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ABSTRACT

Although biometrics have garnered significant interest as a source
of entropy for cryptographic key generation, recent studies indicate
that many biometric modalities may not actually offer enough un-
certainty for this purpose. In this paper, we exploit a novel source
of entropy that can be used with any biometric modality but that
has yet to be utilized for key generation, namely associating uncer-
tainty with the way in which the biometric input is measured. Our
construction poses only a modest requirement on a user: the abil-
ity to remember a low-entropy password. We identify the technical
challenges of this approach, and develop novel techniques to over-
come these difficulties. Our analysis of this approach indicates that
it may offer the potential to generate stronger keys: In our experi-
ments, 40% of the users are able to generate keys that are at least
230 times stronger than passwords alone.

Categories and Subject Descriptors

E.3 [Data Encryption]; H.1 [Models and Principles]: User/Machine
Systems
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Security, Design

Keywords
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1. INTRODUCTION

Humans are unable to generate and remember strong secrets, and
thus have difficulty managing cryptographic keys [1, 10]. To ad-
dress this problem, numerous proposals have been suggested to en-
able people to reliably generate high-entropy cryptographic keys
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from their biometrics, or, measurements of their physiology or be-
havior. These Biometric Cryptographic Key Generators (BKGs)
are believed to be useful as they allow users to seamlessly recreate
strong keys. Unfortunately, despite interest in BKGs (e.g. [16, 15,
8, 7]), recent studies (e.g., [4, 19, 21, 3]) have shown that some bio-
metric modalities may be too weak to offer enough security for key
generation. To combat this problem, we explore new techniques of
extracting entropy from biometrics

In this paper we present a novel way to think about biometrics
and propose a new BKG that exploits a source of randomness that,
to our knowledge, has not been previously used to strengthen keys.
We suggest adding uncertainty to the way that a BKG measures the
biometric for each user. To reproduce the correct key, an adversary
must guess both the biometric input and the statistical features that
were used to measure the user. This approach both increases the
entropy of the keys and reduces the susceptibility of the BKG to
forgery. By carefully selecting strong features (i.e., those that are
easier for a specific user to replicate) we are able to reduce the error-
tolerance of each feature, and thus increase resistance to forgery.

To achieve our goals we propose Randomized Biometric Tem-
plates (RBTs), templates that can be used by legitimate users to
create keys, but are designed so that attackers cannot learn how to
measure biometric inputs. RBTs assign different features to differ-
ent users, and encode the features so that adversaries cannot deter-
mine which features were originally used to generate a key. The
utility of this approach is two-fold. First, it increases the work re-
quired to search for the correct key because an attacker must guess
both the set of features that were used, as well as the correct bio-
metric sample. Second, we are able to assign only strong features
to each user, so an attacker must provide a more precise guess of
the biometric input to correctly recreate the key.

In this paper we describe how to construct RBTs for any bio-
metric modality. We describe both the cryptographic construction
(Section 5) and the statistical process of selecting features (Sec-
tion 6). As we show, feature selection is non-trivial, but of the
utmost importance. We are able to craft algorithms that assign only
high-quality features to each user, but in a way that appears random
to an adversary. We provide arguments that RBTs are secure (Sec-
tion 7). Additionally, we empirically evaluate RBTs with recently-
proposed standards (Section 8). In particular, our empirical evalua-
tion focuses on an (arguably) weak biometric modality, and we are
able to show that for many users, our techniques are able to extract
more entropy than existing approaches. This provides evidence that
extracting entropy from the feature selection process can improve
the security afforded by BKGs.



2. RELATED WORK

Cryptographic keys can be derived from any number of biomet-
ric modalities. For instance, one can collect biometric readings of
an iris [11], fingerprints [18, 20], or the geometry of a face. These
are examples of physiological biometrics as they measure concrete
aspects of a person’s biological traits. Behavioral biometrics, on
the other hand, measure how people perform actions. For exam-
ple, one could exploit properties of how a phrase is spoken [15] or
written [22], and even how people think. Behavioral biometrics are
attractive for key generation because while physiological biomet-
rics cannot change, behavioral biometrics change with the action
that is performed. This allows users to create different keys.

Monrose et al. proposed the first practical system that uses be-
havioral (versus physiological) biometrics in key generation [16].
Their technique uses keystroke latencies to increase the entropy of
standard passwords. They show that their system yields keys that
are at least as strong as the password alone, and in some instances
their approach increases the workload of an attacker by a multi-
plicative factor of 2'°. The construction makes the important dis-
tinction of identifying which features, in this case, which keystroke
latencies, are useful (i.e., “distinguishing”) for a specific user, and
which are not. To do so, it sets a global threshold for each feature,
and extracts a bit for each user by assigning a O or 1 if her measure-
ments are consistently below or above that threshold. If the user
does not provide measurements that fall consistently on one side of
the threshold, then the system ignores that feature for that user.

RBTSs are outwardly similar to the constructions of Monrose et
al., although they offer several advantages. First, although our ap-
proach also uses quantization for error correction, we partition the
range of each feature into more than two segments, and hence we
can achieve higher entropy rates and lower False Accept Rates.
Second, our notion of a “distinguishing” feature (i.e., the features
that we choose to assign to each user) is more flexible. We assign
a feature to a user if she can reliably repeat that feature, even if the
mean value falls anywhere in the feature’s range. By contrast, the
construction of Monrose et al. ignores features that can be repeated
reliably, but whose mean falls directly on the global threshold. Fi-
nally, our approach is based on block ciphers and hash functions,
which are more computationally efficient than the number theoretic
primitives that were used in that work.

There has also been work in “Fuzzy Cryptography.” The idea
of Fuzzy Cryptography was first introduced by Juels and Watten-
berg [13], who describe a commitment scheme that supports noise-
tolerant decommitments. Further work included a Fuzzy Vault [12],
which was later classified as an instance of a Secure Sketch, which
can be used to build a Fuzzy Extractor [8, 6]. Fuzzy Extractors treat
biometrics as high-entropy, error-prone sources and apply error-
correction algorithms and randomness extractors to generate strings
that are close to random. As opposed to fuzzy extractors, which dis-
till the entropy of a biometric, our approach can be seen as distilling
the entropy of the biometric and the features used to measure it.

Recently we proposed techniques to evaluate BKGs. We ex-
amined the common practice of using weak forgeries to analyze
BKGs [4] and advocated using more realistic “trained” forgers to
provide a better estimate of security. We also explored “genera-
tive algorithms” as a way of using partial knowledge about a target
user’s biometric to create forgeries. Finally, we described a set
of necessary security requirements and proposed an algorithm that
probabilistically enumerates a key space to quickly find a user’s
key [3]. In this work we adopt the same methodologies, and pro-
vide arguments that our construction meets the necessary security
requirements. We also empirically evaluate RBTs against trained
forgers, generative algorithms, and our search algorithm.
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3. BIOMETRICS AND KEY GENERATION

To generate a key, a user’s biometric is measured as one or more
digital signals, which are processed by n statistical functions, or
features (¢1, . .., ¢n). For a biometric to be useful for key genera-
tion, the signals, and consequently the output of the features, must
vary across the population. Additionally, the signals themselves
can often differ between measurements of the same user. This vari-
ation is due to the natural inconsistencies inherent to human phys-
iology or behavior. However, since cryptography requires keys to
be regenerated precisely, the biometrics must be error-corrected to
consistent values. Simple quantization has been shown to be useful
for voice and handwriting applications [16, 22, 7].

BKGs error-correct the output of features and create cryptographic
keys. This is typically accomplished with two algorithms: an en-
rollment algorithm and a key generation algorithm.

e Enroll(B1, ..., B, m): The enroll algorithm is a probabilistic
algorithm that accepts as input a number of biometric sam-
ples (81, . .., B¢), and potentially an extra source of random-
ness (), and outputs a template (71") and a cryptographic key
(K). In the event that 31, . . ., B, do not meet some predeter-
mined criteria, the enroll algorithm might output the failure
symbol L.

e KeyGen(3,,T): The key generation algorithm accepts as
input one biometric sample ((3), potentially an extra source of
randomness (7), and a template (7°). The algorithm outputs
either a cryptographic key (K), or the failure symbol _L if the
provided biometric sample cannot be used to create a key.

To see how a BKG might work in practice, consider an exam-
ple where a BKG-derived key is used for laptop file encryption.
Here, a user first supplies a password 7 and number of biometric
samples to the BKG. The enrollment algorithm processes the sam-
ples to establish a “normal” profile for the user, and then outputs
a template—which depends on both these samples and 7—and a
cryptographic key. The laptop encrypts the file with the key and
stores the ciphertext, along with the template. Of course, 7, the
key, and the enrollment samples are then purged from the system.
Later, when the user wishes to decrypt the file, she provides a pass-
word 7’ and a new biometric sample to the laptop, which provides
these and the stored template to the key generation algorithm. If
7' = 7 and the new sample is similar to the ones provided during
enrollment, then the key output by the key generation algorithm
will be the same as the one used to encrypt the original file. The
new key can then be used to decrypt the ciphertext file.

3.1 Security Requirements

It should be apparent from this discussion that the security of this
approach relies on several assumptions. First of all, it is assumed
that the user’s biometric samples are not easily replicated by oth-
ers. That is, the biometric should be difficult to forge, or otherwise
predict using auxiliary information. Auxiliary information is any
public information that is available to an attacker, such as other
users’ biometrics, templates, or keys. If this is not the case, an
attacker can subvert the BKG by running KeyGen with the stored
template and replicated biometric input to extract the key. It is also
assumed that biometric template leaks no information about the key
or the biometric. Otherwise, the attacker could use the template to
help guess the key. Finally, it is assumed that the key has enough
entropy to resist brute force attacks.

For completeness, we reiterate our security requirements [3]:

e Biometric Uncertainty (REQ-BUN): The biometric samples
input to a BKG should be difficult to predict. For human ad-



versaries, this amounts to showing that realistic attackers [4]
are not able to create forgeries, even when given auxiliary
information. For algorithmic adversaries, this amounts to
showing that the biometric has high entropy across the user
population [8, 9, 3]. Also, one must show that generative
algorithms cannot create accurate forgeries [4].

e Key Randomness (REQ-KR): Assuming REQ-BUN, the keys
output by a BKG appear random to any adversary who has
access to auxiliary information and the template used to de-
rive the key. For instance, one might require that the key be
computationally indistinguishable from random.

e Strong Biometric Privacy (REQ-SBP): Assuming biometric
uncertainty, an adversary learns no useful information about
a biometric given auxiliary information, the template used to
derive the key, and the key itself. For instance, no compu-
tationally bounded adversary should be able to compute any
function of the biometric.

In order to evaluate a practical BKG, one must show that each of
these properties holds. Part of the difficulty in evaluating the secu-
rity of a BKG, however, stems from the fact that both empirical and
cryptographic arguments are necessary to address these require-
ments. More precisely, showing REQ-BUN requires an empirical
argument using populations of users. On the other hand, showing
REQ-KR and REQ-SBP requires cryptographic arguments show-
ing that the template is secure provided that REQ-BUN holds. In
Section 7 we argue informally that RBTs achieve REQ-KR and
REQ-SBP. In Section 8 we provide an empirical evaluation of
REQ-BUN for RBTs against each of the adversaries in [4] and [3].

4. OVERVIEW AND PRELIMINARIES

The most straightforward approach to designing RBTs would be
to take an arbitrary template, which describes the features for the
user in question, and encrypt it with a key known only to the user.
Obviously, this cannot work in our setting because if we had access
to a key that was strong enough for encryption then there would
be no need for the BKG in the first place. Instead, we develop an
approach inspired by that of Lomas et al. in a different domain,
where no verifiable plaintexts are encrypted under the low-entropy
password [14]. Specifically, the decryption of the ciphertext using
any password, including the correct password, results in a high-
entropy string, and so an attacker performing a brute-force search
cannot tell when she has found the correct password. Similar tech-
niques have been used by Bellovin and Merrit [5] in the context of
Encrypted Key Exchange. RBTs adopt this approach and hide fea-
tures by encoding templates as high-entropy strings, and encrypting
these strings with low-entropy passwords.

However, in our setting, designing the template such that a de-
cryption under the correct password is indistinguishable from de-
cryption under an incorrect password is more challenging because
templates have semantic meaning. In other words, the templates
must specify the features and the error-correction information nec-
essary to process a biometric and derive a key. Thus, we require a
representation of the features and error-correction information that
is random, yet meaningful. To create such a representation, we dis-
tinguish between two types of information in a template. The first
type can be randomized without losing semantic meaning. We thus
randomize and encrypt these pieces of information. The second
type of information cannot be randomized without losing seman-
tic meaning. We thus fix these values to be the same across the
population, and include them unencrypted in the template.
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RBTSs use quantization for error-correction. That is, the output
range of each feature is partitioned into segments of equal width,
and the index of the segment that contains the feature applied to the
user’s samples is used for key generation. Given that our scheme
uses quantization, our templates need to specify three pieces of in-
formation: the features, the offset of the quantization within the
feature’s output range, and the width of the quantization. We can
safely encode features without losing semantic meaning if we spec-
ify features as indexes into a table, randomly assign a subset of
the features to each user, and then encrypt this subset in the tem-
plate. In this way, the decryption of feature indexes with an in-
correct key will be indistinguishable from decryption with the cor-
rect key because in both cases, a decrypted template appears as a
random permutation on a random subset of feature indexes. We
can also safely encode quantization offsets. Note that if a user’s
quantization over the output range of feature ¢; is defined as the
set {a, a; + 0, i + 265, . . . }, then knowledge of of the width of
the quantization (9;) and any of the quantization offsets «; + ¢d;
unambiguously defines the entire set. Thus, if all features have out-
put ranges that can be mapped to some range R, then we can safely
encode quantization offsets without losing semantic meaning by
encrypting a random value in {o;, a; + i, o + 20;,... 1 C R.
Decryption of the resulting ciphertext under any key results in a
value that is randomly distributed over R, but that is also semanti-
cally meaningful as a quantization offset for any feature.

On the other hand, the width of the quantization, ¢;, cannot be
randomized and so we cannot safely encrypt it. To see why this is
the case, note that the random assignment of a quantization width
to a feature (as would happen if the template is decrypted under
an incorrect password) might not be semantically meaningful. An
adversary could use an observed semantic inconsistency in a de-
crypted template to infer that she had decrypted the template with
an incorrect password. For instance, if there is a feature for which
most users in the population exhibit large variation, and require
large error tolerance, then an adversary who decrypted the tem-
plate under an incorrect password and observed a small quantiza-
tion width for that feature could logically deduce that she guessed
the incorrect password. To avoid this type of problem, we specity
a user-independent error-correction threshold for each feature.

At a high level, our construction works as follows. We encode
the features by storing a table that assigns an index to each feature.
The same table is stored in every template, but only the indexes
that correspond to the correct features are encrypted in a particular
user’s template. Features are encrypted in a way such that decryp-
tion under any key specifies an index in the global table, and thus
specifies a viable feature. Additionally, we ensure that the proba-
bility that any given feature is assigned to a user is the same across
the population. Given this encoding algorithm, decryption of the
encrypted features under any password results in a list of features
that is equally likely, and so decryption under the correct password
is indistinguishable from a decryption under an incorrect password.

To encode error-correction information, we follow a similar ap-
proach. First, we fix the quantization width §; for each feature
¢, and store it in the global table. As the quantization widths are
global values, we only need to encode one quantization offset to
completely specify error-correction. Since any such offset suffices,
we randomly select an offset and encrypt it with a pseudorandom
permutation with a domain that covers all quantization widths. De-
cryption under any password thus results in a value that is equally
likely to be a correct offset for any feature.

This approach results in an encoding algorithm where every de-
cryption of the template simultaneously “appears random” and is
useful to generate a cryptographic key. However, only the decryp-



tion under the correct password will yield a template that can be
used to generate the correct key. This has the property that an ad-
versary who searches for the key will have to guess the biometric
for each guess at the password that was used to encrypt the tem-
plate. Before presenting the technical details of the construction,
we introduce some relevant cryptographic primitives and notation.

4.1 Preliminaries
We use the notation || to refer to string and list concatenation,

and refer to the i*® element in the list L as L[i]. We use £ X0
denote the selection of an element x uniformly at random from the
set X, and « < A to indicate that the algorithm A outputs . The
set of integers from a to b, inclusive, is represented as [a, b], and
[, b = {a+ik : i € [0, [(b—a)/k]]}.

Our construction uses several cryptographic primitives. We use
pseudorandom permutations (PRPs) on sets of integers to ensure
that an adversary cannot determine whether she has decrypted a
template with the correct password. Let (ED ,DP ) denote the en-
cryption and decryption functions (a PRP and its inverse) with key
space K and domain and range [0, D — 1].

We assume that users select (possibly low-entropy) passwords
from a set I1, and that our BKG outputs bit-strings of length A. Our
construction uses four random oracles:

Hpass,O I — K, Hyer: {Oa 1}* - {07 l}t
Hpass,1 : 1T — K, Hiey : {0,1}* — {0,1}*

Hpass,0 and Hpass,1 map a password into different elements in the
key space of the PRPs. Hy.r is used to generate a token to test
whether the BKG has generated the correct key. Hyey is used to
generate the final key from a user’s password and biometric sam-
ples. Finally, we assume the existence of a function, Permute,
that permutes a list of numbers in a cryptographically secure sense
(again, this can be implemented as a PRP).

Our design uses an ordered set of N features ® = (¢1,...,dn),
where ¢; is a map from the set of biometric samples to the integers
R; = [0, r;]. We use quantization for error-correction. Let ; € N
be the tolerance of the quantization for ¢;. This value is fixed to be
the same for each user in the population. Let A = 1 4+ max; 9;,
quantization offsets will be encoded into the range [0, A] and en-
crypted so that decryption under any key appears as a random, yet
semantically meaningful, offset.

S. CONSTRUCTION

5.1 The Enroll Algorithm

RBTSs use two algorithms, Enroll (Algorithm 1) and KeyGen
(Algorithm 2). The enrollment phase is a four step process: assign-
ing features to a user, computing the necessary information to cor-
rect a user’s samples to a consistent value, using the error-corrected
values to create a key, and finally, encoding a secure template.

Feature Selection. To start, a user presents ¢ biometric samples
Bi,...,0¢ and a password 7 € II, to Enroll. The BKG computes
some statistics over each of the samples and returns the indexes of
the features that are to be used for key generation. This is a in-
tricate process and is described in Section 6. For now, it suffices
to note that from an adversary’s point of view, every set of fea-
tures is equally likely to be assigned to each user. Assume that the
BKG assigns m features to a user. Each user is assigned a dif-
ferent number and/or a different set of features, so m will differ
across the population. However, to ensure that all templates have
the same length, Enroll pads out each template to use n features,
with m < n < N. Let ¥ be the indexes of the m features ¢, € ®
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Global Parameters
The set of all features ¢1,...,dn
The set of (low-entropy) user passwords
The output range of ¢;, (i.e., [0, r5])
The quantization width for ¢;
Maximum of quantization widths: 1 + max; d;
The number of features in ¢
The number of features in each template

.

S =L

Individual Parameters
Set of features assigned to a user for key gen.
Set of features assigned to a user for padding
The number of features in ¥
A (low-entropy) user password
A user’s biometric reading
The smallest quantization boundary for ¢;(3)

Q™A I @

Cryptographic Primitives
A PRP with key space K and domain [0, D — 1]
Random Oracle from IT — K
Random Oracle from II — K
Random Oracle from {0, 1}* — {0,1}*
Random Oracle from {0, 1}* — {0,1}*

(E”,D")
Hpass,O
Hpass,l
Hver

ery

Table 1: Notation

that are selected for key generation, let U be the indexes of the
n — m features selected at random from ®\W for padding, and
let L = Permute(¥)||Permute(¥). The features specified in L,
which are a random permutation of a random n element subset of

®, are used for template creation and key generation.

Error Correction. The next step in the enrollment process is to
correct a user’s samples into a single, repeatable value. RBTs use
quantization for this purpose. We assume that the widths of the
quantization intervals have been pre-computed (see Section 6), and
are fixed across the population: feature ¢; uses intervals of length
d;. To specify error-correction, the scheme need only specify a
quantization offset in the range (R?;) of each feature in L. For each
1 € L, compute the integer p; as the median of ¢;(31), ..., ¢i(Be).
Then, partition R; into §;-length intervals centered around p;. This
requires computing one of the quantization segment boundaries,
and so we compute «; to be the smallest value in R; that is an
integer multiple of §; away from p; — d;/2:

it ps > 0:/2

o \_Hi — 51/2J mod (Sz
Qi = if s < 9;/2

[pi +6i/2]

Given «; and d;, the partitioning over the feature range is specified
by the integers {0} U [cv, 7i]s,. The border of the partition that
contains p; is ; = max(0, [ — d5/2]). See Algorithm 1, lines
5-8 for the error-correction process.

Deriving a Key. Having specified our error-correction scheme, we
are ready to create a cryptographic key. The key is derived from the
password T, the feature indexes, and the quantized feature outputs
by setting K; = L[jl||lx[; for j € [0,m — 1], and setting the
key to be K = Hyey(7||Kol| ... ||Km—1) (see Algorithm 1, lines
11-12). That is, K is the output of a random oracle applied to
the password, indexes of the m features selected for the user in
question, and the lower boundary of the partition that contains the
output of each feature. This increases the entropy over standard
key generation schemes by exploiting the uncertainty associated
with feature selection in addition to the output of each feature.



Input: The password 7 € II, and biometric samples 31, ..., O¢
Input: (Global values): the features ®, and quantization widths
00y, 0N

Output: The key K and template T'

1: (¥, V) « Select(B1,...,0¢) [ Select biometric features

2: L «— Permute()||Permute(¥)

3: ko Hpass,O(T")s ki1 — Hpass,l(ﬂ')

4: for j — Oto |L| —1do

5. i L[j]

6:  pi — Median(¢i(51), ..., ¢i(5r))

70 o — | —0;/2] mod 0; if ug > §;/2. Otherwise,
Lpi + (6:/2)].

8  x; « max(0, |[p: — 0:/2]) / Quantize the feature outputs

9: Yi Fi [ais, Als, 1 Select a random quantization offset

10:  C; = (E{ (i), ER, (i) /Encrypt feature index and quan-
tization offset

11: Kj = z||mz

12: K «— ery(7’r||Ko||K1|| e ||K‘q,‘_1) / Derive the key

13: C « (Co,Cn,...,Cr|-1)

14: v — Huer (7| | Ko || Ky | - . - [| K —1)

15: return K, T = (C,v)

Algorithm 1: Specification of the RBT Enroll algorithm

Template Creation. Our task is to now encode the feature in-
dexes and the quantization information so that only an individual
with knowledge of 7 and the ability to produce a biometric that
is “close” to the enrollment samples can generate the correct key
(Algorithm 1, lines 9-10). To do so, we must encode L and the
«; so that they appear random, and then encrypt these values with
7. We employ two PRPs, (EY, D™V) and (E®, D?), to encrypt fea-
ture indexes (i.e., the L[j]) and the offsets in each feature range
(i.e., the aupp57). Since PRPs induce a different and equally-likely
random permutation for every key, if the encoding of L and the
«; is truly random, then an adversary who decrypts the template
will not be able to tell if she has done so with the correct pass-
word. We create two independent keys for each cipher from 7 as:
ko = Hpass,0(7) and k1 = Hpass,1(7), respectively. The keys are
independent of one another to ensure that there is no correlation
between the encryption of the feature indexes and the encryption
of the quantization offsets. For each j € [0,n — 1], set i = L[j],

and select y; & [ai, Als,. Recall that A = 1 + max; d;, and
so y; encodes «; into a random integer that is less than the largest
quantization width of any feature, and that is also an integer multi-
ple of §; from ;. The next step is to encrypt both the 7 and ~y; by
computing C; = (¢j0,¢5,1) = (Egy, (), EkAl (74))- Since each ~;
is encoded into the same range [0, A], the decryption of ¢; 1 under
any key results in a semantically meaningful quantization offset for
any feature.
The template then consists of:

T = (C,v) = ((Co,Cs,...,Cn1), Heer (7|| Ko|| . . . [| Kim—1))

The token v is used for verification purposes, and is a function of
the password and error-corrected biometric samples, but is inde-
pendent of the key K because Hyer and Hye, are independent ran-
dom oracles.

5.2 The KeyGen Algorithm

The KeyGen algorithm is simpler than enrollment in that it de-
crypts the template, measures the biometric sample with the recov-
ered features, and then recreates the key (see Algorithm 2). The in-
put to the algorithm is password 7 € II, the template 7" = (C, v),

239

Input: Template 7' = (C,v), password m € II, the biomet-
ric sample 3, the features ®, and error-correction information
00, ...0N

QOutput: The key K, or L on failure.

1: ko «— Hpass,O('Tr), k1 «— Hpass,l(ﬂ')

2: forj — 0to|C| — 1do

3: i+ Dy (C[4][0]) 7 Extract feature index

4:  «a; < D, (C[4][1]) mod &; / Extract quantization offset

5. x; — MaXae (0}Ula, ¢ ()]s, T / Quantize the output of ¢;

applied to 3
7: if Hyer(7|| Kol ... ||K;) = v then
8: K — Hyey (|| Kol| - .. ||K;) / Derive the key
9 return K
10: return L / Could not recreate the key, return failure

Algorithm 2: Specification of the RBT KeyGen algorithm

and a biometric sample (3. First, KeyGen derives the decryption
keys ko = Hpass,0(7) and k1 = Hpass,1() and uses these keys
to decrypt the template and recreate the list L and the quantiza-
tion offsets (i.e., the yz[;)) (see Algorithm 2, lines 3-4). For j €
[0, 1C1— 1], Tet (L[}, v2.157) — (D (¢50), DA (€5.1)). The values
in L are a list of indexes that specify features. Let ¢ = L[j] be such
an index. Then ~; is the encoding of «;, which specifies the offset
of the quantization for ¢;. Thus, the partitioning boundaries over
[0, 73] can be recreated as {0} U [y; mod s, 74]s, -

To recreate the key, KeyGen measures 3 and sets x; to be the
largest partition boundary that is less than or equal to ¢;(3) (see
Algorithm 2, line 5). Then, letting K; = i||x;, the algorithm it-
eratively attempts to recreate the key by checking that v = Hyer (7
[|Ko||K1]| ... ||K;) for j € [0,]|C| — 1]. If this is the case for any
J» then KeyGen outputs the key K = Hyey (7| Ko||K1]| - - . || K;).
Otherwise, the algorithm has failed and it outputs the failure sym-
bol L. This iterative reconstruction process is necessary because
the key is only derived from the features in ¥, and it is impossible
to determine where these features end, and where the extra features
that were added as padding from ¥ begin.

5.3 Correctness

Correctness amounts to showing that if Enroll(31, . . . B¢, 7) out-
puts T = (C,v), and K, and KeyGen (', 7', T') outputs K’, then
if 7 = 7’ and B3’ is close to the median of 31, ..., 3¢, then K =
K’. For this to happen two properties must hold: first, KeyGen
must use the same features as Enroll and quantize the output range
of each feature in the same way as Enroll. Second, this quantiza-
tion must map 3’ to the same segment as the y; that was computed
from (i, ..., B¢ by Enroll. If these two properties hold, then the
input to Hyey (i.e., || Kol| ... || K|a|—1) will be the same for both
KeyGen and Enroll, and consequently both algorithms will output
the same key.

It follows from the correctness of PRPs that if 7 = 7/, KeyGen
will correctly decrypt C' to extract the ¢ and the -y; that were en-
coded by Enroll. This implies that both algorithms will use the
same set of features. To see that they quantize the output range of
each feature in the same way, observe that y; = «; mod &;. Since
d; is publicly known, KeyGen can reliably extract «;, which is a
boundary of one of the segments in the range of ¢;. Thus, KeyGen
can recover the quantization of the range of ¢; as {0} U [a, 7], ;
and this is the same set that was used by Enroll.

Now that we have established that both algorithms process the
biometric input in the same way, we show that if 3 is close to the



median of 31, ..., [, then K = K’. Recall that K < H(r || Ko
[| ... || Kjwj=1), with K; = i||x;. The only part of the input that
is computed from biometric input is xz;, which is the lower bound
of the d;-length segment that contains u; = Median(¢:(51), ...,
é(Be)). If B’ is close to the samples that were provided during
enrollment, then |¢;(3') — u;| < &;/2. This implies that ¢;(3")
falls within the same segment as the original median, and so z,
the lower boundary computed by KeyGen, will be the same as the
x; computed by Enroll. Thus, since both algorithms compute Hyey
over the same input string, both will output the same key.

6. FEATURE SELECTION

The strength of any BKG is defined by the features used to mea-
sure the biometric inputs. In the case of RBTs, feature selection is
especially important. We need to ensure that two properties hold.
First, we must ensure that feature assignment (i.e., the output of
Select) appears random to an adversary. The security of our con-
struction rests on this property. To do so, we ensure that each fea-
ture is assigned to a user with an independent and uniform probabil-
ity (Section 6.1). Second, we must select features that are resilient
to forgeries, and that have high entropy across the population. This
amounts to selecting features that have high entropy with uncor-
related outputs, and that are difficult to forge (Section 6.1). Using
such features increases the strength of RBTs to human forgers, gen-
erative algorithms, and search algorithms.

6.1 Selection as a Random Permutation

Security of RBTs hinges upon the fact that decryption of a tem-
plate under the correct password has the same distribution as de-
cryption under an incorrect password. Decryption of co, ...,
cn—1,0 (i.e., the encryption of the indexes in L) under an incorrect
password results in a random permutation on a randomly selected
subset of the feature indexes. This implies that the feature indexes
in templates (i.e., L) must also appear to be a random permutation
on a randomly selected subset of feature indexes. Randomly per-
muting a set of indexes is simple, it is more challenging to select a
random subset to permute. We cannot simply randomly assign fea-
tures to each user; there is no indication that a randomly selected
feature would be useful for a specific user. Instead, we would like
to assign users those features for which they exhibit low variance,
which reduces False Reject Rates and False Accept Rates, and in-
creases entropy.

Outwardly, the requirement of selecting strong features and the
requirement of selecting random features appear to be at odds with
one another. However, one can actually use the selection of strong
features to force a uniform distribution, at least, from the point of
view of an adversary, over the selection process. Observe that in
order for a feature to be strong for a specific user, the user will
require very little error-correction to reliably repeat the output of
that feature. In fact, a user will require less error-correction for
the feature than other users for which the feature is less useful.
Suppose the user u requires quantization with tolerance of d,,,; to
reliably correct a feature ¢;. If we assign feature ¢; to u only if
dy,; is in the smallest k" percent across the population, and fix
k across all features, then we immediately have a technique that
evenly distributes feature assignment across the population, in that
feature ¢; is assigned to exactly k percent of the users. Moreover, if
we comprise ¢ of features that vary independently of one another,
and hence the event that d,, ; is in the smallest £*® percentile is
independent of the event that d.,, ; is in the smallest kP percentile,
then each feature is assigned to a user with an independent and
identical probability.
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Independence in Feature Selection. The first step of ensuring that
feature assignment results in a random permutation on a randomly
selected subset of ® is to ensure that the probability that feature
¢; is assigned to a user is independent of the probability that fea-
ture ¢; is assigned to that user. Since features are assigned to users
based on the user’s ability to consistently replicate that feature, we
need to compose ¢ of features such that the degree of variation
is independent across features. Technically, we should ensure that
every distinct subset of features is assigned to each user indepen-
dently. However, due to computational and data restrictions, both
on our part and the part of potential adversaries, this is infeasible
and so our technique only ensures that individual features are as-
signed with independent probabilities.

To do so, we first generate a large set of features ®, and conduct
an empirical analysis to determine which features’ error-correction
tolerances (i.e., the ;) are correlated with one another. We sug-
gest using a greedy algorithm to remove those features that are cor-
related with many other features. Such an analysis is performed
with a fixed error-correction percentile £ and a fixed population
of users U. For each user v € U, we compute the minimum
error-correction threshold d,, ; required to reliably correct feature
¢i € d. Let I; be a binary random variable associated with feature
¢;. The distribution for /; is estimated from a population of users:
for auser u € U, I; = 1if d,; is in the smallest k*® percentile
across U, and 0 otherwise. To remove the correlated features, we
compute the statistical correlation py,, 1 between all I; and I; and
use a greedy algorithm to remove those features that have a cor-
relation |py,, 1j| > Tyar, Where 7o is a tunable parameter. The
remaining set of features comprise ®. If U is chosen to be large
enough to be representative of the population of users who use the
system, then this process need only be performed once.

Uniformity in Feature Selection. Having ensured that the features
in @ are assigned to a user with pairwise independent probabilities,
the task at hand is to also ensure that these probabilities are uni-
form. We do this by empirically selecting d; such that k percent
of the users require error tolerance less than ;. This is accom-
plished during enrollment with the Select algorithm, which cycles
through each feature and determines from the enrollment samples
how much tolerance is needed to correct all of the feature values
to one segment. If this tolerance is less than the global threshold
di, then the feature is assigned to the user. (See the full version
of this paper [2] for more details on Select.) As such, the user is
assigned only those features that she can repeat consistently. Since
0; is small, adversaries should have a greater difficulty replicat-
ing each feature to within that tolerance, and the output range of
the feature is partitioned into more segments, yielding a potentially
greater search space for the attacker. Our experimental results in
Section 8 indicate that this is indeed the case.

Practical Considerations. While we have provided techniques
to assign features to users in a way that meets our cryptographic
requirements, there are several other practical considerations that
must be addressed. First, we must consider the composition of ®.
Clearly, RBTs benefit from large feature sets. Since there are (IZ )
equally likely templates, larger feature sets imply greater uncer-
tainty for an adversary. At the same time, however, since we as-
sume that the size of the password space might be small, we must
also endeavor to find features that resist forgery and searching at-
tacks. That is, we cannot simply add many random features to P.
There are also other factors that govern how we craft ®. To ensure
that the derived keys have high entropy, each of the features in ®
should have uncorrelated outputs. This reduces the likelihood of
success of the search attacks similar to those described in [3]. All



of these constraints reduces the set of possible features that can be
used to create .

There is also the matter of selecting k, the value that determines
the percentile that will be used for error-correction. There is a trade
off between the number of features assigned to each user (for large
values of k) and the resistance to forgability (smaller values of k).
Since it is difficult to optimize feature selection across the con-
straints imposed by entropy requirements, forgery resiliency, cor-
relation between features, and the selection of k, we adopt the fol-
lowing iterative approach. First, we create a large set of features.
Then, we compute the statistical correlation over the outputs and
variation of each feature. We use a greedy algorithm to remove
those features that have high correlation with many other features.
We then perform an empirical evaluation to measure the entropy
and False Accept Rates over each feature. Then, ¢ is composed of
the union of two distinct sets: the features with the highest entropy,
and the features with the smallest FARs. The goal is that by com-
bining both sets, RBTs will be resilient to both forgeries and search
algorithms.

6.2 Feature Selection Evaluation

In this section we provide empirical evidence that Select acts as
a random permutation on an n element subset of . In order to
provide a concrete analysis, we focus on one biometric modality:
handwriting. Our results are based on the data set described in [4]
that consists of over 9,000 writing samples from 47 users. Each
user provided 10-20 enrollment samples for five different phrases.
We emphasize that these phrases are used simply to extract bio-
metric readings; they are unrelated to the low-entropy password 7
used by RBTs. The data set also consists of a number of forgeries,
we only use the stronger “trained” forgeries for our security analy-
sis. The data set also contains approximately 3,000 phrases that are
used to generate a “parallel corpus” to drive generative algorithms.

In this section we analyze our feature selection strategy to study
the impact of selecting different error-correction percentiles (i.e.,
k). Recall that the quantization widths used to error-correct each
feature are fixed across the population, and the level of quantization
is specified by the value k. For large values of k, users will be
assigned more features, but the features will be easier to forge and
will have lower maximum theoretical entropy. For small values
of k, users will be assigned fewer features, but they will be more
difficult to forge and will have higher maximum theoretical entropy.
To explore this tradeoff, we performed the feature selection process
for k = 20%, k = 30%, and k = 50%.

For k = 20%, 30%, 50%, with 7o, = .6, our feature assignment
process resulted in feature sets of size N = 69,72, 86, respec-
tively. Figure 1 shows a CCDF of the number of features that were
assigned to each user. As is to be expected, the Select algorithm
assigns more features to each user for larger values of k. In fact, for
k = 50%, fewer than 1% of users were assigned no features, 80%
of users were assigned at least 12 features and 50% of the users
were assigned more than 43 features. The results for k = 20% are
not as encouraging: 30.6% of the population were not assigned any
features. This implies that setting k = 20% might not yield a BKG
that is useful for a large percentage of the population.

We also performed an analysis to demonstrate that our feature
selection technique outputs a random subset ®. We focused on a
BKG with k = 30%, and the maximum number of features in each
template was set to n = 50. For each feature in & we computed
the probability that a given feature ¢; appears in a template, and
the conditional probability that ¢; appears in a template given that
¢; # ¢; also appears in that template. We measured the observed
probabilities and conditional probabilities. If the selection process
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Figure 1: The number of features assigned to each user.

results in a random permutation on a random subset of ®, then we
would expect ¢; to appear in a template with probability 0.694. In
this case, we would also expect the conditional probability that ¢;
and ¢; both appear in a template to be 0.69. Indeed, our results
are inline with this expectation. In fact, we performed the x2-Test
of Homogeneity [17] to ensure that the observed probability distri-
bution is indeed uniform, and the y2-Test of Independence [17] to
ensure that the likelihood that two features appear in a template are
independent. In both cases, we would accept the hypothesis that
feature selection acts as a random permutation on a random subset
with confidence level « = .99. (See the full version of this pa-
per [2] for further details on our testing methodology and results.)
We argue that this provides empirical evidence that our feature as-
signment algorithm achieves the goals that are required to meet the
necessary security properties.

7. SECURITY SKETCH

In this section we provide informal arguments as to why RBTs
are secure. That is, we provide evidence that given access to aux-
iliary information, the template, and the key, an adversary cannot
learn significant information about the biometric (REQ-SBP); and
that an adversary cannot use auxiliary information and a biometric
template to distinguish the correct key from random (REQ-KR).
Our arguments are based on the assumption that feature selection
acts as a random permutation on a random n-element subset of P,
which we have argued, both constructively (Section 6.1) and em-
pirically (Section 6.2).

7.1 Strong Biometric Privacy

Our conjecture is that since feature assignment results in a ran-
dom permutation of a random n-element subset of ®, the optimal
strategy for an attacker is to simultaneously enumerate II and the
set of all biometrics until she derives the correct key. While she can
use the template and key to verify that a guessed biometric sam-
ple/password pair is correct, the attacker cannot use information
gleaned from the template or key to create a guess of the biometric.

Our reasoning for this argument is as follows: assume that an
adversary has access to a template 7' = (C,v) and K. Note that
since v and the K are the output of public functions, an attacker
can guess a biometric input and a password, run KeyGen with T’
and check that the output matches K to test the correctness of her
guesses. Aside from this, since v and K are the output of random



oracles, they cannot be used to determine the values of the enroll-
ment samples.

We now turn our attention to the encoding of the feature indexes
and quantization information, C' = ((co,0, co,1), (¢1,0,€1,1),-- -,
(¢n-1,0,¢n-1,1)) . Since each element in C is encrypted under a
potentially low-entropy password, one must show that the entropy
of the plaintext is high, and so an adversary who guesses a correct
password cannot distinguish the original plaintext from a decryp-
tion of C' under an incorrect password. If this is the case, then an
adversary who guesses passwords must enumerate the set of bio-
metric samples for each guess to determine whether her guesses are
correct. The point is to show that such an attacker does not glean
any information about the biometric sample from the template, but
rather she simply enumerates samples through auxiliary means. If
true, this implies that REQ-SBP holds.

We now argue the aforementioned point informally as follows.
Let L be the list of indexes that Enroll assigns to the target user,
and G = (vr[o}, VL[1]s---+YL[n—1]) be the randomized encod-
ing of the quantization offsets for each feature in L. Assume that
Enroll uses the two keys ko «— Hpass,0(7) and k1 < Hpass,1(7)
to encrypt each of these lists to create the list C. Adopting the
notation that for a function F and a list X = (z1,...,%m), that
F(X) = (F(z1),...,F(zm)), we decompose C' into two parts:

.,Cn71,0) = E]k\g(L)
Seno11) =ER (G)

Our goal is to argue that for all (kg, k1) < (Hpass,0(7"), Hpass,1 (")),
L is indistinguishable from DkN(,) (Co) and G is indistinguishable
from DkAll (Cy).

Note that decryption of Cy or C'; with an incorrect key results in
a random permutation on a random n element subset of the corre-
sponding domain. Since Select assigns a random n element subset
of ® to each user and the Enroll algorithm randomly permutes this

set to create L, L is a random permutation of a random n element
subset of ®. Thus, L is indistinguishable from DkN(,) (Co).

Lastly, to see why G is indistinguishable from D,CA,1 (C1), observe

Co = (Co,o, C1,0, - -
C1 = (co,1,c1,15 - -

that Enroll creates ~y; by selecting a random element in [0, A] that
is an integer multiple of §; from the border of the smallest quanti-
zation offset (Algorithm 1, lines 7 and 9), which is computed from
the median of the enrollment samples. Since an attacker does not
know this precise median' ; is also difficult to predict. Thus, ~; is
randomly distributed over [0, A], and so G is a list of random val-
ues over [0, A]. Note that Dfi (Ch), is also a list of random values

over [0, A]. Since L is indistinguishable from Di\% (Co) and G is
indistinguishable from DkA/l (C1), we argue that REQ-SBP holds.

7.2 Key Randomness

Next, we argue that an adversary cannot use a template, 1" =
(C,v), to distinguish K from random—i.e., REQ-KR. In our case
this amounts to arguing two properties: C' cannot be used to in-
fer the inputs to Hyey (i.e., 7, the indexes of the features, and the
quantization offset that contains the user’s sample), and that v can-
not be used to distinguish K from random. To argue that the first
property holds, we follow the same argument that we used to argue
REQ-SBP. There, we argued that the best strategy that an attacker
has to find the indexes and quantization information is to simulta-
neously enumerate both the password space and biometric space to
find the values that were provided to Enroll. This implies that if the

"We assume that for most “normal” biometrics, this median is uni-
formly distributed. We believe this to be a reasonable assumption
as legitimate users cannot even precisely recreate this value.
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combined entropy of both the password space and biometric space
are sufficiently high, then an attacker cannot infer the input to Hyey.

To argue that v is of no value to an attacker, we note that although
v and K are derived from the same input, they are the outputs of
two independent random oracles. Thus, v leaks no information
about K.

8. EMPIRICAL STUDY

In this section we evaluate our proposal using a host of recently-
proposed techniques. We examine the resiliency to forgery against
of trained forgers [4]; study the impact of generative algorithms [4];
and the test resiliency against the search algorithm described in [3].

Since the goals of this section are to evaluate the strength of the
features that RBTs use, our analyses assume that an adversary has
access to the correct password 7. That is, the attacker can correctly
decrypt the template and so her task is only to guess the biometric
input. This implies that the results presented in this section are a
lower bound on the security that the scheme would provide in prac-
tice. Nonetheless, this is an important viewpoint, as it allows eval-
uators to better understand how much extra security the biometric
adds to the strength of the password.

8.1 Resistance to Forgeries

First, we show that RBTs can withstand forgeries from trained
human forgers and generative algorithms. We use the same data set
that was used to analyze feature selection, and apply our techniques
to unencrypted RBT-generated templates. We present results for
RBTSs based on two choices of k, and the maximum set of features
that can be encoded into each template (n): one with k& = 30% and
n = 50, and the other with k = 50% and n = N.

We generate templates for each user for each combination of &
and n. To compute the FRR we use repeated leave-out-x cross
validation. Given v enrollment samples, we randomly choose v — k
samples to select features and create a template. Then, we use the
remaining x samples to create keys with the template, and measure
the number of features that are not successfully recreated. We set
v and k to be in the ratio of 3:1 and use all samples in the data set.
This process is repeated 10 times and averages across all 10 runs
are used to compute the FRR.

To compute the FAR, we use all of the user’s samples to create
a template and key, and test the ability of forgers to recreate the
correct key. We only report FRR and FAR for those users who
were assigned a minimum number of features during enrollment.
We classified other users as failing to enroll. For k& = 30% and
k = 50%, the minimum number of features required for enrollment
was set to 4 and 10, respectively.

We evaluated the strength of RBTs using new evaluation method-
ologies [4]. Specifically, we focus on trained human forgers [4],
and the Concatenative Synthesis (CS) generative algorithm [4]. Re-
call that trained forgers are human forgers whose natural ability to
create forgeries has been improved through training and motiva-
tion. As in previous experiments, we provide trained forgers with a
real-time rendering of the target user’s passphrase during the forg-
ing process. The generative algorithms use limited information
form a target user along with population statistics to create forg-
eries. Specifically, CS combines real-time samples from a target
user with general population statistics to create forgeries.

Table 2 provides the EERs for RBTs as well as the number of
errors that the BKG must correct after quantization to generate the
correct key. EERSs are provided for trained forgers and Concatena-
tive Synthesis, against two different RBTs and against a the “Base-
line” quantization-based BKG of Vielhauer and Steinmetz [22] un-
der the strengthened 36 feature set described in [4]. We compare
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Figure 2: Performance of RBTs with & = 50% and n = N.
Forgeries are taken from trained forgers, and the Concate-
native Synthesis algorithm.

RBT (a) RBT (b) Baseline
EER | Errors | EER | Errors EER | Errors
Forgers | 17.7% 1 19% 1 20.6% 4
CS 27% 1 30% 0 27.4% 3

Table 2: Comparison between RBTs and a baseline approach.
RBT (a) operated with parameters (¢ = 30%, n = 50) and
RBT (b) operated with parameters (kK = 50%, n = N).

our approach to this Baseline because we believe it to be a state-of-
the-art handwriting-based BKG. However, it is not possible to di-
rectly compare the overall security afforded by both constructions
because RBTs also use human supplied passwords. Nonetheless,
since our security analysis assumes that an attacker has access to ,
we are able to compare the techniques that both approaches use to
to extract entropy from biometric inputs.

As Table 2 shows, for each BKG, the strongest adversary is the
Concatenative Synthesis algorithm. For both RBTs, the EER under
this type of attacker is approximately 28.5% at no errors corrected
by the BKG. Although trained human forgers have access to the
entire biometric when creating their forgeries, they do not perform
as well as CS, achieving an EER of approximately 18% at 1 error-
corrected for both choices of parameters. The ROC curve in Fig-
ures 2 provides a more detailed point of view of the performance
of RBTs against each of the forgers.

Discussion. These results lead to several observations. Under the
assumption that the attacker has access to m, RBTs are comparable
to the standard approach against trained human forgers and CS.
However, we observe that RBTs increase the difficulty for each
type of attacker, because in addition to collecting writing samples,
an attacker must also garner the correct password.

Another important takeaway is where the EERs occur. This in-
dicates how much extra work the BKG must perform to generate a
correct key for legitimate users. An EER that occurs at x errors cor-
rected requires the BKG to perform a search to identify the features
that the user has incorrectly recreated. Assuming a template length
of n, and that each quantized feature takes on at most y values, this
could be a space of up to >_7_ yl(f) For reasonable values of
y and n, and any value of x > 2, this becomes computationally
prohibitive, rendering the construction infeasible in practice.
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Figure 3: The number of guesses required by the search
algorithm to find RBT-derived keys. We compare the RBTs
to a Baseline approach that is designed to resist searches.

The EER for RBTs always occurs at O or 1 errors, whereas, as is
the case with many prior constructions, the EERs for the Baseline
occur at 3-4 errors. Thus, RBTs offer more resistance to forgery
against each of type of attacker, and do so in a more practical
manner. We hypothesize that this is because RBTs allow us to
employ stronger features. For a detailed description of the fea-
tures, see the full version of this paper [2]. Since RBTs employ
stronger features, they allow for more error tolerance for each fea-
ture, while maintaing security. This causes the FRR of RBTs to
drop quickly. Observe that at one error corrected, the RBTs with
(k = 30%,n = 50) and (k = 50%,n = N) had FRRs of 19.4%
and 16%, respectively. By contrast, at one error-corrected, our im-
plementation of the Baseline had a FRR of 57%. If we tune the tol-
erances so that the Baseline achieved similar FRRs, the FAR would
likely also increase.

8.2 Resistance to Searches

Having explored the ability of RBTs to withstand forgeries, we
now focus on their ability to resist search algorithms. Instead of
estimating Shannon entropy, we empirically and estimate the num-
ber of guesses that an adversary would require to find a key. This
approach is more feasible in light of real-world data constraints. In
particular, we estimate REQ-BUN against algorithms by applying
the search algorithm described in [3] to RBT-generated templates
and keys. We use only those users who successfully enrolled dur-
ing our forgery experiments, and again tested the system with the
parameters (k = 30%,n = 50) and (k = 50%,n = N). As be-
fore, we assume that the attacker has access to 7, and so the results
we present represent a worst-case point of view.

The results of the tests are shown in Figure 3. Again, we also
plot the results from another Baseline that is based on Vielhauer
and Steinmetz [22], but utilizes a different set of features that are
selected to resist searching attacks. Overall, even with access to the
target user’s password 7, the RBT with parameters (k = 50%, n =
N) is stronger than the baseline approach for 40% of the popula-
tion; for over 30% of the population, this improvement is dramatic.
To be fair, we note that, unfortunately, both instantiations of the
RBT suffer the same difficulty as the Baseline for a non-trivial
percent of the population; for ~ 15% of the users, the algorithm
correctly predicts the target user’s key on the first attempt—which
underscores the power of the original search-based attack [3]. The
Baseline then outperforms both variants of the RBTs up until the



60" percentile across the population. After this point, however,
both variants of the RBTs improve, while the baseline construction
remains relatively constant. At 2% guesses the search algorithm is
able to exhaust the complete key space of the Baseline. However,
this success rate does not happen for either of the RBT-based con-
structions until 2%° guesses. Indeed, the algorithm required ~ 25
guesses for about 14.6% of the population.
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