffic is received by the current slave. If the receiving slave
fails, another slave takes over the MAC address of the failed receiving slave. [9]

All NICs are active, outgoing traffic is shared between devices depending on usage. Incoming traffic is

received on a single card.

Switches should be connected.

3.2.1.7 Balance-alb (mode=6)

Adaptive load balancing: includes balance-tlb plus receive load balancing (rlb) for IPV4 traffic,
and does not require any special switch support.[9]

Uses the same techniques as balance-tld but also shares incoming traffic answering different mac ad-

dresses to ARP requests, so distributes both outgoing and incoming traffic between slaves.

Switches should be connected.

3.2.2 Gateway Level

There are many applications that can be used to know if other hosts are alive, in order to launch an IP

address assignment in case of active router failure.

VRRP is supported in GNU/Linux [18], but normally other applications are used. In subsection 2.4.2.3

we configured Heartbeat[23] to have a Virtual IP address for active system. The same configuration could

CHAPTER 3. NETWORKING 34

be used to define default gateway IP address between two or more routers. Also Keepalived[21] can be

used.

If routers also have firewall capabilities it would be a good idea to have sessions in sync. For that an

application named conntrackd[26] exists, installed on both routers is used to notify passive router with

new sessions. Combined with heartbeat, for example, can be used to populate kernel with all sessions

received from the previously active router.

3.2.3 Routing Level

Some routing protocol applications exist. The most long used one may be Quagga [36] and is also the

one that we will use in our practical example. Lately BIRD [41] is having a lot of acceptance as it seems

to scale better. Both of them support many routing protocols[55].

Quagga has a user-friendly CLI for people used to Cisco interfaces as it has nearly the same syntax. It

supports BGP4, BGP4+, OSPFv2, OSPFv3, IS-IS, RIPv1, RIPv2, and RIPng.

Bird has fewer supported protocols, but as said before, it seems to have also fewer CPU needs[35]. It

supports OSPFv2, OSPFv3, RIPv2, RIPng and BGP.

3.3 Practical Example

3.3.1 Description

In this example, a Layer-3 high available network will be built. There will be two networks composed by

two equipments: a host simulating a PC and a router. The routers of both networks will have two paths

to connect each other. There will be two additional routers, one named pathA and other one named

pathB, and both will have two network devices connected to the routers of the two previous networks.

The idea is to have high available paths to connect between both networks. Figure 3.2 shows the dis-

position of all routers and hosts. router1 and router2 will have the possibility to use the path that

contains pathA or pathB router.

In order to build the laboratory, all six hosts will be Debian GNU/Linux virtual machines that will have

as many Ethernet devices as show on figure 3.2, but will have an additional (eth0) network device

to connect to Internet. The host that will storage those guests will have seven GNU/Linux bridges to

include the virtual devices of all hosts. Figure 3.3 shows each host network devices, which bridge they

are attached to, and IP addresses.

Routing software will be Quagga with OSPF module enabled. It will be configured with very frequent

messages, so a router failure will be quickly detected and routes will also be quickly reorganized.

To test failure, pathA and pathB routers will be shut down and route propagation will be seen to get

the high available network. ICMP echo request will be sending to see how many replies are lost between

failures.

CHAPTER 3. NETWORKING 35

Figure 3.2: OSPF dual-path network

3.3.2 Configuration

3.3.2.1 host1 and host2

Those systems will have eth0 network device already configured to have Internet access. eth1 device

will be configured now.

/etc/network/interfaces can be edited on host1 to add eth1 declaration as follows:

auto eth1

iface eth1 inet static

address 10.10.10.2

netmask 255.255.255.0

up ip route add 10.10.0.0/16 via 10.10.10.1

For host2 IP address will be 10.10.15.2. And that’s it. No more configuration is needed on host1 and

host2. They are supposed to be just PCs with a single gateway. In this example 10.10.0.0/16 network is

routed by the gateway, which includes all networks in our local test. Internet is reached by eth0 interface

and it is not declared here.

3.3.2.2 router1 and router2

First, is is needed to install Quagga. All IP addresses will be configured there.

apt-get install quagga

Reading package lists... Done

Building dependency tree

Reading state information... Done

CHAPTER 3. NETWORKING 36

br0 br10 br11 br12 br13 br14 br15

HOST eth0

host1 eth0 eth1

10.10.10.2

router1 eth0 eth1

10.10.10.1

eth2

10.10.11.2

eth3

10.10.13.2

pathA eth0 eth1

10.10.11.1

eth2

10.10.12.1

pathB eth0 eth1

10.10.13.1

eth2

10.10.14.1

router2 eth0 eth1

10.10.12.2

eth2

10.10.14.2

eth3

10.10.15.1

host2 eth0 eth1

10.10.15.2

Figure 3.3: hosts, bridges and Ethernet devices

The following extra packages will be installed:

libcap2

Suggested packages:

snmpd

The following NEW packages will be installed:

libcap2 quagga

0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.

Need to get 1,722 kB of archives.

After this operation, 5,896 kB of additional disk space will be used.

Do you want to continue [Y/n]?

Get:1 http://ftp.fi.debian.org/debian/ wheezy/main libcap2 amd64 1:2.22-1.2

[13.6 kB]

Get:2 http://ftp.fi.debian.org/debian/ wheezy/main quagga amd64 0.99.21-4+

wheezy1 [1,708 kB]

Fetched 1,722 kB in 20s (82.7 kB/s)

Preconfiguring packages ...

Selecting previously unselected package libcap2:amd64.

(Reading database ... 18982 files and directories currently installed.)

Unpacking libcap2:amd64 (from .../libcap2_1%3a2.22-1.2_amd64.deb) ...

Selecting previously unselected package quagga.

Unpacking quagga (from .../quagga_0.99.21-4+wheezy1_amd64.deb) ...

Processing triggers for man-db ...

Setting up libcap2:amd64 (1:2.22-1.2) ...

Setting up quagga (0.99.21-4+wheezy1) ...

Loading capability module if not yet done.

Starting Quagga daemons (prio:10):.

Later /etc/quagga/daemons is edited and both zebra and ospfd daemons are enabled:

• zebra will be responsible to talk to the Linux kernel to apply route changes negotiated with foreign

routers.

CHAPTER 3. NETWORKING 37

• ospfd will be responsible to talk to other OSPF daemons in the network to publish and receive

routes and network changes

So, it will be left with this content:

zebra=yes

bgpd=no

ospfd=yes

ospf6d=no

ripd=no

ripngd=no

isisd=no

babeld=no

At quagga, all daemons listen in a different TCP port for configuration. vtysh is a command that unifies

all those daemons in a single administration prompt. quagga configuration follows the same language

that Cisco IOS does, so people used to this language will feel comfortable. Indeed almost all routers

follow the same language structure, quagga is not an exception.

Now /etc/quagga/vtysh.conf is edited:

hostname router1

username root nopassword

For router2 host name is changed to router2.

Now /etc/quagga/zebra.conf of router1 is edited:

interface eth1

description link to host1

link-detect

ip address 10.10.10.1/24

ipv6 nd suppress-ra

!

interface eth2

description link to pathA

link-detect

ip address 10.10.11.2/24

ipv6 nd suppress-ra

!

interface eth3

description link to pathB

link-detect

ip address 10.10.13.2/24

ipv6 nd suppress-ra

!

interface lo

!

CHAPTER 3. NETWORKING 38

ip forwarding

!

!

line vty

!

For router2 it is just needed to change IP addresses and descriptions using the ones described at figure

3.3.

Then /etc/quagga/ospfd.conf needs to be edited, this is the content for router1:

!

!

!

!

!

interface eth1

description link to host1

ip ospf authentication null

ip ospf hello-interval 1

ip ospf dead-interval minimal hello-multiplier 5

!

interface eth2

description link to pathA

ip ospf authentication null

ip ospf hello-interval 1

ip ospf dead-interval minimal hello-multiplier 5

!

interface eth3

description link to pathB

ip ospf authentication null

ip ospf hello-interval 1

ip ospf dead-interval minimal hello-multiplier 5

!

interface lo

!

router ospf

ospf router-id 192.168.103.80

redistribute connected

network 10.10.10.0/24 area 0.0.0.0

network 10.10.11.0/24 area 0.0.0.0

network 10.10.13.0/24 area 0.0.0.0

!

line vty

!

CHAPTER 3. NETWORKING 39

For fast convergence (High Availability when talking about network routes), important configurations

are:

ip ospf hello-interval 1

ip ospf dead-interval minimal hello-multiplier 5

This means that failure detection should occur in less than a second. Hello messages will be sent at a

ratio of 5 per second (every 200 milliseconds).

For router2 interface descriptions need to be changed following figure 3.3, and inside router ospf

section router-id show be different, in this case, it is eth0 IP address. Also, in the same sections, all

networks need to be declared to enable OSPF on each router.

Now quagga can be restarted:

/etc/init.d/quagga restart

Stopping Quagga monitor daemon: (watchquagga).

Stopping Quagga daemons (prio:0): (ospfd) (zebra) (bgpd) (ripd) (ripngd) (

ospf6d) (isisd) (babeld).

Removing all routes made by zebra.

Loading capability module if not yet done.

Starting Quagga daemons (prio:10): zebra ospfd.

Starting Quagga monitor daemon: watchquagga.

3.3.2.3 pathA and pathB

Those last routers also need to have quagga installed. /etc/quagga/daemons and /etc/quagga/vtysh.conf

have the same content as router1 and router2.

For /etc/quagga/zebra.conf the content is similar, it is just needed to include IP addresses, net-

works and descriptions of figure 3.3. For example, for pathA router this is its content:

!

!

interface eth0

ipv6 nd suppress-ra

!

interface eth1

description link to router1

link-detect

ip address 10.10.11.1/24

ipv6 nd suppress-ra

!

interface eth2

description link to router2

link-detect

ip address 10.10.12.1/24

ipv6 nd suppress-ra

CHAPTER 3. NETWORKING 40

!

interface lo

!

ip forwarding

!

!

line vty

The same for /etc/quagga/ospfd.conf, this is the content for pathB:

!

!

!

!

!

interface eth0

!

interface eth1

description link to router1

ip ospf authentication null

ip ospf hello-interval 1

ip ospf dead-interval minimal hello-multiplier 5

!

interface eth2

description link to router2

ip ospf authentication null

ip ospf hello-interval 1

ip ospf dead-interval minimal hello-multiplier 5

!

interface lo

!

router ospf

ospf router-id 192.168.103.92

redistribute connected

network 10.10.11.0/24 area 0.0.0.0

network 10.10.12.0/24 area 0.0.0.0

!

line vty

!

Now it is need to have a look at vtysh and shell prompts, this is router1:

root@router1:~# vtysh

Hello, this is Quagga (version 0.99.21).

Copyright 1996-2005 Kunihiro Ishiguro, et al.

CHAPTER 3. NETWORKING 41

router1# show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface

RXmtL RqstL DBsmL

192.168.103.92 1 Full/Backup 0.953s 10.10.11.1 eth2

:10.10.11.2 0 0 0

192.168.103.98 1 Full/Backup 0.954s 10.10.13.1 eth3

:10.10.13.2 0 0 0

router1# show ip ospf route

============ OSPF network routing table ============

N 10.10.10.0/24 [10] area: 0.0.0.0

directly attached to eth1

N 10.10.11.0/24 [10] area: 0.0.0.0

directly attached to eth2

N 10.10.12.0/24 [20] area: 0.0.0.0

via 10.10.11.1, eth2

N 10.10.13.0/24 [10] area: 0.0.0.0

directly attached to eth3

N 10.10.14.0/24 [20] area: 0.0.0.0

via 10.10.13.1, eth3

N 10.10.15.0/24 [30] area: 0.0.0.0

via 10.10.11.1, eth2

via 10.10.13.1, eth3

============ OSPF router routing table =============

R 192.168.103.92 [10] area: 0.0.0.0, ASBR

via 10.10.11.1, eth2

R 192.168.103.98 [10] area: 0.0.0.0, ASBR

via 10.10.13.1, eth3

R 192.168.103.99 [20] area: 0.0.0.0, ASBR

via 10.10.11.1, eth2

via 10.10.13.1, eth3

============ OSPF external routing table ===========

N E2 192.168.103.0/24 [10/20] tag: 0

via 10.10.11.1, eth2

via 10.10.13.1, eth3

router1# exit

root@router1:~# ip r

default via 192.168.103.1 dev eth0

10.10.10.0/24 dev eth1 proto kernel scope link src 10.10.10.1

10.10.11.0/24 dev eth2 proto kernel scope link src 10.10.11.2

10.10.12.0/24 via 10.10.11.1 dev eth2 proto zebra metric 20

CHAPTER 3. NETWORKING 42

10.10.13.0/24 dev eth3 proto kernel scope link src 10.10.13.2

10.10.14.0/24 via 10.10.13.1 dev eth3 proto zebra metric 20

10.10.15.0/24 proto zebra metric 30

nexthop via 10.10.11.1 dev eth2 weight 1

nexthop via 10.10.13.1 dev eth3 weight 1

192.168.103.0/24 dev eth0 proto kernel scope link src 192.168.103.80

There are to paths with equal cost to reach 10.10.15.0/24 network, so zebra has configured Equal Cost
Multi-path using both router1 and router2, as expected. All other networks are also detected.

Now the same should be done for pathB:

root@pathB:~# vtysh

Hello, this is Quagga (version 0.99.21).

Copyright 1996-2005 Kunihiro Ishiguro, et al.

pathB# show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface

RXmtL RqstL DBsmL

192.168.103.80 1 Full/DR 0.878s 10.10.13.2 eth1

:10.10.13.1 0 0 0

192.168.103.99 1 Full/DR 0.878s 10.10.14.2 eth2

:10.10.14.1 0 0 0

pathB# show ip ospf route

============ OSPF network routing table ============

N 10.10.10.0/24 [20] area: 0.0.0.0

via 10.10.13.2, eth1

N 10.10.11.0/24 [20] area: 0.0.0.0

via 10.10.13.2, eth1

N 10.10.12.0/24 [20] area: 0.0.0.0

via 10.10.14.2, eth2

N 10.10.13.0/24 [10] area: 0.0.0.0

directly attached to eth1

N 10.10.14.0/24 [10] area: 0.0.0.0

directly attached to eth2

N 10.10.15.0/24 [20] area: 0.0.0.0

via 10.10.14.2, eth2

============ OSPF router routing table =============

R 192.168.103.80 [10] area: 0.0.0.0, ASBR

via 10.10.13.2, eth1

R 192.168.103.92 [20] area: 0.0.0.0, ASBR

via 10.10.13.2, eth1

via 10.10.14.2, eth2

CHAPTER 3. NETWORKING 43

R 192.168.103.99 [10] area: 0.0.0.0, ASBR

via 10.10.14.2, eth2

============ OSPF external routing table ===========

N E2 192.168.103.0/24 [10/20] tag: 0

via 10.10.13.2, eth1

via 10.10.14.2, eth2

pathB# exit

root@pathB:~# ip r

default via 192.168.103.1 dev eth0

10.10.10.0/24 via 10.10.13.2 dev eth1 proto zebra metric 20

10.10.11.0/24 via 10.10.13.2 dev eth1 proto zebra metric 20

10.10.12.0/24 via 10.10.14.2 dev eth2 proto zebra metric 20

10.10.13.0/24 dev eth1 proto kernel scope link src 10.10.13.1

10.10.14.0/24 dev eth2 proto kernel scope link src 10.10.14.1

10.10.15.0/24 via 10.10.14.2 dev eth2 proto zebra metric 20

192.168.103.0/24 dev eth0 proto kernel scope link src 192.168.103.98

And now that routes seem to have converged in all routers, let’s try High Availability in next section.

3.3.3 Failure test

host1 will keep sending a ping to host2, first pathA will be shut down and it will be seen what

happens. Routes should be set to send all traffic through pathB. And there will be shown how many

ICMP packets are lost.

Then pathA will be restored and routes should be reordered again. There should be few ICMP packets

lost at each network change.

First, host1 will ping host2:

root@host1:~# ping 10.10.15.2

PING 10.10.15.2 (10.10.15.2) 56(84) bytes of data.

64 bytes from 10.10.15.2: icmp_req=1 ttl=61 time=1.04 ms

64 bytes from 10.10.15.2: icmp_req=2 ttl=61 time=0.921 ms

64 bytes from 10.10.15.2: icmp_req=3 ttl=61 time=0.870 ms

64 bytes from 10.10.15.2: icmp_req=4 ttl=61 time=0.909 ms

Then quagga is stopped at pathA:

root@pathA:~# /etc/init.d/quagga stop

Stopping Quagga monitor daemon: watchquagga.

Stopping Quagga daemons (prio:0): ospfd zebra (bgpd) (ripd) (ripngd) (

ospf6d) (isisd) (babeld).

Removing all routes made by zebra.

CHAPTER 3. NETWORKING 44

How many packets have been lost?

64 bytes from 10.10.15.2: icmp_req=10 ttl=61 time=0.835 ms

64 bytes from 10.10.15.2: icmp_req=11 ttl=61 time=0.963 ms

64 bytes from 10.10.15.2: icmp_req=12 ttl=61 time=0.885 ms

64 bytes from 10.10.15.2: icmp_req=13 ttl=61 time=0.821 ms

64 bytes from 10.10.15.2: icmp_req=14 ttl=61 time=0.964 ms

64 bytes from 10.10.15.2: icmp_req=16 ttl=61 time=0.915 ms

64 bytes from 10.10.15.2: icmp_req=17 ttl=61 time=0.980 ms

Just one, the one identified by sequence number 15.

Now a new pings will be sent, quagga will be started at pathA, convergence will be reached and pathB

stopped.

First, router1 shows that the only active path to host2 is thought pathB:

root@router1:~# ip r

default via 192.168.103.1 dev eth0

10.10.10.0/24 dev eth1 proto kernel scope link src 10.10.10.1

10.10.11.0/24 dev eth2 proto kernel scope link src 10.10.11.2

10.10.12.0/24 via 10.10.13.1 dev eth3 proto zebra metric 30

10.10.13.0/24 dev eth3 proto kernel scope link src 10.10.13.2

10.10.14.0/24 via 10.10.13.1 dev eth3 proto zebra metric 20

10.10.15.0/24 via 10.10.13.1 dev eth3 proto zebra metric 30

192.168.103.0/24 dev eth0 proto kernel scope link src 192.168.103.80

New ICMP packets will be sent with this topology:

root@host1:~# ping 10.10.15.2

PING 10.10.15.2 (10.10.15.2) 56(84) bytes of data.

64 bytes from 10.10.15.2: icmp_req=1 ttl=61 time=1.17 ms

64 bytes from 10.10.15.2: icmp_req=2 ttl=61 time=1.21 ms

64 bytes from 10.10.15.2: icmp_req=3 ttl=61 time=1.14 ms

64 bytes from 10.10.15.2: icmp_req=4 ttl=61 time=1.68 ms

64 bytes from 10.10.15.2: icmp_req=5 ttl=61 time=1.14 ms

Now quagga should be started at pathA:

root@pathA:/etc/quagga# /etc/init.d/quagga start

Loading capability module if not yet done.

Starting Quagga daemons (prio:10): zebra ospfd.

Starting Quagga monitor daemon: watchquagga.

Some packets where lost:

64 bytes from 10.10.15.2: icmp_req=35 ttl=61 time=0.825 ms

64 bytes from 10.10.15.2: icmp_req=36 ttl=61 time=0.848 ms

64 bytes from 10.10.15.2: icmp_req=37 ttl=61 time=0.832 ms

CHAPTER 3. NETWORKING 45

64 bytes from 10.10.15.2: icmp_req=38 ttl=61 time=0.833 ms

64 bytes from 10.10.15.2: icmp_req=44 ttl=61 time=0.835 ms

64 bytes from 10.10.15.2: icmp_req=45 ttl=61 time=0.852 ms

64 bytes from 10.10.15.2: icmp_req=46 ttl=61 time=0.921 ms

Now router1 shows topology has changed:

root@router1:~# ip r

default via 192.168.103.1 dev eth0

10.10.10.0/24 dev eth1 proto kernel scope link src 10.10.10.1

10.10.11.0/24 dev eth2 proto kernel scope link src 10.10.11.2

10.10.12.0/24 via 10.10.11.1 dev eth2 proto zebra metric 20

10.10.13.0/24 dev eth3 proto kernel scope link src 10.10.13.2

10.10.14.0/24 via 10.10.13.1 dev eth3 proto zebra metric 20

10.10.15.0/24 proto zebra metric 30

nexthop via 10.10.11.1 dev eth2 weight 1

nexthop via 10.10.13.1 dev eth3 weight 1

192.168.103.0/24 dev eth0 proto kernel scope link src 192.168.103.80

Now, quagga of pathB is stopped:

64 bytes from 10.10.15.2: icmp_req=160 ttl=61 time=0.936 ms

64 bytes from 10.10.15.2: icmp_req=161 ttl=61 time=1.18 ms

64 bytes from 10.10.15.2: icmp_req=162 ttl=61 time=1.08 ms

64 bytes from 10.10.15.2: icmp_req=163 ttl=61 time=1.12 ms

64 bytes from 10.10.15.2: icmp_req=164 ttl=61 time=1.09 ms

64 bytes from 10.10.15.2: icmp_req=165 ttl=61 time=0.994 ms

64 bytes from 10.10.15.2: icmp_req=166 ttl=61 time=1.12 ms

64 bytes from 10.10.15.2: icmp_req=167 ttl=61 time=1.16 ms

Now no packets were lost. Having a look at router1 routes:

root@router1:~# ip r

default via 192.168.103.1 dev eth0

10.10.10.0/24 dev eth1 proto kernel scope link src 10.10.10.1

10.10.11.0/24 dev eth2 proto kernel scope link src 10.10.11.2

10.10.12.0/24 via 10.10.11.1 dev eth2 proto zebra metric 20

10.10.13.0/24 dev eth3 proto kernel scope link src 10.10.13.2

10.10.14.0/24 via 10.10.11.1 dev eth2 proto zebra metric 30

10.10.15.0/24 via 10.10.11.1 dev eth2 proto zebra metric 30

192.168.103.0/24 dev eth0 proto kernel scope link src 192.168.103.80

Only pathA is active as expected.

And finally pathB is started again:

root@pathB:~# /etc/init.d/quagga start

Loading capability module if not yet done.

CHAPTER 3. NETWORKING 46

Starting Quagga daemons (prio:10): zebra ospfd.

Starting Quagga monitor daemon: watchquagga.

How many packets were lost?

64 bytes from 10.10.15.2: icmp_req=343 ttl=61 time=0.834 ms

64 bytes from 10.10.15.2: icmp_req=344 ttl=61 time=0.890 ms

64 bytes from 10.10.15.2: icmp_req=345 ttl=61 time=0.864 ms

64 bytes from 10.10.15.2: icmp_req=346 ttl=61 time=0.893 ms

64 bytes from 10.10.15.2: icmp_req=347 ttl=61 time=0.915 ms

64 bytes from 10.10.15.2: icmp_req=348 ttl=61 time=0.825 ms

64 bytes from 10.10.15.2: icmp_req=349 ttl=61 time=0.839 ms

64 bytes from 10.10.15.2: icmp_req=350 ttl=61 time=0.946 ms

64 bytes from 10.10.15.2: icmp_req=351 ttl=61 time=0.917 ms

64 bytes from 10.10.15.2: icmp_req=352 ttl=61 time=0.948 ms

None. mtr should be used to see route followed by the packets:

root@host1:~# mtr -c 2 --report 10.10.15.2

HOST: host1 Loss% Snt Last Avg Best Wrst

StDev

1.|-- 10.10.10.1 0.0% 2 0.3 0.4 0.3 0.4

0.1

2.|-- 10.10.11.1 0.0% 2 0.6 0.5 0.5 0.6

0.1

3.|-- 10.10.14.2 0.0% 2 1.0 0.8 0.7 1.0

0.2

4.|-- 10.10.15.2 0.0% 2 0.9 0.8 0.8 0.9

0.0

This sequence is:

1. router1

2. pathA

3. router2

4. host2

That’s why pathB modification doesn’t affect now.

It’s worth mentioning that equal multi path routing remembers the path for single destination IP ad-

dresses. So router1 has cached that path to 10.10.15.2 is through pathA router. Next access using

multi path may use pathB router and when a timeout occurs, with no access to destination IP, this reg-

ister is erased from cache. So a trip from host1 to host2 will normally use a single path. Coming back

packets can use the same or the other path. When using this routers by a lot of hosts, traffic is balanced

between both paths.

Chapter 4

Operating System clustering Software

4.1 Ways to provide high available running systems

In this chapter we will cover the possible ways to have a complete Operating System (or host) running not

attached to a single hardware machine. Sometimes this is called Infrastructure as a Service (IaaS[44])

because we can think about the infrastructure (the Operating System) to be always up and running and

take care only of applications installed there.

Normally this means a way to have virtual machines that can be run on more than one node in a cluster.

This virtual machine is only active in one single node but, it this node fails, another one boots the virtual

machine.

We said normally because it is not needed to have virtual machines for this to work, but it is easier. It is

possible to have sleeping hardware hosts waiting for another one to fail and in that case be booted as the

failed host. This is very slow an not used normally, as it’s also a bit difficult to maintain, but it is still a

possible solution to choose among.

For example, openQRM[14] cloud software permits to define hosts and its root partition to be on NFS[51]

or ISCSI server. When a new node is added to the cloud it boots by PXE[54] and waits for openQRM

to tell it what to boot. openQRM can have this node as spare, and in case another one fails, it becomes

active. No need to virtualize anything.

One can also build a system that, in case of a node failure, assigns by PXE the failed system to a spare

hardware node, and then triggers a WakeOnLan[60] event to boot it.

Anyway, for simplicity and quick restoration, normally cloud software using virtualization is used.

Commercially the most used clustering and virtualization software is:

• VMware VSphere (57% of market share[42])

• Microsoft Hyper-V (28% of market share[42])

• Citrix XenServer

• RedHat Enterprise Virtualization

47

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 48

All these systems have:

• A pool of hardware nodes with virtualization capabilities

• A collection of virtual machines to be running

• A management system to add, monitor, start and stop those virtual machines

• Capability to start virtual machines in other nodes in case of a node failure

• Possibility to live migrate virtual machines between nodes, may be automatically to keep all nodes

the same busy.

We will cover non commercial GNU/Linux options in next section, but it is worth mentioning Openstack.

It’s an open source cloud software solution initially sponsored by NASA and Rackspace an now is sup-

ported by companies like AT&T, HP, IBM, Dell, Cisco, Intel, Juniper, Ericsson, Paypal... and about 300

more companies including VMWare, Citrix and RedHat which possess their own cloud system. This great

support seems to mean a great future.

4.2 The GNU/Linux way

In GNU/Linux we can use an out-of-the-box IaaS solution, or we can build our own. In next sections we

will cover:

• virtualization methods

• software useful to build cluster of nodes providing those virtual machines as services

• and complete IaaS solutions.

4.2.1 Virtualization

There are three types of virtualization methods:

• Full virtualization.

• Para-virtualization.

• Containers.

4.2.1.1 Full virtualization

A complete computer is emulated, Operating system running there doesn’t need to be modified.

Any Operating system can be run using this virtualization method (Windows, UNIX, ...), it even may not

know it is running as a virtual machine.

It’s the most resource consumption method as it requires emulating the whole system, but also the easiest

to make all applications work.

Some examples are:

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 49

• VMware (commercial but free personal usage)

• Virtualbox

• KVM/Qemu

4.2.1.2 Para virtualization

For operating systems that can be modified (normally only open sourced ones), the O.S. is adapted to run

as a virtual machine, so is less resource eager than a full virtualized system.

Also, some components can be modified in real time, like CPU or memory size.

One example is Xen.

4.2.1.3 Containers

It is not really virtualization, sometimes they are called jails in other Operating Systems (Solaris or BSD

derivatives). All files needed for the system live in a folder and the kernel opens a new instance of the

whole Operating System using those files.

It is isolated from other containers and the host node itself. It has its own network devices, RAM size and

CPU limits, but no new kernel is booted.

It’s the better choice for mass provision machines as it is the least resource consumer virtualization

method.

Some examples are:

• OpenVZ (or commercially Virtuozzo containers)

• LXC (Linux Containers)

• UML (User Mode Linux)

4.2.2 Cluster applications

For clustering applications we mean the software needed for a host to know if other hosts are there and

what are they doing. A group or cluster of nodes are supposed to provide services. Nodes talk between

each other to know if they are alive and providing services. In case of a node failure, the other nodes take

over service supply. Each node sends heartbeats to foreign nodes to notify it is alive. When heartbeats

don’t arrive, the other nodes suppose this node is dead, to assure this they also try to isolate (fence) this

node by powering it down with the help of any method:

• its motherboard BIOS (IPMI)

• the switch it is connected to

• the UPS powering it up

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 50

Also there are techniques to assure there are not two partitions of the cluster giving service. In case of

network failure, it is possible that two partitions exist, and some nodes only see the ones on the same

partition. This can provide a problem of data corruption, so usually clusters are only operable in case

that more that half of the nodes are present, this way it’s impossible to have two running partitions. The

bigger partition is said to have quorum. Only if quorum is present, the service is given.

There are many applications in GNU/Linux that can provide cluster services (also named resources). May

be simpler one is ancient Heartbeat[23]. For resource management an application named Pacemaker[7]

is used.

Corosync[8], also known as OpenAIS, is another alternative.

RedHat has put together some software in RedHat Cluster Suite[38] (Corosync, rgmanager, lucci, ricci) to

provide a complete system that keeps track of nodes availability and defines services (resources), checks

for availability, provides service migration, etc.

4.2.3 Out-of-the-box IaaS solutions

Everybody talks about the Cloud, and today a lot of companies are trying to provide complete IaaS

solutions. In the open source arena there are also a lot of opponents and everything is evolving quickly.

This solutions support some of the virtualization methods (normally only full virtualization, KVM is the

preferred method for the majority)

Some alternatives are:

• OpenStack[29]

• Cloudstack[2]

• Eucalyptus[15]

• OpenNebula[28]

• OpenQRM[14]

4.3 Practical Example

4.3.1 Description

A cluster of three nodes will be built using RHCS (cman/rgmanager) software. There will be a single

service that will be an Openvz virtual machine.

Documentation will begin having:

• One ISCSI server that will provide an ISCSI target that will be virtual machine root file system. This

installation will not be covered as it is already done in section 2.4.

• Three nodes that will be forming the cluster, as RHCS software will be used, a RedHat related

distribution will be installed, vanilla CentOS will be running on them.

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 51

• All nodes will have bridges enabled on network interfaces, to be able to add virtual machines to

those bridges. The bridge will be br0 and will have eth0 as first slave. Virtual machines will have

its network devices also as slaves of br0.

• Firewall and Selinux is disabled on all nodes.

• All hosts will have /etc/hosts configured so they know each other. This is the content:

192.168.103.97 iscsi-server

192.168.103.85 node0

192.168.103.98 node1

192.168.103.92 node2

It is needed to:

• Change kernel on three nodes to support OpenVZ containers

• Install and build a cluster on the three nodes.

• Define and install our virtual machine

• Associate this virtual machine to the cluster to provide High Availability

For testing, the node running our virtual machine will be shut down, and it will be seen how fast it

restarts in another node. Downtime will be measured to evaluate MTTR.

In figure 4.1 a diagram of this example can be seen.

Figure 4.1: Three-node cluster

4.3.2 Installation

4.3.2.1 Changing kernel to support OpenVZ containers

Following official OpenVZ[30] documentation, it can be installed.

First OpenVZ yum repository is added:

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 52

wget -P /etc/yum.repos.d/ http://ftp.openvz.org/openvz.repo

--2013-12-02 12:18:44-- http://ftp.openvz.org/openvz.repo

Resolviendo ftp.openvz.org... 199.115.104.11, 2620:e6::104:11

Connecting to ftp.openvz.org|199.115.104.11|:80... conectado.

Petición HTTP enviada, esperando respuesta... 200 OK

Longitud: 2120 (2,1K) [text/plain]

Saving to: ‘/etc/yum.repos.d/openvz.repo’

100%[====================================>] 2.120 --.-K/s in 0s

2013-12-02 12:18:44 (187 MB/s) - ‘/etc/yum.repos.d/openvz.repo’ saved

[2120/2120]

Then repo key is added to the system, so packages are trusted:

rpm --import http://ftp.openvz.org/RPM-GPG-Key-OpenVZ

New kernel is installed:

yum install vzkernel

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

* base: ftp.udl.es

* extras: ftp.udl.es

* openvz-kernel-rhel6: openvz.proserve.nl

* openvz-utils: openvz.proserve.nl

* updates: ftp.udl.es

openvz-kernel-rhel6 | 951 B 00:00

openvz-kernel-rhel6/primary | 3.4 kB 00:00

openvz-kernel-rhel6 12/12

openvz-utils | 951 B 00:00

openvz-utils/primary | 9.5 kB 00:00

openvz-utils 38/38

Setting up Install Process

Resolving Dependencies

[...]

Installed:

vzkernel.x86_64 0:2.6.32-042stab083.2

Dependency Updated:

kernel-firmware.noarch 0:2.6.32-431.el6

Complete!

And vzctl utility:

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 53

yum install vzctl

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

* base: ftp.udl.es

* extras: ftp.udl.es

* openvz-kernel-rhel6: openvz.just-hosting.ru

* openvz-utils: openvz.just-hosting.ru

* updates: ftp.udl.es

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package vzctl.x86_64 0:4.6.1-1 will be installed

[...]

Installed:

vzctl.x86_64 0:4.6.1-1

Dependency Installed:

[...]

Dependency Updated:

db4.x86_64 0:4.7.25-18.el6_4 db4-utils.x86_64 0:4.7.25-18.el6_4

glibc.x86_64 0:2.12-1.132.el6 glibc-common.x86_64 0:2.12-1.132.el6

Complete!

Then the system is rebooted, kernel is checked to have changed and openvz service has to be enabled:

uname -r

2.6.32-042stab083.2

service vz status

OpenVZ is running...

Which is correct.

It is just needed to add a file to be able to connect virtual machines to this network. To be able to add

their networks to bridge br0, it is needed to create the file /etc/vz/vznet.conf on those three nodes

with this content:

#!/bin/bash

EXTERNAL_SCRIPT="/usr/sbin/vznetaddbr"

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 54

4.3.2.2 Installing and configuring Cman

cman package can be installed:

yum install cman

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

* base: ftp.udl.es

* extras: ftp.udl.es

* openvz-kernel-rhel6: mirror.softaculous.com

* openvz-utils: mirror.softaculous.com

* updates: ftp.udl.es

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package cman.x86_64 0:3.0.12.1-59.el6 will be installed

[...]

Installed:

cman.x86_64 0:3.0.12.1-59.el6

Dependency Installed:

[...]

Complete!

Now, /etc/cluster/cluster.conf should be configured to define node members. This file will have

this content on all three nodes:

<?xml version="1.0"?>

<cluster name="uoclab" config_version="1">

<clusternodes>

<clusternode name="node0" votes="1" nodeid="1">

<fence> <method name="1"> <device name="nofence"/> </method> </fence>

</clusternode>

<clusternode name="node1" votes="1" nodeid="2">

<fence> <method name="1"> <device name="nofence"/> </method> </fence>

</clusternode>

<clusternode name="node2" votes="1" nodeid="3">

<fence> <method name="1"> <device name="nofence"/> </method> </fence>

</clusternode>

</clusternodes>

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 55

<fencedevices>

<fencedevice agent="nofence" name="nofence"/>

</fencedevices>

</cluster>

Fencing has been disabled in our tests. For nofence fencing to work we need to create the file /usr/sbin/nofence

with this content:

#!/bin/sh

exit 0

Now cman can be started:

service cman start

Starting cluster:

Checking if cluster has been disabled at boot... [OK]

Checking Network Manager... [OK]

Global setup... [OK]

Loading kernel modules... [OK]

Mounting configfs... [OK]

Starting cman... [OK]

Waiting for quorum... [OK]

Starting fenced... [OK]

Starting dlm_controld... [OK]

Tuning DLM kernel config... [OK]

Starting gfs_controld... [OK]

Unfencing self...

Let’s tell the system to start cman when it starts:

chkconf ig cman on

If cman_tool utilities are used on any node, all three nodes and cluster status can be seen connected:

[root@node0 cluster]# cman_tool nodes

Node Sts Inc Joined Name

1 M 44 2013-12-02 19:08:57 node0

2 M 48 2013-12-02 19:09:01 node1

3 M 52 2013-12-02 19:09:07 node2

[root@node0 cluster]# cman_tool status

Version: 6.2.0

Config Version: 1

Cluster Name: uoclab

Cluster Id: 17169

Cluster Member: Yes

Cluster Generation: 52

Membership state: Cluster-Member

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 56

Nodes: 3

Expected votes: 3

Total votes: 3

Node votes: 1

Quorum: 2

Active subsystems: 7

Flags:

Ports Bound: 0

Node name: node0

Node ID: 1

Multicast addresses: 239.192.67.84

Node addresses: 192.168.103.85

4.3.2.3 Installing the virtual machine

ISCSI client utilities are needed on all three nodes:

yum install iscsi-initiator-utils

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

* base: ftp.udl.es

* extras: ftp.udl.es

* openvz-kernel-rhel6: mirrors.ircam.fr

* openvz-utils: mirrors.ircam.fr

* updates: ftp.udl.es

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package iscsi-initiator-utils.x86_64 0:6.2.0.873-10.el6 will be

installed

--> Finished Dependency Resolution

Dependencies Resolved

[...]

Installed:

iscsi-initiator-utils.x86_64 0:6.2.0.873-10.el6

Complete!

Now it is also needed to login to the target ISCSI iqn on all nodes:

iscsiadm --mode discovery --type sendtargets --portal iscsi-server

Iniciando iscsid: [OK]

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 57

192.168.103.97:3260,1 iqn.2013-11.edu.uoc:ha-disk

iscsiadm --mode node --targetname iqn.2013-11.edu.uoc:ha-disk --portal

iscsi-server --login

Logging in to [iface: default, target: iqn.2013-11.edu.uoc:ha-disk, portal:

192.168.103.97,3260] (multiple)

Login to [iface: default, target: iqn.2013-11.edu.uoc:ha-disk, portal:

192.168.103.97,3260] successful.

Disk is /dev/sda (root file system is /dev/vda in our laboratory environments). Disk can now be

formatted, just from one node:

[root@node0 ~]# mkfs.ext4 -F /dev/sda

mke2fs 1.41.12 (17-May-2010)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

160000 inodes, 640000 blocks

32000 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=658505728

20 block groups

32768 blocks per group, 32768 fragments per group

8000 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 29 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

For openvz installation, it is needed an operating system template. A minimal Debian template will be

downloaded:

[root@node0 ~]# wget http://download.openvz.org/template/precreated/contrib

/debian-7.0-amd64-minimal.tar.xz -O /vz/template/cache/debian-7.0-amd64-

minimal.tar.xz

--2013-12-02 19:42:48-- http://download.openvz.org/template/precreated/

contrib/debian-7.0-amd64-minimal.tar.xz

Resolving download.openvz.org... 199.115.104.11, 2620:e6::104:11

Connecting to download.openvz.org|199.115.104.11|:80... connected.

HTTP request sent, awaiting response... 200 OK

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 58

Length: 42428832 (40M) [application/x-xz]

Saving to: ‘/vz/template/cache/debian-7.0-amd64-minimal.tar.xz’

100%[===>] 42,428,832 442K/s in

97s

2013-12-02 19:44:26 (425 KB/s) - ‘/vz/template/cache/debian-7.0-amd64-

minimal.tar.xz’ saved [42428832/42428832]

A virtual machine can now be created using this template with an example id of 100 and host name

virtualmachine:

[root@node0 ~]# vzctl create 100 --ostemplate debian-7.0-amd64-minimal --

hostname virtualmachine

Creating container private area (debian-7.0-amd64-minimal)

Performing postcreate actions

CT configuration saved to /etc/vz/conf/100.conf

Container private area was created

Its network interface can be attached to host br0:

[root@node0 ~]# vzctl set 100 --netif_add eth0,,,,br0 --save

CT configuration saved to /etc/vz/conf/100.conf

Disk quotas can be disabled, as this virtual machine will has its own partition, and it is not needed to

limit more the space to use:

[root@node0 ~]# vzctl set 100 --diskquota no --save

CT configuration saved to /etc/vz/conf/100.conf

It can be started:

[root@node0 ~]# vzctl start 100

Starting container...

Container is mounted

Setting CPU units: 1000

Configure veth devices: veth100.0

Adding interface veth100.0 to bridge br0 on CT0 for CT100

Container start in progress...

This host can now be entered:

[root@node0 ~]# vzctl enter 100

entered into CT 100

root@virtualmachine:/#

etc/network/interfaces should be edited to add eth0 configuration:

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 59

auto eth0

iface eth0 inet dhcp

Network can be started, a ping to an Internet host can be sent and its console can be left:

root@virtualmachine:/# ifup eth0

Internet Systems Consortium DHCP Client 4.2.2

Copyright 2004-2011 Internet Systems Consortium.

All rights reserved.

For info, please visit https://www.isc.org/software/dhcp/

Listening on LPF/eth0/00:18:51:28:62:56

Sending on LPF/eth0/00:18:51:28:62:56

Sending on Socket/fallback

DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 7

DHCPREQUEST on eth0 to 255.255.255.255 port 67

DHCPOFFER from 192.168.103.1

DHCPACK from 192.168.103.1

bound to 192.168.103.99 -- renewal in 245 seconds.

root@virtualmachine:/# ping -c 1 www.google.com

PING www.google.com (173.194.34.244) 56(84) bytes of data.

64 bytes from mad01s09-in-f20.1e100.net (173.194.34.244): icmp_req=1 ttl=56

time=32.5 ms

--- www.google.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 32.515/32.515/32.515/0.000 ms

root@virtualmachine:/# exit

logout

exited from CT 100

[root@node0 ~]#

The virtual machine has its files in /vz/private/100 in node0 file system. The virtual machine should

be stopoed now and its data can be moved to ISCSI partition:

[root@node0 ~]# vzctl stop 100

Stopping container ...

Container was stopped

Container is unmounted

[root@node0 ~]# mount /dev/sda /mnt/

[root@node0 ~]# mv /vz/private/100/* /mnt/

Now, to tell OpenVZ that this partition should me mounted, /etc/vz/conf/100.mount is created

with this content:

#!/bin/sh

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 60

mount /dev/sda /vz/root/100

And /etc/vz/conf/100.umount with this content:

#!/bin/sh

umount /vz/root/100

The virtual machine will be started again to check if the file system mounted is /dev/sda and virtual

machine has network connectivity:

[root@node0 ~]# vzctl start 100

Starting container...

Container is mounted

Setting CPU units: 1000

Configure veth devices: veth100.0

Adding interface veth100.0 to bridge br0 on CT0 for CT100

Container start in progress...

[root@node0 ~]# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/VolGroup-lv_root

2620520 1030964 1456436 42% /

tmpfs 120088 16416 103672 14% /dev/shm

/dev/vda1 495844 54116 416128 12% /boot

/dev/sda 2519792 299856 2091936 13% /mnt

/dev/sda 2519792 299856 2091936 13% /vz/root/100

[root@node0 ~]# vzctl enter 100

entered into CT 100

root@virtualmachine:/# ping -c 1 www.google.com

PING www.google.com (173.194.34.241) 56(84) bytes of data.

64 bytes from mad01s09-in-f17.1e100.net (173.194.34.241): icmp_req=1 ttl=56

time=54.4 ms

--- www.google.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 54.487/54.487/54.487/0.000 ms

root@virtualmachine:/# exit

logout

exited from CT 100

[root@node0 ~]# vzctl stop 100

Stopping container ...

Container was stopped

Container is unmounted

Now configuration is replicated in the other two nodes. It is needed to create:

• /vz/private/100

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 61

• /vz/root/100

And those files should be copied:

• /etc/vz/100.conf

• /etc/vz/100.mount

• /etc/vz/100.umount

And now, this virtual machine can be started on any node, but only one at once. So RHCS should be

responsible of starting this service.

4.3.2.4 Installing rgmanager and defining our cluster service for High Availability

First rgmanager is installed on all three nodes:

yum install rgmanager

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

* base: ftp.udl.es

* extras: ftp.udl.es

* openvz-kernel-rhel6: mirrors.ircam.fr

* openvz-utils: mirrors.ircam.fr

* updates: ftp.udl.es

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package rgmanager.x86_64 0:3.0.12.1-19.el6 will be installed

[...]

Installed:

rgmanager.x86_64 0:3.0.12.1-19.el6

Dependency Installed:

[...]

Complete!

Now, the system is told to start rgmanager when it starts:

chkconfig rgmanager on

rgmanager comes with some resource agents in /usr/share/cluster folder.

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 62

Those scripts are responsible of starting, stopping, migrating and checking status of each service they are

managing. An specific resource agent will be added for openvz container management. For doing so, it

will be downloaded and modified the one used by LBVM[12] project.

The content of /usr/share/cluster/openvz.sh will then be:

#!/bin/bash

#

Script to handle an OpenVZ Virtual Machine

#

LC_ALL=C

LANG=C

PATH=/bin:/sbin:/usr/bin:/usr/sbin

export LC_ALL LANG PATH

meta_data()

{

cat <<EOT

<?xml version="1.0"?>

<resource-agent version="rgmanager 2.0" name="openvz">

<version>1.0</version>

<longdesc lang="en">

Defines an OpenVZ virtual environment

</longdesc>

<shortdesc lang="en">

Defines an OpenVZ virtual environment

</shortdesc>

<parameters>

<parameter name="name" unique="1" primary="1">

<longdesc lang="en">

Name (VEID)

</longdesc>

<shortdesc lang="en">

Name (VEID)

</shortdesc>

<content type="string"/>

</parameter>

<parameter name="domain">

<longdesc lang="en">

Fail over domains define lists of cluster members

to try in the event that the host of the virtual machine

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 63

fails.

</longdesc>

<shortdesc lang="en">

Cluster Fail Over Domain

</shortdesc>

<content type="string"/>

</parameter>

<parameter name="autostart">

<longdesc lang="en">

If set to yes, this resource group will automatically be

started

after the cluster forms a quorum. If set to no, this

virtual

machine will start in the ’disabled’ state after the

cluster

forms a quorum.

</longdesc>

<shortdesc lang="en">

Automatic start after quorum formation

</shortdesc>

<content type="boolean"/>

</parameter>

</parameters>

<actions>

<action name="start" timeout="30"/>

<action name="stop" timeout="120"/>

<action name="status" interval="30s" timeout="10"/>

<action name="monitor" interval="30s" timeout="10"/>

<action name="meta-data" timeout="0"/>

<action name="verify-all" timeout="0"/>

</actions>

</resource-agent>

EOT

}

build_vz_cmdline_nono()

{

#

Virtual domains should never restart themselves when

controlled externally; the external monitoring app

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 64

should.

#

declare cmdline="restart=\"never\""

declare varp val temp

#

Transliterate the OCF_RESKEY_* to something the xm

command can recognize.

#

for var in ${!OCF_RESKEY_*}; do

varp=${var/OCF_RESKEY_/}

val=‘eval "echo \\$$var"‘

case $varp in

recovery|autostart|domain)

;;

name) # Do nothing with name; add it later

;;

*)

cmdline="$cmdline $varp=\"$val\""

;;

esac

done

if [-n "$OCF_RESKEY_name"]; then

cmdline="$OCF_RESKEY_name $cmdline"

fi

echo $cmdline

}

#

Start a virtual machine given the parameters from

the environment.

#

start()

{

if [! -f /etc/vz/conf/$OCF_RESKEY_name.conf]; then

return 6; # No configuration file found

fi

eval vzctl start $OCF_RESKEY_name

return $?

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 65

}

#

Stop a VM.

#

stop()

{

eval vzctl stop $OCF_RESKEY_name

return $?

}

#

Simple status check: Find the VM in the list of running

VMs

#

status()

{

#vzctl status $OCF_RESKEY_name |awk ’{print $5}’ &> /dev/null

if [‘vzctl status $OCF_RESKEY_name |awk {’printf $5’}‘ == "running

"]; then

return 0;

fi

return 7; # OCF_NOT_RUNNING

}

case $1 in

start)

start

exit $?

;;

stop)

stop #shutdown destroy

exit $?

;;

status|monitor)

status

exit $?

;;

meta-data)

meta_data

exit 0

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 66

;;

*)

echo "usage: $0 {start|stop|status|monitor|meta-data|verify

-all}"

exit 1

;;

esac

Finally, it is needed to modify /etc/cluster/cluster.conf to add this virtual machine as a cluster

service.

Those modifications should be done:

• Increase config_version number

• Add the resource in rm section

This file is modified and left it with this content:

<?xml version="1.0"?>

<cluster name="uoclab" config_version="2">

<clusternodes>

<clusternode name="node0" votes="1" nodeid="1">

<fence> <method name="1"> <device name="no fence"/> </method> </fence

>

</clusternode>

<clusternode name="node1" votes="1" nodeid="2">

<fence> <method name="1"> <device name="no fence"/> </method> </fence

>

</clusternode>

<clusternode name="node2" votes="1" nodeid="3">

<fence> <method name="1"> <device name="no fence"/> </method> </fence

>

</clusternode>

</clusternodes>

<fencedevices>

<fencedevice agent="no fence" name="no fence"/>

</fencedevices>

<rm>

<resources/>

<service name="virtualmachine">

<openvz name="100"/>

</service>

</rm>

</cluster>

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 67

After copying the file to all three nodes it should be executed in one of them the command to reload

configuration on all nodes:

cman_tool -S -r version

This command can be issued to check status in one node:

[root@node0 ~]# cman_tool status

Version: 6.2.0

Config Version: 2

Cluster Name: uoclab

Cluster Id: 17169

Cluster Member: Yes

Cluster Generation: 152

Membership state: Cluster-Member

Nodes: 3

Expected votes: 3

Total votes: 3

Node votes: 1

Quorum: 2

Active subsystems: 7

Flags:

Ports Bound: 0

Node name: node0

Node ID: 1

Multicast addresses: 239.192.67.84

Node addresses: 192.168.103.85

OK, version 2 is loaded. rgmanager comes with some utilities to check resources. This command can be

issued to see service status:

[root@node0 cluster]# clustat

Cluster Status for uoclab @ Tue Dec 3 10:39:08 2013

Member Status: Quorate

Member Name ID Status

------ ---- ---- ------

node0 1 Online, Local, rgmanager

node1 2 Online, rgmanager

node2 3 Online, rgmanager

Service Name Owner (Last) State

------- ---- ----- ------ -----

service:virtualmachine node2 started

Service has been started on node2. To check it:

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 68

[root@node2 cluster]# vzlist

CTID NPROC STATUS IP_ADDR HOSTNAME

100 10 running - virtualmachine

[root@node2 cluster]# vzctl enter 100

entered into CT 100

root@virtualmachine:/# ping www.google.com

PING www.google.com (173.194.41.244) 56(84) bytes of data.

64 bytes from mad01s15-in-f20.1e100.net (173.194.41.244): icmp_req=1 ttl=56

time=30.2 ms

^C

--- www.google.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 30.253/30.253/30.253/0.000 ms

4.3.3 Failure test

In this test node2 will be suddenly powered down (the one that is running this virtual machine). It will

seen what happens and downtime will be evaluated.

For this evaluation iscsi-server will ping to our virtual machine IP address, which is 192.168.103.99.

While pinging, node2 will be hang up and the seconds of downtime will be checked:

64 bytes from 192.168.103.99: icmp_req=34 ttl=64 time=0.815 ms

64 bytes from 192.168.103.99: icmp_req=35 ttl=64 time=0.505 ms

64 bytes from 192.168.103.99: icmp_req=36 ttl=64 time=0.446 ms

64 bytes from 192.168.103.99: icmp_req=37 ttl=64 time=0.435 ms

64 bytes from 192.168.103.99: icmp_req=38 ttl=64 time=0.387 ms

64 bytes from 192.168.103.99: icmp_req=39 ttl=64 time=0.506 ms

64 bytes from 192.168.103.99: icmp_req=69 ttl=64 time=0.953 ms

64 bytes from 192.168.103.99: icmp_req=70 ttl=64 time=0.377 ms

64 bytes from 192.168.103.99: icmp_req=71 ttl=64 time=0.336 ms

There have been 30 seconds of downtime between:

• detecting node2 failure

• starting again the service in another node

• and pure virtual machine start up.

clustat shows now service is running on node0:

[root@node1 ~]# clustat

Cluster Status for uoclab @ Tue Dec 3 11:03:11 2013

Member Status: Quorate

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 69

Member Name ID Status

------ ---- ---- ------

node0 1 Online, rgmanager

node1 2 Online, Local, rgmanager

node2 3 Offline

Service Name Owner (Last) State

------- ---- ----- ------ -----

service:virtualmachine node0

started

So, having a look at node0 cluster logs:

Dec 3 11:00:25 node0 corosync[8202]: [QUORUM] Members[2]: 1 2

Dec 3 11:00:25 node0 corosync[8202]: [TOTEM] A processor joined or left

the membership and a new membership was formed.

Dec 3 11:00:25 node0 kernel: [5951.346757] dlm: closing connection to

node 3

Dec 3 11:00:25 node0 rgmanager[8445]: State change: node2 DOWN

Dec 3 11:00:25 node0 corosync[8202]: [CPG] chosen downlist: sender r

(0) ip(192.168.103.85) ; members(old:3 left:1)

Dec 3 11:00:25 node0 corosync[8202]: [MAIN] Completed service

synchronization, ready to provide service.

Dec 3 11:00:25 node0 fenced[8257]: fencing node node2

Dec 3 11:00:25 node0 fenced[8257]: fence node2 success

Dec 3 11:00:26 node0 rgmanager[8445]: Taking over service service:

virtualmachine from down member node2

Dec 3 11:00:26 node0 kernel: [5952.911610] EXT4-fs (sda): recovery

complete

Dec 3 11:00:26 node0 kernel: [5952.912405] EXT4-fs (sda): mounted

filesystem with ordered data mode. Opts:

Dec 3 11:00:26 node0 kernel: [5952.923359] CT: 100: started

Dec 3 11:00:26 node0 kernel: [5953.311713] device veth100.0 entered

promiscuous mode

Dec 3 11:00:26 node0 kernel: [5953.313998] veth100.0 adding interface

with same address as a received packet

Dec 3 11:00:26 node0 kernel: [5953.314108] br0: port 2(veth100.0)

entering forwarding state

Dec 3 11:00:27 node0 rgmanager[8445]: Service service:virtualmachine

started

It can be seen how it detects node2 failure, mounts partition and starts virtual machine.

4.3.4 Possible improvements

RPO can be of zero seconds, but RTO will be bigger than that. Downtime can be divided in those sections:

CHAPTER 4. OPERATING SYSTEM CLUSTERING SOFTWARE 70

• node failure detection. Heartbeats can be fine tuned so downtime can be as low as 1-2 seconds. So

this time is negligible.

• service startup. In this example in the same second that was detected, launch was triggered. So

this time is even more negligible.

• Real service start up. This is the longer period to deal of. Bridge configuration wasn’t modified on

nodes, STP can be disabled and join time reduced. Normally there is a time to check if there exists

a network loop. Furthermore, just the network was configured, depending on the services that are

to be launch in real cases (may be application servers), there will be longer downtime.

Chapter 5

Application Level High Availability

Techniques

5.1 Overview

So far, there has been a presentation of available solutions that need no application modification to be

highly available. Those are general solutions for every application, but might not be well suited for

organizations who want to provide a service by means of geographically distant servers.

When applications implement High Availability, it is possible to achieve no service disruption (MTTR

equal to zero) because a server failure can be hidden by the application that silently connects to another

server and service seems to be always on. This techniques are smart and inexpensive in hardware, but

they are sometimes difficult to implement, and every solution can not be shared with other applications

or services.

Any application has to implement its own system and it is really tied to how the service works, so it is

difficult to explain here a way to achieve this. This will be clear if we look at some examples in next

section.

5.2 Example applications

5.2.1 ISC dhcpd

ISC has developed a dhcp server widely installed in Linux systems. This application provides High

Availability[20]. One can set two servers up, one that acts as primary and other one as secondary that

talk each other.

Dhcp service works by giving IP addresses to hosts that ask for them. The application can know if it

running as primary server, so it replies to DHCP requests, or can know if it is secondary, waiting to give

service in case primary stops working. If that is the case, they will begin answering to DHCP requests and

will know previous given addresses to hosts. Hosts asking for IP addresses will not know a new server is

replying now.

71

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 72

5.2.2 SMTP fail over

SMTP protocol is designed to allow High Availability by defining MX records[50] in DNS service. To

configure which servers will receive email, domain names have to configure those records in DNS. One

can use to records to point to two different servers and optionally different preferences of delivery.

SMTP clients (Mail Transport Units) in order to deliver an email to an specific domain, will check for

those MX records. They will first try to connect to one SMTP server (normally preferred one) and if that

connection fails they will connect to next SMTP server. Email users will not notice that and service is

always up.

5.2.3 DNS service

DNS[47] is another example. Normally hosts have more than one DNS server configured in their system.

If first DNS server timeouts to respond to DNS queries, the client (normally the Operating System) asks

another DNS server. Applications that ask for an IP address, like Web browsers for example, will not

know if first or secondary DNS server is used, and service is also always on.

5.2.4 Mysql servers

Mysql servers can make use of replication[32]. A secondary server can receive all queries that are sent to

primary server. Both servers make the same modifications to their data. In case the primary server fails,

the mysql clients can make use of secondary server.

For applications to reconnect to new servers there are different approaches that can be followed, the

should detect a connection failure and the should try to reconnect. There are some ways to tell them to

use a new Mysql server:

• applications can have a list of servers to connect, in case of failure can follow their list to connect

to another one

• application can ask a DNS server for the actual IP to connect. DNS server can be configured to

detect server failure and reply with new IP address. DNS Time To Live (TTL) should be low to

quickly propagate changes.

• they can connect to the same IP address, and software like Heartbeat[23] can be used to add the

same Virtual IP address to a new mysql server. This will only be possible in case both servers are on

the same subnet.

And may be someone can think of a fourth way to achieve reconnection. There are no limited ways if

redundancy is configured in software.

5.3 Usual techniques

5.3.1 Client/server reconnection

Clients can have a list of servers to connect, and in case some of them fails, use another one in the list.

Applications know this reconnection is necessary:

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 73

• when new connections are made. May be the service makes a new TCP connection for every

application event, every time can be consulted this list to know where to connect to.

• When a TCP connection is lost. In a open TCP connection, keep alive packets can be sent. In case

some of them do not arrive back, the client can reconnect to the same or other server in the list.

• when an UDP packet response times out. Application can send UDP packets and wait for responses.

A timeout can be configured and, in case this timeout is reached, a new server in the list can be

contacted. This is used for example by DNS system.

This list or pool of servers can be hard coded in the application or a DNS SRV[58] can be used. By DNS a

pool of servers and ports can be defined. The clients can check those records to receive the list of servers

that provide a server. This will be used in our practical example in this chapter, section 5.5.

5.3.2 Farms of servers with no clustered applications

A pool of numerous servers can be used to provide a service[56]. This normally is used to increase

performance rather than redundancy, but also provides redundancy.

Normally a proxy talks to clients that ask for a service. This proxy sometimes is called a head node. To

provide high availability this node should be replicated and should give service in case primary server

fails. The easiest way is to use an application like Heartbeat[23] to share a Virtual IP address between

both head nodes, but any high available IaaS technique can be used to provide the head node.

The head node will then make use of the farm nodes to provide service, balancing the load among those

servers. Then each client is talking to a particular node in the farm, queries are balanced through all

nodes.

Some examples of this are:

• Services balanced by Linux Virtual Server[24] or balance[19]. At TCP level. The head node balances

every new TCP connection to a new server. The head node itself can detect a node failure and send

a TCP connection to only active nodes.

• Application server farms. The head node is a web server, for example Apache, that balances HTTP

requests to application server nodes. There are many languages to chose[46]:

– Java: Weblogic from Oracle, WebSphere from IBM, Jboss from Redhat...

– Python: Zope, Paste...

– PHP: Zend

5.3.3 Applications developed on top of cluster frameworks

Some other farms of servers provide a framework or API to build applications on top of it. Every in-

struction can be balanced to different nodes, even parallel executions can be done on different servers

to provide a single calculation. This way high performance applications can be used. In previous section

we see a way to balance clients to different nodes. In this section a single client can exist that uses the

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 74

whole farm of servers. Very powerful applications can be built this way. And the system is highly scalable

as more compute nodes can be added to provide more power.

Some examples are:

• Apache’s Hadoop[4] for distributed computing. The project literally says:

Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and
handle failures at the application layer, so delivering a highly-available service on top of a cluster
of computers, each of which may be prone to failures.

• Apache’s Cassandra[3] for databases. All data can be partitioned and shared between nodes. All

data is replicated between more than one one in the same partition. So single nodes can fail and a

good performance and storage level is achieved summing up partitions.

5.4 The GNU/Linux way

In this chapter we will not see a GNU/Linux way as all is implemented at application layer, we have seen

GNU/Linux examples in previous chapter and we will see a practical example in next one.

5.5 Practical Example

5.5.1 Description

It will be built an High Available SIP registrar service provided by two Asterisk servers. Two SIP clients

will be connected to the service, by DNS SRV they will know the list of possible servers and will register

at one.

Both clients will be able to call each other. In case of a server failure, they will keep reachable through

the remaining server.

At figure 5.1 can be seen a diagram of the configuration.

Figure 5.1: SIP service elements

Asterisk configuration is a bit beyond the scope of this document. Only installation and all files configu-

rations will be covered, but further reading will be necessary to understand all concepts.

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 75

5.5.2 Installation

It is needed to install:

• two SIP servers, they will be named sip-registrar0 and sip-registrar1 and will provide

the Service

• to SIP clients, a software and a hardware one that will be calling each other

• a DNS server, named dns-server, that will answer with the pool of servers that provide the

Service

All hosts will have:

• Debian Operating System installed

• Network configured

• DNS name servers set to ask dns-server with a default search domain of lab.uoc.

5.5.2.1 DNS server

First bind name server will be installed:

root@dns-server:~# apt-get install bind9

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

bind9utils geoip-database libbind9-80 libcap2 libclass-isa-perl libdns88

libgeoip1 libisc84 libisccc80 libisccfg82 liblwres80 libswitch-perl

libxml2 perl perl-modules sgml-base xml-core

Suggested packages:

dnsutils bind9-doc resolvconf ufw geoip-bin perl-doc

libterm-readline-gnu-perl libterm-readline-perl-perl make

libpod-plainer-perl sgml-base-doc debhelper

The following NEW packages will be installed:

bind9 bind9utils geoip-database libbind9-80 libcap2 libclass-isa-perl

libdns88 libgeoip1 libisc84 libisccc80 libisccfg82 liblwres80

libswitch-perl libxml2 perl perl-modules sgml-base xml-core

0 upgraded, 18 newly installed, 0 to remove and 0 not upgraded.

Need to get 12.1 MB of archives.

After this operation, 42.8 MB of additional disk space will be used.

Do you want to continue [Y/n]?

Get:1 http://ftp.cica.es/debian/ wheezy/main libcap2 amd64 1:2.22-1.2 [13.6

kB]

[...]

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 76

Setting up bind9 (1:9.8.4.dfsg.P1-6+nmu2+deb7u1) ...

Adding group ‘bind’ (GID 104) ...

Done.

Adding system user ‘bind’ (UID 102) ...

Adding new user ‘bind’ (UID 102) with group ‘bind’ ...

Not creating home directory ‘/var/cache/bind’.

wrote key file "/etc/bind/rndc.key"

#

[ok] Starting domain name service...: bind9.

Setting up perl-modules (5.14.2-21+deb7u1) ...

Setting up libswitch-perl (2.16-2) ...

Setting up perl (5.14.2-21+deb7u1) ...

update-alternatives: using /usr/bin/prename to provide /usr/bin/rename (

rename) in auto mode

Setting up sgml-base (1.26+nmu4) ...

Setting up xml-core (0.13+nmu2) ...

Processing triggers for sgml-base ...

Then, bind needs to be configured to answer to DNS SRV requests replying with those two previous

servers. It will be used SIP protocol over UDP transport, so it is needed the DNS record _sip._udp.lab.uoc.

/etc/bind/named.conf.local has to be edited, leaving this content:

//

// Do any local configuration here

//

// Consider adding the 1918 zones here, if they are not used in your

// organization

//include "/etc/bind/zones.rfc1918";

zone "lab.uoc" {

type master;

file "/etc/bind/db.lab.uoc";

};

Then lab.uoc zone has to be edited, the file is /etc/db.lab.uoc, as referenced in previous file. This

will be its content:

;

; BIND data file for lab.uoc zone

;

$TTL 604800

@ IN SOA lab.uoc. hostmaster.lab.uoc. (

1 ; Serial

604800 ; Refresh

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 77

86400 ; Retry

2419200 ; Expire

604800) ; Negative Cache TTL

;

@ IN NS dns-server

; Hosts

dns-server IN A 192.168.103.98

sip-server0 IN A 192.168.103.101

sip-server1 IN A 192.168.103.102

; Services

_sip._udp IN SRV 0 10 5060 sip-server0

_sip._udp IN SRV 0 10 5060 sip-server1

The service will be restarted, and responses to DNS queries will be checked:

root@dns-server:~# /etc/init.d/bind9 restart

[....] Stopping domain name service...: bind9waiting for pid 3743 to die

. ok

[ok] Starting domain name service...: bind9.

root@dns-server:~# host -t srv _sip._udp.lab.uoc 127.0.0.1

Using domain server:

Name: 127.0.0.1

Address: 127.0.0.1#53

Aliases:

_sip._udp.lab.uoc has SRV record 0 10 5060 sip-server1.lab.uoc.

_sip._udp.lab.uoc has SRV record 0 10 5060 sip-server0.lab.uoc.

root@dns-server:~# host -t a sip-server0.lab.uoc 127.0.0.1

Using domain server:

Name: 127.0.0.1

Address: 127.0.0.1#53

Aliases:

sip-server0.lab.uoc has address 192.168.103.101

root@dns-server:~# host -t a sip-server1.lab.uoc 127.0.0.1

Using domain server:

Name: 127.0.0.1

Address: 127.0.0.1#53

Aliases:

sip-server1.lab.uoc has address 192.168.103.102

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 78

5.5.2.2 SIP servers

First, it is needed to install asterisk software:

apt-get install asterisk

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

asterisk-config asterisk-core-sounds-en asterisk-core-sounds-en-gsm

asterisk-modules asterisk-moh-opsound-gsm asterisk-voicemail autopoint

binutils build-essential bzip2 ca-certificates cpp cpp-4.7 debhelper

dpkg-dev fakeroot file freetds-common g++ g++-4.7 gcc gcc-4.7 gettext

git git-man html2text intltool-debian less libalgorithm-diff-perl

libalgorithm-diff-xs-perl libalgorithm-merge-perl libasound2 libc-dev-bin

libc6-dev libcap2 libclass-isa-perl libcroco3 libcurl3 libcurl3-gnutls

libdpkg-perl liberror-perl libffi5 libfile-fcntllock-perl libflac8

libgettextpo0 libglib2.0-0 libglib2.0-data libgmime-2.6-0 libgmp10

libgomp1 libgpgme11 libgsm1 libical0 libiksemel3 libitm1 libjack-jackd2-0

libjbig0 libjpeg8 libldap-2.4-2 libltdl7 liblua5.1-0 libmagic1

libmail-sendmail-perl libmpc2 libmpfr4 libneon27-gnutls libodbc1 libogg0

libopencore-amrnb0 libopencore-amrwb0 libpcre3 libperl5.14 libpng12-0

libpq5 libpth20 libquadmath0 libradiusclient-ng2 libresample1 librtmp0

libsaclm3 libsaevt3 libsamplerate0 libsasl2-2 libsasl2-modules

libsensors4 libsndfile1 libsnmp-base libsnmp15 libsox-fmt-alsa

libsox-fmt-base libsox2 libspandsp2 libspeex1 libspeexdsp1 libsqlite0

libsrtp0 libssh2-1 libstdc++6-4.7-dev libswitch-perl libsybdb5

libsys-hostname-long-perl libtiff4 libtimedate-perl libunistring0

libvorbis0a libvorbisenc2 libvorbisfile3 libvpb0 libwavpack1 libxml2

linux-libc-dev make manpages-dev module-assistant openssl patch perl

perl-modules po-debconf rsync sgml-base shared-mime-info sox

vpb-driver-source xml-core

Suggested packages:

[...]

Processing triggers for ca-certificates ...

Updating certificates in /etc/ssl/certs... 158 added, 0 removed; done.

Running hooks in /etc/ca-certificates/update.d....done.

Processing triggers for sgml-base ...

Now it is time to add new VoIP users to be able to register. This will be appended to /etc/asterisk/

users.conf file on both SIP servers:

[dundi]

type = friend

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 79

dbsecret = dundi/secret

disallow=all

allow=alaw

context=internal

[100]

type = user

secret = 100

host=dynamic

disallow=all

allow=alaw

context=internal

[101]

type = user

secret = 101

host=dynamic

disallow=all

allow=alaw

context=internal

In asterisk, it is possible to keep a context with all extensions that are registered. It is needed to edit

/etc/asterisk.sip.conf and left only with this content:

[general]

context=internal

regcontext=sipregistrations

Now, DUNDi should be configured between both Asterisk servers. First, it is necessary to generate a

secure key to talk between both servers. This command can be issued on just one SIP server:

cd /usr/share/asterisk/keys

astgenkey -n astlabkey

This script generates an RSA private and public key pair

in PEM format for use by Asterisk. You will be asked to

enter a passcode for your key multiple times. Please

enter the same code each time. The resulting files will

need to be moved to /var/lib/asterisk/keys if you want

to use them, and any private keys (.key files) will

need to be initialized at runtime either by running

Asterisk with the ’-i’ option, or with the ’init keys’

command once Asterisk is running.

Press ENTER to continue or ^C to cancel.

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 80

Generating SSL key ’astlabkey’:

Generating RSA private key, 1024 bit long modulus

..............++++++

.....................++++++

e is 65537 (0x10001)

writing RSA key

Key creation successful.

Public key: astlabkey.pub

Private key: astlabkey.key

Then, those two files (astlabkey.pub and astlabkey.key) can be copied to /usr/lib/asterisk/

keys folder on the other SIP server. Now /etc/asterisk/dundi.conf file should be edited.

On sip-server0 this content is needed:

;

; DUNDi configuration file

;

[general]

department=sip-server0

organization=UOC

locality=Barcelona

stateprov=BA

country=ES

email=ridelmo@uoc.com

phone=+34932532300

entityid=52:54:00:E7:EB:6C

cachetime=5

ttl=2

autokill=yes

[mappings]

registered => sipregistrations,0,IAX2,dundi:${SECRET}@sip-server0/${NUMBER

},nopartial

[52:54:00:18:8E:30]

model = symmetric

host = 192.168.103.99

inkey = astlabkey

outkey = astlabkey

qualify = yes

include=registered

permit=registered

order=primary

dynamic=yes

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 81

And sip-server1 file needs this content:

;

; DUNDi configuration file

;

[general]

department=sip-server1

organization=UOC

locality=Barcelona

stateprov=BA

country=ES

email=ridelmo@uoc.com

phone=+34932532300

entityid=52:54:00:18:8E:30

cachetime=5

ttl=2

autokill=yes

[mappings]

registered => sipregistrations,0,IAX2,dundi:${SECRET}@sip-server1/${NUMBER

},nopartial

[52:54:00:E7:EB:6C]

model = symmetric

host = 192.168.103.86

inkey = astlabkey

outkey = astlabkey

qualify = yes

include=registered

permit=registered

order=primary

dynamic=yes

Finally, asterisk dialplan should be programmed, /etc/asterisk/extensions.conf file needs this

content:

; extensions.conf - the Asterisk dial plan

[general]

static=yes

writeprotect=no

clearglobalvars=no

[internal]

exten => _1XX,1,ChanIsAvail(SIP/${EXTEN})

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 82

exten => _1XX,n,NoOp(${AVAILCHAN})

exten => _1XX,n,GotoIf($["${AVAILCHAN}"=""]?remote:local)

exten => _1XX,n(remote),Dial(${DUNDILOOKUP(${EXTEN},registered)})

exten => _1XX,n,Hangup

exten => _1XX,n(local),Dial(SIP/${EXTEN})

exten => _1XX,n,Hangup

It says that it is checked if this extension is locally registered, if that is the case it is locally dialed, if not

it is searched in DUNDi peers and then, dialed.

5.5.2.3 SIP clients

As clients there are:

• a Qutecom soft phone that registers as 100 extension. At figure 5.2 it can be seen screen shot

of its configuration. This soft phone doesn’t support DNS SRV, so we wait until 101 extension is

registered, and we register it to the other SIP server, to force both extensions are registered to

different SIP registrars.

Figure 5.2: Qutecom configuration

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 83

• a Sipura hardware phone that registers as 101 extension. This phone supports DNS SRV an can

register to any server, in case of failure, it will register to the other one. At figure 5.3 a screen shot

of it’s configuration can be seen.

Figure 5.3: Sipura phone configuration

After this configurations are made, 100 extension is registered at sip-server0 and 101 extension is

registered at sip-server1.

5.5.3 Failure test

In normal operation, when a call is sent from 100 to 101 extension, it is seen this in sip-server0

asterisk console:

== Using SIP RTP CoS mark 5

-- Executing [101@internal:1] ChanIsAvail("SIP/100-00000011", "SIP

/101") in new stack

-- Executing [101@internal:2] NoOp("SIP/100-00000011", "") in new stack

-- Executing [101@internal:3] GotoIf("SIP/100-00000011", "1?remote:

local") in new stack

-- Goto (internal,101,4)

-- Executing [101@internal:4] Dial("SIP/100-00000011", "IAX2/dundi:

T8LKCzI9HzZrCAl20KWCTw==@sip-server1/101") in new stack

-- Called IAX2/dundi:T8LKCzI9HzZrCAl20KWCTw==@sip-server1/101

-- Call accepted by 192.168.103.99 (format alaw)

-- Format for call is alaw

-- IAX2/dundi-468 is ringing

-- IAX2/dundi-468 answered SIP/100-00000011

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 84

-- Hungup ’IAX2/dundi-468’

== Spawn extension (internal, 101, 4) exited non-zero on ’SIP

/100-00000011’

And this on sip-server1 console:

-- Accepting AUTHENTICATED call from 192.168.103.86:

> requested format = alaw,

> requested prefs = (alaw),

> actual format = alaw,

> host prefs = (alaw),

> priority = mine

-- Executing [101@internal:1] ChanIsAvail("IAX2/dundi-627", "SIP/101")

in new stack

== Using SIP RTP CoS mark 5

-- Executing [101@internal:2] NoOp("IAX2/dundi-627", "SIP/101-0000000c

") in new stack

-- Executing [101@internal:3] GotoIf("IAX2/dundi-627", "0?remote:local

") in new stack

-- Goto (internal,101,6)

-- Executing [101@internal:6] Dial("IAX2/dundi-627", "SIP/101") in new

stack

== Using SIP RTP CoS mark 5

-- Called SIP/101

-- SIP/101-0000000d is ringing

-- SIP/101-0000000d answered IAX2/dundi-627

== Spawn extension (internal, 101, 6) exited non-zero on ’IAX2/dundi-627’

-- Hungup ’IAX2/dundi-627’

The call has followed this flow:

• it has been initiated on Qutecom soft phone by SIP protocol to sip-server0, where 100 extension

is registered.

• then, is has been sent by IAX protocol from sip-server0 to sip-server1, where 101 extension

is registered.

• Then, sip-server1 has sent the call to Sipura phone using SIP protocol, where the call has been

answered and then, hung up.

Now sip-server1 is going to be turned down, Sipura phone will register to sip-server0 and a new

call will be placed.

After sip-server1 shuts down, it can be seen on sip-server0 console that sip-server1 has gone,

and that 101 extension is registered to its new SIP server:

[Dec 23 18:29:38] NOTICE[23019]: pbx_dundi.c:2973 destroy_trans: Peer

’52:54:00:18:8e:30’ has become UNREACHABLE!

CHAPTER 5. APPLICATION LEVEL HIGH AVAILABILITY TECHNIQUES 85

-- Registered SIP ’101’ at 192.168.103.90:5060

-- Added extension ’101’ priority 1 to sipregistrations

And now, if a new call is made, all works just with sip-server0 up. This is shown on the console:

== Using SIP RTP CoS mark 5

-- Executing [101@internal:1] ChanIsAvail("SIP/100-00000012", "SIP

/101") in new stack

== Using SIP RTP CoS mark 5

-- Executing [101@internal:2] NoOp("SIP/100-00000012", "SIP

/101-00000013") in new stack

-- Executing [101@internal:3] GotoIf("SIP/100-00000012", "0?remote:

local") in new stack

-- Goto (internal,101,6)

-- Executing [101@internal:6] Dial("SIP/100-00000012", "SIP/101") in

new stack

== Using SIP RTP CoS mark 5

-- Called SIP/101

-- SIP/101-00000014 is ringing

-- SIP/101-00000014 answered SIP/100-00000012

-- Remotely bridging SIP/100-00000012 and SIP/101-00000014

== Spawn extension (internal, 101, 6) exited non-zero on ’SIP

/100-00000012’

There has been a maximum re-registration time of 15 seconds, because Sipura phone is configured to

re-register every 15 seconds. So, in less than 15 second,s service is restored, but running calls will be

hung up.

Chapter 6

Conclusions

There has been a look at some mechanisms to provide High Availability to our services. Normally just

one technique is not enough to provide it, in order to achieve a good number of nines, instead more than

one should be used.

Application data is anywhere. This anywhere must be highly available, so a storage solution must be

used. Also those servers are connected to a network to provide a service. This connection may need to

be highly available so an high available network should be used. And may be also the Operating System

should be always up and running, so a IaaS service can be used. Lastly, may be needed a geographically

redundant service. In this case some work on application layer may be needed.

To summarize, in real life, a combination of those methods should be used to achieve a low levels of

service disruption (RTO) and data loss (RPO). There are standard ways to provide High Availability, but

custom solutions at application level can be cheaper to provide a no disruption sensation.

There are in GNU/Linux, kernel modules and applications to provide all kind of those methods. It is

up to us to use those open source applications to provide a fault tolerant service on top of GNU/Linux

Operating System.

This paper is primary theoretical, but proof of concept complex examples have been shown, so High

Availability is not theoretical in GNU/Linux, but real since a lot of time ago. As examples, they have

focused only on high availability, in real production systems security must be a concern. Security at

application configuration, communication between servers and clients and physical protection.

86

Bibliography

[1] aoetools.sourceforge.net. ATA over Ethernet Tools

http://aoetools.sourceforge.net/.

[2] apache.org. Apache CloudStack Documentation

http://cloudstack.apache.org/docs/en-US/index.html.

[3] apache.org. The Apache Cassandra project

http://cassandra.apache.org/.

[4] apache.org. The Apache Hadoop project

http://hadoop.apache.org/.

[5] Cisco. Designing High-Availability Enterprise Networks

http://www.ciscopress.com/articles/article.asp?p=375501&seqNum=2.

[6] Citrix. The three levels of high availability – Balancing priorities and cost

http://www.networkworld.com/chatterbox/citrix/dimension3/3_levels_high_

availability_WP_final.pdf.

[7] clusterlabs.org. Pacemaker

http://clusterlabs.org/wiki/Pacemaker.

[8] Corosync. Corosync

http://corosync.github.io/corosync/.

[9] Davis, Thomas. Linux Ethernet Bonding Driver HOWTO

https://www.kernel.org/doc/Documentation/networking/bonding.txt.

[10] DRBD. DRBD: About

http://www.drbd.org/docs/about/.

[11] DRBD. DRBD Features: Replication Modes

http://www.drbd.org/users-guide/s-replication-protocols.html.

[12] Dworschak, Roland. LBVM . Load Balancing of virtual Machines

http://lbvm.sourceforge.net/docu/.

[13] Enhance Technology Inc. RAID Comparison Chart and Enhance Technology Storage Systems

http://www.enhance-tech.com/press/raid-comparison-and-storage-systems.

html.

87

http://aoetools.sourceforge.net/
http://cloudstack.apache.org/docs/en-US/index.html
http://cassandra.apache.org/
http://hadoop.apache.org/
http://www.ciscopress.com/articles/article.asp?p=375501&seqNum=2
http://www.networkworld.com/chatterbox/citrix/dimension3/3_levels_high_availability_WP_final.pdf
http://www.networkworld.com/chatterbox/citrix/dimension3/3_levels_high_availability_WP_final.pdf
http://clusterlabs.org/wiki/Pacemaker
http://corosync.github.io/corosync/
https://www.kernel.org/doc/Documentation/networking/bonding.txt
http://www.drbd.org/docs/about/
http://www.drbd.org/users-guide/s-replication-protocols.html
http://lbvm.sourceforge.net/docu/
http://www.enhance-tech.com/press/raid-comparison-and-storage-systems.html
http://www.enhance-tech.com/press/raid-comparison-and-storage-systems.html

BIBLIOGRAPHY 88

[14] openQRM enterprise. openQRM enterprise

http://www.openqrm-enterprise.com.

[15] eucalyptus.com. Eucalyptus Cloud Documentation

http://www.eucalyptus.com/docs.

[16] Goirand, Thomas. tgt missing init script for tgtd - Debian Bug report logs

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577925.

[17] ieee802.org. IEEE 802.3ad Link Aggregation (LAG) - What it is, and what it is not

http://www.ieee802.org/3/hssg/public/apr07/frazier_01_0407.pdf.

[18] ImageStream. VRRP - Virtual Router Redundancy Protocol

http://sourceforge.net/p/vrrpd/wiki/Home/.

[19] Inlab. Balance

http://www.inlab.de/balance.html.

[20] ISC. A Basic Guide to Configuring DHCP Failover

https://kb.isc.org/article/AA-00502/31.

[21] keepalived.org. Keepalived for linux

http://www.keepalived.org.

[22] kernel.org. Dracut wiki

https://dracut.wiki.kernel.org/index.php/Main_Page.

[23] linux ha.org. Heartbeat - Linux-HA

http://linux-ha.org/wiki/Heartbeat.

[24] linuxvirtualserver.org. The Linux Virtual Server Project

http://www.linuxvirtualserver.org/.

[25] Natário, Rui. Networks and Servers: High Availability - Objectives

http://networksandservers.blogspot.com.es/2011/02/high-availability-objectives.

html.

[26] Neira Ayuso, Pablo. The Conntrack tools user manual

http://conntrack-tools.netfilter.org/manual.html.

[27] NetApp. NetApp Delivers Enterprise-Class Availability

http://www.netapp.com/us/system/pdf-reader.aspx?m=ds-3100.pdf&cc=us.

[28] opennebula.org. OpenNebula - Flexible Enterprise Cloud Made Simple

http://opennebula.org/documentation:rel4.4.

[29] openstack.org. OpenStack Docs

http://docs.openstack.org.

[30] openvz.org. Quick Installation - OpenVZ Linux Containers Wiki

http://openvz.org/Quick_installation.

[31] Oracle. Determining Your High Availability Requirements

http://docs.oracle.com/cd/B28359_01/server.111/b28281/hadesign.htm.

http://www.openqrm-enterprise.com
http://www.eucalyptus.com/docs
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577925
http://www.ieee802.org/3/hssg/public/apr07/frazier_01_0407.pdf
http://sourceforge.net/p/vrrpd/wiki/Home/
http://www.inlab.de/balance.html
https://kb.isc.org/article/AA-00502/31
http://www.keepalived.org
https://dracut.wiki.kernel.org/index.php/Main_Page
http://linux-ha.org/wiki/Heartbeat
http://www.linuxvirtualserver.org/
http://networksandservers.blogspot.com.es/2011/02/high-availability-objectives.html
http://networksandservers.blogspot.com.es/2011/02/high-availability-objectives.html
http://conntrack-tools.netfilter.org/manual.html
http://www.netapp.com/us/system/pdf-reader.aspx?m=ds-3100.pdf&cc=us
http://opennebula.org/documentation:rel4.4
http://docs.openstack.org
http://openvz.org/Quick_installation
http://docs.oracle.com/cd/B28359_01/server.111/b28281/hadesign.htm

BIBLIOGRAPHY 89

[32] Oracle. MySQL::MySQL 5.6 Reference Manual::Replication

http://dev.mysql.com/doc/refman/5.6/en/replication.html.

[33] Oracle. Project: OCFS2

https://oss.oracle.com/projects/ocfs2/.

[34] Perforce. High availability disaster recovery solutions

http://www.perforce.com/sites/default/files/pdf/perforce-high-availability-disaster-recovery-solutions_

0.pdf.

[35] Preston, Tim. BIRD Route Server at LINX

http://www.uknof.org.uk/uknof15/Preston-Routeserver.pdf.

[36] quagga.net. Quagga Software Routing Suite

http://www.nongnu.org/quagga/.

[37] RedHat. Global File System 2 - Red Hat Customer Portal

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_

Linux/6/html-single/Global_File_System_2/index.html.

[38] RedHat. RedHat Cluster Suite Introduction

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_

Linux/5/html/Cluster_Suite_Overview/s1-rhcs-intro-CSO.html.

[39] stgt.sourceforge.net. Linux SCSI target framework

http://stgt.sourceforge.net/.

[40] Sun Microsystems. Enterprise Network Design Patterns

http://www.informit.com/articles/article.aspx?p=169544.

[41] Surý, Ondřej. The BIRD Internet Routing daemon

http://bird.network.cz.

[42] Wall Street Journal. Microsoft Quietly Gains Share in Virtualization

http://blogs.wsj.com/digits/2013/05/31/microsoft-quietly-gains-share-in-virtualization/.

[43] wikipedia.org. Border Gateway Protocol

http://en.wikipedia.org/wiki/Border_Gateway_Protocol.

[44] wikipedia.org. Cloud Computing

http://en.wikipedia.org/wiki/Cloud_Computing.

[45] wikipedia.org. Common Address Redundancy Protocol

http://en.wikipedia.org/wiki/Common_Address_Redundancy_Protocol.

[46] wikipedia.org. Comparison of application servers

http://en.wikipedia.org/wiki/Comparison_of_application_servers.

[47] wikipedia.org. Domain Name System

http://en.wikipedia.org/wiki/Domain_Name_System.

[48] wikipedia.org. Mean time between failures

http://en.wikipedia.org/wiki/Mean_time_between_failures.

http://dev.mysql.com/doc/refman/5.6/en/replication.html
https://oss.oracle.com/projects/ocfs2/
http://www.perforce.com/sites/default/files/pdf/perforce-high-availability-disaster-recovery-solutions_0.pdf
http://www.perforce.com/sites/default/files/pdf/perforce-high-availability-disaster-recovery-solutions_0.pdf
http://www.uknof.org.uk/uknof15/Preston-Routeserver.pdf
http://www.nongnu.org/quagga/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Global_File_System_2/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Global_File_System_2/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Cluster_Suite_Overview/s1-rhcs-intro-CSO.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Cluster_Suite_Overview/s1-rhcs-intro-CSO.html
http://stgt.sourceforge.net/
http://www.informit.com/articles/article.aspx?p=169544
http://bird.network.cz
http://blogs.wsj.com/digits/2013/05/31/microsoft-quietly-gains-share-in-virtualization/
http://en.wikipedia.org/wiki/Border_Gateway_Protocol
http://en.wikipedia.org/wiki/Cloud_Computing
http://en.wikipedia.org/wiki/Common_Address_Redundancy_Protocol
http://en.wikipedia.org/wiki/Comparison_of_application_servers
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Mean_time_between_failures

BIBLIOGRAPHY 90

[49] wikipedia.org. Mean time to repair

http://en.wikipedia.org/wiki/Mean_time_to_repair.

[50] wikipedia.org. MX record

http://en.wikipedia.org/wiki/MX_record.

[51] wikipedia.org. Network File System

http://en.wikipedia.org/wiki/Network_File_System.

[52] wikipedia.org. Network Message Block

http://en.wikipedia.org/wiki/Cifs.

[53] wikipedia.org. Open Shortest Path Protocol

http://en.wikipedia.org/wiki/Open_Shortest_Path_First.

[54] wikipedia.org. Preboot Execution Environment

http://en.wikipedia.org/wiki/Preboot_Execution_Environment.

[55] wikipedia.org. Routing Protocol

http://en.wikipedia.org/wiki/Routing_protocol.

[56] wikipedia.org. Server Farm

http://en.wikipedia.org/wiki/Server_farm.

[57] wikipedia.org. Service Level Agreement

http://en.wikipedia.org/wiki/Service_level_agreement.

[58] wikipedia.org. SRV record

http://en.wikipedia.org/wiki/SRV_record.

[59] wikipedia.org. Virtual Router Redundancy Protocol

http://en.wikipedia.org/wiki/Virtual_Router_Redundancy_Protocol.

[60] wikipedia.org. Wake-On-Lan

http://en.wikipedia.org/wiki/Wake-on-LAN.

[61] wikipedia.org. WebDAV

http://en.wikipedia.org/wiki/WebDAV.

http://en.wikipedia.org/wiki/Mean_time_to_repair
http://en.wikipedia.org/wiki/MX_record
http://en.wikipedia.org/wiki/Network_File_System
http://en.wikipedia.org/wiki/Cifs
http://en.wikipedia.org/wiki/Open_Shortest_Path_First
http://en.wikipedia.org/wiki/Preboot_Execution_Environment
http://en.wikipedia.org/wiki/Routing_protocol
http://en.wikipedia.org/wiki/Server_farm
http://en.wikipedia.org/wiki/Service_level_agreement
http://en.wikipedia.org/wiki/SRV_record
http://en.wikipedia.org/wiki/Virtual_Router_Redundancy_Protocol
http://en.wikipedia.org/wiki/Wake-on-LAN
http://en.wikipedia.org/wiki/WebDAV

	General Overview on High Availability
	Overview
	Goals
	Procedure to reach those goals

	Storage
	Ways to provide high available storage
	Local RAID
	Network block device solutions

	Provide Data Recovery
	Versioned backups
	Fast recovery
	Versioned backup versus fast recovery

	The GNU/Linux way
	Local RAID
	Network Block Devices
	Network File-systems
	Booting

	Practical Example
	Description
	Configuration
	DRBD
	ISCSI target
	Heartbeat
	ISCSI client

	Failure test
	Possible improvements

	Networking
	Ways to provide high available networking
	Link Level
	Gateway Level
	Routing level

	The GNU/Linux way
	Link level
	Balance round robin (mode=0)
	Active backup (mode=1)
	Balance XOR (mode=2)
	Broadcast (mode=3)
	802.3ad (mode=4)
	Balance-tlb (mode=5)
	Balance-alb (mode=6)

	Gateway Level
	Routing Level

	Practical Example
	Description
	Configuration
	host1 and host2
	router1 and router2
	pathA and pathB

	Failure test

	Operating System clustering Software
	Ways to provide high available running systems
	The GNU/Linux way
	Virtualization
	Full virtualization
	Para virtualization
	Containers

	Cluster applications
	Out-of-the-box IaaS solutions

	Practical Example
	Description
	Installation
	Changing kernel to support OpenVZ containers
	Installing and configuring Cman
	Installing the virtual machine
	Installing rgmanager and defining our cluster service for High Availability

	Failure test
	Possible improvements

	Application Level High Availability Techniques
	Overview
	Example applications
	ISC dhcpd
	SMTP fail over
	DNS service
	Mysql servers

	Usual techniques
	Client/server reconnection
	Farms of servers with no clustered applications
	Applications developed on top of cluster frameworks

	The GNU/Linux way
	Practical Example
	Description
	Installation
	DNS server
	SIP servers
	SIP clients

	Failure test

	Conclusions

