
You are the Key: Generating Cryptographic Keys
from Voice Biometrics

Brent Carrara
University of Ottawa
bcarr092@uottawa.ca

Carlisle Adams
University of Ottawa

cadams@site.uottawa.ca

Abstract—In this work we apply randomized biometric tem-
plates (RBTs) to voice biometrics by performing an experiment
using speech samples from the TI46 database. Additionally,
we present a novel algorithm for extracting reliable features
from voice biometrics and analyze the resulting entropy of the
cryptographic keys generated by the RBT algorithm. We evaluate
our implementation by analyzing the number of guesses required
by a powerful adversary to generate a user’s cryptographic
key when given access to the user’s decrypted template and
population statistics. Furthermore, we compare our results to
the results of prior work. We demonstrate that RBTs are able
to generate cryptographic keys with at least 30 bits of entropy
for 36% of the population and at least 40 bits of entropy for 7%
of the population, while keys generated using prior work only
contain at least 20 bits of entropy for 19% of the population. We
also demonstrate that RBT generated keys are able to achieve a
maximum entropy of 51 bits, while keys generated using prior
work are only able to achieve a maximum entropy of 26 bits.

Index Terms—Biometrics, Voice, Cryptographic Keys

I. INTRODUCTION

Biometric key generation is an active area of research
due to the permanence, non-repudiation, and portability of
an individuals biometric signal. In general, individuals have
shown difficulty in generating strong secrets. This has been
exemplified by their tendency to choose insecure passwords,
share their password with someone else, write their password
down, or completely forget their password [1], [2]. These
problems can be mitigated by generating strong cryptographic
keys from a user’s biometric signal [3], [4], [5], [6], [7],
[8]. This alternative relies on the user’s ability to reliably
recreate the same biometric signal when prompted to do so.
Not only is the user no longer required to memorize their
secret, but the cryptographic keys that they generate are much
stronger than the text based secrets they traditionally choose.
In order to measure the inherent entropy in biometric signals
Biometric Key Generator (BKG) algorithms have been de-
signed. In previous research, BKGs have been applied to many
different physical applications. It has been well documented
that biometrics can be used as a replacement for password
based authentication as well as key management schemes [3],
[4], [5], [6], [7], [8]. However, biometrics can also be used
in anonymous credential systems [11], [12] as pointed out by
Adams in [9]. By using biometrics, Adams shows how it is
possible to link a user’s digital identity with their physical
identity in a privacy-preserving way.

In this paper we present the results of applying a mod-
ified version of a BKG algorithm [7] traditionally used to
generate cryptographic keys from handwriting biometrics to
voice biometrics. We also empirically evaluate the ability
of an adversary to recreate a user’s biometric key when
given access to the user’s decrypted template as well as
feature statistics from the entire population. The adversary’s
ability to generate cryptographic keys is evaluated using a
probabilistic search algorithm based on the Guessing Distance
metric [20]. Additionally, we show that cryptographic keys
at least 210 times stronger than keys generated from voice
biometrics using previous work [4], [5], [6] can be generated
for 70% of the population. Our novel contribution in this work
is our algorithm for extracting reliable features from voice
biometrics. We show that it is possible to extract features that
demonstrate a high inter-user variation and a low intra-user
variation across our population.

Our work has application in many different physical set-
tings. We envision our BKG algorithm being run on either a
user’s handheld device [4], [5], [6], or on a tamper-proof third-
party device [9]. Additionally, our work has applicability in a
digital identity management setting as well [33], [34], [35],
where a trusted identity manager is responsible for accepting
a user’s voice signal and producing a cryptographic key from
their template. In each of these deployment scenarios, it is
conceivable that an adversary could gain access to the user’s
biometric template, either through gaining access to the user’s
handle device, by surreptitiously gaining access to the digital
identity manager’s database, or through gaining access to the
tamper-proof device which stores the template. Under this
assumption, we evaluate the security of our implementation by
calculating the number of guesses it would take an adversary
to generate a user’s cryptographic key when given access to
the user’s biometric template.

A. Related Work

The research in the area of privacy-preserving biometric
authentication is split into four categories: biometric salting,
biometric key generation, fuzzy schemes, and non-invertible
transforms [15]. Of particular interest to us in this paper is
the work done in the area of biometric key generation.

A number of biometric key generator algorithms have been
proposed for different biometrics modalities. In [3], Monrose,
et al. proposed hardening an individual’s typed password by

2010 Eighth Annual International Conference on Privacy, Security and Trust

978-1-4244-7550-6/10/$26.00 ©2010 IEEE 213

adding the entropy from their typing dynamics to the contents
of their typed password. By observing an individual’s key-
press duration and inter-key-press delays, their algorithm is
able to determine an individual’s distinguishing, repeatable
features. Once calculated, the distinguishing features are used
to reconstruct Shamir secret-shares, which are ultimately
combined with the individual’s password to add entropy.
Furthermore, their scheme is able to adapt to an individual’s
changing typing patterns over time. The false accept rate
(FAR), false reject rate (FRR), added entropy and the number
of distinguishing features are determined by a sensitivity
parameter, k. By varying the sensitivity parameter, varying
levels of FAR, FRR, and entropy can be achieved.

Monrose, et al. further applied their technique of generating
hardened typed passwords to voice biometrics in [4], [5],
[6]. In [4], [5], Monrose, et al. described a novel technique
for generating cryptographic keys that produced a theoretical
maximum of 46 bits of entropy. The authors used traditional
speech algorithms to extract cepstral feature vectors from each
frame of speech. The sequence of feature vectors was then
segmented using the segment vector quantization algorithm
[13]. Once the speech samples were segmented, each segment
was mapped to the bit 1, or 0. The resulting bit-string was then
used to look up the individual’s Shamir secret shares stored in
their template. The shares output by the algorithm were used as
the individual’s cryptographic key. Similar to the result in [3],
the resulting metrics of Monrose, et al.’s BKG voice algorithm
are dictated by the sensitivity parameter, k. Finding the optimal
value of k is of paramount importance to their algorithm. In
[6], Monrose, et al. furthered their research by implementing
their BKG on handheld PDAs. In their work, the authors
discussed generating keys with 60 bits of entropy, however,
they did not conclude that extracting the additional bits was
possible for every individual. Of paramount importance to our
work is the attacker model used by Monrose, et al. In [3],
[4], [5], [6], Monrose, et al. were primarily concerned with
an attacker having full access to the stored biometric template
of an individual; a model we will adopt going forward in this
paper.

In [10], Ballard, et al. looked at enumerating and evaluating
the ways in which handwriting biometric templates could be
attacked in an off-line model. The authors were able to show
that trained forgers who were given access to many handwrit-
ing samples were able to achieve a very high FAR. In [8],
Vielhauer et al. proposed a hashing algorithm for handwritten
signatures. In their proposal, 24 features were identified and
used in conjunction with user specific statistics to construct
their hash. Although they demonstrated an excellent FAR of
0% and a FRR of 7.05%, they provided no analysis on the
amount of entropy their algorithm extracted. In [18], however,
Vielhauer et al. analyzed their previous work and evaluated
their intra-personal feature deviation, inter-personal entropy,
and the correlation between the two.

In [7], Ballard, et al. proposed a novel handwriting BKG
called randomized biometric templates (RBTs), which pro-
duces biometric templates that are unverifiable to an attacker.

In [7], Ballard, et al. were concerned with increasing the
amount of entropy extracted from handwritten signatures and
argued that their RBT algorithm could be applied to many
different biometric modalities. Through their novel algorithm,
Ballard, et al. were able to demonstrate that a large portion of
the population they studied were able to produce cryptographic
keys with 44 bits of entropy while a smaller portion of the
population was able to produce cryptographic keys with 80
bits of entropy. In [7], Ballard, et al. compared the results of
their new RBTs to the biometric hashing scheme of Vielhauer
et al. [8], [18]. In their analysis, Ballard, et al. demonstrated
that while Vielhauer et al.’s algorithm has a maximum entropy
of 40 to 45 bits, theirs has a maximum entropy of 80 bits.

II. RANDOMIZED BIOMETRIC TEMPLATES (RBTS)

In our work, we modified Ballard, et al.’s proposal [7] to be
compatible with voice biometrics. We start by reviewing the
RBT algorithm.

The first step in generating a cryptographic key from a
biometric signal is to extract features from the signal. The RBT
algorithm introduced in this section takes as input a sequence
of biometric features and outputs a cryptographic key. In [7],
Ballard, et al. hypothesized that their RBT algorithm could be
applied to biometric modalities other than handwriting as long
as proper features could be extracted. In this paper we show
that the RBT algorithm can be modified to in fact generate
strong cryptographic keys from voice biometrics.

RBTs require features that are able to effectively differen-
tiate between individuals in the population (i.e. have a large
inter-user variation), yet reliably extract similar values from
samples of the same individual (i.e. have a low intra-user
variation). Once features have been extracted, the RBT algo-
rithm is able to distill entropy from the features by capturing
the inter-user variation inherent in the biometric signal. In
order to reliably recreate the same cryptographic key, RBTs
use quantization as a means to correct small perturbations
in subsequent readings from the same individual. Ballard, et
al.’s algorithm consists of two main algorithms: an enrollment
algorithm, Enroll, and a key generation algorithm, KeyGen.

1) Enroll (β1, . . . , βl, π): The Enroll algorithm is a four
step process and is shown in Appendix A. The algorithm
assigns features to a user, computes the necessary error
correction information for each of the features, creates a
cryptographic key for the user, and finally encodes their secure
template, which is used by KeyGen to recreate the newly
created key.

2) KeyGen (β, π, T): The KeyGen algorithm simply de-
crypts a user’s template, T, with the user’s password, π, and
attempts to recreate the user’s key, K, with their biometric
sample, β. The algorithm iteratively checks to see if a com-
puted hash value is equal to the verification hash, v, encoded
in the user’s template. Once the hashes match, the true key
is computed using the hash, Hkey , and the key is returned by
the algorithm. If the key cannot be recreated, the value ⊥ is
returned. In this work, we modified Ballard, et al.’s KeyGen

214

algorithm to be able to reliably recreate cryptographic keys
generated from voice biometrics.

III. ALGORITHMS

In this section we introduce our novel feature extraction
algorithm, which we will use to convert speech signals into
usable features for the RBT algorithm. We also discuss our
algorithm for segmenting a sequence of n 24-dimensional
feature vectors into a sequence of k (x, y) coordinates. Addi-
tionally, we discuss our method for mapping each segment to
a set of usable features.

The feature extraction algorithm we outline in this section to
extract reliable features is dependent on an implicit ordering
of the underlying signal being processed. In our case, this
ordering is time, since we are dealing with voice signals.
Our approach splits the speech signal up into time quanta
and extracts features from each quantum for evaluation. It
is important to note however, that we do not necessarily
extract features from the components of the speech signal,
i.e. phonemes. Continuing with this argument, we make the
contention that our algorithm could be applied to other signals
that also have a time ordering to them. With this in mind,
we hypothesize that our algorithm could be used to extract
reliable features from other biometric signals, such as typing,
and handwriting, since they too can be observed in such a way
that they vary in time in a repeatable way.

The data structure chosen to model the population’s speech
in our study was the self-organizing map (SOM) of Kohonen
[21]. Self-organizing maps can effectively be used to project
high-dimensional spaces onto a lower, two-dimensional space.
In our experiment, vectors of 24-dimensions were mapped to
a much more manageable two-dimensions through the use of
a SOM. In addition to converting high-dimensional data into a
two-dimensional space, the SOM also preserves the “ordering”
of the high-dimensional data. This property of SOMs allows
for complex vectors to be analyzed and visualized in a much
simpler fashion.

A. Feature extraction algorithm

Now that we have outlined the RBT algorithm and discussed
self-organizing maps, we introduce our novel algorithm for
converting speech signals into reliable features. As previously
mentioned, Ballard, et al.’s original implementation of RBTs
was applied to handwriting samples. Features were extracted
from each handwriting sample and used to create RBTs and
cryptographic keys for each of the users in their study. During
their study, Ballard, et al. extracted a number of different
features, e.g. the velocity of the pen during the signature,
the start and end coordinates of the signature, etc. Although
effective measures for handwriting biometrics, they have no
analogous metric in speech processing.

The steps of our feature extraction algorithm are shown in
Figure 1. Our algorithm takes as input a speech sample, β, and
outputs a sequence of features, φ1, φ2, . . . , φ2k. Our algorithm
starts by capturing a speech sample, βi, (Step 1) and performs
perceptual linear predictive (PLP) analysis [22] as well as delta

analysis [14] on each frame (Step 2). From the PLP and delta
analysis, the frames are converted into a sequence of n 24-
dimensional vectors consisting of PLP coefficients and delta
coefficients (Step 3). We then use a SOM to quantize each 24-
dimensional vector. Each 24-dimensional vector is quantized
to its associated two-dimensional best matching unit (BMU)
as determined by our SOM. The BMU, Mxi,yi , for each vector
in the sequence is calculated from our SOM to form the
sequence Mx1,y1 ,Mx2,y2 , . . . ,Mxn,yn

(Step 4). Each BMUs’
coordinates are then extracted to form the sequence of coor-
dinates (x1, y1), (x2, y2), . . . , (xn, yn) (Step 5). The sequence
of coordinates is then segmented into k segments using our
segmentation algorithm (Step 6). Each segment is then mapped
to the coordinates, (xbi , ybi), which best minimizes the total
cumulative distance from each of the coordinates (xi, yi) in the
segment, to the coordinates (xbi

, ybi
), resulting in a sequence

of k coordinates (xb1 , yb1), (xb2 , yb2), . . . , (xbk
, ybk

) (Step 7).
From the sequence of k coordinates, each of their xbi and ybi

components are then mapped to the feature values φi and φi+1

respectively, to create the sequence of features φ1, φ2, . . . , φ2k

(Step 8). The sequence of features φ1, φ2, . . . , φ2k is then fed
into the RBT algorithm to generate a user’s cryptographic key
and biometric template.

A detailed description of how we segment each sequence
of coordinates as well as how we map each segment to usable
features is presented in the next two sections.

B. Segmenting the frames
Our segmentation algorithm chooses the set of k nodes from

our SOM which best describe a sequence of n frames. Let
us assume that we have extracted our 24-dimensional vectors
from a given speech sample and have found each vector’s
associated BMU. Let us also assume that we have created a
sequence of coordinates from the BMUs, which we represent
by (x1, y1), (x2, y2), . . . , (xn, yn). Let R1 . . . Rk be disjoint,
nonempty ranges over the natural numbers ∪ki=1Ri = [1, n],
where the i-th segment is (xj , yj), . . . , (xj′ , yj′) if Ri = [j, j′].
Our goal in segmenting this sequence of feature vectors is to
reduce the sequence of n coordinates into a list of k disjoint
ranges over [1, n] by reducing the error, Ei, for each segment:

Ei(Ri, (xbi
, ybi

)) =
j′∑
k=j

d((xk, yk), (xbi
, ybi

)) (1)

Here (xbi , ybi) denotes the coordinates of the node in our
SOM found to best minimize Equation 1, and the function
d(X,Y) represents the Euclidean distance between two vec-
tors, X , and Y .

The goal of our segmentation algorithm is therefore to
minimize the total error, E, for all the segments:

E =
k∑
i=1

E(Ri) (2)

The problem of segmenting a sequence of n two-
dimensional values into k segments has been deemed the

215

1) Capture speech signal (ß)

2) Perform windowing and spectrum

analysis

3) Extract PLP and Delta Coefficients for each

frame

Frames 1 … n

M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3

SOM with coordinates showing

M2,2 M2,1 M2,2 M1,1 M1,1 M3,1 M3,1 M3,2 M3,1

4) Map each frame to a BMU

(2,2) (2,1) (2,2) (1,1) (1,1) (3,1) (3,1) (3,2) (3,1)

5) Extract each BMU’s coordinates.

(2,2) (2,1) (2,2) (1,1) (1,1) (3,1) (3,1) (3,2) (3,1)

6) Segment into k segments

Segments 1 … k

(2,2) (2,1) (2,2) (1,1) (1,1) (3,1) (3,1) (3,2) (3,1)

(2,2) (1,1) (3,1)

7) Map each segment to the coordinates that

best minimizes the error in the segment

2 2 1 1 3 1

8) Map each coordinate to a feature
Feature i

Fig. 1. Flow diagram of our feature extraction algorithm.

k-segmentation problem. The k-segmentation problem is op-
timally solved by the dynamic programming algorithm of
Bellman [25]. The main drawback of the traditional dynamic
programming approach however, is that Bellman’s algorithm,
although optimal, has a run-time of O(n2k). In order to
speed up the run-time of Bellman’s algorithm, we designed
a heuristics based algorithm to segment each of our speech
samples. Our segmentation algorithm is split into two stages,
Grouping and Segmenting.

1) Grouping: During the grouping stage, coordinates that
are “close” to one another are grouped together. The algorithm
iteratively places contiguous coordinates into the same group if
and only if they are within a certain distance of the component-
wise mean of the group. The pseudo-code for the algorithm is
shown in Appendix B. In our experiments a THRESHOLD
value of 10 was found to work best.

2) Segmenting: The next stage of the algorithm segments
the n coordinates into k coordinates. Depending on how many
groups were created during the Grouping stage, groups are
either split into two groups if |R| < k, or two consecutive

groups are merged together if |R| > k. Groups were split
by searching for a group that when split reduced the total
error, E, by the greatest amount. Groups were merged by
searching for two consecutive sub-groups that when merged
raised the total error by the least amount. In both cases this
stage proceeded iteratively either reducing or increasing the
cardinality of R until |R| = k. Once |R| = k, we represented
each of the groups in R by the coordinates, (xbi , ybi), of
the BMU found to best minimize Equation 1. Each of the
coordinates (xbi

, ybi
) were then mapped to features.

After the grouping stage, groups in R that had a cardinality
of one were removed prior to the segmentation stage of
the algorithm. Our heuristics based segmentation algorithm,
described in this section, reduced the time it took to segment
our speech samples from a number of days to a couple of
hours.

C. Mapping segments to features

Once the frames of speech were segmented into their
(xbi , ybi) coordinates, the coordinates were used to create the

216

features required by the RBT algorithm. In our study, each of
the x and y components that represented a segment of speech
were individually mapped to a feature. The x and y coordinates
were mapped to φi and φi+1 respectively, thus resulting in two
features being mapped to each segment.

During the creation of our technique, other mappings were
also tried. The most promising mapping (other than the one
we ultimately used) mapped each node directly to a feature by
setting φi = (xbi , ybi). This required mapping each feature to
the two-dimensional coordinates representing each segment.
This however, greatly reduced the number of reliable features
in our study (by half), resulting in lower entropy keys. In this
study we report the results based on mapping each segment
to two distinct features.

Both the SOM and our segmentation algorithm provided us
with a way to efficiently convert a sequence of 24-dimensional
vectors into a set of usable features. We chose to represent our
speech samples as a sequence of two-dimensional coordinates
to take advantage of the underlying structure of our SOM. By
reducing the dimensionality of our feature vectors from 24
to two, we were better able to create features that relatively
made sense. A segment coordinate (10, 12), for instance, is
relatively close to the coordinate (11, 14). By extracting the
x-component of both these coordinates as a feature we were
able to create a feature that exhibits a low intra-user variation
(assuming both these coordinates are from the same user’s
speech samples). A segment coordinate (10, 12) and (35, 42)
however, are not relatively close to one another. By extracting
the x-component of both these coordinates and comparing
them to one another we can discard the x-component as a
feature because it exhibits a relatively high intra-user variation
(again assuming these coordinates are from the same user’s
speech samples). This simple property of mapping high di-
mensional data to an ordered two-dimensional space, allowed
us to extract very strong and reliable features.

Our algorithm for mapping speech samples to reliable
features is the novel contribution of this paper. In our imple-
mentation of applying RBTs to voice biometrics our biggest
challenge was extracting features that allowed the RBT algo-
rithm to extract a high amount of entropy while minimizing
both our FAR and FRR. In handwriting, features can easily be
extracted by observing the mechanical movements of a user’s
hand while they execute their signature, however, extracting
features from voice biometrics required extracting features
from the raw input signal of the voice samples in a reliable
way.

IV. EVALUATION

In this section we describe the metrics we used to evaluate
our implementation and discuss how we modified the original
RBT algorithms for our purposes. We also discuss the setup of
our experiment and provide empirical results for the important
evaluation metrics.

A. Entropy

Traditionally, the measure Guessing Entropy has been used
to quantify the entropy in cryptographic keys generated by
BKGs. Most notable to us in this study is the entropy re-
ported by Monrose, et al. in [4], [5], [6], where they applied
their BKG to voice biometrics. In their analysis, the authors
concluded that the theoretical maximum amount of entropy
in their keys is summarized by the equation guesses =
min{2m, (|A| + 1)/2}, where m is the number of features
used to generate a user’s key and A is the set of users in
their experiment. What this metric says is that given the set
of keys generated by the their BKG it would take guesses
on average to map a key to a certain individual. There are a
number of problems with Monrose, et al.’s use of this metric
however. One of the problems is that the authors assume keys
are generated in a uniform fashion and they do not account for
the fact that some users in the system generate keys that are
easier to guess than others. Instead, they attempt to summarize
the average number of guesses required for the population as
a whole.

In this study, we use the metric Guessing Distance to
address this issue [16], [20]. Guessing Distance measures the
number of guesses required by an adversary who assumes
population statistics can be used to determine an individual’s
feature values. The metric measures how many guesses are
made by an adversary before they correctly guess that a
specific user generates the feature value, w, for a given feature.
As oppose to being a theoretical metric, Guessing Distance is
based on empirical data, and requires feature value probability
distributions in order to produce an accurate estimation. The
Guessing Distance estimation algorithm, although originally
used to analyze the entropy in keys generated by a handwriting
BKG, was designed to be agnostic of the underlying biometric
signal being measured. Guessing Distance was chosen over
Guessing Entropy because it allowed us to model a logical
adversary’s attack on a given user’s biometric template using
empirical data.

B. False rejection rates and false acceptance rates

Two other metrics we report in this paper are the false
rejection rate (FRR) and the false acceptance rate (FAR) of
our implementation. The FRR was calculated by taking the
percentage of authentic speech samples that were rejected as
not being able to generate the correct cryptographic key from
an authentic user’s template, while the FAR was calculated
by taking the percentage of imposter samples that were
accepted as having generated the correct biometric key from
an authentic user’s template.

Before quantifying the FAR and FRR of our implementa-
tion, we first present our modifications to the KeyGen algo-
rithm. We modified the original KeyGen algorithm to correct a
specific type of error commonly found in our implementation.
RBTs, on their own, correct errors through quantization, while
this provides a good starting point for error correction it was
found that the observed FRR was still very high. Deeper
inspection of the problem revealed that quite often the same

217

Sample Id s1 s2 s3 s4 s5 s6

Sample 1 01,40 14,15 31,16 18,33 27,00 26,24
Sample 2 11,27 01,41 15,14 30,16 27,04 27,25
Sample 3 01,41 15,13 31,18 19,33 27,01 29,23
Sample 4 02,41 14,14 30,17 18,33 27,00 29,23

TABLE I
SEGMENTED SAMPLES FOR USER M1 AND UTTERANCE ZERO.

feature value in subsequent speech samples from the same
individual were found to be misaligned. An example of the
feature values for user M1 are shown in Table I.

Let us examine the values for segment s2. We can easily
see that the expected value, (15,14), is misaligned and appears
in segment s3 in Sample 2. This type of error was extremely
common in our implementation. Fortunately, the errors were
quite easy to correct. We corrected the errors as follows. Let
us assume we are generating a cryptographic key from Sample
2. Let us also assume that the x-component of s2 has been
encoded in user M1’s template as a feature. To correct the
error found in Sample 2 we attempt to generate the user’s true
cryptographic key by creating three keys. Instead of simply
generating one cryptographic key using the x-component of
s2, we generated three cryptographic keys each with the
values from the x-component of s1, s2, and s3 respectively.
In our example, the keys generated from Sample 2 using
the x-component of s1 and s2 would result in keys that do
not match the template’s verification hash. However, the key
generated using the x-component of s3 would result in a key
that does match the verification hash in the user’s template.
We evaluated the FAR and FRR of our implementation after
applying this new algorithm to KeyGen.

C. Experimental methodology

Our experiment was setup as follows. We used a pre-existing
data set, the TI46 [27] database, to simulate a group of users
uttering the sequence of numbers zero through nine as their
passphrase. The TI46 database contained speech samples from
each user uttering all the letters of the alphabet, the numbers
zero through nine, and ten other words. In our study, however,
we only used each of the users’ 26 utterances of the numbers
zero through nine, resulting in 26 different versions of the
passphrase for each user. We partitioned the speech samples
into enrollment samples and test samples in a 4:1 ratio. The
enrollment samples were used to create our SOM, as well as
each of the user’s templates, while the test samples were used
to test the FRR of our implementation. Additionally, the FAR
of our implementation was tested with both the enrollment
samples and test samples.

The original TI46 data set consisted of 16 users, eight
women and eight men, however, through the use of pitch/time
modifications the set of 16 users was grown to 64 [32] in
order to increase our sample space. Adobe R© Audition R© 3
[28] was used to perform the pitch/time modifications. Three
different scaling factors were used for the group of men
and women and were chosen to ensure the resulting voices

still sounded human. The pitch/time modifications performed
on our original data set however, are independent of our
implementation and are not a required step in our algorithm. To
ensure that the we created new users that had human sounding
voices we listened to the synthetic speech samples we created
to confirm that they sounded human and that they were audibly
different from the original speaker.

As part of our algorithm we used traditional signal pro-
cessing techniques to clean up the samples from the TI46
database. Each speech sample in the data set was amplified
and had frames of silence removed from it. Again, Adobe R©
Audition R© 3 was used to perform the signal processing tasks
because of its batch scripting capability. Removing silence is
a required step in our algorithm. It ensures the speech signals
being processed by our feature extraction algorithm contain
the most feature rich segments. We found that this step was
integral to the success of applying RBTs to voice. Without
silence detection a large number of segments were mapped to
the same value because no distinguishing features could be
extracted from frames containing no speech.

After processing the speech samples with Adobe R©
Audition R©, the speech samples were further processed indi-
vidually by the Hidden Markov Model Toolkit (HTK) [29] to
extract PLP and delta coefficients. HTK was used to generate
each of the 24-dimensional vectors that were subsequently
used as input to the training phase of our SOM. In addition to
using the HTK library to perform both PLP and delta analysis,
the HTK library was configured to perform Cepstral mean
normalization (CMN). CMN is a technique used to compen-
sate for undesirable spectral effects caused by imperfections
in audio recording. Although traditionally used when dealing
with lengthy samples of speech it was employed in this study.

As previously described, a SOM was used to model the
speech samples of our population. All the speech samples were
processed by HTK and the enrollment samples were used to
train our SOM. The SOM PAK [24] toolkit was used to train
a 48x48 SOM, organized in a hexagon topology. The SOM
was initialized with the eigenvectors of the enrollment data
to better seed the initial weight vectors of the nodes in the
SOM. The SOM was then trained using a learning rate of
0.1 and a radius of 2 while 10,000,000 iterations were used
to allow the nodes to converge to an acceptable cumulative
error. A number of varying radii and learning rates were
also tested in our study by first creating the SOM with the
varying parameters and then testing the cumulative error. The
cumulative error was calculated by taking the sum of the
cumulative distances between each enrollment vector and its
associated BMU. It was found that a lower learning rate and
lower radius performed best with our data set.

Once the SOM was created, each sequence of feature
vectors was segmented into six segments by the segmentation
algorithm discussed in Section III-B. Of the six segments,
the first and the last segments were not used as reliable
features. These two segments were discarded because they
showed a very high variance in the nodes they matched.
This was primarily due to the imperfections in the silence

218

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

CD
F

Number of Features

Number of Features Assigned to Each User

k=30
k=40
k=50

Fig. 2. CDF of the number of reliable features in each user’s template, i.e.
the size of Ψ, for varying levels of k

detection tool used during the signal processing stage of our
experiment. Since the first and last segments were discarded,
however, only four segments were used as possible features for
each utterance. Since each passphrase contained the utterances
zero through nine, a total of ten utterances were used. Each
utterance was segmented into four segments, and each segment
was mapped to two features, resulting in 80 possible features
per passphrase. It should also be noted that although the first
and last segments were discarded as reliable features, they
were used to align features in our modified KeyGen algorithm.

D. Experimental results

An important algorithm used within the Enroll algorithm has
not yet been discussed. In Appendix A, on line 1, the function
Select is called by Enroll. While the details of Select are
somewhat complicated they must be explained in some detail
in order to properly understand the results of our experiment.
Further details about the Select algorithm can be found in [7].
The Select algorithm performs two distinct tasks. The first
is to calculate the individual feature quantization widths, δi,
by taking into account statistics across the entire population.
For each feature value, φi, each user, u, is tested to see how
much error tolerance, du,i, they require to replicate the feature
φi reliably. Each of the du,i values are ordered such that
du,i ≤ du′,i. The du,i value at the kth percentile is then
taken to be the value for δi. After the Select algorithm has
determined all the δi values, it assigns features to users. To do
so, each user’s du,i value is tested to see if du,i ≤ δi. If their
value falls below δi the feature i is added to their set of reliable
features. As expected, as we increased the value for k, more
and more features were added to the RBT generated templates.
Figure 2 shows the cumulative distribution function (CDF) of
the number of features encoded in each user’s template, i.e.
the number of reliable features, |Ψ|, for varying levels of k.

In order to calculate the FAR and FRR of our implemen-
tation a repeated leave-out-k cross validation algorithm was

Fig. 3. ROC for varying levels of k.

used. Given v samples, we randomly chose v − k samples
to create the RBTs and k samples to test the FRR of our
implementation. v − k and k were set to be in the ratio 4:1.
We tested the FAR by using all v samples from each imposter
to try and generate an authentic key, given the authentic
user’s template. Additionally, each template created had the
maximum number of reliable features in it capped at |Ψ| = 25,
|Ψ| = 50, and |Ψ| = 60 for k = 30, k = 40, and k = 50
respectively. This ensured that the strongest possible templates
were created for each user for varying levels of k. The FRR
and FAR of our implementation are shown in Figure 3. It
can be seen that if a user utters their passphrase twice a FRR
of less than 10% can be achieved. Another very interesting
observation is that the FAR at one and two utterances is very
low.

The most important metric reported in this study is the
amount of entropy in the keys generated by our implemen-
tation. In order to compare our implementation against a
baseline, we implemented the algorithm of Monrose, et al.
[5] as a means to compare our implementation against prior
work. Monrose, et al.’s algorithm was implemented using
PLP and delta coefficients as their features to ensure we
made a fair comparison between the two implementations. In
our implementation of Monrose, et al.’s algorithm, we were
able to achieve FRR and FAR similar to their documented
results. Additionally, in order to quantify the entropy in
both our keys as well as the keys of Monrose, et al. we
implemented the Guessing Distance estimation algorithm as
detailed in Ballard’s dissertation [20]. The results are shown
in Figure 4, where the baseline is the observed entropy in our
implementation of Monrose, et al.’s BKG as documented in
[5].

It should be noted that the entropy reported in this analysis
assumes an attacker has access to the decrypted version of a
user’s template and therefore does not account for the amount
of entropy in the user’s password, π. The entropy reported

219

Fig. 4. CDF of the number of guesses required by Ballard, et al.’s search
algorithm before finding a user’s RBT-derived key.

in this study is therefore an absolute lower bound. Using
an encrypted template as the input to the entropy calculation
would have increased the resulting amount of entropy by the
amount of entropy in the user’s password. However, we chose
to ignore the entropy in π and focus on the entropy generated
by the voice biometric in isolation.

In Figure 4 it can be observed that at k = 30, the templates
created by the RBT algorithm produced weaker keys than that
of previous work. This was due to the fact that at k = 30 the
templates contained a very low number of reliable features,
with 50% of the population assigned |Ψ| = 12 or fewer
features. At higher levels of k however, users were assigned a
much larger number of features with 50% of the users being
assigned over |Ψ| = 30 and |Ψ| = 40 features for k = 40 and
k = 50 respectively. The added number of features increased
the entropy of the keys generated by the RBT algorithm. Our
results show that RBTs outperformed the BKG of Monrose, et
al. by assigning keys that required at least 230 guesses to 36%
of the population. The algorithm of Monrose, et al. however,
assigned keys that required at least 220 guesses to only 19%
of the population. Even more encouraging was the fact that
for 7% of the population, keys requiring at least 240 guesses
were created using the RBT algorithm. The RBT algorithm
was also able to generate keys with a maximum entropy of
51 bits compared to a maximum entropy of 26 bits for keys
generated by Monrose, et al.’s algorithm. Our results show
that the keys generated using RBTs are able to achieve a much
more practical amount of entropy than the keys generated from
the algorithms of prior work.

V. FUTURE WORK

The results from this study, although preliminary, are defi-
nitely a step forward in creating cryptographic keys from voice
biometrics. However, there are a number of areas that require
further research, specifically to increase the entropy of the
generated cryptographic keys. In this work, we perform an

experiment and present our empirical results. Going forward,
further analysis is required to determine the exact mapping
of usable features to speech components, i.e. phonemes. By
mapping usable features to phonemes it is possible that the
passphrase uttered by a user could be varied as long as the
underlying phoneme structure of the speech used to generate
the biometric keys remains constant.

In order to achieve more entropy, there are two primary
ways forward. The first is to gather speech samples from
more users and apply our technique. As more diverse samples
are gathered, the feature values extracted using RBTs will
hopefully start to approach a more uniform distribution, thus
reducing the advantage an adversary has in guessing a user’s
feature values. By choosing a diverse array of users, from
varying backgrounds and both sexes it is believed that better
feature value distributions can be achieved. In that same vein,
more feature rich speech samples are required to increase the
number of reliable features. In our test, users simply uttered
the numerical values zero through nine as their passphrase. In
order to generate keys with more entropy, more features are
required and thus more feature-rich utterances are needed. A
more comprehensive test would have a diverse array of users,
preferably in the hundreds, being prompted to say feature-rich
words in order to achieve a more practical amount of entropy.

VI. CONCLUSION

In this work, we show that higher entropy keys are achiev-
able by applying a modified version of randomized biometric
templates to voice biometrics. We introduce a novel feature
extraction algorithm to extract reliable features from voice
biometrics and make the argument that the algorithm can be
applied to any signal that has an underlying ordering to it.
By using our novel feature extraction algorithm we show that
it is possible to apply RBTs to voice biometrics in order to
achieve practical results. We also show that an adversary given
access to auxiliary information is still required to perform an
increased number of guesses for a high percentage of the
population before guessing a correct key. Additionally, we
compare the entropy in our RBT generated keys to that of
previous work and show that our system is able to generate
keys with at least 30 and 40 bits of entropy for 36% and 7%
of the population respectively, while those of previous work
are only able to achieve 20 bits of entropy for 19% of the
population. We also show that RBT generated keys are able
to achieve a maximum entropy of 51 bits, while keys generated
from the algorithms of previous work are only able to achieve
a maximum entropy of 26 bits. Lastly, we show that acceptable
levels of FRR and FAR are achievable and describe, in detail,
how the amount of entropy can be improved by gathering
more feature rich utterances from a more diverse population
of users.

ACKNOWLEDGMENT

The authors are grateful to Fabian Monrose and Lucas
Ballard for their very helpful feedback on an earlier version
of this paper.

220

REFERENCES

[1] A. Alvare. How Crackers Crack Passwords or what Passwords to Avoid,
In Proceedings of the Second USENIX Security Workshop, pg. 103-112,
August 1990.

[2] D. Fieldmeier, and P. Karn. UNIX Password Security - Ten Years Later.
In Proceedings of Advances in Cryptology - CRYPTO, pg. 44-63, 1990.

[3] F. Monrose, M. K. Reiter, and S. Wetzel. Password hardening based on
keystroke dynamics. International Journal of Information Security, pg. 69-
83, 2002.

[4] F. Monrose, M. K. Reiter, Q. Li, and S. Wetzel. Using voice to generate
cryptographic keys. ODYSSEY-2001, pg. 237-242, 2001.

[5] F. Monrose, M. K. Reiter, Q. Li, and S. Wetzel. Cryptographic key
generation from voice. IEEE Symposium on Security and Privacy, pg.
202-213, 2001.

[6] F. Monrose, M. K. Reiter, Q. Li, D. P. Lopresti, C. Shin. Toward
speech-generated cryptographic keys on resource constrained devices,
Proceedings of the 11th USENIX Security Symposium, pg. 283-296,
2002.

[7] L. Ballard, S. Kamara, F. Monrose, and M. K. Reiter. Towards practical
biometric key generation with randomized biometric templates. Proceed-
ings of the 15th ACM Conference on Computer and Communications
Security, pg. 235-244, 2008.

[8] C. Vielhauer, R. Steinmetz, and A. Mayerhofer. Biometric Hash based on
Statistical Features of Online Signatures. 16th International Conference
on Pattern Recognition, vol. 1, pg. 123-126, 2002.

[9] C. Adams. Achieving Non-Transferability in Credential Systems Using
Hidden Biometrics. Security and Communication Networks, 2009.

[10] L. Ballard, F. Monrose, and D. Lopresti. Biometric authentication revis-
ited: Understanding the impact of wolves in sheeps clothing. Proceedings
of the 15TH USENIX Security Symposium, pg. 29-41, 2006.

[11] S. Brands. Rethinking Public Key Infrastructures and Digital Certifi-
cates. MIT Press, 2000.

[12] J. Camenisch, and A. Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
Advances in Cryptology Eurocrypt 2001, vol. 2045, pg. 93.118, 2001.

[13] L. Rabiner, B-H. Juang. Fundamentals of Speech Recognition. Prentice
Hall, 1993.

[14] J. R. Deller Jr., J. H. L. Hansen, and J. G. Proakis. Discrte-Time
Processing of Speech Signals. Macmillan Publishing Co., 1993.

[15] N. K. Ratha, S. Chikkerur, J. H. Connell, and R. H. Bolle. Generating
Cancelable Fingerprint Templates. IEEE Transactinos on Pattern Analysis
and Machine Intelligence, vol. 29, no. 4, pg. 561-572, 2007.

[16] L. Ballard, S. Kamara, F. Monrose, and M. Reiter. On the Requirements
of Biometric Key Generators. Technical report, Whiting School of Engi-
neering, John Hopkins University, 2007.

[17] H. Feng, and C. C. Wah. Private key generation from on-line handwritten
signatures. Information Management and Computer Security, vol. 10, no.
4, pg. 159-164, 2002.

[18] C. Vielhauer, and R. Steinmetz. Handwriting: Feature correlation analy-
sis for biometric hashes. EURASIP Journal of Applied Signal Processing,
vol. 2004, pg. 542-558, 2004.

[19] L. Ballard, S. Kamara, M. K. Reiter. The Practical Subtleties of
Biometric Key Generation. In Proceedings of the 17th annual USENIX
Security Symposium, pg. 29-41, 2006.

[20] L. Ballard. Robust Techniques for Evaluating Biometric Cryptographic
Key Generators. PhD thesis, The Johns Hopkins University, 2008. Avail-
able at http://www.cs.jhu.edu/ lucas/papers/thesis.html.

[21] T. Kohonen. Self-organizing maps Third Edition. Springer, 2001.
[22] H. Hermansky. Perceptual Linear Predictive (PLP) Analysis of Speech.

Journal of Accoustic Society of America, vol. 87, issue 4, pg. 1738-1752,
1990.

[23] J. W. Sammon. A Nonlinear Mapping for Data Structure Analysis. IEEE
Transactions on Computers, vol. 18, issue 5, pg. 401-409, 1969.

[24] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. SOM PAK: The
Self-Organizing Map Program Package. Technical Report A31, Helsinki
University of Technology, Laboratory of Computer and Information
Science, 1996.

[25] R. Bellman. On the approximation of curves by line segments using
dynamic programming. Communications of the ACM, vol. 4, issue 6, pg.
284, 1961.

[26] J. L. Massey. Guessing and Entropy. In Proceedings of the 1994 IEEE
International Symposium on Information Theory, pg. 204, 1994.

[27] M. Liberman, et al., TI 46-Word. Linguistic Data Consortium, 1993.

[28] Adobe, Adobe Audition 3. http://www.adobe.com/products/audition/,
2009.

[29] S. J. Young et al. HTK: Hidden Markov Model Toolkit V3.4. Cambridge
University Engineering Department, 2009.

[30] S. J. Young et al. The HTK Book. http://htk.eng.cam.ac.uk/prot-
docs/htk book.shtml, 2009.

[31] J. A. Rice. Mathematical Statistics and Data Analysis. Wadsworth, Inc,
1988.

[32] M. Kahrs, and K. Brandenburg, Applications of Digital Signal Process-
ing to Audio and Acoustics. Kluwer Academic Publishers, 1998

[33] D. Recordon, and D. Reed, OpenID 2.0: A Platform for User-Centric
Identity Management. Proceedings of the 2nd ACM Workshop on Digital
Identity Management, 2006

[34] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Klingenstein,
Federated Security: The Shibboleth Approach. http://www.educause.
edu/EDUCAUSE+Quarterly/EDUCAUSEQuarterlyMagazineVolum/
FederatedSecurityTheShibboleth/157315, 2004

[35] D. Chappelle, Introducing Windows CardSpace. http://msdn.microsoft.
com/en-us/library/aa480189(loband).aspx, 2006

APPENDIX A
ENROLL ALGORITHM [7]

Input: The password, π ∈ Π, and biometric samples
β1, . . . , βl.

Input: (Global value): The set of all features Φ
Input: (Global value): Quantization widths δ0, . . . , δN .
Output: The key K, and template T ..

1: (Ψ,Ψ̃)← Select(β1, . . . , βl) // Select biometric features
2: L← Permute(Ψ)||Permute(Ψ̃)
3: k0 ← Hpass,0(π), k1 ← Hpass,1(π)
4: for j = 0 to |L| − 1 do
5: i← L[j]
6: µi ← Median(φi(β1), . . . , φi(βl))
7: if µi ≥ δi

2 then
8: αi ← bµi − δi

2 c mod δi
9: else

10: αi ← bµi + δi

2 c
11: end if
12: xi ← max(0, bµi − δi

2 c) // Quantize feature outputs
13: γi

R←− [αi,∆]δi
// Select random quantisation offset

14: Cj = (ENk0(i), E∆
k1

(γi)) // Encrypt values
15: Kj = i||xi
16: end for
17: K ← Hkey(π||K0||K1|| . . . ||K|Ψ|−1) // Derive key
18: C ← (C0||C1|| . . . ||C|L|−1)
19: v ← Hver(π||K0||K1|| . . . ||K|Ψ|−1)
20: return K,T = (C, v)

APPENDIX B
GROUPING ALGORITHM USED TO SEGMENT A SEQUENCE

OF COORDINATES

Input: The sequence of coordinates (x1, y1), . . . , (xn, yn).
Output: The segmented groups of coordinates, R.

1: G← ()
2: R← ()
3: for i = 1 to n do
4: if G is empty then
5: G.append((xi, yi))
6: else
7: µi ← Mean(G)

221

8: if distance((xi, yi), µi) ≤ THRESHOLD then
9: G.append((xi, yi))

10: else
11: R.append(G)
12: G← ()
13: G← (xi, yi)
14: end if
15: end if
16: end for
17: if G is not empty then
18: R.append(G)
19: end if
20: return R

222

