
webGraphEd, an open source Graph Drawing Editor for the web

Josep Ciberta
Universitat Oberta de Catalunya

jciberta@xtec.cat

Robert Clarisó Viladrosa
Universitat Oberta de Catalunya

rclariso@uoc.edu

David Bañeres Besora
Universitat Oberta de Catalunya

dbaneres@uoc.edu

June 12, 2014

Abstract

webGraphEd is an open source software for graph visualization and manipulation. It is especially
designed to work for the web platform through a web browser. The web application has been written in
JavaScript and compacted later, which makes it a very lightweight software. There is no need of additional
software, and the only requirement is to have an HTML 5 compliant browser. webGraphEd works with
scalable vector graphics (SVG), which it makes possible to create lossless graph drawings. These graphs
can be done with several predefined layouts: radial, trees and force-directed.

Keywords. Visualization tool, graph drawing, web editor, automatic layout, open source.

1 Introduction

Nowadays, the information treatment has reached a
considerable large amount of data that another ap-
proach rather than the traditional one must be used.
Even more if complex structures are involved. The
need of modelling information and simplicity for ex-
tracting patterns, has led to the use of graph draw-
ings. Thus, readability and expressiveness of this
data is considerably increased.

Graphs are mathematical abstractions that repre-
sent entities and the relationships between them. It is
formed by nodes and links. Nodes represent different
elements, whereas links represent relations between
elements. Typically, graph drawings are depicted by
a set of dots (representing vertices) and solid lines
(representing edges). Graph theory is a subject of
study in discrete mathematics.

Layout consists in calculating the position of dif-
ferent objects in a space according to various con-
straints. In graph drawing, it is the process of cal-
culating the position of the nodes and how the links

between them will be drawn. However, when design-
ing a graph, a variety of aesthetic criteria are also
taken into account (readability, planarity, cross min-
imization, space...).

Graph drawings are largely used as a form of
representation in a wide range of fields. Its util-
ity lies in its simplicity showing a knowledge that,
otherwise, would be difficult to illustrate. As the
use of graph drawings becomes more popular, their
size also grows. Thus, many different methods have
been developed that can draw graphs automatically,
most of them fully customizable, even aesthetically.
Along with this development, several programming
libraries have emerged containing implementations of
these algorithms. Furthermore, they also incorporate
other techniques in order to explore graphs, make
searches...

Application fields in graph visualization have been
spread out as well, increasing the number of areas
progressively. Moreover, the emergence of Internet’s
web applications has caused in this field a great in-
terest for scientific community.

1



The objective of this paper is to present an open
source software for graph visualization and manipu-
lation called webGraphEd. In Section 2, a review of
the main layouts and graph drawing types is depicted.
The state of the art of the main web libraries and ap-
plications libraries and applications is presented in
section 3. In Section 4 the new web tool and its fea-
tures are described. The architecture is described in
section 5 and the implementation in section 6. Sec-
tion 7 shows the results of the conducted research.
Finally, section 8 gives the conclusions and future
work.

2 Main Layouts and Graph
Drawing Types

Several different graph drawing designs have ap-
peared in order to satisfy the growing demand. These
new designs require, sometimes, new layout methods.
Several classifications have been done in this area [1]
[2]. Most of these layout types are related to some
particular algorithm, especially those that produce
automatic layouts. In this section, a brief summary
of the main layout types is presented (table 1).

Type Subtype

Tree layout H-Tree
HV-Tree

Radial layout Radial view
Balloon view

Tree map
Hierarchical
Orthogonal
Force-directed
3D layout Radial view

Cone tree
Hyperbolic Layout

Table 1: Main graph layout types

One of the most common graph drawings are trees
consisting in a node (called root node) which is con-
nected to other nodes, and these others are connected
to other new nodes and so successively without cre-

Figure 1: Tree1

ating cycles, that is a graph where any vertex is con-
nected to anyone else by one simple path. Although
not always the representation is as expected (figure
1), it matches with the definition: simple undirected
graphs that are connected and has no cycles. In these
cases, the layout is critical to appreciate several fea-
tures (root node, children...). Some of the layout
techniques are described in [3]. A binary tree (fig-
ure 2) is a special case of tree in which each node has
at most two child nodes (denoted as left and right
children).

Figure 2: Binary tree2

Layout techniques are described by Wetherell and
Shannon [4], also by Reingold and Tilford [5]. Succes-
sive refinements have been made by many other au-
thors. Even, new representation forms have brought

1http://upload.wikimedia.org/wikipedia/commons/2/

24/Tree_graph.svg
2http://upload.wikimedia.org/wikipedia/commons/f/

f7/Binary_tree.svg

2



out: H-Tree [6] (figure 3) and HV-Tree layout [7] (fig-
ure 4).

Figure 3: H-Tree layout3

Figure 4: HV-Tree layout4

Radial layouts are another kind of graph layout
type. They present different variations. The most
common is the radial view [8] shown in figure 5, where
from a centred root, branches spread out successively
in several circles until they reach the leaves. These
circles indicate the different depth levels. The bal-
loon view [9] (figure 6), although it is similar to the
previous one, depicts one important difference: ev-
ery new subtree becomes the centre of a new radial
graph.

Tree maps (figure 7) are a kind of layout where
each node is presented as a nested box inside another

3http://upload.wikimedia.org/wikipedia/commons/a/

af/H_tree.svg
4Extracted from the GOBLIN graph library (http:

//sourceforge.net/projects/goblin2/files/goblin2/

goblin.2.8b30)

Figure 5: Radial view layout5

Figure 6: Balloon layout6

one depending on its level. The area of the outlined
rectangle is significant.

Hierarchical layouts (figure 8) are directed graphs
where nodes are distributed along different layers
forming horizontal levels. One of the first techniques
was proposed by Sugiyama, Tagawa and Toda [10].
Like other cases, subsequent refinements have been
done.

In orthogonal layouts (figure 9) every edge is
aligned to the axis. These kind of graphs try to
achieve the maximum planarity, minimizing the num-
ber of crossings and bends [11].

Force-directed layouts (figure 10) can be viewed
as a system of nodes with forces interacting between
them. The algorithm looks for such a configuration
of forces in order to balance the whole system [7].

5http://upload.wikimedia.org/wikipedia/commons/d/

d7/Radial_tree_-_Graphic_Statistics_in_Management.jpg
6http://upload.wikimedia.org/wikipedia/commons/b/

b9/WorldWideWebAroundWikipedia.png

3



Figure 7: Tree map layout7

Figure 8: Hierarchical layout8

Figure 9: Orthogonal layout9

7http://upload.wikimedia.org/wikipedia/commons/8/

8b/Tree_Map.png
8Figure extracted from yFiles Online Demos (http:

//www.yworks.com/en/products_yfiles_practicalinfo_

demos.html)
9Figure extracted from yFiles Online Demos (http:

//www.yworks.com/en/products_yfiles_practicalinfo_

demos.html)

Figure 10: Force-directed layout10

Figure 11: 3D radial layout11

In 3D layouts an extra dimension is added. There-
fore, there is more space to represent large graphs,
increasing scalability. On the other hand, new de-
picting problems appears as some objects could oc-
clude others. Changing properties like transparency
or interactive methods like modifying perspective are
some of the techniques to work out this problem. The
simplest layout is the 3D version of the radial layout
(figure 11). Another is the cone tree [12] (figure 12),
but in this case some kind of interaction is necessary
to show the hidden elements.

Finally, hyperbolic layouts [13] [14] (figure 13) are
a graph layout which is closely related to its interac-
tion. The geometry used here is radically different.
First, the layout is realized in the hyperbolic space
and then is visualized in the Euclidean space.

11Extracted from the GEOMI documentation
10http://upload.wikimedia.org/wikipedia/commons/

9/90/Visualization_of_wiki_structure_using_prefuse_

visualization_package.png

4



Figure 12: Cone tree layout12

Figure 13: Hyperbolic view of a tree in 3D13

3 State of the art

3.1 Preliminaries

The DOM (Document Object Model) [15, 16, 17] is
a multi-platform and language-independent interface
which allows to access HTML and XHTML docu-
ments by its representation as nested objects. These
objects are organized in a tree where the document
is the root, and all the elements of the document can
be accessed through objects’ methods.

With the fifth version of HTML language, two new
elements came up: the canvas and the svg element.
Both can be embedded in HTML pages in order to
enhance websites.

The canvas [18] element allows to create and ma-
nipulate 2D and 3D (WebGL [19]) images at the pixel

12Extracted from the GEOMI documentation
13Figure generated through h3.exe from http://graphics.

stanford.edu/~munzner/h3/h3.exe

level. However, it is not possible to browse within this
elements with DOM objects.

SVG [20, 21] stands for Scalable Vector Graphics
and it is used to define vector-based graphics. All
SVG elements are embedded as DOM elements and
therefore, can be browsed through the HTML docu-
ment.

With the increase of the web usage in many ar-
eas, there have also appeared libraries for visualizing
and interacting with graph drawings. But the biggest
increase in libraries and web applications happened
after the development of version 5 of HTML, with
these new elements described before. Most of these
libraries rely on the SVG element due to its advan-
tages in contrast with the canvas element such a loss-
less zoom in and out, and the capacity of being em-
bedded into the document object model.

The state of the art of these libraries and appli-
cations will be described, including a review of some
relevant desktop applications with the most remark-
able features. Finally, a summary of these features
will be depicted in several tables. Only tools that are
able to perform layouts have been take into account.

3.2 Desktop libraries and applications

This kind of software has evolved from single graph
libraries, where just a few types of simple diagrams
were supported, to complex libraries allowing the cre-
ation of automated graph drawing layouts. The com-
putational model used within the libraries has also
evolved from small pieces of software running in spe-
cific platforms to frameworks or environments able to
run in current desktop clients or even on the cloud.
A review of the most popular desktop applications is
next presented.

Graphviz [22] [23] is a collection of tools for the
visualization and manipulation of abstract graphs.
Different types of graph layouts through a C library,
command line utilities, GUI tools and web browser
tools are implemented. It is composed by two main
libraries: Libgraph and Dinagraph. Libgraph fo-
cuses on static layouts while Dinagraph deals with
incremental and interactive layouts. A variant of the
Sugiyama algorithm to make it more aesthetic is used
for layered layouts. Two models are used for sym-

5



metrical layouts: the Kamda-Kawai spring layout al-
gorithm and a Fruchterman-Reingold extension. An
Eades-based algorithm implementation is used for ra-
dial layouts. There are two layout tools [24]: Dot
(successor of DAG) for directed graphs drawings and
Neato for non-directed ones. The main goal is to
make good diagrams with reasonable size and able
to scale properly. Graphviz is used in software en-
gineering, bioinformatics applications, web applica-
tions, among others. Most of the implementation is
written in C, but there are also implementations writ-
ten in C++ and Java. The software is released under
the Eclipse Public License (EPL).

Tom Sawyer Software [25] is a commercial prod-
uct for producing layouts and visualization of graph
drawings used by many companies, software vendors
and educational institutions. The product is divided
into two tools: Tom Sawyer Layout (formerly Graph
Layout Toolkit) and Tom Sawyer Visualization (for-
merly Graph Editor Toolkit). Layouts supported in
Tom Sawyer Layout are circular, hierarchical, orthog-
onal and symmetric. The product is available for sev-
eral desktop platforms (Windows, Linux, Apple, So-
laris) with C++, Java, ActiveX and .NET editions.

JViews [26] is a commercial component suite in
Java made by the ILOG company (absorbed by IBM,
in January 2009). The framework is easily integrated
into third party applications. One of the most impor-
tant components is the graph drawing layout module.
It has a great variety of layouts: mesh, spring, force-
directed, tree, radial, hierarchical, bus, circular, grid,
orthogonal and nested.

yFiles [27] is another graph drawing visualization
software that performs automatic layouts. It is de-
signed as a Java library with a commercial license.
One of the priorities is to keep a flexible and ex-
tensible architecture. The library consists of three
components that cooperate mutually: the yFiles Ba-
sic Component containing the classes, data structures
and algorithms, a viewer/editor component that con-
tains an intuitive and easy to use graph drawing edi-
tor (yEd), and the yFiles Component Layout contain-
ing a multitude of layouts. The software uses several
layout types: circular-radial layout; orthogonal lay-
out, following the Tamassia approach; force-directed
layout, layered layout following the Sugiyama ap-

proach with different alternatives (this technique is
also used by GraphViz); and tree layout, a variant
of the Reingold-Tilford approach. The graph draw-
ing supported formats are ygf (own), GraphML and
GML, and also drawing can also be exported to SVG
and PDF. There is also a version for the web (de-
scribed further).

Cytoscape [28] [29] is a general purpose environ-
ment for graph visualization which was originally de-
signed for working on biomolecular networks. Cy-
toscape components provide the basic functionality
for integrating arbitrary data, representing it visu-
ally, selecting and filtering it, and even link it with
other software through an interface implemented as
plug-ins. The data in the graph drawing is integrated
through attributes and annotations representing a hi-
erarchical classification. Regarding the layout, it sup-
ports a variety of automatic layouts (spring, hierar-
chical, circular...). The software is written in Java
and the license is LGPL although some algorithms
use the commercial yFiles graphics library. The soft-
ware also facilitates the use of plug-ins, in order to
implement new algorithms or carry out new graph
analysis among other things. There is no restric-
tion when adding plug-ins, they may have different
licenses, even commercial. It has a powerful API,
which allows to create additional features that they
can be distributed through its own store, the Cy-
toscape App Store.

Prefuse [30] is a framework for creating dynamic vi-
sualizations through structured or unstructured data
offered as an extensible toolkit. It allows abstrac-
tions to filter data before being displayed and then
performs several actions on the display (transforma-
tions, layouts, colors...). It also implements a great
variety of layouts: tree-maps, cone trees, perspective
walls, starfield displays, hyperbolic trees, DOI (De-
gree Of Interest) trees, space trees, force-directed, ra-
dial, among others. Prefuse is written in Java using
Java2D graphics library and it is distributed under
open source license.

JGraphX [31] is a library written in Java for graph
drawing visualization. It has been create primar-
ily with the Java Swing components. This library
has an open source license, the 3-clause BSD license.
However, the web library version, which is called mx-

6



Graph and described further, is released under a com-
mercial license.

Goblin [32] is an application written in C++ and
Tcl/Tk for displaying and manipulating graph draw-
ings. It has a graphical interface, an API and Tcl/Tk
programming interface. Supported layouts are: tree,
orthogonal, hierarchical and force-directed, besides
different graph optimizations for the most known
techniques. This software is distributed under GNU
GPL.

H3Viewer [33] is a graph library that supports in-
teractive navigation in graph drawings up to a few
hundred of thousand edges through an adaptive algo-
rithm that ensures a specific frame rate. The layout
and navigation occur in a hyperbolic space which eas-
ily allows changing the point of interest. H3Viewer
motivation’s is that other libraries do not scale prop-
erly in a large number of nodes and edges, especially
in automatic layouts. This library achieves an inter-
active navigation in large graph drawings through the
use of a spanning tree, which fits properly with trees
and directed acyclic graphs. The layout technique de-
pends, not on the total number of nodes and edges,
but on the visible ones. The algorithm implementa-
tion is a loop where it starts drawing from the centre
of the sphere heading around until time runs out, in
order to ensure a specific frame rate. The library is
available for SGI, Linux and Windows released under
the SGI licence (free for non commercial use).

Geomi [34, 35] is a software for the analysis and
visualization of graph drawings, specialized in 3D
layouts. It is composed of three main components:
network analysis, layout engine and a component for
interactions. Over this layer, a multitude of plug-
ins can be integrated. Three-dimensional supported
layouts are: hierarchical, radial, cone-tree and clus-
tered. The software is written in Java and released
under the LGPL license.

3.3 Web libraries

Protovis [36] is a library for graph visualization on
the web. It uses JavaScript and the SVG element
to display those graphs, which means that it does
not need any special plug-in (just a modern browser).
The library is open source and is released under the

MIT license. In 2011, its development stopped in
favour of the D3 library.

D3 (Data-Driven Documents) [37, 38] is the spir-
itual successor of Protovis. It has been written in
JavaScript, where data manipulation is done through
selections (a widely used technique used in other
JavaScript libraries that consists on select elements
of a web page in order to modify, append or re-
move these items like applying operations on a data
set). Data is specified as arrays of arbitrary data.
The library supports event handlers, which it makes
possible to create animated transitions, interpolat-
ing the current value to a specified value gradually
over the time. It also has different modules, some of
which provide chart and histograms shapes, layouts
for graph drawings (extensible via plug-ins)and in-
teraction techniques (behaviour). Applications made
with the library range from real-world applications
to teaching examples for new users. Like Protovis
library, D3 is also open source and is released under
the MIT license.

Sigma.js [39] is a lightweight library for display-
ing graphs. It also uses HTML canvas and has been
specially designed to view static graphs interactively,
whether data is imported or generated on the fly.
However, the development is in a very preliminary
stage. The library is open source and distributed
under the MIT license, and it has been written in
JavaScript.

Raphaël [40] is another reduced-size JavaScript li-
brary that simplifies vector graphics creation. Each
graphical object is an object which can be linked to
JavaScript event handlers or modified from code. The
library is released under the MIT license.

yFiles for the web is the web version of yFiles [27].
It is available in several technologies: HTML5, Sil-
verlight, Flex and AJAX. There are also client and
server versions. Allowed layouts are hierarchical, or-
ganic, tree, radial, and orthogonal. It has a commer-
cial license.

Flare [41] is an ActionScript (Flash) library cre-
ated by the UC Berkeley Visualization Lab. From ba-
sic graphs to complex interactive graph drawings can
be created with this tool. It supports data manage-
ment, animation and several interaction techniques.
Some of the available layouts are tree, force-directed,

7



indent, radial, circle, dendrograms, bubbles, circle
pack, icicle and sunburst. The library is distributed
under the BSD license.

Cytoscape.js [42] is the successor of Cytoscape
Web. Both libraries are the web version of Cy-
toscape. In the case of Cytoscape Web had two
versions, one for JavaScript and another for Flex.
However, the new library keeps only the JavaScript
version. Although Cytoscape is an entire desktop
platform (application, libraries, and plugins), Cy-
toscape.js is just a library. According to its website:
Though Cytoscape.js shares its name with Cytoscape,
Cytoscape.js is not exactly the same as Cytoscape
desktop. Cytoscape.js is a JavaScript library for pro-
grammers. It is not an app for end-users, and devel-
opers need to write code around Cytoscape.js to build
graphcentric webapps14. This library is distributed
under GNU LGPL version 3.

According to its website mxGraph [43] is the only
fully client-side JavaScript Graph Visualization and
Layout Solution. Available layouts are tree, organic
and circle. The library can be used in conjunction
with Java, .NET or PHP. The mxGraph library is
licensed under a standard commercial license.

Table 2 depicts a review of the most relevant fea-
tures. It has been taken into account the minimal
size for web libraries, since most of them have been
reduced or compressed. This is an critical feature
because it increases the performance when loading a
web page.

3.4 Web applications

Tom Sawyer [25] is one of the oldest graph visualiza-
tion tools. It has two separated products for graph
drawing visualization: Tom Sawyer Visualization and
Tom Sawyer Layout. Through the Java platform and
working on several servers it allows the execution
of their software on the web as JSP pages. More-
over, it is also possible to run the software through
the .NET platform, creating ASP.NET pages. Tom
Sawyer software is distributed under a commercial
license.

14Cytoscape.js & Cytoscape section. http://cytoscape.

github.io/cytoscape.js

Graphity [44] is a free graph editor made with the
yFiles for Flex libraries. Allowed layouts are hierar-
chical, organic, tree, radial, and orthogonal.

Draw.io [45] is a web application realized with the
commercial mxGraph library developed by the com-
pany JGraph. It has a Google Apps look and feel and
it can work directly with some cloud services (Google
Drive and Dropbox). Available layouts are tree, or-
ganic and circle. Although the mxGraph library is li-
censed under a standard commercial license, Draw.io
can be used freely.

DAGitty [46, 47] is a tool for drawing and analysing
casual directed acyclic graphs (DAG). It is a specific
purpose application and does not have many features.
There is only one layout available, and it is not well
defined. DAGitty is available under the GNU GPL
license.

On the other hand, there is also some applications
that allow graph and diagram creation like Gliffy [48],
LucidChart [49] or Creately [50]; but they are not
able to perform any layout.

In table 3 a brief description of the main features
is listed, likewise as in previous table, except the size,
which is not available.

4 Application

In the previous section, the state of the art of li-
braries and tools for graph drawing visualization and
manipulation have been described. The development
of the HTML version 5 has caused the emergence of
many web libraries, including some of them especially
designed for graph drawing visualization and manip-
ulation. Among these last ones, there are also an
increase of the open source libraries.

However, in the case of web applications, this is
a very virgin field. Although some commercial ap-
plications are found, which they usually have a free
access to use them, there is a complete lack of gen-
eral purpose open source applications. webGraphEd
attempts to fill this gap. Another important point
is the absence of use of open file formats, especially
for graph drawings. Most of this applications have
their own file format, which in most of the cases, it is
unknown to the end user. This is a considerably con-

8



Library Version Size Year Language/Environment License

Cytoscape.js 2.0.4 216 Kb 2013 Flex, JavaScript Open Source. LGPL
D3.js 3.3.11 146 Kb 2013 JavaScript Open Source. BSD
Flare 2009.01.24 1.2 Mb 2009 ActionScript Open Source. BSD
mxGraph 2.8.1.0 N/A 2014 JavaScript Commercial
Protovis 3.3.1 1.3 Mb 2011 JavaScript Open Source. BSD
Raphaël 2.1.2 91 Kb 2012 JavaScript Open Source. MIT
sigma.js 1.0.2 109 Kb 2014 JavaScript Open Source. MIT
yFiles 1.1/2.3/1.8/2.1 N/A 2014 HTML5, Silverlight, Flex, AJAX Commercial

Table 2: Web libraries summary

Application Version Year Language/Environment License

Tom Sawyer 9.2 2011 ASP.Net, JSP Commercial
Graphity 2.10 2012 Flex Commercial
Draw.io N/A 2014 JavaScript Commercial
DAGitty 2.1 2014 JavaScript Open Source. GPL

Table 3: Web applications summary

straint to the interoperability between applications.

The aim of the application is to be able to create
graphs drawings, lay out and manipulate them, with
a friendly interface. All of these in a open source
lightweight application (currently, less than 650 KB)
with the capacity to be embedded into a web page.
webGraphEd is designed to be intuitive and easy to
use for end user, containing basic editing and visual-
izing functionalities. In addition to these basic fea-
tures, some others are implemented as well like layout
detection and several graph formats support.

The chosen license has been the GNU GPL version
3. A copyleft license is a must and version 3 is the
most suitable because it is compatible with BSD li-
cense (3-clause), Apache License 2.0 and MIT license,
in order to use properly the required libraries.

4.1 Features

The most basic features for graph drawing visual-
ization and manipulation have been implemented in
webGraphEd. A brief description of all these features
is shown below.

• Detection of graph drawing type [7] (connected
and disconnected graphs, cyclic and acyclic
graphs, trees and binary trees).

• An extensible variety of layouts. Currently, hor-

izontal tree, vertical tree, radial tree and force-
directed layouts are available.

• Ability to draw a graph with a fixed layout algo-
rithm, depending on its type. For instance, for
a cyclic graph drawing or an acyclic non-tree,
only force-directed layout is available since or-
thogonal and hierarchical layouts are not imple-
mented yet, but for a binary tree, all kind of tree
layouts are also available.

• The application recognizes the main graph for-
mats and it is capable of importing and export-
ing them considering the most relevant features
of these formats. The supported graph formats
are GML (Graph Modelling Language) [51] and
GraphML [52], although the totality of the fea-
tures of those notations are not implemented.

• The basic actions are:

– Pan and zoom.

– Drag and drop nodes as well as links.

– Select and unselect nodes and links.

– Add and remove nodes and links.

– Change basic properties of nodes (shape
and color) and links (thickness and color).

– Center layout when the nodes are moved
freely, except for force-directed layout,
which is always centred due to its own grav-
ity.

9



• The advanced actions are:

– Change layout algorithm on the fly.

– Collapse and uncollapse nodes.

– Fit layout to the available screen, in order
to give more space and readability to the
graph drawing.

The application can also be embedded into a web
page. The graph being drawn can be referred in two
different ways: embedding into the URL or indicating
the URL where the file is located.

5 Architecture

The developed application have been designed in 3
layers (figure 14): core, layout manager and user in-
terface. The goal is to abstract the full functionality
encapsulating them into different layers, allowing a
different approach for a specific layer if it is neces-
sary.

The core layer implements the kernel of the appli-
cation, containing the most basic functions, internal
graph drawing and data structures, the import and
export modules, and several utilities related to maths
calculations, DOM and JSON.

Above it is the layout manager, which links to the
graphics libraries (in this case D3) through a well
defined interface, in order not to rely exclusively on
a single library. It chooses the most suitable layout
for every graph drawing.

Finally, the user interface layer is the top layer. It
is in charge of the aspect of visualization, including
the GUI, manipulation and interaction tools, proper-
ties and behaviour.

6 Implementation

webGraphEd is fully implemented in JavaScript [53,
54], which means that the application is executed on
the client. Among the different client-side languages,
like Java applets or ActionScript, JavaScript is the
most widely used, most compliant with browsers and
the code is interpreted, so the code can be browsed.
This does not mean that JavaScript applications are
open source, but they are close.

Figure 14: webGraphEd’s architecture

Although in JavaScript there are no classes (but
objects), an OOP [55] approach has been used. Thus,
different functionalities from distinct layers have been
encapsulated properly. A Test Driven Development
[56] methodology have also been used, and a large list
of unitary tests have been written.

Several libraries are used, which all of them are
open source with their respective licenses and they
are further described. The documentation of the
whole application has been done with JsDoc [57],
which provides a comprehensible HTML help for de-
velopers. With the aim to reduce the code size,
and therefore increase the application’s performance,
compression tools have also been used. JavaScript
code is reduced with the Closure Compiler [58], which
optimizes and verifies the code as well. The cascade
style sheets (CSS) have been compressed with the
YUI Compressor [59].

A local copy of the libraries is used in order to
prevent side effects, such a server downfall, location
changes, or even behavioural changes (new versions,
deprecated functionalities...)

6.1 External libraries

Several external libraries have been used in order to
implement the different layers. These libraries are
next described and every one is employed in a specific
layer.

At the core layer two libraries have been used.
The jQuery library [60] is a general purpose library.
It allows to keep your application independent from

10



Library Version License

D3 3.4.6 BSD
Closure N/A Apache 2.0
QUnit 1.12.0 MIT
JQuery 2.1.0 MIT
JQuery Impromptu 5.2.3 MIT

Table 4: Library licences

browsers among other features, such as a powerful
API or an easier manipulation of HTML elements.
The library used for unit testing has been the QUnit
library [61], from the same authors of jQuery. Li-
brary’s choice has been made by its simplicity. The
low-level development of the application has been
closely linked to the unit tests. QUnit is distributed
under the same jQuery license, the MIT license.

The application’s main library is found at the lay-
out manager, the graphical library D3.js [37, 38],
which is aforementioned in section 3.

A widely used library in the interface layer is the
Closure Library [62], developed and maintained by
Google. This library is part of the Closure Tools,
containing, in addition to the library, a JavaScript
optimizer and other related utilities. All graphics
such as menus and dialogs are performed with this
library. It is distributed under the Apache 2.0 li-
cense. An additional library used at this level is the
jQuery Impromptu [63]. Due to some limitations of
the Closure library, jQuery Impromptu has been used
for a richer dialogs, which requires some outputs to
be different from the standard ones.

A brief summary of the used libraries in the appli-
cation is shown in table 4.

7 Results

In this section, qualitative and quantitative data have
been analysed. Several layouts, distribution and spa-
tial organization, layout readability and aesthetical
parameters like colour and shape have been analysed
as a qualitative data. Quantitative data has been fo-
cused basically on compatibility and response times
in order to assess the application performance.

7.1 Quantitative data

First of all, compatibility among browsers have been
verified. The most common actions have been
checked for the most popular browsers. Although
there are some cross-platform browsers, tests have
been done in a Windows 7 environment, since the
most browsers have an implementation for this oper-
ating system. The latest versions of these browsers
have been used:

• Google Chrome 35.0

• Mozilla Firefox 29.0

• Internet Explorer 11

• Safari 5.1.7

• Opera 22.0

In table 5, the compatibility for the most common
actions is shown for several browsers. Safari does
not support local file handling, although the latest
version is from 2012. Moreover, Internet Explorer
lets drag parts of the graph outside the SVG element.
Even the force-directed layout is partially drawn out
of the bounds when the simulation is still going on.

Another qualitative data analysed has been the
time, especially load times and execution times for a
30 nodes graph drawing. Table 6 depicts these times.
Data has been retrieved from a Dell Inspiron 15 (In-
tel Pentium T4500 2.30 GHz) running a Windows 7
operating system.

Application load time is a critical point. It re-
lies on two main parameters, the server where the
web application is allocated (response time, band-
width, ...)and the optimization of the application.
webGraphEd has been optimized and compacted with
the Closure Compiler, and thus, the load time per-
formance has been improved.

Nevertheless, some dramatic differences are ob-
served such as the excessive time for loading a file
in Internet Explorer. Regarding the layout execu-
tion, the Safari browser is slightly faster than Chrome
and Opera (these two do not have many differences,
as they are based on the same web browser engine,
Blink). On average, the less favourable times are for
Internet Explorer.

Scalability of the web application have also been
tested, through a comparative of the execution time

11



Action Chrome Firefox Explorer Safari Opera

Graph drawing
Pan & zoom yes yes yes yes yes
Add node yes yes yes yes yes
Drag & drop yes yes yes yes yes
Hide node yes yes yes yes yes
Link node yes yes yes yes yes
Node’s properties yes yes yes yes yes

Others
Open file yes yes yes no yes
Save file yes yes yes no yes
Dialog yes yes yes yes yes

Table 5: Browser compatibility

Action Chrome Firefox Explorer Safari Opera

Load times
Application load time 3.3 4.0 3.9 4.3 3.9
File load time 0.012 0.015 0.072 N/A 0.029

Execution times
Horizontal tree 0.03-0.04 0.05-0.06 0.05-0.08 0.02-0.03 0.03-0.05
Vertical tree 0.03-0.04 0.05-0.06 0.05-0.08 0.02-0.03 0.03-0.05
Radial tree 0.03-0.04 0.07-0.08 0.05-0.08 0.02-0.03 0.03-0.05
Force-directed 0.01-0.03 0.02-0.03 0.02-0.04 0.01-0.02 0.01-0.03

Table 6: Load and execution times

12



of different layouts depending on the number of
nodes. Table 7 shows these results of this compar-
ative, where the values are in seconds. The force-
directed layout has better execution times because it
is executed in two steps: first, it locates all the nodes
in a not well defined position; and then the simula-
tion of the forces begins, which takes longer times.
In the case of 5000 nodes, the simulation never stops,
because it enters in an infinite iteration. However,
the time of the simulation depends on several factors
that can be customized, such as gravity, distance be-
tween nodes, force and charge [64].

It is also observed that the progression of layout
execution time is linear, proportionally to the number
of nodes. Figure 15 outlines the temporal relationship
with regard to the number of nodes for each layout.

Figure 15: Layout execution time

7.2 Qualitative data

Currently, the application has 4 different imple-
mented layouts, though 3 of them are trees. Nonethe-
less, a great variety of graph typologies can be il-
lustrated. Figure 16 depicts a vertical layout for 30
nodes while figure 17 shows a force-directed layout
with 50 nodes.

Another implemented features that can be cus-
tomized are colour and shape for nodes, and colour
and thickness for links. Figure 18 shows a radial lay-
out with several customized nodes and links.

Readability has been improved with functions like
center and fit, which lays out the graph according the
screen boundaries.

Figure 16: webGraphEd vertical layout

Figure 17: webGraphEd force-directed layout

Figure 18: webGraphEd radial layout

8 Conclusions

A new web graph editor has been presented is this
paper. One of the most goals has been to create an
easy to use application, with a friendly user interface.
In this early version, the major relevant features have
been highlighted and the available layouts have been
described. Several performance test have been car-

13



Nodes 50 500 1000 2000 5000

File load time 0.02 0.076 0.28 1.067 8.712
Layout execution time

Horizontal tree 0.053 0.537 1.072 2.413 6.744
Vertical tree 0.047 0.488 1.169 2.204 6.45
Radial tree 0.058 0.473 1.167 3.279 15.887
Force-directed 0.075 0.174 0.268 0.503 1.589

End of simulation 5.047 15.895 29.032 57.37 N/A

Table 7: Scalability of the application

ried out, including scalability, as well.

This is an ongoing project, and new features are
foreseen. Available layouts can be increased, even if
they are not implemented by the D3 library, through
the own layout engine. Support to more graph for-
mats such as DOT [65], GXL (Graph Exchange Lan-
guage) [66] and GraphXML [67] would be also conve-
nient. Moreover, new forms of interaction and miss-
ing actions, like enlarging nodes, more shapes and
customising links are planned.

References

[1] Roberto Tamassia, Giuseppe Di Battista, and
Carlo Batini. Automatic graph drawing and
readability of diagrams. Systems, Man and Cy-
bernetics, IEEE Transactions on, 18(1):61–79,
1988.

[2] Ivan Herman, Guy Melançon, and M Scott Mar-
shall. Graph visualization and navigation in in-
formation visualization: A survey. Visualization
and Computer Graphics, IEEE Transactions on,
6(1):24–43, 2000.

[3] John Q. Walker II. Node-positioning algorithm
for general trees. Software - Practice and Ex-
perience, 20(7):685–705, 1990. cited By (since
1996)59.

[4] C. Wetherell and A. Shannon. Tidy drawings of
trees. Software Engineering, IEEE Transactions
on, SE-5(5):514–520, 1979.

[5] Edward M. Reingold and J.S. Tilford. Tidier
drawings of trees. Software Engineering, IEEE
Transactions on, SE-7(2):223–228, 1981.

[6] S. Bhattacharya and W.-T. Tsai. Area efficient
binary tree layout. In VLSI, 1991. Proceedings.,
First Great Lakes Symposium on, pages 18–24,
1991.

[7] Ioannis Tollis, Peter Eades, Giuseppe Di Bat-
tista, and Loannis Tollis. Graph drawing: algo-
rithms for the visualization of graphs, volume 1.
Prentice Hall New York, 1998.

[8] Peter Eades. Drawing free trees. International
Institute for Advanced Study of Social Informa-
tion Science, Fujitsu Limited, 1991.

[9] Chang-Sung Jeong and A. Pang. Reconfigurable
disc trees for visualizing large hierarchical in-
formation space. In Information Visualization,
1998. Proceedings. IEEE Symposium on, pages
19–25, 149, 1998.

[10] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko
Toda. Methods for visual understanding of hi-
erarchical system structures. Systems, Man and
Cybernetics, IEEE Transactions on, 11(2):109–
125, 1981.

[11] Roberto Tamassia. On embedding a graph in the
grid with the minimum number of bends. SIAM
Journal on Computing, 16(3):421–444, 1987.

[12] George G. Robertson, Jock D. Mackinlay, and
Stuart K. Card. Information visualization using

14



3d interactive animation. In Proceedings of the
SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’91, pages 461–462, New
York, NY, USA, 1991. ACM.

[13] Jonh Lamping and Ramana Rao. The hyper-
bolic browser: A focus+ context technique for
visualizing large hierarchies. Journal of Visual
Languages & Computing, 7(1):33–55, 1996.

[14] Tamara Munzner and Paul Burchard. Visualiz-
ing the structure of the world wide web in 3d hy-
perbolic space. In Proceedings of the first sympo-
sium on Virtual reality modeling language, pages
33–38. ACM, 1995.

[15] Lauren Wood, Vidur Apparao, Laurence Cable,
Mike Champion, Mark Davis, Joe Kesselman,
Tom Pixley, Jonathan Robie, Peter Sharpe, and
Chris Wilson. Document object model (dom)
level 1 specification. w3C recommendation, 1,
1998.

[16] World Wide Web Consortium et al. Document
object model (dom) level 2 style specification.
2000.

[17] Gavin Nicol, Lauren Wood, Mike Champion,
and Steve Byrne. Document object model (dom)
level 3 core specification. 2001.

[18] World Wide Web Consortium (W3C). HTML
Canvas 2D Context. W3C Candidate Recom-
mendation 6 August 2013. http://www.w3.

org/TR/2013/CR-2dcontext-20130806/.

[19] Chris Marrin. Webgl specification. Khronos We-
bGL Working Group, 2011.

[20] World Wide Web Consortium (W3C). Scal-
able Vector Graphics 1.1 (Second Edition). W3C
Recommendation 16 August 2011. http://www.
w3.org/TR/SVG11/.

[21] J David Eisenberg. SVG Essentials: Producing
Scalable Vector Graphics with XML. O’Reilly
Media, Inc., 2002.

[22] John Ellson, Emden R Gansner, Eleftherios
Koutsofios, Stephen C North, and Gordon
Woodhull. Graphviz and dynagraph static and
dynamic graph drawing tools. In Graph drawing
software, Mathematics and Visualization, pages
127–148. Springer, 2004.

[23] Emden R Gansner. Drawing graphs with
graphviz. Technical report, Technical report,
AT&T Bell Laboratories, Murray, 2009.

[24] Emden R Gansner and Stephen C North. An
open graph visualization system and its applica-
tions to software engineering. Software Practice
and Experience, 30(11):1203–1233, 2000.

[25] Arne Frick and Brendan Madden. Flexible graph
layout and editing for commercial applications.
In SueH. Whitesides, editor, Graph Drawing,
volume 1547 of Lecture Notes in Computer Sci-
ence, pages 446–447. Springer Berlin Heidelberg,
1998.

[26] Georg Sander and Adrian Vasiliu. The ilog
jviews graph layout module. In Graph Drawing,
pages 438–439. Springer, 2002.

[27] Roland Wiese, Markus Eiglsperger, and Michael
Kaufmann. yfiles visualization and automatic
layout of graphs. In Michael Jünger and Pe-
tra Mutzel, editors, Graph Drawing Software,
Mathematics and Visualization, pages 173–191.
Springer Berlin Heidelberg, 2004.

[28] Paul Shannon, Andrew Markiel, Owen Ozier,
Nitin S Baliga, Jonathan T Wang, Daniel Ram-
age, Nada Amin, Benno Schwikowski, and Trey
Ideker. Cytoscape: a software environment for
integrated models of biomolecular interaction
networks. Genome research, 13(11):2498–2504,
2003.

[29] Michael E Smoot, Keiichiro Ono, Johannes
Ruscheinski, Peng-Liang Wang, and Trey Ideker.
Cytoscape 2.8: new features for data integra-
tion and network visualization. Bioinformatics,
27(3):431–432, 2011.

15



[30] Jeffrey Heer, Stuart K Card, and James A Lan-
day. Prefuse: a toolkit for interactive informa-
tion visualization. In Proceedings of the SIGCHI
conference on Human factors in computing sys-
tems, pages 421–430. ACM, 2005.

[31] Gaudenz Alder and David Benson. JGraph
Ltd. JGraphX library. http://www.jgraph.

com/jgraph.html.

[32] Christian Fremuth-Paeger. Goblin: A graph ob-
ject library for network programming problems,
2007. http://goblin2.sourceforge.net/.

[33] Tamara Munzner. Drawing large graphs with
h3viewer and site manager. In SueH. White-
sides, editor, Graph Drawing, volume 1547 of
Lecture Notes in Computer Science, pages 384–
393. Springer Berlin Heidelberg, 1998.

[34] Adel Ahmed, Tim Dwyer, Michael Forster, Xi-
aoyan Fu, Joshua Ho, Seok-Hee Hong, Dirk
Koschützki, Colin Murray, Nikola S Nikolov,
Ronnie Taib, et al. Geomi: Geometry for maxi-
mum insight. In Graph Drawing, pages 468–479.
Springer, 2006.

[35] Joshua Ho and Seok-Hee Hong. Drawing clus-
tered graphs in three dimensions. In Graph
Drawing, pages 492–502. Springer, 2006.

[36] Michael Bostock and Jeffrey Heer. Protovis: A
graphical toolkit for visualization. Visualization
and Computer Graphics, IEEE Transactions on,
15(6):1121–1128, 2009.

[37] Michael Bostock, Vadim Ogievetsky, and Jeffrey
Heer. D3 data-driven documents. Visualization
and Computer Graphics, IEEE Transactions on,
17(12):2301–2309, 2011.

[38] Mike Dewar. Getting Started with D3 - Creating
Data-Driven Documents. O’Reilly, 2012.

[39] Alexis Jacomy and Guillaume Plique. The
sigma.js JavaScript library. http://sigmajs.

org/.

[40] Dmitry Baranovskiy. Raphaël JavaScript li-
brary. http://raphaeljs.com/.

[41] UC Berkeley Visualization Lab. Flare: Data
visualization for the web. http://flare.

prefuse.org/.

[42] Donnelly Centre. University of Toronto. The Cy-
toscape.js library. http://cytoscape.github.

io/cytoscape.js/.

[43] Gaudenz Alder and David Benson. JGraph
Ltd. mxGraph library. http://www.jgraph.

com/mxgraph.html.

[44] yWorks GmbH. Graphity diagram editor. http:
//live.yworks.com/graphity/.

[45] JGraph Ltd. Draw.io. https://www.draw.io/.

[46] Johannes Textor, Juliane Hardt, and Sven
Knüppel. Dagitty: a graphical tool for analyzing
causal diagrams. Epidemiology, 22(5):745, 2011.

[47] Johannes Textor and Maciej Liskiewicz. Adjust-
ment criteria in causal diagrams: An algorithmic
perspective. arXiv preprint arXiv:1202.3764,
2012.

[48] Gliffy: Online diagram software. http://www.

gliffy.com/.

[49] LucidChart: Flow Chart Maker & Online Di-
agram Software. https://www.lucidchart.

com/.

[50] Creately: Online Diagram Software to draw
Flowcharts, UML & more. http://creately.

com/.

[51] Michael Himsolt. GML: A portable graph
file format, 1997. Universität Passau.
http://www.fmi.uni-passau.de/graphlet/

gml/gml-tr.html.

[52] Ulrik Brandes, Markus Eiglsperger, Jürgen
Lerner, and Christian Pich. Graph markup lan-
guage (GraphML). Bibliothek der Universität
Konstanz, 2010.

[53] Douglas Crockford. JavaScript: The Good
Parts. O’Reilly Media, Inc., 2008.

16



[54] Stoyan Stefanov. JavaScript patterns. O’Reilly
Media, Inc., 2010.

[55] Peter Coad and Jill Nicola. Object-Oriented Pro-
gramming. Prentice Hall, 1993.

[56] Kent Beck. Test Driven Development: By Exam-
ple. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[57] Nicholas C Zakas. Maintainable JavaScript.
O’Reilly Media, Inc., 2012.

[58] Google developers. The Closure Compiler.
https://developers.google.com/closure/

compiler/.

[59] YUI Compressor. The Yahoo! JavaScript and
CSS Compressor. http://yui.github.io/

yuicompressor/.

[60] Jonathan Chaffer. Learning jQuery. Packt Pub-
lishing Ltd, 2013.

[61] Dmitry Sheiko. Instant Testing with QUnit.
Packt Publishing Ltd, 2013.

[62] Michael Bolin. Closure - The Definitive Guide:
Google Tools to Add Power to Your JavaScript.
O’Reilly, 2010.

[63] Trent Richardson. jQuery Impromptu. http:

//trentrichardson.com/Impromptu/.

[64] Stephen G Kobourov. Spring embedders and
force directed graph drawing algorithms. arXiv
preprint arXiv:1201.3011, 2012.

[65] Emden Gansner, Eleftherios Koutsofios, and
Stephen North. Drawing graphs with DOT.
Technical report, Technical report, AT&T
Research. URL http://www.graphviz.org/

Documentation/dotguide.pdf, 2006.

[66] Andreas Winter, Bernt Kullbach, and Volker
Riediger. An overview of the GXL graph ex-
change language. In Software Visualization,
pages 324–336. Springer, 2002.

[67] Ivan Herman and M Scott Marshall.
GraphXML. an XML-based graph descrip-
tion format. In Graph Drawing, pages 52–62.
Springer, 2001.

17


