
Concurrent
Easy to use python computing environment

Wundke, Moritz

Guim Bernat, Francesc

Universitat oberta de Catalunya

Table of Contents
Introduction..1

Python..1
Framework...1
Motivation..2
Objectives..3

Related work...4
Event based frameworks..4
Simple processing frameworks..4
Volunteer Computing...4
The evolution...5
Current parallel processing libraries for python..5

dispy..5
ParallelPython...5
IPython..6
Superpy...6

Planning..7
Methodology..7
Project Plan..8

XP Phases..8
User Stories..8
Cost, Scope and Iterations...10

Architecture..12
Overview..12
Components...12
Nodes...13

MasterNode...14
SlaveNode...14
ApplicationNode...15
Configs..15

Transport concerns...16
RESTful..16
TCP Sockets..16
ZeroMQ...16
RPC implementation...17

Work Distribution..21
Sending work versus polling work..21
Sending work execution flow...22
Polling work execution flow (round-robin)..23
Simple tasks and batches...24

Security concerns...24
Monitoring Nodes and Performance..24
Next Steps..25

Samples...26
MD5 Hash Reverse..26

Setup..26
The application..27

Benchmark...31

i

The Application...31
ITaskSystem vs plain tasks..36
Optimizing number of workers...37

Mandlebrot...38
The application..38
ITaskSystem vs plain tasks..48
Net congestion and workloads..49

DNA Curve analysis..50
Net congestion and workloads..50
Consideration on data flow...50

Conclusions..51
Results..52
Appendix A...53

Gannt project plan..53
Appendix B...55

Project Page...55
API...55
Slides..55

References..56

ii

Introduction
Concurrency is not a new concept in our ever changing world, but it is still a pending tasks in most
scenarios. We have concurrent system running everywhere, a simple app that updates in the
background, a game running in multiple threads, even some share their computer for scientific
computations through SETI@Home [1].

But the important point is that all those options come along with a heavy burden, they are for
experts. Of course every one can setup a grid in their home and starting to build a concurrent
application using OpenMP, MPI, TBB, etc … but the fact is that we have to reinvent the wheel
again an again.

Another important aspect in those environment is the ability to prototype or to follow a rapid
development process, right now we are left to use inmost cases low-level C/C++. Which gives us
power but is also prone to slow development and cross-platform issues.

This research aims to fill the gap in the current high performance processing world to achieve a
flexible, fast, effective, easy to learn and cross-platform framework that first into the grid
computing and the multimedia world.

Python

Python seams to be a perfect candidate that gives us the basic keystones of our requirements as
mentioned earlier. Python is a high-level interpreted programming language with support for both
features and other languages to integrate with.

Developing in python has several gives us the flexibility we need, we do not have to compile/link
our programs, they are interpreted on the fly by a virtual machine speeding up our development
cycle. Being interpreted is not only agile from a developer perspective, it gives us instant cross-
platform behavior. Pythons philosophy of code-once executed-everywhere is a perfect match for our
approach.

Python itself is already used in scientific computation, it features a wide set of packages
encapsulated in the aclaimed SciPy stack [2]. SciPy includes from numeric analysis tools such as
NumPy [3] or Pandas [4] to data visualization and plotting tools such as MatPlotLib [5].

Now questions arises of why should we invest our time to create a framework if the selected
language itself seams sufficient to get the job done. Python is not perfect, it features already
concurrent basics but they are problematic out-of-the-box. The next point will outline why a
framework is needed to leverage with the hard work so the user can focus rather on creating high-
performance computations and not fighting with the systems.

Framework

Having already discussed some of the good points about Python and its extensive use in scientific
computation why do we require a new framework? The answer is fairly easy, to be able to perform
efficient computation using Python one has to build low-level primitives and fight with the same
issues over and over again.

Python itself is an interpreted language and suffers from a huge design flaw, the interpreter is not
thread-safe. This means that we can not access or execute python in parallel, this is actually prevent
by the Global Interpreter Lock short GIL [6]. The GIL is the chosen mechanism to make Python
thread-safe but degrading performance.

1 - Wundke Moritz

mailto:SETI@Home

There are several solution to the GIL, one is to switch from the basic C implementation of Python –
Cpython – and using other implementations such as Jython [7] or IronPython [8]. At first glance it
seams reasonable to use a reimplementation but we have to accept compromises. Jython is
considered slow (compared to Python 3, while Jython is actually faster then python 2.7), ItonPython
is a .NET implementation of Python and is actually fast, it's main problem is that is does only run
officially on Windows and MAC through mono. Both implementations come with a other issue,
they lack pythons recent features, both Jython and IronPython are compliant with Python 2.7
officially.

Another way to address the GIL issues is to have those CPU intense tasks releasing the GIL
explicitly. To do this safely we have to implement those tasks in low-level C code. Now this is the
place where Cython [9] comes into play. Cython is an optimistic static compiler that transforms
Python code into C code which then gets compiled on the target platform. Using Cython gives us
the felxibility we have using the Python while begin able to address the performance and GIL issues
we just outlined.

But we have another issue to solve, even with Cython we have only one interpreter available that
will look pure Python code. To come along this issues instead of using threads we will use
processes. Using processes will drop shared memory features and introduce other issues that have to
be solved but we clearly can now say that we have solved our GIL issues.

Motivation

The motivation to start this endeavour is basically the need for a real concurrent system in Python
without losing its essence for flexibility. The framework should not only be applicable to scientific
computation, thus it should be seen as a basic for any application that requires performance.

Another important challenge is to build such a framework and to prove it's potential implementing a
real world example. We will implement two type of example projects, one focused on the
entertainment industry and another focused on scientific computation.

The third motivation is to address one and for all Python infamous GIL. The GIL makes CPU
bound computation nearly unpractical in Python and therefor other solutions are used that are
proven less flexible then many developer which to. Figure 1 (a) outlines a typical GIL contention
using one threads while figure X (b) shows how C extension can get around this issue.

Fig. 1 – (a) left GIL contention in thread 2, (b) right preventing GIL contention using C extension

2 - Wundke Moritz

Objectives

The main objective is to create a easy to use GIL free high-performance computing environment
that can be executed from every platform that supports both Python and features a C compiler. Even
on platforms where no interpreted an embedded one can be used. On mobile platforms off-line
compilation is an option but out of scope of this research though feasible to be achieved.

The main objectives for Concurrent are:

1. Cross-Platform HPC environment

2. Distribute task execution on several worker nodes

3. Usage of all available resources (CPU and GPU friendly [10])

4. Address pythons GIL problem

5. High performance Python through compiled Python using Cython

6. Non-shared memory at general level but shared on job level (OpenMP [11] usage within
jobs)

7. Data analysis and scientific stack using the SciPy stack

8. Develop real world examples demonstrating scientific and leisure usages

3 - Wundke Moritz

Related work
There are many concurrency frameworks build using python in the large world of open source.
Many of them even implement underlying OpenMP or MPI mechanisms making it easier to create
concurrent processing applications. The key point why we consider a new point of view is
necessary is that none of those frameworks address the issues or work-flows Concurrent aim to
solve. Building Concurrent is a heavy tasks and many ideas have been already development and are
considered the basis of our own implementation. Some of those parallel computing frameworks are
presented as an overview to outline the key pros and cons of their solution.

Event based frameworks

Implementing async I/O execution in python is a very simple tasks thanks to the integration of
libevent. The idea behind such frameworks is to optimize the use of one thread/process to evenly
distribute non-blocking work load.

Eventlet and Gevent are only two frameworks that make the usage of aync I/O operation easy. Both
are based around the same idea while Gevent has been implemented using low-level C boosting its
performance compared to eventlet.

Another possible way to build an async I/O system is to use libevent using a C extension directly or
via Cython.

Concurents Web API framework is designed to adjust with such a schema while it is possible to
implement the API using regular Python WSGI (Web Server Gateway Interface) module for
flexibility.

Simple processing frameworks

Other processing frameworks such as pprocess are based behind the idea to take the most of off the
local hardware and to map a given function to a map-able dataset and spread the work load over
several cores. Those frameworks are used for simple tasks executing dedicated processes and
waiting for its completion.

Parallel Python is another example of a simple processing framework while adding a cluster like
behavior to scale over several machines.

Asyncoro is yet another framework to develop local applications using the power of the availble
processes of the host machine while conforming with pythons thread API and making development
easier.

Volunteer Computing

Volunteer computing such as solution like Folding@Home are very similar in nature to what we
aim to achieve. Folding@Home is based on work polling workers machines operated by volunteers.
Each of such workers request jobs from central worker servers which they execute on their own
hardware. The drawback of some volunteer computing frameworks is its lack of flexibility and the
type of applications it can process. Each volunteer node must expose its requirements and some can
not execute a given tasks if the hardware of operating system is compatible.

4 - Wundke Moritz

The evolution

All discussed frameworks have a common key-point used to handle program execution flow, they
are all based on local execution and use available processes or cluster to help out with the
computation. Concurrent is a framework that uses a different point of view by executing the whole
application on a distributed computation cluster by changing the programming model completely.

A Concurrent application is not build around the idea of sequential flow, instead it features a main
application module that decides what tasks to spawn and when. The execution is totally leveraged,
even the application module itself is executed remotely.

The process of creating a Concurrent application changes the programming model completely by
adding the step of tasks synchronization into the match. Such a model has already been proven to be
very efficient and resulting in exceptional computation power.

The concurrency model the framework pursues is similar to what has been achieved by IMPS SPU
processing and it's job system. Many game developers using the PS3 failed to squeeze out the
available power of the PS3 when it came out due to the fact they had to change completely how to
schedule execution and to think about the proposed solutions. Jobs had to be scheduled and
synchronized correctly to not create bottlenecks within the global execution, while difficult to
achieve if we think about the possible performance gains when isolating small independent parts we
are able to use all of the processing power.

In game development many tasks could be implemented using such a paradigm, each AI agent
could execute on their own dedicated processor not interfering with the others.

The problem of synchronization still remains and with a distributed framework it can even lead to
severe problems if two dependent tasks are located on different clusters or even different continent.
Network Coordinate Systems could be integrated into the system while this is complete out of the
research of this project.

Current parallel processing libraries for python

dispy

dispy is a simple python module used to distribute python functions and classes over different
processes and even over the network. It does feature all basics to build a concurrent application but
it does not impose a programming model.

It differs from concurrent in the way of its architecture, in dispy you have to administrate you
cluster and you have to use that cluster for your own development. Concurrent in turn does not
force you to create you own cluster you could connect you local application to an existing actor and
just send your arbitrary workloads over to it.

Dispy does not handle network congestion very well as many others and is getting unreliable when
reaching the MTU (maximum transmission unit) limit.

ParallelPython

ParallelPython is very similar to dispy, it features distributed computation over a set of servers that
perform the distributed processing. As in dispy no type of congestion control is made and once the
computation is finished the connection is being closed. It mainly uses the map function to execute a
given function using a set of arguments. ParallelPython is forked bases to address GIL issues.

5 - Wundke Moritz

IPython

IPython is also known as Interactive Python. It makes using the interactive shell over a set of
IPython instances easy. IPython is not library or an actual framework, it is an interactive version of
python.

Superpy

Superpy is similar to what concurrent does, is also distributes python applications over a cluster.
Superpy uses XMLRPC to distribute the workload winch comes with a severe performance impact.

Superpy does feature some nice extras such as a GUI to administrate the clusters and the workload,
thus it is only available on windows operating system. Concurrent in turn is doing its administration
tasks over a web interface and a console command line application and is available for linux, mac
and windows.

6 - Wundke Moritz

Planning

Methodology

The framework itself is a project that is very alive, we do not consider it to have a retirement soon.
A framework is an evolving ever changing organism that has to adapt to changes quickly to survive.
A traditional development methodology does not fit in such a scenario, neither in a project that aims
to be developed further by the Open Source community.

Once it is clear that we will not follow traditional PM work-flows we have to chose an agile
methodology. In our we have decided to use Extreme Programming short XP [12].

XP is an agile methodology designed to adapt to changes and to work well with projects that will
fight with high risks. In our case the risk of failure is high due to the fact that we are aiming to
address and improve on new grounds. We have several issues to address from synchronization to
come along Pythons GIL.

XP is also focusing on small teams, the project itself will be build by a single developer but with the
Open Source community in mind more developer might join the journey. XP has proven to work
very well in teams from 2 to 12 developer.

Another important aspect of XP is that it aims to be test-driven. Python comes with an integrated
UnitTest and DocTest framework which we will use extensively.

To finally decide to use an agile methodology we have to answer seven simple questions:

1) Is the project size adequate?

The size of the project is neither large not small. It is complex and we have a small team
available for it. In fact it is just one developer and the professor leading this research. So we can
answer yes.

2) Are the requirement dynamic?

Our requirements may seam stable but considering this is a research project we may change
our focus. Also new discoveries can change the direction totally. We can conclude that our
requirements are in fact dynamic.

3) What happens if the system fails?

We will produce a stable project, but while we are developing it we can accept bugs. There
is also no direct risk for the framework. It is mainly research oriented and so we have to know that
it will have bugs.

4) Does the project owner have limited time to invest?

Being the product owner myself I have to dedicate totally to the project. So we do not have
limited dedication.

5) How many junior developer does the project team have

Simply none considering only myself.

6) How is the business culture of the developing party?

We will follow an informal work-flow. Mainly because of the own nature of the project.

7) Do you want to use agile?

Yes. Agile seams to fit perfectly as stated earlier and so it seams to be the right choice.

7 - Wundke Moritz

Analyzing our answers to the given questions we can assure that an agile methodology is the correct
way to achieve the objectives and goals of the project.

Project Plan

We follow an agile methodology, in concrete the Extreme Programming (short XP) methodology.
Extreme programming is a common used agile methodology for experienced teams and very
appropriate for projects that are prone to changes. Our case is no other, the concurrent world
changes rapidly and we have to adapt to new architectures and technologies as soon as they arrive.

Extreme Programming features six phases that go from the very beginning until the death of the
project. In our case we will only use the production phases due to the fact that our framework is
intended for research and so the end of its life-cycle is still unknown.

XP Phases

• Exploration

◦ Spike / Prototype

◦ User Stories

• Planning

◦ Iteration plan

◦ Scope

◦ Define deliverables

• Iterating (once for each iteration)

◦ Estimate cost of stories that are going to be implemented in the iteration

User Stories

Before we are able to create our user stories we prepare our high-level organization in five
deliverable packages short WBS. Each WBS will focus on a main feature set required by the
framework as shown on table 1.

WBS Main Feature

WBS 1 Base Framework

WBS 2 Task Scheduling / Execution

WBS 3 SDK – Robot battle arena example

WBS 4 SDK – Concurrent data analysis methods

WBS 5 SDK – Benchmarks examples
Table 1 – Main WBS deliverables

The following User Stories serve as our base planning and required feature set. Each User story will
then be transformed into tasks which in turn are implemented in the upcoming iterations. Our
framework is intended to be used by expert users, the traditional en user is actually using and
programming with our framework. The developer in turn is meant to be developing the framework
itself.

8 - Wundke Moritz

WBS ID User Story

WBS 1

1.1 Developer must be able to use unit and doc tests for implemented modules

1.2 Developer must be able to document its code automatically

1.3 Developer must not setup application stack (scipy stack, Cython)

1.4 User must be able to create Cython modules and send them to the framework

1.5
User must be able to test his implementation locally before sending it to the
framework

1.6 User must be able to benchmark its module when executed on the framework

1.7
Developer must be able to use any of our main platforms to develop (windows,
osx, linux)

1.8
Multiprocessing/Threading back-ends must be transparent to both user and
developers

1.9 OpenMP integration must be transparent to both user and developers

1.10 OpenCL integration must be transparent to both user and developers

1.11
User and developer must be able to trace execution along the system in a
graphical manner

1.12
User and developer must be able to choose between lock-free and lock-step
execution mode selecting the step resolution in both methods

1.13 Synchronization mechanisms must be transparent to both user and developers

1.14
User and developer should not be able to interfere in execution of other tasks
environments

1.15
User and developer should be able to specify a tasks environment for a given set
of modules

1.16 User and developer should be able to add tasks to an existing task environment

WBS 2

2.1 User executes task in dedicated process of systems worker pool

2.2
User should be able to compile it's tasks module into compiled python/cython
code

2.3
User should be able to define subtasks that are getting executed on the same
process or another one (same process is preferred due to less synchronization)

2.4
User task data changes should get synchronized with other data at the end of a
step

2.5
User should be able to communicate directly with other tasks or in deferred at the
end of a step

2.6 User should be able to send arbitrary objects back and forth the environment

2.7 User should be able to see tasks splitting and execution after each step

WBS 3
3.1

User should be able to define a robot and its behavior as a System (see
architectural overview)

3.2 User should be able to query environment state based on sensors

3.3 User should be able to create behavior through a behavior tree

9 - Wundke Moritz

WBS ID User Story

3.4 User should be able to observe how the turns (steps) are developing

3.5 User should be able to measure execution of his system

3.6 User should get a final score and stats of his robot implementation

WBS 4

4.1 User should be able to perform LDA, MDS, PCA data analysis

4.2 User should be able to perform genetic algorithms

4.3 User should be able to perform DNA Curvature analysis

4.4 User should be able to measure execution of his system

WBS 5

5.1 User should be able to perform high-performance counters

5.2 User should be able to benchmark several aspects at once using a stats system

5.3 User should be able to request the stats of his system

5.4 User should be able to specify accumulative stats

5.6 User should be able to use stats that reset every step

5.5 Highest, average and lowest should be recorded for benchmarking stats
Table 2 – User stories organized per WBS

The weight of each story is defined when assigning tasks the first day a new iteration starts. Basic
functionality and framework related stories will weight more then additional functionality that is
used only in the examples.

It may come to the case that additional functionality is getting developed. In such a scenario extra
WBS packages will get created suffixing them with a upper case A letter (WBSA) to prevent
confusion.

Cost, Scope and Iterations

We divide the scope into several packages (see Objectives > Results) which go from the
framework/SDK through the benchmarks, examples and finally documentation. The scope is
summarized by the user stories presented earlier and placed in the following groups:

• Framework / SDK

• SDK Documentation

• Examples

• Benchmarks

• Distributed nodes

The cost of the project is calculated per iteration. As stated early we will follow a total of 7
iterations plus the initial spike/planning phase (for more information view appendix A to check the
Gannt project overview).

Apart from the time we have to consider the cost of our main resource to calculate the expected cost
of the project in terms of time investment. Table X illustrates the time required for each Iteration
and the associated cost. We will expect a 3 h investment per day considering a weekly work as 7
days week. Each iteration lasts about two weeks apart from the initial planning spike which lasted 3
weeks. The cost of each hour is set to €50.

10 - Wundke Moritz

Iteration Time Expected Cost

Spike / Planning 15 days – 45 h 2250

Iteration 1 10 days – 30 h 1500

Iteration 2 10 days – 30 h 1500

Iteration 3 10 days – 30 h 1500

Iteration 4 10 days – 30 h 1500

Iteration 5 10 days – 30 h 1500

Iteration 6 10 days – 30 h 1500

Iteration 7 10 days – 30 h 1500

Project Corrections 5 days – 15 h 750

Total 90 days – 270 h 13500
Table 3 – Iteration plan

11 - Wundke Moritz

Architecture

Overview

Concurrent is a framework to achieve results with less effort. It includes job scheduling, a full
scientific computing stack, industry standard threading support through Cython and OpenMP.

Concurrent is a node based distributed system executing an application and its tasks within a realm
of servers. The idea behind the distributed system is simple: take advantage about common web
technology to create a scalable and consistent distributed task execution system. Concurrent is build
following a master/slave architecture to create a simple yet powerful distributed computation
framework. Concurrent is designed to be both high-fault tolerant and to be deployed heterogeneous
low-cost hardware.

The system is different from other concurrent frameworks by the fact that we do not just execute
simple functions on it, we rather serialize full featured python applications which are then executed
and orchestrated by the master to achieve high concurrency levels. The application developer is then
responsible to define how the application should execute on the framework. One drawback of such
a framework is that remote debugging can be sometimes painful, some of these issues has been
addressed in the framework later on.

Components

The framework follows a plug-able component architecture very similar to Trac [put ref], a very
popular python based project management tool. Figure 1. show the basic class hierarchy of the
component framework.

Figure 1 – Concurrent component framework

As you can see the system is based on four main classes, the ComponentManager, the Component
itself and the ExtensionPoint using a given Interface.

The ComponentManger controls the life cycle of a Component and holds a list of all active
Components that has been spawned using the manager. A manager can only handle a single instance
of a Component. While a multi-manager setup is indeed possible it will introduce more
complications then benefits.

12 - Wundke Moritz

The Component is our plug-ins abstract base class. A component can implement one or more
interfaces which dictates its behavior.

An ExtensionPoint is used as a link where components can plug in to. Declaring an extension point
will automatically give a list of suitable Components at runtime giving us the ability for hot plugin
reloading.

An Interface defines the link between an extension and a component. It declares it's access API and
assures that all components it contains are conforming to it.

Figure 2 outline a simple example how extension points are organized and how they will act in
runtime.

Figure 2 – Sample component setup

Components does come with certain built-in features such as a reference to the global environment
(through the environment class) for restricted file system access and global stores, logging
functionality using a configured Python logger and a simple configuration access using hot reload
of configuration values.

Nodes

As stated before Concurrent used a master/slave like architecture to be able to achieve high-fault
tolerance and to be deployed every where on heterogeneous hardware. Figure 3 shows the class
hierarchy of our node based framework.

As shown in Figure 1 each leaf node is also a component and implement the IApp interface. The
IApp interface is used to launch an autonomous application from a folder set as the run
environment. An application environment features a sandbox prevent applications to write or read
outside a given file hierarchy and so is essential for the security of the system. The tree principal
nodes within the framework are the MasterMode, responsible to control the distributed system and
to decide on the workload, the ComputationNode, a slave node used to perform all required
computations, and the ApplicationNode, this node it executed by the end user representing the node
how requested the computation.

Each node features a simple JSON-RPC 2.0 compatible web API used as a control channel and to
process heartbeats and bidirectional message passing. The web interface also exposes the API to the
public for maintenance and overall control.

The ServerNode features the addition of a TCP Server to communicate with other nodes using
persistent connections for high-performance. Node is a simple node featuring the connection to a
configured MasterNode, this is crucial to start the computation process and to handle disconnection
and automatical recovery.

13 - Wundke Moritz

Figure 3 – Node architecture class hierarchy

All nodes except the MasterNode, the SlaveNode and the child classes of an ApplicationNode are
abstract node organizing the feature set.

MasterNode

The MasterNode is the entry point of the framework. All slave nodes are connected to a single
master, or in the case of a multi-master setup to a set of master using chaining mechanism. Event
the application nodes are connected to a given master to montior the execution of its requested
applications.

The master handle a global registry for both connected clients (ApplicationNodes) and slaves, it
handle registration and scheduling their work (see work scheduling for more information). The
master node expects every connect node to send periodical heartbeats to control the state of the
distributed network.

SlaveNode

A SlaveNode is a simple computation node that hosts the processing processes. The SlaveNode is
an heterogeneous system featured a wide range of processing hardware, such as general purpose
CPUs, co-processing units or GPU units.

A SlaveNode simple received a job from a MasterNode and schedules its execution on to its
processing hardware. Concurrent comes with a simple scheduling strategy trying to balance the
workload evenly on all its processing units.

The processing policy is yet another ExtensionPoint and so different SlaveNodes are able to feature
different scheduling policies which makes a heterogeneous system flexible and better optimized.

14 - Wundke Moritz

ApplicationNode

Last but not least the system features the ApplicationNode. This node is the node that is launched
from a client process requesting computation. The node features a simple WEB API used for
dimensional communication with the master node without the need to open a dedicated socket with
the master. The ability to open an active communication with the master is also possible and very
useful for many programing schemes.

Configs

One of the most important parts of any framework is how easy it is to tweak the system. We have
implemented a config system that features hot reloading and integrated within our component
architecture. Figure X shows the config system in detail outlining the various types of configuration
values concurrent supports. The most important ConfigItem is the ExtensionPointItem.

Figure X – Config system in detail

The ExtensionPointItem lets us drive a plug-able environment. As shown in the samples we just
reference using a string a component that should be accessed via a config value. This way we can
change the scheduling strategy, the application that is running, the task manager used and much
more.

15 - Wundke Moritz

Transport concerns

RESTful

Communication in Concurrent is based in two main sections. The first one is called the control
channel handling registration, maintenance and public access to each of the nodes, in short it
represents our RESTful public API. The second communication system is the underlying TCP
socket system using a very simple communication protocol similar to a RPC web service.

Our main RESTful API is build around JSON-RPC 2.0, it is a very simple yet powerful
standardized way to communicate used by many organizations such as Google or even online
gaming companies such as Valve and their Steam distribution service.

The API features registering of nodes, heartbeats, status checks, sending an application to be
processed using a specialized web interface, reviewing tasks execution in real-time or even
changing the behavior of a given node.

While using an RESTful API is very easy and flexible using proxy objects making the call to RPC
methods seamless it comes along with low performance implications. Each call initiates a new
HTTP connections, serializes the data over a POST handler and sends the data over to the end node
resolving host names and going through a full RTT (Round Trip Time) run. It is not feasible using
the API interface for computation or task synchronization. Our tests stated that using the control
channel for computation related communicates results in a global throughput of about 50 to 100
requests per second on a local Ethernet installation. While this could seam reasonable taking into
account that we expect long lasting computations it will add long waiting times to schedule new
tasks and to perform result processing on the MasterNode.

TCP Sockets

The solution to the network performance problems while remaining flexible and transparent to the
caller is to implement a low level TCP server and socket subsystem that operates on the same RPC
principal then our RESTful API. While the messages send using the computation channel are also
JSON messages (smaller in size and simpler then the JSON-RPC 2.0 standard to optimize
bandwidth usage).

The computation network layer can be used the same way the control channel is used, we just call a
remote method using a proxy system given us the ability to call a method just like it where a local
class instance.

While the throughput of the control channel is about 50 to 100 requests per second we are able to
achieve nearly 8000 requests per second using the computation channel using the same test machine
and setup. The control channel gives us the ability to handle many thousands of different concurrent
connections while the computation channel lets us handle a high load of data interaction using
persistent sockets while supporting less concurrent connections. Using a mix of both worlds gives
us benefits of both worlds while being able to work around their drawbacks.

ZeroMQ

While using a simple TCP server we get a very decent boost in throughput we also start getting
congestion issues over TCP. Congestion of the protocol arise when we are sending too much
packets over the same socket, for example sending 10k task requests and results for very small
workloads. What we end-up is that some packages are mixed with others and we stop being able to
read the stream properly, we end up reading messages messages our of order and finally loosing
data. While the simplest solution for such cases is to sleep a very small amount of time after
sending data through a socket this is still our main bottleneck.

16 - Wundke Moritz

Concurrent has chosen to implement its computation channel over ZeroMQ [15] instead of low
level sockets. ZeroMQ, short ZMQ, helps us leveraging congestion control and implementing
several patterns we require to distribute work-load. It comes with a full set of patterns that gives us
scalability and fault tolerance.

ZMQ basically buffers internally what has to be send and dispatches packages to avoid congestion
of the TCP layer. While it also comes along with a small performance impact.

RPC implementation

The main concern about how we implement communication between nodes is to not scarify
flexibility in any case. Python is all about fast development and we should not require to spend
large amount of time creating new interaction schemata when we just want to call a function on the
other side.

The RPC model, used commonly in any modern web page, fits perfectly in our system.
Implementing a common layer to connect nodes being it over HTTP or our low level TCP or ZMQ
layer should be fully transparent to the user. The following example code shows how we create a
callable function for both the JSON-RPC channel and our TCP Channel (ZMQ and TCP servers are
equal in their interface).

@jsonremote(self.api_service_v1)
def register_slave(request, node_id, port, data):
 self.stats.add_avg('register_slave')
 return self.register_node(node_id, web.ctx['ip'], port, data, NodeType.slave)

@tcpremote(self.zmq_server, name='register_slave')
def register_slave_tcp(handler, request, node_id):
 self.stats.add_avg('register_slave_tcp')
 return self.register_node_tcp(handler, request, node_id, NodeType.slave)

Code 1 – Registering a slave node over the control (json-rpc) and the computation channel (tcp)

As you can see we use decorators to transform ordinary functions into callable functions from the
outside. We register or expose functionality to be callable from other nodes to build a API for all
interactions. This way all interactions are handled the same way and are fully transparent to the
transport layer used.

The transport layer will receive a packet of data containing a dictionary defining the function name
and its arguments. It then just simply calls the exposed function and returns the result if needed. In
case no result is required a special exception must be raised to stop sending data.

Calling those exposed methods is done using proxy mechanisms that transform function calls into
conformed dictionaries that the other end can understand. Such a proxy for our control channel is
outlined in the following code example.

class TCPProxy(object):
 """
 TCP socket proxy using our JSON RPC protocol. The TCP proxy does not handle
 the answer from the given call, the answers are beeing received within the sockets
 own answer thread.
 """
 def __init__(self, ProxyObject, log):
 self._obj=ProxyObject
 self.log = log

17 - Wundke Moritz

 self.stats = Stats.getInstance()

 class _Method(object):

 def __init__(self, owner, proxy_obj, method, log):
 self.owner = owner
 self._obj=proxy_obj
 self.method = method
 self.log = log

 def __call__(self, *args, **kwargs):
 # Connect and close are very special
 if self.method == "close":
 self._obj.close()
 elif self.method == "connect":
 self._obj.connect()
 else:
 try:
 start_time = time.time()
 self._obj.send_to(self.method, *args, **kwargs)
 except Exception as e:
 raise e
 finally:
 self.owner.stats.add_avg('TCPProxy', time.time() - start_time)

 def __call__(self, method, *args, **kwargs):
 # Connect and close are very special
 if method == "close":
 self._obj.close()
 elif method == "connect":
 self._obj.connect()
 else:
 try:
 start_time = time.time()
 self._obj.send_to(self.method, *args, **kwargs)
 except Exception as e:
 raise e
 finally:
 self.owner.stats.add_avg('TCPProxy', time.time() - start_time)

 def __getattr__(self, method):
 # Connect and close are very special
 return self._Method(self, self._obj, method = method, log = self.log)

 def dump_stats(self):
 self.log.debug(self.stats.dump('TCPProxy'))

Code 2 – TCP proxy using an underlying socket object

Calling such a proxy is as simple as

self.master_node_tcp.register_slave(self.node_id_str)

18 - Wundke Moritz

Code 3 – Calling a proxy method

All proxy calls are made in a non-blocking fashion, what that means is that we are not getting the
result directly and so we have to await it. Calling a RPC method requires us to expose in turn
methods the other end will call to inform us with the results, methods that use a fire and forget
pattern wont require any additional methods on the client. The following shows the exposed result
methods for the call made in Code 3.

@tcpremote(self.master_node_tcp_client)
def register_slave_failed(handler, request, result):
 self.register_slave_failed(result)

@tcpremote(self.master_node_tcp_client)
def register_slave_response(handler, request, result):
 self.register_slave_response(result)

Code 4 – Response methods for RPC call in Code 3

Figure X shows the transport package with its main classes. The most important classes are the
TCPServer and the TCPServerZQM classes. Both implement a the basic servers that the framework
use, both are also TCPHandlers which are used to register the @tcpremote decorator shown in Code
4.

19 - Wundke Moritz

Figure X – Transport main classes

20 - Wundke Moritz

Work Distribution

Work distribution is a keystone of every parallel framework and such it is also one of the bigger
parts of Concurrent. While on other frameworks such as Folding@Home the worker nodes are the
nodes who actively request new work a concurrent SlaveNode is given the work it has to process.
The MasterNode knows its hardware and schedules the work using the best possible worker to
complete the given task.

Another key point of Concurrent is its flexibility, while using other volunteer systems require the
computation nodes to hold a set of prerequisites, Concurrent uses python code serialization and
sends actual instances of pythons byte code over the framework and to the SlaveNode back and
forth. The message used in the framework is called pickling.

Pickling is an object serialization local to Python itself and so we are able to create a Concurrent
application from any machine and send it over to all possible workers on the framework creating a
fully heterogeneous system.

The process of creating a Concurrent application is straightforward, the clienta local
ApplicationNode just creates a subclass of our global ITaskSystem base class (note that this is not a
component or a components Interface class because those are not serializeable for security reasons).
It then connects to a MasterNode, registers itself and send the instance of ITaskSystem as a Pickle
over the network. The MasterNode receives the pickled ITaskSystem and deserializes it, once
deserialized it will then ask the system to create the first set of tasks. The tasks are then queued into
a global work queue which the TaskScheduler picks up and then sends to all nodes evenly. The
SlaveNode receives a task, again as a pickle and deserializing it, and adds the tasks to his internal
job queue. On of the SlaveNodes worker processes will then process the task and send the result
onto the SlaveNodes global resull queue. The SlaveNode will pack together several results to send
them as one package over to the MasterNode which then routes the results to the originating
ITaskSystem. The ITaskSystem then can decide to spawn new tasks or to consider the calculation
finished to send the global application results to the ApplicationNode who requested the work.
Figure 4 outline the architecture and its interaction outlining the previous example.

While using an autonomous ITaskSystem to handle execution flow is in many cases the best way to
perform our computation, complex system can create several systems and send them to be executed
with different tasks and so on, we sometimes require a simpler approach.

In Concurrent the client program can specify and send tasks or batches of tasks directly to the
framework and wait for it's completion. Even if we send a batch of tasks over to the backend once a
tasks is finished we will be informed of the result directly.

Sending work versus polling work

Concurrent implements two type of basic work scheduling, the first one is sending the work to a
given slave with the best rating for a task, and the second type is a round-robin implementation
pulling work from a common load-balancer.

The first type of scheduling is suitable for heterogeneous system where we send the tasks based on
the slaves hardware and software features. This way we are able to select the best slave to complete
a given task. Different scheduling strategies can be implemented and plugged in to change the
behavior of how to select the best possible slave for the actual work. Figure 4 shows the execution
flow in detail.

The second scheduling type is a simple buy very scalable round-robin push/pull pattern. The
push/pull pattern basically pushes work onto an accessible socket where the slaves receive their
data. The slave pulls the work from it, does the processing and sends the results back to the master.

21 - Wundke Moritz

Figure X shows the execution flow in detail.

Sending work execution flow

Figure 4 – Concurrents execution flow

22 - Wundke Moritz

Polling work execution flow (round-robin)

Figure X – Round-Robin scheduling execution flow

23 - Wundke Moritz

Simple tasks and batches

As mentioned earlier concurrent features two ways of sending for to the framework, the first one is
to create an ITaskSystem which handle task creation and monitoring and the second is sending plain
tasks over to be processed. Sending single tasks is in many cases the best solution but we also have
to take into account that each time we send a task we have some overhead to pay for it.

Batching tasks is a simple solution for such a scenario, while batching has also its downsides. If the
number of tasks is too high the batch also increases and this will result in congestion of the socket
we use to communicate with the master.

Security concerns

Security is a major concern in distributed system, both malicious code and non-legitimate users will
result in poor performance or even total system failures. Our system features three major security
risks that are addressed or avoidable by the end user or system administrator.

The first security risk comes from non-legitimate users, we currently do not feature any login or
client authentication mechanisms to start a computation. While this is a first tear risk it can be
implemented over the current control channel adding encryption and login. A node that has not been
registered over the control channel is not able to use the computation channel and so we only
require an extra layer of security. ZMQ features security through encryption and certificates making
the framework secure and reliable.

The second security risk comes from the intrinsic fact of serializing executable code over the
system. A pickle is deserialized on the system and executed, this can lead to malicious code being
executed on the environment. An attacker could change the pickle and send over code to execute
their own code such as a shell command or sending the privates keys back to its origin or an
external service. This risk has been mitigated using both encryption and encoding mechanisms.

The third and last risk is not directly concerned to a direct security risk. An arbitrary application
executing its jobs on the framework could produce hangs or crashes and result in system instability,
stales or resources consumptions letting other tasks without resources. All jobs are executed within
a global exception handler ensuring that a process is not able to crash a worker process. While the
danger of infinity loops are still there the python process will launch another exception on such a
scenario and the MasterNode is informed of such bad behavior.

Monitoring Nodes and Performance

Performance and tasks execution maintenance is an important key part to both optimize tasks and
the framework itself. The hardest tasks when creating fully parallel applications is handling the
right synchronization techniques. Monitoring execution to find possible locks, bottlenecks or less
then optimum tasks execution is a powerful debugging utility to code applications.

Every node features a simple stats system letting the application collect basic stats used for
performance and later revision. The stats systems is based on the idea of producing comulative
averages, maximum, minimum and call number of the given stat. The stat system is flushed every x
seconds to a global backend to be reviewed later for the application and its execution.

The web interface and control channel are also used to access the current state of the system and to
monitor real-time execution of tasks. This can be very useful to catch dependency errors such as
circular dependencies.

24 - Wundke Moritz

Next Steps

There are several improvements that are suitable for Concurrent. The proposed changes go from
stability, security over to performance improvement.

While the system is fault-tolerant and self restarting it requires a MasterNode to track the execution.
If the MasterNode fails the execution is truncated and the ApplicationNode is informed to handle
actions. A multi-node environment will increase the global fault-tolerance and thanks to the fact that
the applications and the tasks are serializable pickles they can be stored in an external database to
be recovered if required. A multi-node environment would require both a DHT (Dynamic Hash
Table) to locate nodes and a NCS(Network Coordinate System) to choose near SlaveNode.

The control channel is currently using a multi-threaded web server, while this is good for a limited
amount of concurrent connections we can reach the resource limit fast (the infamous 10K problem).
Switching to an async I/O framwork such as Eventlet, Gevent or implementing a low level libevent
handler will increase the control channel performance. We have to take into account that the control
channel is meant to be non-blocking and so an async I/O framework is very suitable. Using
processes on the master node for the compute channel will solve our current GIL bottleneck. Using
async I/O through ZMQ will give us the ability to handle even more concurrent connection.

The last short term improvement that could be made to the system is the creation of a sandbox. The
nodes itself are already execution using a dedicated environment. The way to make sure that no
access outside the environment can be made is to overwrite some python built-ins and to ensure no
path can be accessed outside the assigned folder.

Enable slaves to expose their GPU hardware feature to be able to create Cuda / OpenCL tasks and
boost vectorized computation on the framework. A task itself could be implemented using different
ways. GPU computation will give us a unique flavor of how we use the distributed systems
resources and optimize computation. If we use the system for a volunteer computation setup we
have to take into account that many volunteers will do have a high-end graphic card that we could
make use of.

Including GPU bases computation requires us to include a better scheduling strategy that in turn has
to take into account the slaves capabilities and hardware features.

Statistics and real-time monitoring is a key point to create optimized tasks and will unveil the whole
power of the system to the application developer. The developer has to see where it system hangs
and why to be able to optimize its resource usage to produce optimized applications. Concurrent
already come with an integrated stats system but it requires the real-time monitoring part.

25 - Wundke Moritz

Samples
All samples has been executed on a single-machine environment. This means that the network will
have a high impact on the final results. This is ok for our purpose demonstrating the usage and the
difference between using a traditional approach (plain tasks) and using a task system
(ITaskSystem).

MD5 Hash Reverse

The chosen sample application is a simple hash reverse function. The procedure we are about to
follow is a simple brute force technique splitting the workload over different processes to try
different possible solutions to crash a MD5 hash.

We will outline the process of creating an application in a plug-able fashion which can be reused to
create even more applications.

Setup

The first think we have to do is to create a simple setup script. Concurrent applications are loaded in
run-time and so it is important to create a python egg file or a source distribution. The system later
sends the egg file placed within a special directory of the environment to send it over to the
framework and setup the required prerequisites in all nodes.

The application prerequisites are installed on all nodes automatically and uninstalled when the
application finishes and stops working. Using Pythons distribution tools and the 'pip' installer, a
frameworks own prerequisite, makes installing and uninstalling easy and reliable by just executing
simple shell commands.

Code 1 shows a simple setup script used by one of our sample applications. In this case we do not
require to send the created python egg onto the framework because the sample ships with the
framework itself and is used by the automated test framework.

-*- coding: utf-8 -*-
"""
Sample application using Concurrent to perform a reverse hash

File: reversemd5.setup.py
"""
from setuptools import find_packages, setup

setup(
 name='ConcurrentReverseMD5', version='0.1',
 packages=find_packages(exclude=['*.tests*']),
 entry_points = {
 'concurrent.components': [
 'samples.reversemd5 = concurrent.famework.samples.reversemd5.app',
],
 },
)

Code X – Setup template script for Concurrent applications

26 - Wundke Moritz

The application

The application itself is very simple, we will just compute all possible hashes between the numbers
1 to 2000000. The workload is distributed over 128 tasks making the computation extremely
parallel.

Our main application which we are going to launch is MD5HashReverseNode. Our setup file
already loaded the file using the setup script and pointing to the python file setting up the entry
points to be found in run-time.

Our application node connects to the pre-configured MasterNode using the configuration files
located in the applications environment folder. Once the connection has been established we are
asked to create our implementation of ITaskSystem. The task system is responsible of controlling the
applications behavior on the MasterNode on behalf of our ApplicationNode.

Once the task system has reached the MasterNode it is asked to generate the first set of tasks. In our
case we create 128 tasks instances of MD5ReverseTask and push them to the system.

Each time a tasks has finished we check the tasks result and if we found the hash we mark the
system as finished. When marking a system as finished any pending tasks of that given systems are
ignored and skipped for further processing.

The MasterNode then requests the final data it has to send over to the originating ApplicationNode
and uninstalls the computations prerequisites.

-*- coding: utf-8 -*-
"""
Sample application using Concurrent to perform a reverse hash

File: reversemd5.app.py
"""

from concurrent.famework.nodes.applicationnode import ApplicationNode
from concurrent.core.application.api import IApp
from concurrent.core.components.component import implements
from concurrent.core.async.task import Task
from concurrent.core.async.api import ITaskSystem

import time
import md5

class MD5HashReverseNode(ApplicationNode):
 """
 Reverse hash application
 """
 implements(IApp)

 def app_init(self):
 """
 Called just before the main entry. Used as the initialization point instead of the ctor
 """
 ApplicationNode.app_init(self)

27 - Wundke Moritz

 def app_main(self):
 """
 Applications main entry
 """
 return ApplicationNode.app_main(self)

 def get_task_system(self):
 """
 Called from the base class when we are connected to a MasterNode and we are
 able to send computation tasks over
 """
 return MD5HashReverseTaskSystem(128)

 def task_system_finsihed(self, result, error, stats):
 """
 Called when our task system has finished. Returns either the result
 of the computation or an error. The stats dictionary provides useful
 information like the execution time.
 """
 if not error:
 if result:
 self.log.info("Hash as been reversed. Initial number was %s" % str(result))
 else:
 self.log.info("Failed to reverse the hash :(")
 else:
 self.log.error("Computation failed: %s" % str(error))

class MD5HashReverseTaskSystem(ITaskSystem):
 """
 The task system that is executed on the MasterNode and controls what jobs are required to be
performed
 """

 def __init__(self, jobs=128, hash_number=1763965):
 """
 Default constructor used to initialize the base values. The ctor is
 executed on the ApplicationNode and not called on the MasterNode so we can
 use it to initialize values.
 """
 if not hash_number.isdigit():
 raise ValueError("hash_number must be a number!")

 self.start = 1
 self.end = 2000000
 self.target_hash = md5.new(str()).hexdigest()

 # Create a number of jobs that will be processed
 self.jobs = jobs
 self.finished_jobs = 0

28 - Wundke Moritz

 self.step = (self.end - self.start) / jobs + 1
 self.result

 def init_system(self, master):
 """
 Initialize the system
 """
 self.start_time = time.time()

 def generate_tasks(self, master):
 """
 Generate the initial tasks this system requires
 """
 job_list = []
 for i in xrange(self.jobs):
 job_start = self.start + i*self.step
 job_end = min(self.start + (i + 1)*self.step, self.end)
 job_list.append(MD5ReverseTask(target_hash=self.target_hash, start=job_start, end =
job_end))
 return job_list

 def task_finished(self, master, task, result, error):
 """
 Called once a task has been performed
 """
 self.finished_jobs += 1
 if result:
 self.result = result

 def gather_result(self, master):
 """
 Once the system stated that it has finsihed the MasterNode will request the required results
that
 are to be send to the originator. Returns a tuple like (result, Error)
 """
 return (self.result, None)

 def is_complete(self, master):
 """
 Ask the system if the computation has finsihed. If not we will go on and generate more tasks.
This
 gets performed every time a tasks finishes.
 """
 # Wait until all computation has been finsihed or we have found the hash
 return self.result or self.finished_jobs == self.parts

class MD5ReverseTask(Task):

 def __init__(self, name, system_id, **kwargs):
 Task.__init__(self, name, system_id, **kwargs)

29 - Wundke Moritz

 print("Created task: %s" % str(self.task_id))

 self.target_hash = kwargs['target_hash']
 self.start = kwargs['start']
 self.end = kwargs['end']

 def __call__(self):
 """
 No try to find the hash
 """
 for i in xrange(self.start, self.end):
 if md5.new(str(i)).hexdigest() == self.target_hash:
 return i
 return None

 def finished(self, result, error):
 """
 Once the task is finished. Called on the MasterNode within the main thread once
 the node has recovered the result data.
 """
 pass

Code X – Sample application demonstrating a simple reverse hashing algorithm

30 - Wundke Moritz

Benchmark

The benchmarking sample is a very simple application that minimizes data interaction to be able to
outline the pure performance of the framework and its configurations.

The benchmark basically

The Application

The benchmark features two ApplicationNodes. The ExpensiveNode, which uses a task system to
distribute the workload, and the ExpensiveSimpleNode, which sends tasks on its own to the
distributed framework.

class ExpensiveNode(ApplicationNode):
 """
 Application node distributing the computation of an expensive task
 """
 implements(IApp)

 time_per_task = IntItem('expensivesample', 'time_per_task', 1,
 """Time each task will perform on doing nothind (active wait) to simulate an expensive
computation""")

 num_tasks = IntItem('expensivesample', 'num_tasks', 8,
 """Number of tasks that must be performend""")

 def app_init(self):
 """
 Called just before the main entry. Used as the initialization point instead of the ctor
 """
 super(ExpensiveNode, self).app_init()

 def app_main(self):
 """
 Applications main entry
 """
 return super(ExpensiveNode, self).app_main()

 def get_task_system(self):
 """
 Called from the base class when we are connected to a MasterNode and we are
 able to send computation tasks over
 """
 self.start_time = time.time()
 self.system = ExpensiveNodeTaskSystem(self.time_per_task, self.num_tasks)
 return self.system

 def work_finished(self, result, task_system):
 """
 Called when the work has been done, the results is what our ITaskSystem
 sent back to us. Check resukt for more info

31 - Wundke Moritz

 """
 end_time = time.time() - self.start_time
 self.log.info("Total time: {}".format(end_time))

 # Print expected single threaded time and improvement
 expected_time = self.time_per_task * self.num_tasks
 self.log.info("Plain python expected time: {}".format(expected_time))
 self.log.info("Concurrent improvememnet: {}%".format((expected_time/end_time)*100.0))
 self.shutdown_main_loop()

 def push_tasksystem_response(self, result):
 """
 We just added a ITaskSystem on the framwork. Check result for more info
 """
 self.log.info("Tasks system send to computation framework")

 def push_tasksystem_failed(self, result):
 """
 We failed to push a ITaskSystem on the computation framework!
 """
 self.log.error("Tasks system failed to be send to framework!")
 # Check if the resuklt dict contains a traceback
 if "t" in result:
 self.log.error(result["t"])

Code X – Application node using a tasks system for its workload

class ExpensiveNodeTaskSystem(ITaskSystem):
 """
 The task system that is executed on the MasterNode and controls what jobs are required to be
performed
 """

 def __init__(self, time_per_task, num_tasks):
 """
 Default constructor used to initialize the base values. The ctor is
 executed on the ApplicationNode and not called on the MasterNode so we can
 use it to initialize values.
 """
 super(ExpensiveNodeTaskSystem, self).__init__()

 # Init task related stuff
 self.time_per_task = time_per_task
 self.num_tasks = num_tasks

 def init_system(self, master):
 """
 Initialize the system
 """
 pass

32 - Wundke Moritz

 def generate_tasks(self, master):
 """
 Create task set
 """
 self.start_time = time.time()
 self.finished_jobs = 0
 return [ExpensiveTask("expensive_{}".format(i), self.system_id, None,
sleep_time=self.time_per_task) for i in range(self.num_tasks)]

 def task_finished(self, master, task, result, error):
 """
 Called once a task has been performed
 """
 self.finished_jobs += 1

 def gather_result(self, master):
 """
 Once the system stated that it has finsihed the MasterNode will request the required results
that
 are to be send to the originator. Returns the total time spend on the master.
 """
 total_time = time.time() - self.start_time
 self.log.info("Calculated in {} seconds!".format(total_time))
 return total_time

 def is_complete(self, master):
 """
 Ask the system if the computation has finsihed. If not we will go on and generate more tasks.
This
 gets performed every time a tasks finishes.
 """
 self.log.info("%d -> %d" % (self.finished_jobs,self.num_tasks))
 # Wait for all tasks to finish
 return self.finished_jobs == self.num_tasks

Code X – Tasks system used by the ExpensiveNode sample

class ExpensiveSimpleNode(ApplicationNode):
 """
 Application node distributing the computation of the mandlebrot set using just tasks
 """
 implements(IApp)

 send_task_batch = BoolItem('expensivesample', 'task_batch', True,
 """Should we send all tasks one by one or should we batch them into a hughe list""")

 time_per_task = IntItem('expensivesample', 'time_per_task', 1,
 """Time each task will perform on doing nothind (active wait) to simulate an expensive
computation""")

 num_tasks = IntItem('expensivesample', 'num_tasks', 8,

33 - Wundke Moritz

 """Number of tasks that must be performend""")

 def app_init(self):
 """
 Called just before the main entry. Used as the initialization point instead of the ctor
 """
 super(ExpensiveSimpleNode, self).app_init()

 def app_main(self):
 """
 Applications main entry
 """
 return super(ExpensiveSimpleNode, self).app_main()

 def get_task_system(self):
 """
 Called from the base class when we are connected to a MasterNode and we are
 able to send computation tasks over
 """
 # Do not create a tasks system, we will handle tasks on our own
 return None

 def start_processing(self):
 """
 Called when the app is not using a ITaskSystem and will instead just add tasks and
 will take care of the task flow itself
 """
 self.log.info("Starting computation")
 if self.send_task_batch:
 self.log.info(" Task batching enabled")

 self.start_time = time.time()
 self.finished_jobs = 0
 if self.send_task_batch:
 self.push_tasks([ExpensiveTask("expensive_{}".format(i), None, self.node_id_str,
sleep_time=self.time_per_task) for i in range(self.num_tasks)])
 else:
 for i in range(self.num_tasks):
 self.push_task(ExpensiveTask("expensive_{}".format(i), None, self.node_id_str,
sleep_time=self.time_per_task))
 self.check_finished()

 def task_finished(self, task, result, error):
 """
 Called when a task has been done
 """
 self.finished_jobs += 1
 self.check_finished()

 def check_finished(self):

34 - Wundke Moritz

 """
 Check if we finsihed all computation or not
 """
 self.log.info("%d -> %d" % (self.finished_jobs,self.num_tasks))
 if self.finished_jobs == self.num_tasks:
 self.log.info("All tasks finished!!")
 end_time = time.time() - self.start_time
 self.log.info("Total time: {}".format(end_time))

 # Print expected single threaded time and improvement
 expected_time = self.time_per_task * self.num_tasks
 self.log.info("Plain python expected time: {}".format(expected_time))
 self.log.info("Concurrent improvememnet: {}%".format((expected_time/end_time)*100.0))
 self.shutdown_main_loop()

 def push_task_response(self, result):
 """
 We just add a Task to the computation framework
 """
 pass
 #self.log.info("Task send to computation framework")

 def push_task_failed(self, result):
 """
 We failed to add a Task to the computation framework
 """
 self.log.info("Failed to send task send to computation framework")

 def push_tasks_response(self, result):
 """
 We just add a set of Tasks to the computation framework
 """
 self.log.info("Tasks send to computation framework")

 def push_tasks_failed(self, result):
 """
 We failed to add a set of Tasks to the computation framework
 """
 self.log.info("Failed to send tasks send to computation framework")

Code X – Application node sending tasks on its own

class ExpensiveTask(Task):

 def __init__(self, name, system_id, client_id, **kwargs):
 Task.__init__(self, name, system_id, client_id)
 self.sleep_time = kwargs['sleep_time']

 def __call__(self):
 """

35 - Wundke Moritz

 Calculate assigned work
 """
 # Simulate an active wait, this is more accurate then sleeping
 end_time = time.time() + self.sleep_time
 while True:
 if time.time() > end_time:
 break
 return self.sleep_time

 def finished(self, result, error):
 """
 Once the task is finished. Called on the MasterNode within the main thread once
 the node has recovered the result data.
 """
 pass

 def clean_up(self):
 """
 Called once a task has been performed and its results are about to be sent back. This is used
 to optimize our network and to cleanup the tasks input data
 """

Code X – Tasks that just does a dummy computation, in our case an active wait

ITaskSystem vs plain tasks

Both system are nearly identical, the fact that we do not send any additional data gives us a very
similar out come.

36 - Wundke Moritz

ItaskSystem Simple
40.11

40.12

40.12

40.13

40.13

40.14

40.14

40.15

40.15

time

Optimizing number of workers

In our benchmark we aim to use all available resources for our computation. The fact is that the
benchmark consumes 100% of the available CPU power as shown in figure X and figure X.

Figure X – Worker processes currently active

Figure X – System load during the benchmark

37 - Wundke Moritz

Mandelbrot

The Mandelbrot sample comes in two flavors. One using the ITaskSystem and using direct tasks, in
both version we have to consider that the network plays an important role within the time consumed
during the computation.

The application

class MandlebrotNode(ApplicationNode):
 """
 Application node distributing the computation of the mandlebrot set using an autonomous task
system
 """
 implements(IApp)

 use_optimized_task = BoolItem('mandlebrotsample', 'use_optimized_task', True,
 """Should we use the data optimized task or the lazy task""")

 factor = IntItem('mandlebrotsample', 'factor', 1,
 """How many workloads does a single task get assigned, in our a workload is considered a
row""")

 iters = IntItem('mandlebrotsample', 'iters', 20, """Mandlebrot iterations per pixel""")

 height = IntItem('mandlebrotsample', 'height', 1024, """Height of the mandlebrot set image""")

 width = IntItem('mandlebrotsample', 'width', 1536, """Width of the mandlebrot set image""")

 def app_init(self):
 """
 Called just before the main entry. Used as the initialization point instead of the ctor
 """
 super(MandlebrotNode, self).app_init()

 def app_main(self):
 """
 Applications main entry
 """
 return super(MandlebrotNode, self).app_main()

 def get_task_system(self):
 """
 Called from the base class when we are connected to a MasterNode and we are
 able to send computation tasks over
 """
 self.start_time = time.time()
 self.system = MandlebrotTaskSystem(-2.0, 1.0, -1.0, 1.0, self.height, self.width, self.iters,
self.factor, self.use_optimized_task)
 return self.system

38 - Wundke Moritz

 def work_finished(self, result, task_system):
 """
 Called when the work has been done, the results is what our ITaskSystem
 sent back to us. Check resukt for more info
 """
 print("Total time: {}".format(time.time() - self.start_time))
 self.shutdown_main_loop()
 # Reassamble result to be processed further
 try:
 self.system.image = np.zeros((self.height, self.width), dtype = np.uint8)
 self.system.do_post_run(result)
 except:
 traceback.print_exc()

 def push_tasksystem_response(self, result):
 """
 We just added a ITaskSystem on the framwork. Check result for more info
 """
 self.log.info("Tasks system send to computation framework")

 def push_tasksystem_failed(self, result):
 """
 We failed to push a ITaskSystem on the computation framework!
 """
 self.log.error("Tasks system failed to be send to framework!")
 # Check if the resuklt dict contains a traceback
 if "t" in result:
 self.log.error(result["t"])

Code X – Application node using a tasks system for its work

class MandlebrotTaskSystem(ITaskSystem):
 """
 The task system that is executed on the MasterNode and controls what jobs are required to be
performed
 """

 def __init__(self, min_x, max_x, min_y, max_y, height, width, iters, factor, optimized):
 """
 Default constructor used to initialize the base values. The ctor is
 executed on the ApplicationNode and not called on the MasterNode so we can
 use it to initialize values.
 """
 super(MandlebrotTaskSystem, self).__init__()

 # Init task related stuff
 self.min_x = min_x
 self.max_x = max_x
 self.min_y = min_y

39 - Wundke Moritz

 self.max_y = max_y
 self.image = None
 self.iters = iters
 self.factor = factor
 self.optimized = optimized

 self.height = height
 self.width = width
 self.pixel_size_x = (self.max_x - self.min_x) / self.width
 self.pixel_size_y = (self.max_y - self.min_y) / self.height

 def do_post_run(self, result):
 """
 Once the computation finsihed we reassamble the image here
 """
 for x in range(self.width):
 for y in range(self.height):
 self.image[y, x] = result[x][y]

 imshow(self.image)
 show()

 def init_system(self, master):
 """
 Initialize the system
 """
 pass

 def generate_tasks(self, master):
 """
 Devide image in width part to distribute work
 """

 # Create a number of jobs that will be processed
 self.jobs = 0
 self.finished_jobs = 0
 self.result_dict = {}

 job_list = []
 workload = []

 rows = 0
 x = 0
 if self.optimized:
 num_tasks, reminder = divmod(self.width, self.factor)
 self.jobs = num_tasks + reminder

 for i in xrange(0, self.jobs):
 job_list.append(MandlebrotTaskOptimized("m", self.system_id, None,
 iters = self.iters, start_x = i, rows = self.factor, cols = self.height,

40 - Wundke Moritz

 pixel_size_x = self.pixel_size_x, pixel_size_y = self.pixel_size_y,
 min_x = self.min_x, min_y = self.min_y))
 else:
 for x in range(self.width):
 # Distribute using rows
 rows += 1

 real = self.min_x + x * self.pixel_size_x
 for y in range(self.height):
 imag = self.min_y + y * self.pixel_size_y
 workload.append((x, y, real, imag, self.iters))

 # every self.factor rows create a task with the workload
 if rows == self.factor:
 job_list.append(MandlebrotTask("mandle_{}".format(x), self.system_id, None, iters =
self.iters, workload = workload))
 workload = []
 rows = 0

 # Add last task with rest of workload
 if len(workload) > 0:
 job_list.append(MandlebrotTask("mandle_{}".format(x), self.system_id, None, iters =
self.iters, workload = workload))

 self.jobs = len(job_list)
 self.start_time = time.time()
 return job_list

 def task_finished(self, master, task, result, error):
 """
 Called once a task has been performed
 """
 self.finished_jobs += 1
 if result:
 self.result_dict.update(result)

 def gather_result(self, master):
 """
 Once the system stated that it has finsihed the MasterNode will request the required results
that
 are to be send to the originator. Returns a tuple like (result, Error)
 """
 print("Calculated in {} seconds!".format(time.time() - self.start_time))
 return self.result_dict

 def is_complete(self, master):
 """
 Ask the system if the computation has finsihed. If not we will go on and generate more tasks.
This
 gets performed every time a tasks finishes.

41 - Wundke Moritz

 """
 #print("%d -> %d" % (self.finished_jobs,self.jobs))
 # Wait for all tasks to finish
 return self.finished_jobs == self.jobs

Code X – Tasks system used by the MandlebrotNode application

class MandlebrotSimpleNode(ApplicationNode):
 """
 Application node distributing the computation of the mandlebrot set using just tasks
 """
 implements(IApp)

 use_optimized_task = BoolItem('mandlebrotsample', 'use_optimized_task', True,
 """Should we use the data optimized task or the lazy task""")

 send_task_batch = BoolItem('mandlebrotsample', 'task_batch', True,
 """Should we send all tasks one by one or should we batch them into a hughe list""")

 factor = IntItem('mandlebrotsample', 'factor', 1,
 """How many workloads does a single task get assigned, in our a workload is considered a
row""")

 iters = IntItem('mandlebrotsample', 'iters', 20, """Mandlebrot iterations per pixel""")

 height = IntItem('mandlebrotsample', 'height', 1024, """Height of the mandlebrot set image""")

 width = IntItem('mandlebrotsample', 'width', 1536, """Width of the mandlebrot set image""")

 def app_init(self):
 """
 Called just before the main entry. Used as the initialization point instead of the ctor
 """
 super(MandlebrotSimpleNode, self).app_init()

 def app_main(self):
 """
 Applications main entry
 """
 return super(MandlebrotSimpleNode, self).app_main()

 def get_task_system(self):
 """
 Called from the base class when we are connected to a MasterNode and we are
 able to send computation tasks over
 """
 # Do not create a tasks system, we will handle tasks on our own
 return None

 def start_processing(self):

42 - Wundke Moritz

 """
 Called when the app is not using a ITaskSystem and will instead just add tasks and
 will take care of the task flow itself
 """
 self.log.info("Starting computation")
 if self.send_task_batch:
 self.log.info(" Task batching enabled")

 self.start_time = time.time()
 self.image = np.zeros((self.height, self.width), dtype = np.uint8)

 # Init task related stuff
 self.min_x = -2.0
 self.max_x = 1.0
 self.min_y = -1.0
 self.max_y = 1.0

 self.pixel_size_x = (self.max_x - self.min_x) / self.width
 self.pixel_size_y = (self.max_y - self.min_y) / self.height

 # Job handling (very optimistic :D)
 self.jobs = 0
 self.finished_jobs = 0

 job_list = []
 workload = []

 rows = 0
 x = 0

 if self.use_optimized_task:
 num_tasks, reminder = divmod(self.width, self.factor)
 self.jobs = num_tasks + reminder

 for i in xrange(0, self.jobs):
 if self.send_task_batch:
 job_list.append(MandlebrotTaskOptimized("m", None, self.node_id_str,
 iters = self.iters, start_x = i, rows = self.factor, cols = self.height,
 pixel_size_x = self.pixel_size_x, pixel_size_y = self.pixel_size_y,
 min_x = self.min_x, min_y = self.min_y))
 else:
 self.push_task(MandlebrotTaskOptimized("m", None, self.node_id_str,
 iters = self.iters, start_x = i, rows = self.factor, cols = self.height,
 pixel_size_x = self.pixel_size_x, pixel_size_y = self.pixel_size_y,
 min_x = self.min_x, min_y = self.min_y))
 else:
 for x in range(self.width):
 # Distribute using rows
 rows += 1

43 - Wundke Moritz

 real = self.min_x + x * self.pixel_size_x
 for y in range(self.height):
 imag = self.min_y + y * self.pixel_size_y
 workload.append((x, y, real, imag, self.iters))

 # every self.factor rows create a task with the workload. Note that in this case we will
force the system_id to be None while setting the client id
 if rows == self.factor:
 if self.send_task_batch:
 job_list.append(MandlebrotTask("mandle_{}".format(x), None, self.node_id_str,
iters = self.iters, workload = workload))
 else:
 self.push_task(MandlebrotTask("mandle_{}".format(x), None, self.node_id_str,
iters = self.iters, workload = workload))
 self.jobs += 1
 workload = []
 rows = 0

 # Add last task with rest of workload
 if len(workload) > 0:
 if self.send_task_batch:
 job_list.append(MandlebrotTask("mandle_{}".format(x), None, self.node_id_str, iters
= self.iters, workload = workload))
 else:
 self.push_task(MandlebrotTask("mandle_{}".format(x), None, self.node_id_str, iters =
self.iters, workload = workload))
 self.jobs += 1

 if self.send_task_batch:
 self.jobs = len(job_list)

 # Send batch or check for eventual end condition
 if self.send_task_batch:
 self.push_tasks(job_list)
 else:
 # Check in case we are already done!
 self.check_finished()

 def task_finished(self, task, result, error):
 """
 Called when a task has been done
 """
 # Integrate results in our image
 if result:
 for x, column in result.iteritems():
 for y, value in column.iteritems():
 self.image[y, x] = value

 self.finished_jobs += 1
 self.check_finished()

44 - Wundke Moritz

 def check_finished(self):
 """
 Check if we finsihed all computation or not
 """
 if self.finished_jobs == self.jobs:
 self.log.info("All tasks finished!!")
 print("Calculated in {} seconds!".format(time.time() - self.start_time))
 self.shutdown_main_loop()
 imshow(self.image)
 show()

 def push_task_response(self, result):
 """
 We just add a Task to the computation framework
 """
 pass
 #self.log.info("Task send to computation framework")

 def push_task_failed(self, result):
 """
 We failed to add a Task to the computation framework
 """
 self.log.info("Failed to send task send to computation framework")

 def push_tasks_response(self, result):
 """
 We just add a set of Tasks to the computation framework
 """
 self.log.info("Tasks send to computation framework")

 def push_tasks_failed(self, result):
 """
 We failed to add a set of Tasks to the computation framework
 """
 self.log.info("Failed to send tasks send to computation framework")

Code X – Application using plain tasks and task batches

def do_mandel(x, y, max_iters):
 """
 Given the real and imaginary parts of a complex number,
 determine if it is a candidate for membership in the Mandelbrot
 set given a fixed number of iterations.
 """
 c = complex(x, y)
 z = 0.0j
 for i in range(max_iters):
 z = z*z + c
 if (z.real*z.real + z.imag*z.imag) >= 4:

45 - Wundke Moritz

 return i

 return max_iters

class MandlebrotTask(Task):

 def __init__(self, name, system_id, client_id, **kwargs):
 Task.__init__(self, name, system_id, client_id)
 self.workload = kwargs['workload']
 self.iters = kwargs['iters']

 def __call__(self):
 """
 Calculate assigned work
 """
 result = {}
 for work in self.workload:
 if not work[0] in result:
 result[work[0]] = {}
 result[work[0]][work[1]] = do_mandel(work[2], work[3], self.iters)
 return result

 def finished(self, result, error):
 """
 Once the task is finished. Called on the MasterNode within the main thread once
 the node has recovered the result data.
 """
 pass

 def clean_up(self):
 """
 Called once a task has been performed and its results are about to be sent back. This is used
 to optimize our network and to cleanup the tasks input data
 """
 self.workload = None
 self.iters = None

class MandlebrotTaskOptimized(Task):

 def __init__(self, name, system_id, client_id, **kwargs):
 Task.__init__(self, name, system_id, client_id)
 self.start_x = kwargs['start_x']
 self.rows = kwargs['rows']
 self.cols = kwargs['cols']
 self.min_y = kwargs['min_y']
 self.min_x = kwargs['min_x']
 self.pixel_size_y = kwargs['pixel_size_y']
 self.pixel_size_x = kwargs['pixel_size_x']
 self.iters = kwargs['iters']

46 - Wundke Moritz

 def __call__(self):
 """
 Calculate assigned work
 """
 result = {}
 for x in xrange(self.start_x, self.start_x+self.rows):
 real = self.min_x + x * self.pixel_size_x
 for y in xrange(0, self.cols):
 if not x in result:
 result[x] = {}
 imag = self.min_y + y * self.pixel_size_y
 result[x][y] = do_mandel(real, imag, self.iters)
 return result

 def finished(self, result, error):
 """
 Once the task is finished. Called on the MasterNode within the main thread once
 the node has recovered the result data.
 """
 pass

 def clean_up(self):
 """
 Called once a task has been performed and its results are about to be sent back. This is used
 to optimize our network and to cleanup the tasks input data
 """
 self.start_x = None
 self.rows = None
 self.cols = None
 self.min_y = None
 self.pixel_size_y = None
 self.iters = None

Code X – Mandlebrot task, optimized and non-optimized

47 - Wundke Moritz

ITaskSystem vs plain tasks

Viewing both implementations we see that the one using the task system is a bit more complex
while the plain tasks implementation is more like a traditional task system. Chat X shows the results
of 50 runs of the sample using the default configuration of the application using both approaches

What we see from the benchmark is clear, sending an application to the master which send creates
the tasks performs better then sending the tasks on their own. The reason is that we avoid two
round-trips per tasks, we do not have to send them to the master and then sending them back.
Another reason is that once we are over 100 messages per second the network starts to stutter.

48 - Wundke Moritz

ItaskSystem Simple
0

10

20

30

40

50

60

time

Net congestion and workloads

The sample application is a very good sample testing network conditions and we see that the time to
send the tasks itself is by far bigger then the time spend on the calculation. This gives us insights of
what type of computations are useful on a distributed tasks system and that the key for
implementing a fast implementation is basically enforcing locality of the data.

Once data usage has been optimized we can see that both ways of performing the work are actually
balanced. In the optimized version of the mandlebrot set we generate the required values for the
computation within the actual tasks and not from the outside. Figure X show the benchmark outputs
using the optimized task implementation.

Figure X – Optimized mandlebrot taks implementation benchmark

49 - Wundke Moritz

ItaskSystem Simple
0

1

2

3

4

5

6

time

DNA Curve analysis

The DNA sample is just a simple way to try to overload the system with over 10 thousand separate
tasks. Each task requires a considerable amount of data and so sending it all at once has its
drawbacks.

The tests and benchmarks has been performed on a single machine and so we setup the worst
possible distributed network resulting in network overloads. This the sample is not intended for real
use, it outlines the stability of the framework.

The code of the sample can be reviewed online, we will not add it to the documentation because of
its size.

Net congestion and workloads

As for the other samples the amount of data send through the network is considerable, the sample
itself reaches a high memory load up to 3 GB on the master.

Consideration on data flow

Sending huge amounts of data is the real bottleneck of any distributed task framework. We spend
more time sending data then performing the actual computation.

50 - Wundke Moritz

9999 tasks 61 tasks
93

94

95

96

97

98

99

100

101

time

Conclusions

Building concurrent gave us a broad view of how much effort is required to produce a usable and
stable distributed tasks system. Concurrent is not to be considered finished, it is in its first steps and
will evolve in time to fill the gap in the space of reusable and easy to use concurrent tasks systems.

Python has proven itself to be a perfect match for both feasibility and performance using native
modules such as Cython. Its ability to serialize using pickles and networking libraries such as
ZeroMQ gave us the power to achieve a stable and well performing system. There is still room for
both optimization and features to make the framework even more user friendly.

Creating or adapting application to be run on concurrent has been a very easy tasks due to the way
we create and organize the workload.

Once point where we still have a lot of work to do is the network side of the framework. Sending
huge amounts of data, specially over the MTU size, impacts the global performance severely. Data
synchronization and initial setup is an important way to lower the amount of data send over the
network. Using a distributed file system would also help on leveraging the data flow. The locality of
the required is yet another optimization on the data usage side that has to be considered for future
releases.

On the performance side we can verify that using batching and our proposed ITaskSystem is
performing better over sending plain tasks on the system. This is mainly due to the lack of a
considerable number of round-trips the tasks are saving. Sending a whole system over lets us save a
lot of those small sendings the same as for a batch of tasks. The difference between sending a
system over and a batch of tasks is that the return of results for a batch of tasks does not feature that
round-trip saving because we do not collect the whole results on the master, as we do for the
ITaskSystem. While the ITaskSystem does the return saving also it comes with an increased of
memory used by the master to hold the intermediate results until the system finishes.

Amdahl's Law is another consideration that we have to talk about in concurrent systems. In our
system the key part is the proportion of concurrent parts of an application that we are able to use.
That proportion depends totally on how the application developer creates their applications. A good
example is the Mandelbrot sample where we where able to achieve a higher proportion of
parallelism by simply doing more within each tasks. We where able to split each row within a single
tasks and so we ended up of a proportion of the width over the number of pixels. Using a task for
each pixel would be the highest proportion of parallelism we could possibly achieve and so having.

The final speed up possible for the Mandelbrot sample on an 8 core setup would then be:

Seeing the amount of maximum improvement over the sequential version that we actually had using
our testing machine, the improvement where about by 2, we verify that concurrent is performing
very well.

The benchmark example has shown that we had achieved an improvement by 7, applying Amdahl's
Law we are can achieve a maximum improvement of 8 considering the overhead of the framework
more than acceptable for its first release cycle.

51 - Wundke Moritz

2.4=1/((1−P)+(P/ N))where P=0.67 ; N=8

8=1/((1−P)+(P/ N))where P=1; N=8

Results
Now that we have spoken about what Concurrent is all about we have come to a point where we
can describe what are the expected results of this research project:

• Framework eliminating GIL issues where possible

• SDK to setup a computational node and to create concurrent systems to be executed on the
framework

• Example project using the SDK (data analysis) to demonstrate scientific calculations such as
data analysis algorithms, brute force cracking examples, benchmarks, DNA analysis and a
Mandelbrot sample outlining different ways to optimize an application run on concurrent.

The exposed sample application gives an overview on how to use Concurrent and how your code
can get executed on a wide range of clusters and remote machines. We have achieve a flexible yet
stable parallel computation framework that goes a step further then simple function and local
processing.

The main code is spread to many servers which requires the programmer to change its mind about
local data and shared data, we are no longer able to just read everything from every where. The
proposed programming model requires are more planned and strict work-flow to perform as
expected. Debugging tools and real-time monitoring tools help in the development of fully
concurrent systems.

52 - Wundke Moritz

Appendix A

Gannt project plan

The following Gannt project plan is our main planning mechanism. Due to the fact that we have
chosen a mixed methodology our Gannt will track the execution of all iterations and its WBSs.
While the project progresses tasks may flow from one Iteration to another and so WBS will in turn
spread over Iterations. After every Iteration meeting the project plan is updated with the latest
changes and the scope/tasks will get adapted to keep the initial schedule.

As you can see in figure X and X the initial project plan does cover all aspects, while no WBS has
been added to them we will update the plan on a weekly basis to add which part of the WBS has
been performed during which iteration. At the end of the project each WBS and its stories will then
be assigned to a specific iteration to revise the work flow. Tasks that have already been achieved has
been highlighted in blue.

Fig. 16 – Gannt initial tasks organization

53 - Wundke Moritz

Fig. 17 – Gannt initial tasks organization (cont.)

54 - Wundke Moritz

Appendix B

Project Page

The project is hosted on GitHub. For more info check the projects page: http://moritz-
wundke.github.io/Concurrent/

API

The API for version 0.1.1 can be found in the projects GitHub hosted page: http://moritz-
wundke.github.io/Concurrent/API/

Slides

Presentation video and slides can be found hosted on GitHub aswell: http://moritz-
wundke.github.io/Concurrent/slides/

55 - Wundke Moritz

http://moritz-wundke.github.io/Concurrent/slides/
http://moritz-wundke.github.io/Concurrent/slides/
http://moritz-wundke.github.io/Concurrent/API/
http://moritz-wundke.github.io/Concurrent/API/
http://moritz-wundke.github.io/Concurrent/
http://moritz-wundke.github.io/Concurrent/

References
1. SETI@Home: http://en.wikipedia.org/wiki/SETI@home

2. SciPy: http://www.scipy.org/stackspec.html

3. NumPy: http://www.numpy.org/

4. Pandas: http://pandas.pydata.org/

5. MatPlotLib: http://matplotlib.org/

6. Pythons GIL: https://wiki.python.org/moin/GlobalInterpreterLock

7. Jython concurrency: http://www.jython.org/jythonbook/en/1.0/Concurrency.html

8. IronPython: https://wiki.python.org/moin/IronPython

9. Cython: http://cython.org/

10. OpenCL: https://www.khronos.org/opencl/

11. OpenMP: http://openmp.org/

12. Extreme Programming: http://www.extremeprogramming.org/

13. ProjectLibre: http://www.projectlibre.org/

14. Trello: https://trello.com/ / http://www.nullpaperexception.com/2013/trello/

15. ZeroMQ: http://zeromq.org/)

16. Google File System: http://en.wikipedia.org/wiki/Google_File_System

56 - Wundke Moritz

http://en.wikipedia.org/wiki/Google_File_System
http://zeromq.org/
http://www.nullpaperexception.com/2013/trello/
https://trello.com/
http://www.projectlibre.org/
http://www.extremeprogramming.org/
http://openmp.org/
https://www.khronos.org/opencl/
http://cython.org/
https://wiki.python.org/moin/IronPython
http://www.jython.org/jythonbook/en/1.0/Concurrency.html
https://wiki.python.org/moin/GlobalInterpreterLock
http://matplotlib.org/
http://pandas.pydata.org/
http://www.numpy.org/
http://www.scipy.org/stackspec.html
http://en.wikipedia.org/wiki/SETI@home

	Introduction
	Python
	Framework
	Motivation
	Objectives

	Related work
	Event based frameworks
	Simple processing frameworks
	Volunteer Computing
	The evolution
	Current parallel processing libraries for python
	dispy
	ParallelPython
	IPython
	Superpy

	Planning
	Methodology
	Project Plan
	XP Phases

	User Stories
	Cost, Scope and Iterations

	Architecture
	Overview
	Components
	Nodes
	MasterNode
	SlaveNode
	ApplicationNode
	Configs

	Transport concerns
	RESTful
	TCP Sockets
	ZeroMQ
	RPC implementation

	Work Distribution
	Sending work versus polling work
	Sending work execution flow
	Polling work execution flow (round-robin)
	Simple tasks and batches

	Security concerns
	Monitoring Nodes and Performance
	Next Steps

	Samples
	MD5 Hash Reverse
	Setup
	The application

	Benchmark
	The Application
	ITaskSystem vs plain tasks
	Optimizing number of workers

	Mandelbrot
	The application
	ITaskSystem vs plain tasks
	Net congestion and workloads

	DNA Curve analysis
	Net congestion and workloads
	Consideration on data flow

	Conclusions

	Results
	Appendix A
	Gannt project plan

	Appendix B
	Project Page
	API
	Slides

	References

