
CONCURRENT
DISTRIBUTED TASK SYSTEM IN PYTHON

Created by Moritz Wundke

http://www.moritzwundke.se/

INTRODUCTION
Concurrent aims to be a different type of task distribution

system compared to what MPI like system do. It adds a simple
but powerful application abstraction layer to distribute the logic

of an entire application onto a swarm of clusters holding
similarities with volunteer computing systems.

INTRODUCTION CONT'D
Traditional task distributed systems will just perform simple

tasks onto the distributed system and wait for results.
Concurrent goes one step further by letting the tasks and the
application decide what to do. The programming paradigm is
then totally async without any waits for results and based on

notifications once a computation has been performed.

WHY?
Flexible
Stable
Rapid development
Python

WHY? - FLEXIBLE
Keystone for every framework
Must be reused in many typed of projects
Easy to integrate in existing code

WHY? - STABLE
Fault tolerance
Consistency
We scarify availability

WHY? - RAPID DEVELOPMENT
Fast prototyping
Python is fast to write, very fast!
Deliver soon and often principle

WHY? - PYTHON
Huge community
Used in scientific computation
Deliver soon and often principle
Imperative and functional
Very organized
Cross-Platform
Object serialization through pickle, thus dangerous if not used
properly!
Drawback: pure python performance

THE DARK SIDE
Pure python performance

Cython
Native

No real multithread
The GIL issue
Releasing the GIL manually
multiprocessing (fork)

THE DARK SIDE - PERF
Python is slow, thats a fact
But we can boost it using natives

Cython: Static C compiler combining both python flexibility
and C performance.
Native c modules: Create python modules directly in C.

THE DARK SIDE - GIL
Global Interpreter Lock: Only one line or python object
accessed at a time per process.
We can release the GIL using natives like Cython or directly in
a native module.
We can also use processes instead of threads, while adding the
need for IPC mechanisms.
Shared vs Distributed memory / Threads vs Processes.

CONCURRENT
Distributed task execution framework which tries to solve the
GIL issue.
Does not use threads when executing processes.
Features different ways to implement IPC calls.
All nodes in the system communicate through RPC calls or
using HTTP or low-level TCP.
Integrated Cython for performance tweaking.

OTHER FRAME WORKS
Dispy: Fork based system, not applciation or cloud oriented as
concurrent, problems with TCP congestion.
ParallelPython: Thread based based system, not applciation
or cloud oriented as concurrent, problems with TCP
congestion.
Superpy: Similar to concurrent but does not feature a high-
performance transport layer. Only for windows.
More libraries

https://wiki.python.org/moin/ParallelProcessing

ARCHITECTURE
Concurrent is build upon a flexible plug-able component

framework. Most of the framework is plug-able in few steps and
can be tweaked installing plug-ins.

Applications themselves are plug-ins that are then load on the
environment and executed.

COMPONENTS

Components are singleton instances per ComponentManager.
They implement the functionality of a given Interface and talk to

each other through an ExtensionPoint.

COMPONENTS CONT'D

Example setting of Components linked together with
ExtensionPoints

COMPONENTS CONT'D

Configuration system allows us to configure ExtensionPoints via
config files.

NODES
Our distributed system is based on a 3 node setup, while more

classes are involved for flexibility

MasterNode: Our main master (or a layer within a multi-
master setup). Distributed the workload and maintains the
distributed system.
SlaveNode: A slave node is connected to a master (or a set of
masters in a multi-master setup). Executes the workload a
master sends to this node or requests work from it.
ApplicationNode: An application using the framework and
sending work to it. Usually connected to a single master (or
multiple masters on a multi-master setup).

NODES CONT'D

TASK SCHEDULING
Concurrent comes with two task scheduling policies, one

optimized for heterogeneous systems and another for
homogeneous systems.

Generic: For heterogeneous systems. Sends work to the best
slave for the given work. Comes with slightly more overhead.
ZMQ: ZMQ push/pull scheduling, for homogenous systems.
Slave requests task from a global socket. Less overhead but
prone to stalls if hardware is not the same on all slaves.

TASK SCHEDULING CONT'D

TASK SCHEDULING CONT'D
From previous slide

Generic scheduling execution flow. A GenericTaskScheduler uses
a GenericTaskScheduleStrategy to send work to a

GenericTaskManager of the target slave.

TASK SCHEDULING CONT'D

TASK SCHEDULING CONT'D
From previous slide

ZMQ push/pull scheduling execution flow. A ZMQTaskScheduler
pushes work onto a global work socket. The ZMQTaskManagers
of the slaves pull that work from it and perform the processing.

The result is then pushed back to the master node.

TRANSPORT
Concurrent comes with a complex transport module that

features TCP and ZMQ sockets clients, servers and proxies.

TCPServer: multithreaded TCP socket server.
TCPServerZMQ: multithreaded ZMQ server using a limited
number of pooled workers.
TCPClient: TCP client used to establish connection to a
TCPSocket.
Proxies: proxies are used to implement RPC like calling
mechanisms between servers and clients.
TCPHandler: container handling registration of RPC methods.

TRANSPORT CONT'D

TRANSPORT CONT'D
Registering RPC methods is straightforward in concurrent. Just

register a method with the given server or client instance.
@jsonremote(self.api_service_v1)
def register_slave(request, node_id, port, data):
 self.stats.add_avg('register_slave')
 return self.register_node(node_id, web.ctx['ip'], port, data, NodeType.slave)

@tcpremote(self.zmq_server, name='register_slave')
def register_slave_tcp(handler, request, node_id):
 self.stats.add_avg('register_slave_tcp')
 return self.register_node_tcp(handler, request, node_id, NodeType.slave)

MAIN FEATURES
No-GIL: no GIL on our tasks.
Balancing: tasks are balanced using load balancing.
Nice to TCP: internal buffering to avoid TCP congestion.
Deployment: easy to deploy application onto concurrent.
Fast development: easy application framework to build
concurrent applications that work on a high number of
machines in minutes.
Batching: task batching to simple task schemes.
ITaskSystem approach: autonomous systems control tasks.
Easy to implement concurrency in an organize fashion.
Plug-able: all components are plug-able, flexible in
development and favor adding new features.
API: RESTful JSON API and TCP/ZMQ API in the same
fashion. From the programmer calling a high-performance
TCP method is the same as calling a web-service

FUTURE OF CONCURRENT
GPU Processing: enable GPC task processing.
Optimize network congestion: enable data syncronization and
optimize locality of required data.
Sandboxing: include a sandboxing feature so that tasks from
different applications do not collide.
Security: add cerificates and encryption layers on the ZMQ
compute channel.
Statistics and monitoring: include statistics and real-time task
monitoring into the web interfaces of each node.
Asyn I/O: optimize servers to use async I/O for optimal task
distribution.
Multi-master: implement a multi-master environment using a
DHT and a NCS (Network Coordinate System).

SAMPLES
Concurrent comes with a set of samples that should outline the
power of the framework. They also guide how an application for

concurrent should be created and what has to be avoided.

Mandelbrot
Benchmark
MD5 hash reverse
DNA curve analysis

MANDELBROT SAMPLE
Sample implanted using plain tasks and an ITaskSystem. Comes in
two flavors of tasks, an optimized and a non-optimized tasks on

the data usage side.

MANDELBROT SAMPLE CONT'D

Execution time between an ITaskSystem and a plain task
implementation using the non-optimized tasks.

MANDELBROT SAMPLE CONT'D

Execution time between an ITaskSystem and a plain task
implementation using optimized tasks. Both ways gain but the

plain tasks experience the main boost.

BENCHMARK SAMPLE
Sample using plain tasks and an ITaskSystem. A simple active wait
task used to compare the framework and its setup to

.
Amdahl's

Law

https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Amdahl_s_law.html

BENCHMARK SAMPLE CONT'D

Execution time between an ITaskSystem and a plain task
implementation. Both are nearly identical.

BENCHMARK SAMPLE CONT'D

CPU usage of the sample indicating that we are using all available
CPU power for the benchmark.

MD5 HASH REVERSE SAMPLE
Very simple sample with low data transmission. Uses bruteforce
to reverse a numerical MD5 hash knowing the range of numbers.
The concurrent implementation is about 4 times faster then the

sequential version.

The tests and benchmarks has been performed on a single
machine and so we setup the worst possible distributed network

resulting in network overloads. This the sample is not intended
for real use, it outlines the stability of the framework.

DNA CURVE ANALYSIS SAMPLE
The DNA sample is just a simple way to try to overload the

system with over 10 thousand separate tasks. Each task requires
a considerable amount of data and so sending it all at once has its

drawbacks.

DNA CURVE ANALYSIS SAMPLE CONT'D

As for the other samples the amount of data send through the
network is considerable, the sample itself reaches a high memory

load up to 3 GB on the master.

Sending huge amounts of data is the real bottleneck of any
distributed task framework. We spend more time sending data
then performing the actual computation. While in some cases
sending less tasks with more data for each one is better then

sending thousands of small tasks.

CONCLUSION
Complexity: building a distributed task system is an extremely
complex endeavor.
Python: Python has proven to be a perfect choice for its
flexibility, ease of development and speed using native
modules.
ITaskSystem vs plain tasks: depending on the problem each
way fits in its own while in most cases we experienced better
results using the ITaskSystem approach.
Fair network usage: fair network usage avoiding congestion is
vital to maintain a reliable system, sending too much data over
the same socket will result in package loss and so in turn in
resending of the data.
Data locality: sending data, specially over the MTU (maximum
transmission unit) size, has a great impact in the overall
performance. Sending less data or performing local reads
boosts the processing considerably.

CONCLUSION CONT'D
GIL: threading in Python is a no-go, the GIL impacts heavy on
the overall performance. Our master server implementations
(TCPServer and TCPServerZMQ) are currently the
bottleneck, while this can be addressed using async I/O and
processes instead of threads.
Sequential vs Parallel: we achieved a very good parallelization
proportion for our samples, the benchmark sample achieved a
speedup of about 740% and the Mandelbrot by 175% and
240% depending on the implementation. See next slide for
details.

CONCLUSION CONT'D
A main law creating any concurrent computing system is

Amdahl's Law. Analyzing the performance from our samples,
specially the Mandelbrot and the benchmark sample gives is

fairly good speed up compared to the maximum speedup that
could be achieved applying the law.

Image courtesy of Wikipedia

Mandelbrot:
2.4 = 1/((1-P)+(P/N)) where P = 0.67 and N = 8

Benchmark:
7.02 = 1/((1-P)+(P/N)) where P = 0.98 and N = 8

Max Speedup:
8 = 1/((1-P)+(P/N)) where P = 1 and N = 8

http://en.wikipedia.org/wiki/Amdahl's_law

STELLAR LINKS
Source code on GitHub
Project page
API Documentation
Video presentation

https://github.com/moritz-wundke/Concurrent
http://moritz-wundke.github.io/Concurrent/
http://moritz-wundke.github.io/Concurrent/API/
http://moritzwundke.com/uoc/tfm/video/TFM_final2.mp4

THE END
BY MORITZ WUNDKE / MORITZWUNDKE.COM

Build with reveal.js

http://moritz-wundke.github.io/
https://github.com/hakimel/reveal.js

