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Abstract 

In this paper, we propose a way to combine a pass­

word with a speech biometric cryptosystem. We present two 

schemes to enhance verification performance in a biomet­

ric cryptosystem using password. Both can resist a pass­

word brute-force search if biometrics are not compromised. 

Even if the biometrics are compromised, attackers have to 

spend many more attempts in searching for cryptographic 

keys when we compare ours with a traditional password­

based approach. In addition, the experimental results show 

that the verification performance is significantly improved. 

1. Introduction 

To date, it is well known that biometric systems are vul­

nerable to attack [15]. In particular, the security of a stored 

template is seriously concerning. To alleviate this problem, 

researchers proposed a biometric cryptosystem to secure 

the template. However, the verification performance is de­

graded. Moreover, the error rate is unacceptable, for exam­

ple the work in [10]. Even though the authors showed that 

the verification performance was slightly degraded when it 

was compared with the unprotected template approach, its 

error rate was still high. 

Thus far, one of the promising ways to authenticate users 

is to combine a biometric cryptosystem with the other fac­

tors: knowledge or token. Therefore, the performance is 

improved in the case that the biometric and the input factors 

are not compromised simultaneously. 

We consider the knowledge-based approach to be an­

other factor in improving a biometric cryptosystem because 

the users do not need to carry a token. However, we need to 

deal with weak passwords selected by users. For this issue, 

we will show that the proposed scheme offers better prop­

erties than a traditional password-based approach when the 

biometric is compromised. 

In this paper, we present Speech Cryptographic Key 

Regeneration based on user's Passwords (SCKRP). The 

SCKRP is a cryptographic framework that binds a biomet-
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ric template with a pseudo-random key to create a protected 

template. We propose two schemes to enhance verification 

performance in a biometric cryptosystem using password. 

The proposed schemes are: transformation and permuta­

tion. Both can resist password brute-force search if bio­

metrics are not compromised. Even if the biometrics are 

compromised, the security meets the same level of the pass­

word approach. On the other hand, the security provided 

by the biometric cryptosystem is not affected even when 

the password is compromised. We utilize Dynamic Time 

Warping (DTW) in our scheme. A DTW-based biometric 

user authentication system needs a DTW template to set up 

a warping function for a query biometric. In addition, a 

matching template is required to examine similarity. We 

utilize a hardened template proposed in [10] to protect the 

DTW template. For the matching template, it is protected 

by cryptographic framework. Next, the hardened template 

and query biometrics will be transformed using a password. 

We then introduce a scheme in mapping behavioral biomet­

ric measurements (feature vector) to a binary string which 

can be combined with a pseudo-random key for a crypto­

graphic purpose. These steps are detailed in Section 3. 

We evaluate SCKRP verification performance using 

Equal Error Rate (EER) with a public database: The MIT 

mobile device speaker verification corpus [21] available 

from MIT. This dataset is detailed in Section 4. 

We consider three different scenarios in evaluating the 

SCKRP: I) Genuine: When an adversary does not access 

genuine biometrics and passwords. II) Compromised pass­

words: When an adversary accesses genuine passwords. 

III) Compromised biometrics: When an adversary acquires 

genuine biometrics. Then, we compare the system with un­

protected Dynamic Time Warping-based speaker authenti­

cation [8]. Next, we compare ours with the protected ap­

proach in [10]. These experiments are detailed in Section 

5. Finally, the results and security analysis are illustrated in 

Section 6. 
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Figure 1. Enrollment phase: Initialization. 

2. Related work 

Numerous researchers proposed schemes to protect bio­

metric templates by incorporation with random keys or 

passwords [19, 17, 18, 1, 15, 12]. These systems satisfy 

the criteria we raised in the previous section 1) the attack­

ers cannot discriminate the correct password from incorrect 

when they use a brute-force search to find the key without 

the knowledge of biometrics. 2) when the password is com­

promised, it cannot be used to reveal the key. 

Ballard et. al. [1] used a password to encrypt selected 

biometric features and some helper data to their key gen­

eration scheme. Their construction follows the approach 

similar to [2] where a low-entropy password is used to en­

crypt a high-entropy string. The features were specified as 

indexes into a table, and then a subset of the features was 

randomly assigned to each user. The feature indexes of this 

subset was encrypted in the template with a password using 

a cipher with arbitrary finite domain [3]. In this way, any 

passwords that were used to decrypt the template yield a 

subset of features indexes that falls within the global table. 

The authors ensured the indistinguishable from decryption 

with the correct and incorrect password by assigning any 

given feature with the same probability across the popula­

tion to a user. Therefore, in both cases, a decrypted template 

appears as a random permutation on a subset of feature in­

dexes. They demonstrated that their scheme did better than 

the previous approaches against some attacks even when the 

password was compromised. 

Nandakumar et. al. [15] proposed a scheme to secure 

a fingerprint with a password. The password was used to 

select a transformation function to secure the fingerprint 

template. The transformed template was then secured us­

ing fuzzy vault framework. Finally, they used a key de­

rived from a password to encrypt the vault. By using their 

scheme, the attackers are required to know the correct pass­

word before they can guess the key. Even if the correct 

password is selected, the security of the scheme is still at 

the same level as before using a password. Benefits of their 

scheme include template revocability, prevention of cross­

matching, enhanced security and a reduction in the False 

Accept Rate. However, their scheme noticeably affects the 

False Reject Rate. 

By utilizing the idea from Hao et al [9]., Kanade et al. 

proposed a three factors scheme (biometric, smartcard, and 

password) to apply to iris codes where a password was used 

to permute the key [12]. They could generate the key of 

198 bits (compare to 140 bits in [9]) with estimated en­

tropy of 83 bits (compare to 44 bits in [9]). Unfortunately, 

their scheme creates a security loophole which allows the 

attacker to crack the helper data without any additional in­

formation [20]. 

Teoh and Chong [17] proposed secure speech template 

protection in speaker verification system. The speech tem­

plate was hidden through the random subspace projection 

process. In this process, a speech feature matrix is inte­

grated with a user-specific key to obtain a random-projected 

matrix which cannot be inverted to the original speech fea­

ture matrix. The random-projected matrix is used to form a 

speaker probabilistic model and a decision threshold. They 

showed that the verification performance was very high. 

However, it would make some attacks, such as hill-climbing 

easier, as the system left the decision threshold and random­

projected vectors matching process. In the case that the to­

ken is stolen, the attacker may make small changes in the 

input imposter's feature matrix and check to see how the 

match score changes. After a number of iterations, the at­

tacker may be able to acquire a feature matrix that is close 

to the original. 

To address problems mentioned above, we propose 

schemes to combine a speech biometric cryptosystem with 

a password. We first transform the biometric using a pass­

word. Then, the transformed version is mapped to a binary 

string. In this way, the transformation process forces the at­

tackers to run dynamic programming every time they try an­

other different password. Next, the biometric information is 

permuted using a password in such a way that the attackers 

cannot discriminate the correct password from brute-force 

search even when the biometrics are compromised. Lastly, a 

cryptographic key and the biometric information are hidden 

using a fuzzy commitment framework to protect the match­

ing template. 

3. Speech Cryptographic Key Regeneration 

based on Password (SCKRP) 

The SCKRP can be overviewed as two phases: Enroll­

ment and Verification. The biometric key regeneration is in 

the enrollment phase that comprises of two stages: Initial­

ization and Regeneration. The first stage is used to protect 
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Figure 2. Enrollment phase: Regeneration. 

the DTW template through a hardening process illustrated 

in Figure 1. The second stage illustrated in Figure 2 is used 

to protect the matching template; we apply a password in 

the second stage. 

3.1. Enrollment: Initialization 

For the Initialization stage (Figure 1), we follow the 

scheme in [10] detailed in the following. Users provide 

their training pass-phrases that are repeated l+ 1 times to the 

system. Feature extraction is the first process to derive fea­

ture vectors and Discrete Fourier Transform (DFT) features. 

This process involves digital signal processing. The signal 

is framed into the short time analysis interval. Each frame is 

multiplied by a window function to reduce abrupt changes 

at the start and the end of each frame. These frames have 

to be overlapped properly. The length of each frame is set 

to 30 msecs; this length would yield good results for speech 

processing with 10 msecs overlap [7]. For the sampling rate 

of 8 kHz, we use 240 samples per frame that are shifted 

every 80 samples. 

The system is initialized by using one of the training ut­

terances as the reference signal which is stored as 121 DFT 

features of m frames, called the DTW template. Then, the 

system performs Dynamic Time Warping (DTW) [16] to the 

rest of training utterances to minimize distance between the 

reference signal and training utterance. The feature vectors 

of each training utterance will be mapped to a binary string 

of length m, a frame per bit, called afeature descriptor. For 

mapping process, we first generate pseudo-random bits p E 
{o,l}m. Next, a set of thresholds (multi-thresholds) is se­

lected based on the criteria that a query biometric will be 

mapped to a binary string that is close to p. Finally, the 

pseudo-random bits will be securely deleted. As the map­

ping algorithm simply maps a feature to 1 if the feature is 

greater than a threshold and 0 otherwise, hence we select 

a threshold to be lower than the mean of that feature if a 

corresponding pseudo-random bit is 1 and greater than the 

mean otherwise. Lastly, l feature descriptors are used to de­

fine distinguishing features: features of length D that the 

user can reliably generate. The binary string of distinguish­

ing features derived from the training utterances is called a 

distinguishing descriptor. 

For a hardening process, we initialized the template by 

using a full set of DFT features as an initialized DTW tem­

plate. However, we are not able to use the full template 

as attackers can utilize it in gaining access to the system. 

Hence, the template has to be perturbed which is called 

hardening the template. Specifically, let the total number of 

bit derived from the hardened template that corresponds to 

the distinguishing descriptors be T; the system should yield 

T as less than or equal to D12. In [10], the authors showed 

that, under this condition, the hardened template was secure 

even if the attacker acquired the templates and had perfect 

knowledge of correlation of features. For this reason, if T 
is greater than D12, one of template's feature vectors will 

be removed. After each step in hardening the template, the 

hardened DTW template will be the keying signal of the 

training pass-phrase and the process will be re-started until 

the condition is met. Finally, the result is stored as a hard­

ened template. 

3.2. Enrollment: Regeneration 

This stage (Figure 2) consists of three main steps: trans­

formation, permutation, and key binding. Firstly, random 

numbers derived from the user's password are used to trans­

form the hardened template and training pass-phrases. The 

transformed biometrics are then mapped to binary strings. 

Then, a distinguishing descriptor (a binary string that users 

can reliably generate) is defined. Secondly, the distinguish­

ing descriptor is encrypted with a password. Finally, the 

encrypted binary string is used to secure the cryptographic 

key using fuzzy commitment framework [11]. These steps 
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Figure 3. Biometric key retrieval in verification phase. 

are detailed in the following. 

3.2.1 Transformation 

The system first generates two sets of pseudo-random num­

bers, 8 = {-I, 1}2m where m (the same m in the ini­

tialization stage) is the number of frames of the hardened 

template. Hence, if a training biometric is greater than 2m 
frames, the users will be asked to re-utter their pass-phrases. 

Two sets, say 81 and 82, are arranged in a two-column 

table: 81 in the first column and 82 in the second col­

umn. Then the system uses an eighth-character password 

to generate a 2m bit binary string R = {ri E {a, I}, i = 

1, ... ,2m}. Next, the R will be used to select the ran­

dom numbers in the table: select the number in the first 

column if ri = 1 and otherwise in the second column. 

Lastly, the selected random numbers will be used to trans­

form feature vectors. More precisely, let 1-l = {fi, i = 

1, ... , m} be a set of feature vectors of the hardened tem­

plate where the vector fi = [fi(I), ... , fi(121)V. The 

transformed version of 1-l can be represented by T = 

{(-lri . fi + hi = 1, ... ,m}. For a set of training 

vectors X = {Xi, i = 1, ... , n � 2m} where the vec-

tor Xi = [xi(I), ... , xi(121)]T, the transformed version 

is Q = {(-lr' . Xi + xi,i = 1, ... ,n}. Using T as a 

reference template, the system performs DTW to the Q. 
The result will be used in mapping and generating distin­

guishing descriptor the same way as described earlier in 

the initialization stage. Next, we select 2n-l bits, where 

n = 3,4, . . .  , based on feature variation to form a binary 

string 8 = {bi E {a, l},i = 1, ... ,L = 2n - I}. 

3.2.2 Permutation 

For the second step, the indexes of the 8 will be randomly 

permuted in the context of cryptography. Next, the per­

muted indexes are used to arrange the binary string 8 and 

we refer the result to as an arranged binary string 8'. Fi-

nally, we employ a prefix cipher [3] with domain and range 

in [1, L] where [1, L] denote a set of integers from 1 to L 
in encryption and decryption the permuted indexes with a 

password P E K. 
The prefix cipher consists of two functions: E : K x 

[1, L] -+ [1, L] and D : K x [1, L] -+ [1, L]. Therefore, 

if we refer the encrypted permuted indexes to as M, every 

possible password when it is used to decrypt M, will yield 

an integer string that consists of non-repeated random inte­

gers in [1, L]. By utilizing this scheme, the attackers cannot 

discriminate the correct password from brute-force search 

as the decrypted template appears as a random permutation 

on a subset of the indexes. 

3.2.3 Key binding 

To combine the arranged binary string 8' with crypto­

graphic key is the last step. The system first generate a 

pseudo-random bit k and then encoded properly denoted by 

E(k) of length L (see Figure 2). In our case, we use BCH 

code [13]. The encoding code E(k) has to tolerate error 

within Hamming distance (H), a maximum number of bit 

differences between the distinguishing descriptors and the 

feature descriptors of a legitimate user. For the next step, 

the S and the encoding code E(k) will be hidden using an 

XOR operation and then stored as a lock data denoted by C. 
Only the user with feature descriptors 8' that is sufficiently 

similar to the 8 within Hamming distance (18 - 8'1 � H) 
can unlock the C and correctly decode the key. 

3.3. Verification 

The biometric key retrieval process is in the verification 

phase illustrated in Figure 3. The user requests the template 

from the database that contains the hardened template, the 

multi-thresholds, and the lock data. A user's password will 

be used to transform the hardened template and a query bio­

metric the same way in Section 3.2. 1. Once the transformed 



versions are set, the system performs DTW. Then, the re­

sult will be mapped to a feature descriptor q. Next, the 

encrypted permutation indexes M will be decrypted with 

the password; the result is used to re-arrange the feature de­

scriptor q and we refer the re-arranged result to as q'. Then, 

the q' will be XORed with the lock data. The next step is 

the decoding process. If the error is within the tolerance, the 

key can be correctly reconstructed. To check whether the 

key is identical to the key generated in the training phase, 

a number of researchers [1, 9, 14] checked the hash func­

tion. In the training phase, the initialized key was stored as 

h(k). Once the key k', is regenerated from the verification 

phase, the system checks to see whether h(k) = h(k'). If 

h( k) = h( k'», the key, k', is correct. The system authenti­

cates the user. 

4. The MIT mobile device speaker verification 

corpus 

This database [21] was collected from 48 speakers (22 

females and 26 males). The utterances were recorded in 

three acoustic environments: office, lobby, and street in­

tersection via two types of microphones: external earpiece 

headset and built-in mobile device. The database consists 

of two sets: a set of enrolled users and a set of dedicated 

imposters. For the enrolled set, speech data was collected 

over two sessions on separate days (20 minutes for each 

session). For the imposter set, users participated in a single 

20 minutes session. There are six lists of pass-phrases that 

were varied by three environments and two types of micro­

phones. We select the first list to our experiment because 

it provided pass-phrases that were said by the same speaker 

multiple times under the same environment (office). So, we 

can use this list in the training and the testing phase. 

We use six recordings from the set of enrolled users to 

train the system and two recordings are used for verification. 

To investigate the performance of the system, we use the 

same pass-phrase uttered by other speakers (the set of dedi­

cated imposters) to evaluate the imposter trial. The number 

of imposters that is available in the database varies from one 

to six. 

5. Experimental setup 

We compare the SCKRP with other speaker verification 

systems: Dynamic Time Warping (DTW) [8] and Dynamic 

Time Warping-based Biometric key Binding (DBKB) [10]. 

For DTW, we use the first utterance as the keying signal 

and perform DTW to the rest. The results are averaged and 

stored as the matching template. The distance between an 

input and the template is determined by using the Euclidean 

distance. The system decides whether to accept or reject the 

speaker by comparing the Euclidean distance to the decision 

threshold. 

For the DBKB, 121 DFT elements of a full template are 

reduced to an average of nine. We set the length of the 

binary string to 511 bits. For our dataset, we can generate 

139 bits on average for each feature; we need 4 features 

to generate 511 bits. For our setting, four features are the 

Short-Term Energy, the 13 order MFCC, the 12 order Linear 

Prediction Coefficient (LPC), and the DFT. We use t-error­

correcting BCH [13] which denoted by BCH(n, k, t) where 

n is a block length, k is the key, and t is correctable bits. For 

this system, we employ BCH(51 1, 229, 38). 

For the SCKRP, the same parameters in the DBKB are 

utilized except the correctable bits t illustrated in Table 1 

is varied to an operating point of each scenario. We will 

evaluate verification performance using Equal Error Rate 

(EER). However, the dataset does not include users' pass­

words. In our experiments, we have to select passwords 

which are likely to be used in the real world application. 

For this reason, we select eight character users' passwords 

based on difficulty levels [5]. Six classes of users' pass­

words and their distribution are: 1) one word (23%), 2) 

combination of two or more word (6%), 3) familiar num­

bers such as a social security number, street address, birth 

date, etc. (21 %), 4) unfamiliar numbers (10%), 5) string of 

numbers and letter (34%), 6) string of numbers, letter, and 

symbols (6%). 

6. Experimental results 

We will first investigate in the case that one of the applied 

password schemes is excluded (one-layer scheme). Then, 

we will investigate the two-layer scheme SCKRP (transfor­

mation and permutation schemes). 

6.1. One-layer scheme 

Table 1 shows the EERs of the DTW [8], DBKB [10], 

and SCKRP. In the case of the permutation scheme only, the 

error rate of the compromised password scenario (II) does 

not differ from the DTW and DBKB system. In the other 

scenarios (I and III), the verification performance meets the 

same level of the password approach. 

In the case of the transformation scheme only, the er­

ror rate of the compromised password scenario (II) also 

does not differ from other systems, but the error rates in 

the other scenarios (I and III) are noticeably degraded when 

we compare them with the previous case. As we introduced, 

the transformation layer is designed to slow down attackers 

who try to brute-force search the key. Therefore, it is nec­

essary to keep this layer. In the next section, we will show 

that we can address this drawback when two schemes are 

combined. 

6.2. Two-layer scheme 

Table 2 shows the EERs of the two-layer scheme 

SCKRP. In the case that the password and biometrics are 



Table 1. EERs of speaker verification systems against imposter 

attack for Dynamic Time Warping-based (DTW), Dynamic Time 

Warping-based Biometric key Binding (DBKB), and our approach 

(SCKRP) in the case that one of the applied password layer is ex­

cluded. Scenario I: genuine, Scenario II: compromised password, 

and Scenario III: compromised biometric 

Method Scenario EER (%) Error Corrected 

I 11.96 38 bits 

Permut ed I 0.00 53 bits 

SCKRP II 11.06 38 bits 

III 0.00 53 bits 

Transformed I 3.96 46 bits 

SCKRP II 11.64 38 bits 

III 9.89 38 bits 

Table 2. EERs of two-layer SCKRP against imposter attack. Sce­

nario I: genuine, Scenario II: compromised password, and Sce­

nario III: compromised biometric 
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Figure 4. ROC curves of two-layer scheme. Scenario I: genuine, 

Scenario II: compromised password, and Scenario III: compro­

mised biometric. 

not compromised (scenario I), the verification performance 

of the SCKRP clearly outperforms the other systems. For 

the compromised biometric case (scenario III), the error rate 

is still the same as scenario 1. For the compromised pass­

word case (scenario II), the verification performance of the 

SCKRP does not differ when we compare it with other sys­

tems. These results are also illustrated in Figure 4. 

6.3. Security analysis 

In this section, we investigate the security of two-layer 

SCKRP with three scenarios. For the case of the genuine 

(scenario I), we use the same approach presented by Inthav­

isas and Lopresti [10] to estimate the entropy. Hence, the 

security of the scheme can be estimated using the sphere 

packing bound SF 2::;"�: m where z is the uncertainty of 

voice and w is the error bits that can be corrected by the 

system [9]. We carry out 4,512 of inter-speaker compar­

isons (the same dataset as used by Inthavisas and Lopresti) 

to evaluate the uncertainty. For a binary string of 511 bits, 

the uncertainty of our template is 125 bits. From Table 2, 

the system should be able to correct the error up to 39 bits, 

that is approximately 8%. Here, z is 125 bits and w is 10 

bits. The estimated entropy is 76 bits, which is much better 

than Inthavisas and Lopresti approach (51 bits). 

For the case of the compromised password (scenario II), 

the estimated entropy is 77 bits. However, 33.07%, which 

is determined using the analysis technique proposed in [10], 

leaks from the hardened template. Therefore, the estimated 

entropy is 51 bits, which is the same as reported in [10]. 

Even though 51 bits of entropy can easily be enumerated 

using todays computational resources, this space is deter­

mined under assumption that an attacker knows all users' 

passwords in the system. Therefore, it is very difficult for 

the attacker to get all. 

For the case of the compromised biometric (scenario III), 

the estimated entropy is between 18-30 bits [4]. However, 

the attackers have to spend many more attempts for two rea­

sons. First, the SCKRP is a biometric-based system; it pre­

vents the attacker who is content to find the password of 

any users in the system (the weakest link). More precisely, 

the attackers randomly try the most probable password with 

every user in the system and try other passwords until they 

find the first match. For the SCKRP, they cannot do that as 

applying the same password to different biometrics yields 

different results. Second, the transformation process forces 

the attackers to run dynamic programming every time they 

try other different passwords. In contrast, if the transfor­

mation process is excluded, they can run dynamic program­

ming only once. Then, they apply passwords to the warping 

signal and check to see whether the result matches the tem­

plate. As a result, this case (the transformation layer is ex­

cluded) does not differ from the traditional password-based 

approach. 

Overall processes create a greater computational load for 

an attacker. Even if this also makes users wait more time for 

authentication, it makes much more time for the attackers as 

they have to try every possible password. 



7. Conclusions 

We have proposed a way to combine a speech biometric 

cryptosystem with a password. The system consists of three 

layers. For the first layer, the biometric is transformed us­

ing a password. Then, we map the transformed version to a 

binary string. For the second layer, the result from the sec­

ond layer is permuted using a password in such a way that 

the attackers cannot discriminate the correct password from 

brute-force search if the biometrics are not compromised. 

For the third layer, a cryptographic key and the binary string 

are hidden using a fuzzy commitment framework. The ex­

perimental results show that the verification performance of 

the system meets the same level of a traditional password­

based approach if a biometric and password are not compro­

mised simultaneously. Furthermore, the system increases 

the computational time for attackers to search for the key. 

Even if the attackers acquire the biometrics, they have been 

forced to align a query biometric each time they guess the 

password. 

As this work was a preliminary investigation, the secu­

rity against potential attacks needs to be further explored, 

in particular, a generative attack. In addition, we plan to 

investigate the impact of user passwords on the system. 
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