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Abstract 

In this work we present a procedure for generating 

binary vectors. which can be used as keys for crypto­

graphic purposes. This research is based on Automatic 

Speech Recognition Technology and Support Vector Ma­

chines. Keys bits are produced by making a distinction 

among the phoneme features of the users employing hy­

perplanes. The implementation of the method is described 

and the statistics are computed for several number qf users. 

The results obtained show that the proposed method is ,1'4-

ficiently robust to reliably regenerate the key. 

1 Introduction 

The necessity of having a cryptographic key is an impor­
tant issue for nowadays secure systems. The objective of a 
key is to maintain the information secret from any unautho­
rised person; then, it should be very difficult to guess or ob­
tain. Typically, secure systems are designed based on cryp­
tographic primitives, where its security relies on the privacy 
of the keys. 

Lately, one of the problems of typical authentication sys­
tems is that even for the simplest algorithms the authorised 
user should remember the correct password; otherwise, the 
system would deny access to the information. However, re­
membering strong passwords is difficult for humans. Fur­
thermore, if the chosen password is in a dictionary it is 
extremely vulnerable to cracking [S, 10]. The goal of the 
biometric key is to produce a password using the intrinsic 
characteristics of some specific user distinguishing quality 
(voice, iris, fingerprint and face) with the consequence that 
remembering a complex password would not be necessary. 
Since voice is a natural process and produces different ut­
terances in short time, it gives advantages among other bio­
metrics allowing to assure the user's identity. For instance, 
the system's interface can always request to him a random 
passphrase, avoiding the use of recorded voice by an unau-
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thorised person. In this research we focus on voice, and its 
characteristics, to properly obtain a reliable cryptographic 
key. This type of key generation has several applications in 
security; for example, access control to networks either to a 
computer system or to a restricted area. It can also be useful 
for remote access control by telephone. 

Since speech is an important element in this research, 
we have the advantage of the extensive research done in the 
field. Our cryptographic scheme is based on the knowl­
edge of the phonemes, then it is important to know the 
starts and ends of the phonemes given a speech signal. For­
tunately, the output of an Automatic Speech Recognition 
(ASR) gives this information. The ASR primary task is to 
obtain the transcription for a given speech signal. Moreover, 
if properly configured the ASR can also obtain the starts and 
ends of the phonemes. 

The main challenge of our research is to produce a cryp­
tographic key that should repeatedly be the same for one 
user under certain conditions. An experiment by Monrose 
et. al [9] showed a method to produce this key. In their 
research an acoustic space was formed derived from the 
utterances of a significant group of people. A vectorial 
quantization was applied and a set of 20 centroids was ob­
tained. The raw voice signal of each user was transformed 
into 12-Cepstral Coefficients frame sequences. Afterwards, 
those sequences were segmented. To optimise the segmen­
tation for their purposes, the likelihood function between 
subsequences and the matching centroids needed to be max­
imised. An iterative process using the Viterbi algorithm was 
used. From each final segment a media was obtained. The 
substraction of the media of a segment from the value of the 
matching centroid resulted in a set of vectors to be mapped 
into a binary class. A partition plane for the vector space 
was suggested, and a binary biometric key was conformed. 
The last step of the proposal of Monrose et. al referred to 
the hardening of the key using shared schemes. 

The underlying part of that research was the generation 
of the descriptor, since the classification planes decide the 
final key. However, it has a serious drawback, the search 
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Figure 1_ System architecture 

of the partition plane is difficult due to the fact that infinite 
planes are possible_ The key depends strictly on the chosen 
plane, this means that the key of the user will be unknown 
until the plane is set A more flexible way to produce a 
key is always desirable_ A control on the assignation of 
the key values can enhance the cryptographic performance_ 
It is also interesting to explore the possibility to produce a 
key by the use of an algorithm that can handle all the voice 
important characteristics without discarding any of them_ 

In the next section we present our proposaL Section 3 
through 5 describes the fundamental elements of ASR, the 
feature descriptor formation and SVM techniques_ Section 
6 examines the experimental methodology and the final sec­
tion presents the results and discusses future research prob­
lems_ 

2 Proposal 

The purpose of this work is to produce a cryptographic 
key given the voice signal and the spoken user passphrase_ 
The imperative challenge of this goal lies in the search of 
suitable set of phoneme planes that can significantly parti­
tion the users' data_ 

A general view of the mechanism is displayed in Figure 
L In the first stage, the speech signal is pre-processed and 
the Automatic Speech Recognition (ASR) technique is used 
to extract the phoneme model and the phoneme starts and 
ends_ Using the last new sets of data, a resulting set of fea­
tures is conformed_ This set of features are the input of the 
Support Vector Machine (SVM) and will produce a users' 
phoneme classification according to a kernel and bit specifi­
cations_ Finally, using the SVM model the key is generated_ 
Each part will be discussed in the following sections_ 

3 Automatic speech recognition 

The ASR primary task is to obtain the transcription of a 
given speech signaL In addition, the ASR can also obtain 
the starts and ends of the phonemes if properly configured, 
see Figure 2_ 

The speech signal is pre-processed by calculating its Mel 
Frequency Cepstral Coefficients (MFCC) [I5]. MFCCs are 
a common transformation that has shown to be very ro­
bust To obtain the MFCC (Figure 3), each speech signal 
is divided into short frames_ For each frame the amplitude 
spectrum is obtained using the Discrete Fourier Transform 
(DFT)_ Afterwards, the spectrum is converted to the log­
scale_ Then, the Filter Banks are used to smooth the scaled 
spectrum_ Finally, the discrete cosine transform is applied 
to eliminate the correlation between components_ The re­
sult is a 13-dimension vector, each dimension correspond­
ing to one parameter_ To emphasise the dynamical features 
of the speech in time, the time-derivative (Ll) and the time­
acceleration (Ll2) of each parameter are calculated_ Then, 
the final representation is a 39 dimension vector formed 
by 12-dimension MFCC, followed by 1 energy coefficient, 
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Figure 2_ Speech recognition architecture 
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136. and 13 6.2 coefficients. 
The training branch leads to a production of an acoustic 

model. Given the acoustic model, the transcription of the 
utterance, and the parametrised speech a decoder produces 
the phonemes' starts and ends. This process is known as 
speech f(Jrced alignment. 

In this training phase the system learns the patterns that 
represent the speech sound. Depending on the application 
the units can be words, phonemes, or syllables. The Hidden 
Markov Model (HMM) is the leading technique for acoustic 
modelling [ 14]. An HMM is characterised by the following, 
see Figure 4: 

A = {aij},aij = Prob{qj att+ 1 1qi att} state transi­
tion probability distribution 

B = {bj (Ot)}, bj (Ot) = observation probability distri­
bution 

11" = {11" i} = Prob{ qi at t = I} initial state distribution 
o = {01, O2, ... , OT} = observation sequence (input 

sequence) 
T = length of observation sequence 
Q = {q1, q2, ... , qN} hidden states in the model 
N = number of states 
The compact notation A = (A, B, 11") is used to represent 

an HMM [4]. The parameter set N, !vI, A, B, and 11" is 
calculated using the training data and it defines a probability 
measure Prob(OIA). 

The resulting model has the inherent characteristics of 
real speech. The output distributions of the HMM are 
commonly represented by Gaussian Mixture Densities with 
means and covariances as important parameters, see Figure 
5. Depending on the application one or more gaussians can 
be included per state. But also, one or more states are also 
possible for a given reference sound. To determine the pa­
rameters of the model and reach convergence it is necessary 
to first make a guess of their value. Then, more accurate 
results can be found by optimising the likelihood function 
and using Baum-Welch re-estimation algorithm. 

For the purpose of this research, the HMM will model 
phonemes. Let, P be the set of phonemes. 

P = {x I x is a phoneme} 

The states and the gaussians will make reference to the 
set P. The phonemes were chosen as acoustic model be­
cause it is possible to generate larger keys compared with 
the length of the key that could be generated using complete 
words. 

Assuming the phonemes are modelled with a three-state 
left-to-right HMM, and assuming the middle state is the 
most stable part of the phoneme representation, C p = {Ci} 
will denote the set of means of central gaussian of the mid­
dle state vectors. 

In the decoding phase (Figure 2), the phonemes' starts 
and ends of each utterance are obtained using the Viterbi 
algorithm. 

4 Feature generation 

After obtaining the starts and ends of the phonemes of 
the speech signal, the MFCC's for each phoneme in the ut­
terances are arranged forming the sets R�j' where i is the 
index associated to each phoneme, j is the j-th user, and 
u is an index that starts in zero and increments every time 
the user utters the phoneme i. Then, the feature vector is 
defined as 

1/J�j = JL(R�j) - Ci 

where JL( R�j) is the mean vector of the data in the MFCC 
set R�j' and Ci E C p is known as the matching phoneme 
mean vector of the model. Let us denote the set of vectors, 

Dp = {[1/J;,j' bp,jll If u, j} 

where bp,j E {-I, I} is the key bit or class assigned to the 
phoneme p of the j-th user. 

Dp is partitioned into two sets, those vectors in Dp to be 
used for the training phase are grouped in set D�rain and 
those for the test phase form D�est . 

5 Support vector machine 

The SVM is a method widely used for classification, de­
rived by Vapnik and Chervonenkis [1, 3]. The goal of basic 



SVM is to obtain a model to perform vector classification in 
one of two classes. Two stages conform the SVM process: 
training and testing. 

The first step in the training process is to format the data 
in vectors, and each vector is labelled according to its class. 
Afterwards, the following set of pairs are defined {Xi, y;}; 
where Xi E lRn are the training vectors and Yi = {-I, I} 
are the labels. The SVM learning algorithm finds an hyper­
plane (w, b) such that, 

1 I 

min _wT w + C L �i 
x, ,b,e 2 i=l 

subject to Yi(WT ¢(Xi) + b) 2: 1 - �i 

�i 2: 0 

(I) 

(2) 

where �i is a slack variable and C is a positive real constant 
known as a tradeoff parameter between error and margin. 
For a better understanding, see Figure 6. 

Equations I and 2 can be transformed into a dual prob­
lem represented by the Lagrange multipliers ai. Thus, 

I 

L 

I 

L aiYi = 0, C 2: ai 2: O. 
i=l 

(3) 

(4) 

ai can be solved as a quadratic programming (QP) prob­
lem. The resulting values ai E lR have a close relation with 
the training points Xi; each ai represents the strength with 
which a point Xi is associated in the final decision func­
tion. Only a subset of the points will be associated with a 
non-zero ai, called support vectors (SV). Those SV are the 
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Figure 4. Left-to-right HMM,l...6 states, a tran­
sition probabilities, b output probabilities, 0 
observation sequence 

points that lie closest to the decision boundary and therefore 
will conform the decision hyperplane. 

To extend the linear method to a nonlinear technique, 
the input data is mapped into a higher dimensional space by 
function ¢. However, exact specification of ¢ is not needed: 
instead, the expression known as kernel K(Xi' Xj) == 

¢(xif ¢(Xj) is defined. There are different types of ker­
nels, but the most common are 

• polynomiaIK(xi,xj) = (rxfxj +r)d,'Y  > 0 

• Radial Basis Function (RBF) 
K(Xi, Xj) = e(-,llxi-xjI12)

,'Y > 0 

• Sigmoid function K (Xi, X j) = tanh( 'YxT X j + r) 

where 'Y, rand d are parameters. 
The decision function is expressed as 

#sv 
y(x) = sign[ L akYkK(xi, X) + b]. 

k=l 
(5) 

For better results, the parameters of the kernels should 
be tunned to find the best classification of the training data. 
When convergence is reached, the kernel and its final pa­
rameters are evaluated using Equation 5 and the test data. 
The statistics can give a guide on the performance of the 
classifier and decide to tune or stop. 

The SVM has been used for several applications, includ­
ing biometrics [12, l 3]. In this research we employ it for 
searching a function that can be able to transform a feature 
vector into a binary number (key bit) arbitrarily selected. In 
this research we will just focus on the RBF kernel since it 
can model closed decision surfaces [11], and if one class is 
encapsulated by another class it can still produce a reliable 
model. Two parameters need to be tunned: 'Y and C. After 
obtaining the best parameters, the test data is ready to be 
classified. 
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Figure 5. HMM for a sound unit 
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Figure 6_ Support vector machine 

For our research the methodology used to implement the 
SVM training is as follows. Suppose thatlAHI is the unique 
phoneme that can be uttered from all users. The one bit label 
(-1 or 1) is assigned to each D / AH /. However, if one user 
utters the phoneme IAHI several times, the value of the bit 
will remain the same. For instance, f (D / AH /) = 1 will 
be the same for all the utterances of the same user. The 
procedure is similar for the rest of the users, but the value 
of the bit f (D / AH /) can change from user to user. The 
procedure is extended to all the phonemes. Afterwards the 
parameters for C and 1 are stablished. 

In the test stage, we evaluate the model produced by the 
SVM using the test features. The statistics can be made in 
terms of errors per phoneme according to certain quantity 
of users. The final key is obtained by concatenating the bits 
produced by each phoneme. For instance, if a user utters 
two phonemes: / F / and / AH /, the final vector key is as 
follows, 

K = [f (D / F / ) , f (D / AH / 1 

For this work, the key bit assignation is arbitrary. Thus, 
the keys have liberty of assignation, and the entropy for the 
keys can be easily maximised if they are given in a ran­
dom fashion with a uniform probability distribution. This 
research handles just binary assignation, however, an N1-
ary bit assignation per phoneme might be also possible for 
future research. 

5.1 Experimental methodology 

The experiments were performed using the YOHO da­
tabase [2] [5]. YOHO contains the voice utterances of 
138 speakers of different nationalities speaking three pairs 
of numbers in each utterance. For instance, "Thirty-Two, 
Fourty-One, Twenty-Five". The utterances are divided in 
two sets enrollment (training) and verification (test). Each 
user produces 96 utterances for enrollment, and 40 for 
verification. The Hidden Markov Models Toolkit (HTK) 
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Figure 7. HMM model 
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by Cambridge University Engineering Department [6] was 
used for the pre-processing, decoding and training. 

The important resulting parameters of the Hidden 
Markov model are the nineteen means and variances of the 
phonemes: IAHI, IAOI IAXI, IAYI,/EHI, IERI, IEYI, IFI, IIHI, 

IIYI, IKI, INI/RI, lSI, /TI, /THI, IUWI, /VI, /WI. The model of 
each phoneme is composed by three states, and three gaus­
sians per state, see Figure 7. 

For the objective of this research, the central gaussian of 
the middle state of each phoneme (highlighted in Figure 7) 
and the starts and ends of the phoneme in the utterance are 
the input of the feature generator. Following the method al­
ready described in section 4, the subsets Dp are formed. It 
is important to note that the cardinality of each Dp can be 
different since the number of the same phoneme utterances 
can vary from user to user. For the training, the number of 
vectors picked for generating the model is the same. The 
number of test vectors that each user provided can be dif­
ferent. 

SVMLight by Thorsten Ioachims was used to implement 
the Classifier [7]. We explored the RBF kernel and the in­
fluence that its two main parameters, 1 and C, can have 
in performance. Making a grid search of the parameters, 
we found that 1=0.01 and C=9 are values that can perform 
good classification among the four sets of different number 
of users(lO, 20, 30, and 50). 

To obtain reliable statistics several trials were perfomed 
for each set. A random assignation of the bits was perfomed 
for the training and its corresponding test classification re­
sults are depicted in the next section. 

The complexity of the complete process to generate the 
key can be viewed from two perspectives: ASR and SVM. 
For the ASR, the complexity depends on the number of data 
required for the training phase, the vocabulary used, the 
number of states and gaussians employed in the model. The 
time of computation can vary depending on all of this fac­
tors. For the SVM, the formulation of the problem is based 
on the dimension of the kernel. Furthermore, several meth­
ods have been suggested to reduce the complexity of the 



large data quadratic programming problem. The SVM al­
gorithm employed for this research spends most of its time 
in iterations of the kernel evaluations, and is of the order 
O(M q), where M is the number of training examples and 
q < < NI is a parameter [16]. The research on both fields is 
in constant evolution to reduce the computation time. 

6 Experimental Results 

The behaviour of the SVM is given in terms of the clas­
sification accuracy on the test data, computed by the ratio 

classification matches in test data 
T) 

= total number of vectors in test data' 
(6) 

It is important to explore the behaviour for different 
types of parameters. Table 1 shows the global accuracy 
average for different number of users: 10, 20, 30, 50 (all 
phonemes are included and several trials were perfomed). 
If the number of users is incremented the value of T) de­
creases, then the search of the plane should be more robust 
to obtain a suitable plane. Note that the variances are very 
small, thus the global average statistic is closed to the values 
of T) for individual users and phonemes. 

Table 2 shows the behaviour of the global accuracy per 
phonemes for all the different number of users. Although 
there exist phonemes that give a slightly lower value of T) 
all of them show an accuracy above 0.80. 

Finally, Table 3 shows an example of the behaviour of 
each user from a group of 10. We calculate the average 
accuracy performed for all the phonemes, and also, the av­
erage of the variance of the accuracy of each phoneme per 
user. It is important to note that a reliable generation of the 
key is possible since the accuracy is sufficiently high and 
the variance is small. 

7 Conclusion 

We have presented a method to produce a cryptographic 
key from voice based on phoneme segmentation, where one 
key bit was assigned to each user phoneme. Combined 
techniques of ASR and Support Vector Machines have been 
used in this work. 

Numb. of Users Glob. Average PH 71 variance (�f T) 
10 .927 0.0000l 36843 
20 .9088 0.0000l 33 
30 .9004 0.0000142 
50 .8871 0.000397 

Table 1. Global average for T) for different num­
ber of users 

Phoneme Average value PH 71 
IAHI .922 
IAOI .9149 
lAX! .9157 
IAYI .9508 
IEHI .9247 
IERI .9297 
IEYI .8884 
IFI .8378 

IlHl .9001 
IlYI .8842 
IK/ .8557 
INI .9182 
IR/ .8917 
lSI .8628 
ITI .8686 

ITHI .8393 
IUWI .9188 
NI .9086 
/WI .8863 

Table 2. Global 71 for different phonemes 

These results indicate that the ability of the proposed 
method to distinguish phonemes of specific users is quite 
good and provides good results for any key and user. How­
ever, it is desirable a classification error near to zero, i. e 

error correction mechanisms might be considered in future 
research since the bits of the key must not present any er­
ror. Adding extra bits for error correction demands more 
phonemes in the passphrase but it might reduce the possi­
bility of wrong key production. 

Besides, future studies on a !vI -ary key can be useful to 
increase the number of different keys available for each user 
given a fixed number of phonemes in the passphrase. 

user T) variance 

1 .90638 0.014202 
2 .90513 0.015751 
3 .92189 0.014548 
4 .96076 0.0059596 
5 .95179 0.0078196 
6 .92059 0.012574 
7 .92063 0.01163 
8 .93509 0.0096878 
9 .90166 0.017299 

10 .9443 0.0088079 

Table 3. T) for 10 users, all the phonemes 
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