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Abstract Among the various computer security techniques practice today,
cryptography has been identified as one of the most important solutions in the
integrated digital security system. Cryptographic techniques such as encryption can
provide very long passwords that are not required to be remembered but are in turn
protected by simple password, hence defecting their purpose. In this paper, we
proposed a novel two-stage technique to generate personalized cryptographic keys
from the face biometric, which offers the inextricably link to its owner. At the first
stage, integral transform of biometric input is to discretise to produce a set of bit
representation with a set of tokenised pseudo random number, coined as FaceHash.
In the second stage, FaceHash is then securely reduced to a single cryptographic
key via Shamir secret-sharing. Tokenised FaceHashing is rigorously protective of the
face data, with security comparable to cryptographic hashing of token and
knowledge key-factor. The key is constructed to resist cryptanalysis even against an
adversary who captures the user device or the feature descriptor.
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Introduction

Security is a major concern in today’s digital era.
Cryptography has been recognized as one of the
most popular technology to solve the four principle
security goals, i.e. privacy, authentication, integ-
rity and authorization (Smith, 1997). In general,
data will be secured using symmetric crypto
system, while public-key system will be deployed
for digital signatures and for secure key exchange
between users. Cryptographic techniques such as
encryption can provide very long passwords (strong
cryptographic keys) which are not required to be
remembered but are in turn protected by a simple
password, but once the password is compromised,
the entire solution may fall apart.

A biometric is a feature measured from the
human body that is distinguishing enough to be
used for user authentication. Examples include
voice, handwriting, face, eye and face and signa-
ture. Biometric offers to inextricably link the
authenticator to its owner, something passwords
or token cannot do, since they can be lent or
stolen. When used in cryptographic key generation
context, this inextricable link can be adopted to
replace password to rectify the aforementioned
problem. In the simplest biometrics-cryptographic
key application, an external specific crypto key
may be stored as a portion of a user’s particular,
i.e. user name, biometric template, access priv-
ileges, etc. which may be released upon a success-
ful match. This is fine in key management but
secure only when the user’s particular is placed
and the matching is done in secure region. Appar-
ently, it is useful to generate cryptographic key
directly from the user-specific biometrics. This
can be done by deriving some independent, non-
recovery parameters that are solely tied to a par-
ticular person, and thus crypto techniques can
utilize these parameters as crypto key for encryp-
tion or decryption purposes. Basically, the bio-
metrics based key generation process could be
made either in a front-end approach or in a back-
end approach (Peyravian et al., 1999). In front-end
approach, the designation of the initial seed value
of PRNG (Pseudo Random Number Generator) is
modified or extended to include a user-specific
data, i.e. biometrics component whereas in the
back-end approach, the random numbers which
are produced by the PRNG are processed to make
it dependent on biometrics data. However, the
representation problem is simply that biometric
data are continuous and statistically frustrated,
while cryptographic parameters are discrete
and have zero-uncertainty. Biometric consistency
measured from the difference between reference
and test data is similar but never equal and hence
inadequate for cryptographic purposes which re-
quire exact reproduction.

The first notion of using biometric parameter
directly as a crypto key was proposed by Bodo
(1994). However, instability of biometrics during
the course of time and non-appreciable equal error
ratedthe error rate occurring when the decision
threshold of a system is set so that the proportion
of false rejections will be approximately equal to
the proportion of false acceptancesdhinders its
direct use as a crypto key. Also if the key is ever
compromised, the use of that biometrics will be
lost irrevocably which is inconsistent with a system
that requires periodic updating. The Soutar et al.
(1999) research outlines cryptographic key recov-
ery from the integral correlation of fingerprint
data and previously registered Bioscrypts. Bio-
scrypts result from the mixing of random and
user-specific data, thereby preventing recovery
of the original fingerprint data with data capture
uncertainties addressed via multiply-redundant
majority-result table lookups. The Soutar et al.
formulation is nevertheless restrictive in that keys
are externally specified and then recovered, rath-
er than internally computed. The Davida et al.
(1998) formulation outlines cryptographic signa-
ture verification of iris data without stored refer-
ences. This is accomplished via open token-based
storage of user-specific Hamming codes necessary
to rectify offsets in the test data, thereby allowing
verification of the corrected biometrics. Such self-
correcting biometric representations are applica-
ble towards key computation, with recovery of iris
data via analysis of these codes prevented by
complexity theory. Monrose et al. key computation
from user-specific keystroke (Monrose et al., 1999)
and voice (Monrose et al., 2001) data is both
deterministic and probabilistic. The methodology
(broadly similar in both cases) specifies the de-
terministic concatenation of single bit outputs
based on logical characterizations of the biometric
data, in particular whether user-specific features
are below (0) or above (1) some population-generic
threshold. This accumulation of 0 and 1 response
with the additional possibility of an indeterminate
(B) output for certain features is then used in
conjunction with randomized lookup tables formu-
lated via Shamir secret-sharing (Shamir, 1979).

This paper proposed a novel cryptographic key
computation technique from face biometrics. The
proposed technique can be characterized as hav-
ing two stages: feature extraction and key com-
putation (cryptographic key interpolation) Goh and
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Ngo, 2003. In the feature extraction stage, certain
features of raw input from a biometric-measuring
device are examined and used to compute a set of
bit string, coined as FaceHash. The key computa-
tion stage develops a cryptographic key from the
FaceHash and stored cryptographic data in the
device. If two FaceHash are sufficiently similar,
then the same cryptographic key will be generated
from them. We provide the experimental results to
illustrate high stability of FaceHash, which is vital
for key generation. FaceHash is rigorously pro-
tective of the face data, with security comparable
to cryptographic hashing of token and knowledge
key-factor. The key is constructed to resist crypt-
analysis even against an adversary who captures
the user device or the feature descriptor.

The following section provides an overview of
our approach while the next three sections present
its components in detail. Further the experimental
results and a security analysis in terms of key-
factor independent and non-recovery are discus-
sed. Finally, the last section gives the concluding
remarks of this paper.

Biometric based cryptographic key
derivation overview

As aforementioned, biometrics and cryptography
are the two opposed paradigms and this had moti-
vated the formulation of highly offset-tolerant
discretisationmethodologydFaceHashing.Thepro-
cess is crucial to our biometric based crypto key
derivation through our two-stage scheme as illus-
trated in Fig. 1.

The proposed scheme contains two stages while
stage one could be subdivided into two parts:

Stage 1: Feature extraction
(a) The first step is to transform the raw face

data, I˛<N, where N is the image pixelisation
dimension into another image representation
in log-polar frequency domain, G˛<M, where
M! N denotes log-polar spatial frequency
dimension by using integrated Wavelet and
Fourier-Mellin transform framework (WFMT)
(Andrew and David, 2003). Wavelet transform,
with its approximate decomposition is used to
reduce the noise and produce a representation
in the low frequency domain, and hence makes
the facial images insensitive to facial expres-
sion and small occlusion. The Fourier-Mellin
transform served to produce a translation,
rotation and scale invariant feature.

(b) This step engaged discretisation process of
the data via a repeated inner-product of a
secret number (a number uniquely associ-
ated with a token) and user data, i.e.
sZ !cdxf0(x)g(x) for integral transform func-
tions f, g˛L2 with enhance offset tolerance.
The goal is to extract the main features of
the face data, which are the most stable for
images from same user, and vary a lot for
different users. The extracted bit strings are
coined as FaceHash.

Stage 2: Key computation (cryptographic key
interpolation)

By using a secret-sharing scheme (called
Shamir’s threshold scheme), we develop a
cryptographic key kc (an element of the field
Zq, for some prime q) from FaceHash with
length lb, b˛f0; 1glb , and stored cryptographic
data in the device. It can be shown that this
scheme satisfies both the availability (i.e.,
a quorum number of key shares suffice to
reconstruct the secret key) and non-recovery
(i.e., compromise of certain number of key
shares does not expose the secret key)
properties. The subsequent sections will detail
these three components.

Stage 1(a): wavelet Fourier-Mellin
transform feature construction

The wavelet decomposition of a signal f(x) can be
obtained by convolution of signal with a family of
real orthonormal basis, ja,b(x)
Figure 1 Biometric based cryptographic key derivation procedure.
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ðWjfðxÞÞða;bÞ ¼ jaj�1=2

Z
<

fðxÞj
�
x� b

a

�
dx ð1Þ

where a, b and as 0 are the dilation parameter
and the translation parameter, respectively. Two-
dimensional wavelet transform leads to a decom-
position of approximation coefficients at level
j� 1 in four components: the approximations
at level j, Lj and the details in three orienta-
tions (horizontal, vertical and diagonal), Djvertical,
Djhorizontal and Djdiagonal (Mallat, 1998).

In an early study, Harmon (1973) found that
information in low spatial frequency bands have
a dominant role in face recognition. Besides,
Nastar et al. (1997) found that facial expressions
and small occlusion affect the high-frequency
spectrum whereas changes in pose or scale of
a face affect their low frequency spectrum, while
a change in face will affect all frequency compo-
nents. As such, Lj, as the smoothed version that
corresponded to low or middle band in the fre-
quency spectrum, are insensitive to the facial
expressions and small occlusion and optimal for
the recognition purpose.

In the face authentication, the varying position,
scale and the orientation angle of the face image
during the capturing time may severely reduce
performance. These alignment problems can be
solved by transforming a face image into an
invariant feature by using Fourier-Mellin transform
(FMT) Reddy and Chatterji, 1996. FMT is trans-
lation invariant and represents rotation and scaling
as translations along the corresponding axes in
parameter space, and thus this technique decou-
ples images rotation, scaling and translation, and
is also therefore very efficient numerically by
utilizing the Fast Fourier transform (FFT). How-
ever, the result stated for the continuous case
does not carry over exactly to the discrete case.
Some artifacts may be introduced due to the
sampling and truncation if the implementation is
not done with care. Therefore a high-pass filter is
applied on the logarithm spectra, H(x,y) Z
(1 � cos(px) cos(py))(2 � cos(px) cos(py)) with
�0.5 % x, y% 0.5. And hence, the block diagram
of Wavelet Fourier-Mellin transform (WFMT) fea-
ture representation, G is shown in Fig. 2.

Stage 1(b): biometrics discretisation

At this stage, the invariant face feature, G˛<M

with M, the log-polar spatial frequency dimension,
is reducing down to a set of single bit, b˛f0; 1glb ,
with lb the length of the bit string via a uniform
distributed secret pseudo random number,
r˛f�1; 1g that is uniquely associated with a token.

Specifically, let G˛<M,

(1) Use token to generate a set of pseudo random
number, fri ˛<M

��i ¼ 1;.; lbg.
(2) Apply the Gram-Schmidt process to transform

the basis fri ˛<M
��i ¼ 1;.; lbg into an ortho-

normal set of matrices fr?i ˛<M
��i ¼ 1;.; lbg.

(3) Compute fCG
��r?iD˛<

��i ¼ 1;.; lbg where C j D
indicates inner-product operation.

(4) Compute lb bits FaceHash, bi ˛ 2lb from

bi ¼
�

0 if CG
��r?iD%t

1 if CG
��r?iDOt

lb%M;

where t is a preset threshold. In this paper, the t is
set to 0.

Repetition of this procedure to obtain multiple
bits renders the issue of inter-bit correlations, this
issue is addressed via Gram-Schmidt process to
obtain orthonormal set 2 ¼ fr?k

��k ¼ 1; 2;.; lbg.
Each bit bi(x) is hence rendered independent of
Figure 2 Block diagram of generating the WFMT features.
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all others, so that legitimate (and unavoidable)
variations in G that invert bi(x) would not neces-
sarily have the same effect on bIC1(x). Besides,
the progression is worth noting that there is no
apriori restriction on the value of lb, though lb !M
and that by the virtue of using pseudo random
pattern, b˛f0; 1glb can be interpolated.

The above-listed parameters are said to be zero
knowledge (ZK) representations of their inputs if
the transformations are non-invertible, as in the
case of cryptographic hash

hðr;kÞ : 2lb!c
l
0
b

2l
0
b/2lb

for tokenised pseudo random number, r and secret
knowledge (arbitrary-length password) k. The non-
recovery of key-factors Cr; kD from h(r, k) motivates
an equivalent level of protection for biometric G,
which is accomplished via token-specification of
representations in this stage 1(b) and stage 2
briefed in the section following ‘Introduction’,
such that FaceHash Hðr?;GÞ : 2lb!<M/2lb does
not jeopardize Cr?;GD. This is crucial from the
security viewpoint whether (or how) these trans-
formations can be inverted to recover the input
information because once a biometric image or
template is stolen; it is stolen forever and cannot
be reissued, updated or destroyed as well as its
corresponding crypto key. ZK representation
H(r\, G) is subsequently useful for standard crypto-
graphic operations, such as signature generation
and message decryption. Note H has an important
(and challenging) additional requirement over h,
namely offset tolerance so that H(r\, G) is stable
for G˛<M. This requirement essentially addresses
the fundamental gap between biometric similarity
and cryptographic equality.

Cryptographic key interpolation
(Shamir’s (2, ls)-thresholding scheme)

The limited uncertainty of FaceHash, b˛f0; 1glb is
addressed via Shamir secret-sharing (Shamir,
1979); which uses modular polynomial
p(x) : Zq/ Zq where q is a prime for secret
encoding p(0) Z kc i.e. the 2lb 3 Zq cryptographic
key in our context. In the simplest case of linear
polynomials, this allows secret recovery via

kc ¼
HðbÞpðHðr?ÞÞ
HðbÞ �Hðr?Þ

C
Hðr?ÞpðHðbÞÞ
Hðr?Þ�HðbÞ ðmod qÞ ð2Þ

where r\ be the orthonormalized token num-
ber used to compute the FaceHash, b and H( )
is the hashing function. The details of the
implementation of the biometrics based crypto-
graphic key derivation, which occurs during the
enrollment and the verification stage are provided
below. This constitutes a rigorous 2 of ls threshold
system with ls the number b of a particular user.

Enrollment

Let kc be a secret key and fb0
i ji ¼ 1;.; lsg denotes

ls possible FaceHash associated with a particular
user. The superscript 0 refers to the images
acquired during the enrollment.

1. Choose a random degree-1 polynomial p˛Zq
such that pð0Þ ¼ kc.

2. Compute coordinate pair {X0, Y0} to
constitute a secret-share, such as
X0 : fx0

r?
¼ Hðr?ÞWx0

i ¼ Hðb0
i Þji ¼ 1;.; lsg,

H0 : fh0
i ¼ Hðx0

i Þ; ji ¼ 1;.; lsg and
Y0 : fy0

r?
¼ pðx0

r?
ÞWy0

i ¼ pðx0
i Þji ¼ 1;.; lsg.

3. Store c ¼ fH0;Y0g on token.

Verification (key retrieval)

Let fb1
i ji ¼ 1;.lsg. The superscript 1 represents

an image used in verification.

1. Compute
X1 : fx1

r?
¼ Hðr?ÞWx1

i ¼ Hðb1
i Þji ¼ 1;.; lsg and

H1 : fh1
i ¼ Hðx1

i Þji ¼ 1;.; lsg.
2. Retrieve H0 : fh0

i ji ¼ 1;.; lsg and
Y0 : fy0

r?
Wy0

i ji ¼ 1;.; lsg from c in token.
3. Extract kc iff h0

i ¼ h1
j for any i; j˛f1;.; lsg,

kc ¼
y0
r?
x1
j

x1
j � x1

r?

C
y0
i x

1
r?

x1
r?
� x1

j

ðmod qÞ:

Note that kc cannot be computed without one of
the FaceHash, b or correct token r\ and that
neither of these can be recovered from the ZK
representations in c. The latter can in fact be
stored completely in the open, which is illustrative
of the protocol-level security.

Key interpolation is interpreted as a final error-
correcting step in this context, supplementing the
basic robustness of FaceHash and the replacement
of bits over-sensitive to legitimate variations in G.
End result H(r\, G) is hence:

- Sensitively dependant on r\: so that exact
correctness is required for r\ and H(r\), the
former of which contributes sensitively to-
wards b˛f0; 1glb .
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- Robustly dependant on b so that:
1. Minor variations (corresponding to the same

user) still result in b.
2. Major variations (corresponding to different

users) result in b0 (sb) commensurate with
the discrete r\ and continuous kc key-
factors.

Experiments and discussion

In this section, we provide the experimental
results to illustrate highly error tolerant of Face-
Hash, which is vital for key generation. The pro-
posed method has been evaluated in terms of their
same user ( genuine)/different user (imposter)
population distribution achieved in Essex Faces
94 and Olivetti Face Database (ORL database).
Essex Faces 94 contains frontal face photos taken
from a fixed camera distance and under the
uniform background and the illumination, with
the subjects asked to speak: throughout the pro-
cess; resulting very minor variations in turn, tilt
and slant as well as rotation in plane face images
and in fix illumination and scale. The test set
contains 153 subjects with 20 images for each
subject. Fnces 94 is considered to be somewhat
less challenging in comparison to ORL database
from the viewpoint of scale, aspect and illumina-
tion offsets; but it is well suited to simulate our
anticipated operational scenario, such as individ-
ual users in desktop or kiosk environments. This
database is assembled by the Computer Vision
Group of Essex University, and made publicly
available at URL http://cswww.essex.ac.uk/mv/
allfaces/index.html. On the other hand, ORL
database is made up of 10 different images of 40
distinct subjects. For some subjects, the images
were taken at different times, varying lighting,
facial expressions (open/closed eyes, smiling/not
smiling), and facial details (glasses/no glasses). All
the images were taken against a dark homoge-
neous background with the subjects in an upright,
frontal position with variations in turn, tilt and
slant. ORL database is publicly available at the URL
http://www.uk.research.att.com/facedatabase.
html. Fig. 3 shows a few samples that are taken
from ORL Face Database.

For the imposter population generation, the
first image of each subject is matched by using
a certain dissimilarity measure against the first
image of all other subjects and the same matching
process was repeated for subsequent impressions,
leading to 232,560 (23,256 ! 20) imposter at-
tempts for Essex Faces 94 and 7800 (780 ! 10)
for ORL database. For the genuine population,
each image of each subject is matched against all
other images of the same subject, leading to
29,070 (190 attempts o f each subject ! 153) for
Essex Faces 94 while 1800 (45 attempts of each
subject ! 40) for ORL database. Note that since
only face images are found in the scene in both
databases, thus face detection is not required for
this database. Generally speaking, all wavelet
bases with smooth, compactly support orthogonal
can be chosen, and hence a wavelet base with
Daubechies Filter 7 in level 1 is selected for WFMT
generation.

Following are the abbreviations used for brevity
in this paper:

� wfmt: denoting wavelet Fourier-Mellin trans-
form configuration;

� wfmtd-lb: denoting 2lb discretisation, where lb
is the bit length.

The experimental data are acquired for lb Z 20,
40, 60 and 80 in all cases while for the dissimilarity
matching, Euclidean distance metric is adopted
for wfmt whereas Hamming distance is used in
wfmtd-lb.

From Fig. 5, genuine populations for wfmtd-lb
centralized at Hamming distance of 0, particularly
for lb Z 40, 60 and 80 while imposter populations
centered at lb/2 for Essex Faces 94, indicate that
Figure 3 Face samples from ORL Face Database.

http://cswww.essex.ac.uk/mv/allfaces/index.html
http://cswww.essex.ac.uk/mv/allfaces/index.html
http://www.uk.research.att.com/facedatabase.html
http://www.uk.research.att.com/facedatabase.html
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Figure 4 Genuine and imposter population distribution for wfmt from (a) Essex Faces 94 and (b) ORL Face Database.
zero (or very small) bit different of two face
images from a user and about 50% bit different
from different face images. For ORL database,
they also had shown centralization of near 0 for
genuine population and lb/2 for imposter popula-
tions despite ORL database being more challenging
than Essex Faces 94. Besides, clear separation of
genuine/imposter population is tremendously im-
portant from the security viewpoint as it implies
that both zero False Acceptance (the probability
that a biometric system fails to reject an impostor)
as well as False Rejection (the probability that
a biometric system fails to verify the legitimate)
claimed identity of an enrollee. Compared to the
conventional biometrics approach, for wfmt as
shown in Fig. 4, it is extremely difficult or
impossible to obtain a clear separation of genu-
ine/imposter population (Daugman, 2002). This
indicates that wfmtd-lb outweighs wfmt by mini-
mizing the intra-class distance and maximizing the
inter-class distance. Both observations vindicate
the robustness of FaceHash, b to resist the varia-
tions among the same users and otherwise for the
different users as discussed in ‘Verification (key
retrieval)’ section.

Security analysis

The security of H : 2lb!<M/Zq, where q is
a prime number, transformation should be evalu-
ated in terms of key-factor:

� Independence, such as evaluation of H(r\, G) in
the absence of r\ or G.

� Non-recovery of r\ or G given specific value of
G(r\, G) and the other factor.With the bench-
mark being cryptographic hashing
hðr;kÞ : 2l!c
l0

2l
0
/2l

and secret knowledge k, where aZ h(r, k) cannot
be computed without both Cr; kD factors, so that
adversarial deduction is no more probable than
random guessing of order 1/2l.Cr; kD is also pro-
tected by the target-collision resistance of h, so
that deduction of r or k from output aZ h(r, k) and
one of the factors is no more probable than 1/2l.

Key-factor independence

Non-possession of r\ means that tokenised 2(r\) is
unavailable to an adversary; thereby previously
intercepted (or fabricated) G is simply not useful.
This prevents meaningful deduction of H(r\, G),
with random guessing being of probability q�1

in this case. Possession of r is more useful as
it leads to adversarial knowledge of H0 :
fh0

i ¼ Hðx0
i Þ;

���i ¼ 1;.; lsg from token, cZ {H0, Y0}
which suggests an analytic strategy whereby ran-
dom b˛2lb bit string are tested for suitability with
respect condition h(h(G))Z H0. The collision prob-
ability is ls2�lb in this case, hence the motivation
to minimize ls, and to maximize lb. Note that the lb
is restricted to not more than dimension of log-
polar frequency domain, M, though M is a huge
number (MZ 64 ! 64 used in this paper).

The operational security of our scheme is en-
hanced via token-side access control and encryp-
tion of c, with respective session key Cj0; jD ¼ hði0; iÞ
for domain or platform serialization i0. This neces-
sitates prior token-side storage of jZ Ej0(c), with
the following operational sequence:

1. Compute Cj0; jD from token i
2. Transmit j to retrieve j from token



Figure 5 Genuine and imposter population distribution for wfmtd-lb for 1b Z 20, 40, 60 and 80.
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3. Decrypt cZ Dj0(j)

prior to the computations of ‘Verification (key
retrieval)’ section, successful completion of which
is restricted to domain/platform i.

Key-factor non-recovery

Knowledge of G(r\, G) and G does not in any way
jeopardize r\, due to non-recovery of:

� Any b˛2lb from G

� Any r?˛<M from b or G

thereby resulting in r\ deduction being no less
probable than the 1=2lb of random guessing. The
other scenario of r\ and G compromise (con-
sequent to which H0 is also divulged) allows ana-
lytic strategy based on the testing of random
G˛<M for suitability with respect condition
H0 : fh0

i ¼ Hðx0
i Þ; ji ¼ 1;.; lsg. Probability of re-

covery in this case is ls2�lb .
Key-factor protection is enhanced via adoption

of measures previously discussed:

� Minimize the ls, and maximize the lb
� Access control and encryption of c

Concluding remarks

This paper described an error-tolerant biometrics
feature discretisation methodologydFaceHashing
that leads to the cryptographic key computation
based on face biometrics with uniquely tokenised
pseudo random number. The FaceHashing has
significant functional advantages over solely bio-
metrics or token usage, such as extremely clear
separation of the genuine and the imposter pop-
ulations and thereby introduce an error free de-
cision. H(r\, G) is furthermore highly secure with
respect to independence and non-recovery of the
Cr?;GD key-factor, with immunity against biometric
interception or fabrication. The key is constructed
to resist cryptanalysis even against an adversary
who captures the user device or the feature
descriptor. Our security analysis suggests that our
technique is viable for use in practice.
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