
Abstract

This paper presents the algorithm developed, for
final master degree project, to identify paintings from
images taken with a camera-phone from a set of
prepared image collection. The image processing
algorithm first needs the database to be created by
extracting the painting of interest, in the center of the
photo. For doing that first of all the image is resized
keeping the original aspect. Secondly it is converted to
gray color. Now some work to remove noise is needed
and it is done with an algorithms that performs down-
sampling step of Gaussian pyramid decomposition.
And then an algorithms that performs up-sampling
step of Gaussian pyramid decomposition. After that
Canny algorithm is applied to get all edges. Then is
applied a probabilistic hough transform to find the
line segments and from them, with a little processing,
it is selected just four which presumably will be the
ones that forms the frame of the painting. Calculating
the intersection points of these lines we get four points
and with them a perspective transform is applied to get
just the painting image. Finally feature identification
is performed on this image using SURF algorithm. All
these images are used as a training images for the
learning machine algorithm k nearest neighbors. On
the other hand, different images are taken with a
phone camera from the previous treated. This time, the
captured image is not treated in the same way, instead,
these images are just resized, converted to gray color
and finally compute their features with SURF[1]
method. Then with k nearest neighbors algorithm it
can be identified which is image that represents and
with that possible information can be given to the user.

1. Introduction

Recognition of objects in images has practical
applications across many disciplines. One potential
“Augmented Reality” application is the recognition of
paintings in an art exhibit. Gallery visitors could take a

picture of a painting with a cell phone, and then receive
an automated phone call or text message containing
information about the painting such as title, artist,
historical context, and critical review. This service
requires rapid identification of the painting in the image,
without strong guarantees on lighting, viewing angle,
and size of the painting in the image. Compression
artifacts and low light effects, such as blur and noise,
corrupt such images to varying degrees. The painting
recognition task can be automated using techniques
from the fields of digital image processing and
computer vision.

After consideration and prototyping of several
candidate techniques, it was found that this problem has
some unique characteristics. First, in some scenes it
may be quite difficult to detect and extract the frame of
the painting. In fact, in that sense it is needed more

Identification of Paintings from Camera-Phone Images

Raül Llorach Sánchez
Master en Programari lliure, Universitat Oberta de Catalunya

raulllorach@gmail.com

Figure 1: The 7 images selected in this study.

work that what it has been done here. In our
experiments some assumptions has been assumed.

This paper presents the algorithm developed for the
master degree final project, to identify paintings in the
centers of query images taken with a camera-phone.

The overall image processing algorithm is divided in
two parts. The first part consists on generating a
database with all feature matrix of each image selected
in this study. To do that, each image is processed in
order to extract the foreground and get just the
painting.

The resulting painting is computed the features that will
identify it uniquely and then stored in a database. The
second part consists on given a taken photo from a
painting, resize it to be in the same proportions than the
ones in database and without any rectification compute

directly their features with SURF method. Finally these
features are passed to the k nearest neighbors algorithm
that detect the most similar feature matrix from the
database that will probably will be the same image than
the photo queried. All this program has been done with
emguCV framework which is basically an open source
wrapper of the openCV library. The overall algorithm
has detected correctly all testing images.

2. Background

There are two major challenges involved in the art
recognition application described above. First, there
must be a way to extract the region of interest from the
image. Second, it is necessary to describe this region in
a distinctive way, one that is repeatable and can be
cross referenced to a database of information that
uniquely identifies the painting in question.

In order to extract a section of an image, it is
necessary to have some information about the region in
question. For this application, it is assumed that the
painting to be added in the database must be
photographed alone and roughly centered in the image
frame. More specifically, the center pixel in the image is
assumed to be part of the painting of interest.

The image processing field employs many techniques
for separate different regions of an image. Image
decomposition are one way, for example, to remove
some noise from the content of a digital image. Many
times, this can be useful to separate different regions of
the image or get rid of some invaluable information of
the image. Examples of such decompositions include
the down-sampling step of Gaussian pyramid
decomposition and the up-sampling step of Gaussian
pyramid decomposition.

Another field from the image processing is the one
aimed to classify and identify images[2]. There are
many types of features that can be extracted from an
image, ranging from simple things like corners and
edges to more complicated things like SIFT[3] vectors
or SURF vectors. Corners and edges are popular
because they are easily recognizable and easily verified
as being correctly found in the image. However, by
themselves, these features are not especially good for
repeatably and uniquely classifying an image.

It is desirable to have features which have some
invariance to common image differences, such as
changes in scale and illumination or even affine
transformation. The Scale Invariant Feature Transform,
or SIFT, method is a very popular algorithm for
generating such features. The descriptor vector is
created by histogramming gradient values in a scaled
window around a key-point. This method has proved to

Figure 2: The 15 query images tested.

be quite robust to moderate perspective transformation.
A large volume of recent work has been based on SIFT
features and much support for the use of SIFT exists in
the literature. A more recent addition to the field is the
Speeded Up Robust Features, or SURF, descriptor.
The authors of SURF claim that this method
outperforms previously proposed schemes with respect
to repeatability, distinctiveness, and robustness, yet can
be computed and compared much faster.

3. Image processing algorithm

This section details the implemented algorithm for
painting recognition. It is robust to changes in lighting
and perspective. It is composed of two different parts.
The first part pretends to create the database of all
paintings on the study. Each painting is segmented out
of the image and rectified to a straight-on view. Then a
SURF is performed on the rectified painting and the
resulting feature descriptors are stored in the database.
The second part of the algorithm is when a photograph
is taken from one of the paintings in the exposition and
normalized to be similar to the ones in database. Then a
SURF is performed to the photo to extract their feature
descriptor[4] which in turn will be passed to the
machine learning algorithm called k nearest neighbors
that will compare with all the paintings of our study
will return the painting with the most similar descriptor
that presumably will be the painting from the
photographed.

3.1. Painting rectification

First of all, the image is resized with the method
Resize from emguCV that scale the image to specific
size. This is done to reduce JPEG artifact effects. Next
to this step the image is converted to gray color with
the method Convert. This is necessary to apply two
methods (PyrDown and PyrUp) that perform down-
sampling and up-sampling step of Gaussian pyramid
decomposition. This is done to remove some noise of
the image and it will be useful for the next steps. Now it
is applied Canny algorithm that will find edges[5] on
the image and will mark them.

From the edges detected with Canny algorithm it is
applied a probabilistic hough transform to find line
segments. This method can be parametrized to control
its behavior like how many pixels to consider it a line,
etc. In our case study we find the values that fits best
for all the training images.

Now, with some image processing it is possible to
extract those external lines that are more probable to be
the frame of the painting. With these lines selected it is
possible to expand them and detect where they cross

Figure 4: Result of
probabilistic hough transform

Figure 3: Result of Canny
algorithm

each other and with these points we can crop the image
to obtain just the painting and get rid of all the rest of
the image.

Now it's time to crop the image and also to correct
the perspective if the image has been taken with a little
perspective. Nevertheless the algorithm requires that
the image taken to be with the less perspective as
possible. In order to get this perspective transformation
it has been used the method GetPerspectiveTransform
that returns the HomographyMatrix, then it is passed to
the method WrapPerspective that will return the image
transformed. Then each image object has the property
ROI (region of interest) that is useful to define the
region to be cropped, in this case will be the dimensions
of the frame detected.

The final step before store it in database is to
compute their descriptor that is done with SURF
algorithm. This is done with the method
ComputeDescriptorsRaw from the object
SURFDetector. This method will return a matrix of
floats and will be used as a training example for the
machine learning algorithm k nearest neighbors. These
are the steps that will be applied in the same way for all
training images.

3.2. Painting identification

3.2.1 K Nearest Neighbors

The emguCV framework has some libraries related
to machine learning field[6]. Here we have used the
KNearest class to classify/identify a given descriptor.
To prepare this algorithm it is needed two data
structures. The first one is a matrix of floats that
corresponds to all descriptors from the initial paintings
captured and prepared, this matrix is known as training
data. The second structure is a matrix of floats that will
associate each zone of the first matrix with a specific
float value. The first zone of one descriptor painting
will be fill with 0 and so on.

3.2.2 Painting identification with K Nearest

To identify a given painting we compute their
descriptor directly from the image taken from the phone
camera. This descriptor is passed to the KNearest
object which will compute a punctuation among all the
training examples. The most important aspect here is
that the descriptors from the image queried will
probably be more similar with the original image
normalized at the first stage. That's why the nearest
descriptor found should be the original image.

To achieve it, we have developed a very simple
punctuation method. The matching is done row by row
from the descriptor matrix. For each row it is found the
most nearest image whose descriptor is most similar.
The image returned gets an additional point and so on

Figure 5: Detection of all
intersection lines

Figure 6: Image transformed
and cropped

for the rest of rows. At the end, the one with the
highest punctuation will be the painting in the
photograph.

At the end of the algorithm in order to show the
resulting image we have used a method in the emguCV
framework that shows the features detected between
two images and also it tries to represent with green
lines the exact match of one feature between both
images. As we can observe in the figure 7, some
features are not matched in green. This is done by the
method VoteForUniqueness. This method can select
among all features just the ones which are more unique.

3.2.3 Normal Bayes Classifier

A naive Bayes classifier is a term in Bayesian
statistics dealing with a simple probabilistic classifier
based on applying Bayes theorem with strong (naive)
independence assumptions. A more descriptive term for
the underlying probability model would be "independent
feature model".

In simple terms, a naive Bayes classifier assumes that
the presence (or absence) of a particular feature of a
class is unrelated to the presence (or absence) of any
other feature. For example, a fruit may be considered to
be an apple if it is red, round, and about 4" in diameter.
Even though these features depend on the existence of
the other features, a naive Bayes classifier considers all
of these properties to independently contribute to the
probability that this fruit is an apple.

In spite of their naive design and apparently over-
simplified assumptions, naive Bayes classifiers often
work much better in many complex real-world
situations than one might expect. Recently, careful
analysis of the Bayesian classification problem has

shown that there are some theoretical reasons for the
apparently unreasonable efficacy of naive Bayes
classifiers. An advantage of the naive Bayes classifier is
that it requires a small amount of training data to
estimate the parameters (means and variances of the
variables) necessary for classification. Because
independent variables are assumed, only the variances
of the variables for each class need to be determined
and not the entire covariance matrix.

3.2.4 Painting identification with Normal Bayes

The emguCV framework has a class named
NormalBayesClassifier that lets you classify an specific
item according to the training examples passed to the
classifier. We have applied this algorithm with our
scenery, the paintings. First of all we use the image
descriptors gathered on the first stage as training
samples for the algorithm. Basically for each image
descriptor is associated a type or class. Then, a painting
is computed the SURF algorithm and extracts its
descriptor. It is passed to the classifier and for each row
it is applied the NormalBayes algorithm that returns the
training image that may correspond to.

As the previous classifier, a punctuation system has
been developed and consists on adding points on each
row result. At the end the training image with more
points is the winner. In our little scenery has showed
that this algorithm is less effective that the previous one
which has identified all the query images correctly. This
one, instead, has fail on one of the query images.

Another experiment has been done with SIFT
method to extract all the image descriptors. In that case
while with the KNearest algorithm has identified all
query images correctly, with the Normal Bayes
classifier has just identified correctly two query images.

4. Conclusion

With the idea of implementing an application of
“Augmented Reality”, an algorithm has been developed
to identify paintings from a sample scenario. In the
algorithm, firstly the paintings are photographed in
order to extract their unique descriptors and store it in a
database. It is done by detecting their frames and then
applying a perspective transformation. Then visitors
take photos from the sample paintings and they are
identified through a machine learning algorithm like k-
nearest neighbor and normal Bayes.

The developed algorithm is capable of identifying
correctly all training images using either SURF or SIFT
descriptor extractor and k nearest neighbor as the
classifier algorithm. With SURF descriptor extractor

Figure 7: Example of surf feature matching

but with normal Bayes classifier has identified all
paintings except one. The worst results are with SIFT
and normal Bayes classifier. It could explain to us that
SURF is able to get more unique features than SIFT.
On the other hand, k nearest neighbor is the classifier
with the best results. The algorithm is robust to changes
in viewing angle and in lighting.

5. References

[1] Bay, Herbert; Tuytelaars, Tinne; Gool, Van, Luc, SURF:
Speeded Up Robust Features, European Conference on
Computer Vision, 2006.

[2] Galindo, Escriche, Xavi, Searching patterns in painting
images with computer vision techniques, Universitat
Oberta de Catalunya, 2013.

[3] Juan, Luo; Gwun, Oubong, A Comparison of SIFT, PCA-
SIFT and SURF, CSC Journals, Kuala Lumpur, Malaysia,
2009.

[4] Tuytelaars, Tinne; Mikolajczuk, Krystian, Local invariant
feature detectors: a survey, Journal Foundations and
Trends in Computer Graphics and Vision, 2008.

[5] Temmermans, Frederik; Jansen, Bart; Deklerck, Rudi;
Schelkens, Peter; Cornelis, Jan, The mobile museum guide:
artwork recognition with eigenpaintings and SURF,
WIAMIS, 12th International Workshop on Image
Analysis for Multimedia Interactive Services, 2011.

[6] Blessing, Alexander; Wen, Kai, Using machine learning
for identification of art paintings, Stanford University,
2010.

	1. Introduction
	2. Background
	3. Image processing algorithm
	3.1. Painting rectification
	3.2. Painting identification
	3.2.1 K Nearest Neighbors
	3.2.2 Painting identification with K Nearest
	3.2.3 Normal Bayes Classifier
	3.2.4 Painting identification with Normal Bayes

	4. Conclusion
	5. References

