
Abstract

This  paper  presents  the  algorithm developed,  for
final master degree project, to identify paintings from
images  taken  with  a  camera-phone  from  a  set  of
prepared  image  collection.  The  image  processing
algorithm first  needs the  database  to  be  created  by
extracting the painting of interest, in the center of the
photo. For doing that first of all the image is resized
keeping the original aspect. Secondly it is converted to
gray color. Now some work to remove noise is needed
and it is done with an algorithms that performs down-
sampling  step  of  Gaussian  pyramid  decomposition.
And  then  an  algorithms  that  performs  up-sampling
step  of  Gaussian  pyramid  decomposition.  After  that
Canny algorithm is applied to get all edges. Then is
applied  a  probabilistic  hough  transform to  find  the
line segments and from them, with a little processing,
it  is  selected just  four which  presumably will be the
ones that forms the frame of the painting. Calculating
the intersection points of these lines we get four points
and with them a perspective transform is applied to get
just the painting image. Finally feature identification
is performed on this image using SURF algorithm. All
these  images are  used  as  a  training  images for  the
learning machine algorithm k nearest  neighbors.  On
the  other  hand,  different  images   are  taken  with  a
phone camera from the previous treated. This time, the
captured image is not treated in the same way, instead,
these images are just resized, converted to gray color
and  finally  compute  their  features  with  SURF[1]
method.  Then  with k  nearest  neighbors  algorithm it
can be identified which is image that represents and
with that possible information can be given to the user.

1. Introduction

Recognition  of  objects  in  images  has  practical
applications  across  many  disciplines.  One  potential
“Augmented Reality” application is the recognition of
paintings in an art exhibit. Gallery visitors could take a

picture of a painting with a cell phone, and then receive
an automated  phone call or  text  message  containing
information  about  the  painting  such  as  title,  artist,
historical  context,  and  critical  review.  This  service
requires rapid identification of the painting in the image,
without  strong guarantees  on lighting, viewing angle,
and  size  of  the  painting  in the  image.  Compression
artifacts and low light effects, such as blur and noise,
corrupt  such images to  varying degrees.  The painting
recognition  task  can  be  automated  using  techniques
from  the  fields  of  digital  image  processing  and
computer vision.

After  consideration  and  prototyping  of  several
candidate techniques, it was found that this problem has
some unique  characteristics.  First,  in some scenes  it
may be quite difficult to detect and extract the frame of
the painting.  In  fact,  in that  sense it  is needed more
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Figure 1: The 7 images selected in this study.



work  that  what  it  has  been  done  here.  In  our
experiments some assumptions has been assumed.

This paper presents the algorithm developed for the
master degree final project, to identify paintings in the
centers of query images taken with a camera-phone.

The overall image processing algorithm is divided in
two  parts.  The  first  part  consists  on  generating  a
database with all feature matrix of each image selected
in this study.  To do that,  each image is processed in
order  to  extract  the  foreground  and  get  just  the
painting. 

The resulting painting is computed the features that will
identify it uniquely and then stored in a database. The
second part  consists  on  given a  taken  photo  from a
painting, resize it to be in the same proportions than the
ones in database and without any rectification compute

directly their features with SURF method. Finally these
features are passed to the k nearest neighbors algorithm
that  detect  the  most  similar feature  matrix  from the
database that will probably will be the same image than
the photo queried. All this program has been done with
emguCV framework which is basically an open source
wrapper of the openCV library. The overall algorithm
has detected correctly all testing images.

2. Background

There are two major challenges involved in the art
recognition  application  described  above.  First,  there
must be a way to extract the region of interest from the
image. Second, it is necessary to describe this region in
a  distinctive way,  one  that  is  repeatable and  can be
cross  referenced  to  a  database  of  information  that
uniquely identifies the painting in question.

In  order  to  extract  a  section  of  an  image,  it  is
necessary to have some information about the region in
question.  For  this application,  it  is assumed that  the
painting  to  be  added  in  the  database  must  be
photographed alone and roughly centered in the image
frame. More specifically, the center pixel in the image is
assumed to be part of the painting of interest.

The image processing field employs many techniques
for  separate  different  regions  of  an  image.  Image
decomposition are  one  way,  for  example,  to  remove
some noise from the content of a digital image. Many
times, this can be useful to separate different regions of
the image or get rid of some invaluable information of
the  image.  Examples of  such decompositions include
the  down-sampling  step  of  Gaussian  pyramid
decomposition and the  up-sampling step  of  Gaussian
pyramid decomposition.

Another field from the image processing is the one
aimed  to  classify and  identify images[2].  There  are
many types of features that  can be extracted from an
image,  ranging  from  simple  things  like  corners  and
edges to more complicated things like SIFT[3] vectors
or  SURF  vectors.  Corners  and  edges  are  popular
because they are easily recognizable and easily verified
as  being correctly found in the  image.  However,  by
themselves, these features are not especially good for
repeatably and uniquely classifying an image.

It  is  desirable to  have  features  which have  some
invariance  to  common  image  differences,  such  as
changes  in  scale  and  illumination  or  even  affine
transformation. The Scale Invariant Feature Transform,
or  SIFT,  method  is  a  very  popular  algorithm  for
generating  such  features.  The  descriptor  vector  is
created  by histogramming gradient values in a  scaled
window around a key-point. This method has proved to

Figure 2: The 15 query images tested.



be quite robust to moderate perspective transformation.
A large volume of recent work has been based on SIFT
features and much support for the use of SIFT exists in
the literature. A more recent addition to the field is the
Speeded  Up  Robust  Features,  or  SURF,  descriptor.
The  authors  of  SURF  claim  that  this  method
outperforms previously proposed schemes with respect
to repeatability, distinctiveness, and robustness, yet can
be computed and compared much faster.

3. Image processing algorithm

This section details the implemented algorithm for
painting recognition. It  is robust to changes in lighting
and perspective. It  is composed of two different parts.
The  first  part  pretends  to  create  the  database  of  all
paintings on the study. Each painting is segmented out
of the image and rectified to a straight-on view. Then a
SURF is performed on the rectified painting and the
resulting feature descriptors are stored in the database.
The second part of the algorithm is when a photograph
is taken from one of the paintings in the exposition and
normalized to be similar to the ones in database. Then a
SURF is performed to the photo to extract their feature
descriptor[4] which  in  turn  will  be  passed  to  the
machine learning algorithm called  k nearest  neighbors
that  will compare with all the paintings  of our study
will return the painting with the most similar descriptor
that  presumably will  be  the  painting  from  the
photographed.

3.1. Painting rectification

First  of  all, the  image is resized with the method
Resize from emguCV that  scale the image to  specific
size. This is done to reduce JPEG artifact effects. Next
to this step the image is converted to  gray color with
the  method  Convert.  This is necessary to  apply two
methods  (PyrDown  and  PyrUp)  that  perform down-
sampling and  up-sampling step  of  Gaussian pyramid
decomposition. This is done to  remove some noise of
the image and it will be useful for the next steps. Now it
is applied Canny algorithm that  will find edges[5] on
the image and will mark them.

From the edges detected with Canny algorithm it is
applied  a  probabilistic  hough  transform  to  find  line
segments. This method can be parametrized to control
its behavior like how many pixels to consider it a line,
etc. In our case study we find the values that fits best
for all the training images.

Now, with some image processing it is possible to
extract those external lines that are more probable to be
the frame of the painting. With these lines selected it is
possible to  expand them and detect  where they cross

Figure 4: Result of
probabilistic hough transform

Figure 3: Result of Canny
algorithm



each other and with these points we can crop the image
to obtain just the painting and get rid of all the rest of
the image.

Now it's time to crop the image and also to correct
the perspective if the image has been taken with a little
perspective.  Nevertheless  the  algorithm requires  that
the  image  taken  to  be  with  the  less  perspective  as
possible. In order to get this perspective transformation
it has been used the method GetPerspectiveTransform
that returns the HomographyMatrix, then it is passed to
the method WrapPerspective that will return the image
transformed. Then each image object has the property
ROI  (region  of  interest)  that  is  useful  to  define the
region to be cropped, in this case will be the dimensions
of the frame detected.

The  final  step  before  store  it  in  database  is  to
compute  their  descriptor  that  is  done  with  SURF
algorithm.  This  is  done  with  the  method
ComputeDescriptorsRaw  from  the  object
SURFDetector.  This  method  will return  a  matrix  of
floats  and will be used as a  training example for  the
machine learning algorithm k nearest neighbors. These
are the steps that will be applied in the same way for all
training images.

3.2. Painting identification

3.2.1 K Nearest Neighbors

The emguCV framework has some libraries related
to  machine learning field[6].  Here  we have used  the
KNearest  class to  classify/identify a  given descriptor.
To  prepare  this  algorithm  it  is  needed  two  data
structures.  The  first  one  is  a  matrix  of  floats   that
corresponds to all descriptors from the initial paintings
captured and prepared, this matrix is known as training
data. The second structure is a matrix of floats that will
associate each zone of the first matrix with a specific
float  value.  The first  zone of one descriptor  painting
will be fill with 0 and so on.

3.2.2 Painting identification with K Nearest

To  identify  a  given  painting  we  compute  their
descriptor directly from the image taken from the phone
camera.  This  descriptor  is  passed  to  the  KNearest
object which will compute a punctuation among all the
training examples. The most  important  aspect  here is
that  the  descriptors  from  the  image  queried  will
probably  be  more  similar  with  the  original  image
normalized at  the  first  stage.  That's  why the  nearest
descriptor found should be the original image.

To  achieve  it,  we  have  developed  a  very simple
punctuation method. The matching is done row by row
from the descriptor matrix. For each row it is found the
most  nearest  image whose descriptor  is most  similar.
The image returned gets an additional point and so on

Figure 5: Detection of all
intersection lines

Figure  6:  Image  transformed
and cropped



for  the  rest  of  rows.  At  the  end,  the  one  with  the
highest  punctuation  will  be  the  painting  in  the
photograph.

At the end of the algorithm in order  to  show the
resulting image we have used a method in the emguCV
framework  that  shows the  features  detected  between
two  images and also it  tries to  represent  with green
lines  the  exact  match  of  one  feature  between  both
images.  As  we  can  observe  in  the  figure  7,  some
features are not matched in green. This is done by the
method  VoteForUniqueness.  This  method  can  select
among all features just the ones which are more unique.

3.2.3 Normal Bayes Classifier

A  naive  Bayes  classifier  is  a  term  in  Bayesian
statistics  dealing with a  simple probabilistic classifier
based on applying Bayes theorem with strong (naive)
independence assumptions. A more descriptive term for
the underlying probability model would be "independent
feature model". 

In simple terms, a naive Bayes classifier assumes that
the presence (or  absence) of a particular feature of a
class is unrelated to  the presence (or  absence) of any
other feature. For example, a fruit may be considered to
be an apple if it is red, round, and about 4" in diameter.
Even though these features depend on the existence of
the other features, a naive Bayes classifier considers all
of these properties to  independently contribute to  the
probability that this fruit is an apple. 

In spite of their naive design and apparently over-
simplified  assumptions,  naive  Bayes  classifiers  often
work  much  better  in  many  complex  real-world
situations  than  one  might  expect.  Recently,  careful
analysis  of  the  Bayesian  classification  problem  has

shown that  there are some theoretical reasons for the
apparently  unreasonable  efficacy  of  naive  Bayes
classifiers. An advantage of the naive Bayes classifier is
that  it  requires  a  small  amount  of  training  data  to
estimate  the  parameters  (means and  variances  of  the
variables)  necessary  for  classification.  Because
independent variables are assumed, only the variances
of the variables for each class need to  be determined
and not the entire covariance matrix.

3.2.4 Painting identification with Normal Bayes

The  emguCV  framework  has  a  class  named
NormalBayesClassifier that lets you classify an specific
item according to  the training examples passed to  the
classifier.  We  have  applied  this  algorithm  with  our
scenery,  the  paintings.  First  of  all we use  the  image
descriptors  gathered  on  the  first  stage  as  training
samples  for  the  algorithm.  Basically for  each  image
descriptor is associated a type or class. Then, a painting
is  computed  the  SURF  algorithm  and  extracts  its
descriptor. It is passed to the classifier and for each row
it is applied the NormalBayes algorithm that returns the
training image that may correspond to.

As the previous classifier, a punctuation system has
been developed and consists on adding points on each
row result.  At  the end the training image with more
points is the winner. In our little scenery has showed
that this algorithm is less effective that the previous one
which has identified all the query images correctly. This
one, instead, has fail on one of the query images.

Another  experiment  has  been  done  with  SIFT
method to extract all the image descriptors. In that case
while with  the  KNearest  algorithm has  identified  all
query  images  correctly,  with  the  Normal  Bayes
classifier has just identified correctly two query images.

4. Conclusion

With  the  idea  of  implementing  an  application  of
“Augmented Reality”, an algorithm has been developed
to  identify paintings  from a  sample  scenario.  In  the
algorithm,  firstly  the  paintings  are  photographed  in
order to extract their unique descriptors and store it in a
database. It is done by  detecting their frames and then
applying  a  perspective  transformation.  Then  visitors
take  photos  from the  sample paintings and  they are
identified through a machine learning algorithm like k-
nearest neighbor and normal Bayes.

The  developed  algorithm is capable of  identifying
correctly all training images using either SURF or SIFT
descriptor  extractor  and  k  nearest  neighbor  as  the
classifier  algorithm.  With  SURF descriptor  extractor

Figure 7: Example of surf feature matching



but  with  normal  Bayes  classifier  has  identified  all
paintings except one. The worst results are with SIFT
and normal Bayes classifier. It  could explain to us that
SURF is able to  get  more unique features than SIFT.
On the other hand, k nearest neighbor is the classifier
with the best results. The algorithm is robust to changes
in viewing angle and in lighting.
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