
Kpax Plataforma d'aprenentatge en Xarxa:
Migració de kPaxServer a NodeJs amb MongoDB

Annexes

Miquel A. Muntaner Morey
Administració web i comerç electrònic
Màster en Programari Lliure

Daniel Riera Terrén
Francisco Javier Noguera Otero

19 de juny de 2016

ANNEXES

Índex dels Annexes
A n n e x e s .. 2

T a u l a H T T P r e s p o n s e c o d e s ... 3

T a u l a d e s e r v e i s W e b d e f i n i t s a l s e r v i d o r . .. 8

D e t a l l ... 8

u s e r / .. 9
/ u s e r / l i s t ? q = { } .. 1 0
/ u s e r / l i s t a l l ... 1 1
/ u s e r / : u s e r ... 1 2
/ u s e r / d e l .. 1 3
/ g a m e .. 1 4
/ g a m e / l i s t ? q = { } ... 1 5
/ g a m e / l i s t a l l .. 1 6
/ g a m e / : g a m e .. 1 7
/ g a m e / : g a m e / l i k e .. 1 8
/ g a m e / : g a m e / u n l i k e ... 1 9
/ g a m e s / d e l ... 2 0

Taula HTTP response codes
Font: https://developer.mozilla.org/en-US/docs/Web/HTTP/Response_codes

Status
code

Status text Description HTTP version

Informational responses

100 Continue
This interim response indicates that everything so far
is OK and that the client should continue with the
request or ignore it if it is already finished.

HTTP/1.1 only

101 Switching
Protocol

This code is sent in response to an Upgrade: request
header by the client, and indicates that the protocol
the server is switching too. It was introduced to allow
migration to an incompatible protocol version, and is
not in common use.

HTTP/1.1 only

Successful responses

200
OK

The request has succeeded. The meaning of a success
varies depending on the HTTP method:

• GET: The resource has been fetched and is
transmitted in the message body.

• HEAD: The entity headers are in the message body.

• POST: The resource describing the result of the action
is transmitted in the message body.

• TRACE: The message body contains the request
message as received by the server

HTTP/0.9 and later

201 Created
The request has succeeded and a new resource has
been created as a result of it. This is typically the
response sent after a PUT request.

HTTP/0.9 and later

202 Accepted

The request has been received but not yet acted upon.
It is non-committal, meaning that there is no way in
HTTP to later send an asynchronous response
indicating the outcome of processing the request. It is
intended for cases where another process or server
handles the request, or for batch processing.

HTTP/0.9 and later

203
Non-
Authoritative
Information

This response code means returned meta-information
set is not exact set as available from the origin server,
but collected from a local or a third party copy. Except
this condition, 200 OK response should be preferred
instead of this response.

HTTP/0.9 and 1.1

204 No Content
There is no content to send for this request, but the
headers may be useful. The user-agent may update its
cached headers for this resource with the new ones.

HTTP/0.9 and later

205 Reset Content
This response code is sent after accomplishing
request to tell user agent reset document view which
sent this request.

HTTP/1.1 only

206 Partial Content
This response code is used because of range header
sent by the client to separate download into multiple
streams.

HTTP/1.1 only

Redirection messages

300 Multiple Choice

The request has more than one possible responses.
User-agent or user should choose one of them. There
is no standardized way to choose one of the
responses.

HTTP/1.0 and later

301 Moved This response code means that URI of requested HTTP/0.9 and later

https://developer.mozilla.org/en-US/docs/Web/HTTP/Response_codes

Status
code

Status text Description HTTP version

Permanently resource has been changed. Probably, new URI would
be given in the response.

302 Found

This response code means that URI of requested
resource has been changed temporarily. New changes
in the URI might be made in the future. Therefore, this
same URI should be used by the client in future
requests.

HTTP/0.9 and later

303 See Other
Server sent this response to directing client to get
requested resource to another URI with an GET
request.

HTTP/0.9 and 1.1

304 Not Modified
This is used for caching purposes. It is telling to client
that response has not been modified. So, client can
continue to use same cached version of response.

HTTP/0.9 and later

305 Use Proxy
This means requested response must be accessed by
a proxy. This response code is not largely supported
because security reasons.

HTTP/1.1 only

306 unused
This response code is no longer used, it is just
reserved currently. It was used in a previous version
of the HTTP 1.1 specification.

HTTP/1.1 only

307 Temporary
Redirect

Server sent this response to directing client to get
requested resource to another URI with same method
that used prior request. This has the same semantic
than the 302 Found HTTP response code, with the
exception that the user agent must not change the
HTTP method used: if a POST was used in the first
request, a POST must be used in the second request.

HTTP/1.1 only

308
Permanent
Redirect

This means that the resource is now permanently
located at another URI, specified by
the Location: HTTP Response header. This has the
same semantics as the 301 Moved
Permanently HTTP response code, with the exception
that the user agent must not change the HTTP method
used: if a POST was used in the first request,
aPOST must be used in the second request.
Note: This is an experimental response code
whose specification is currently in draft form.

draft-reschke-http-
status-308

Client error responses

400 Bad Request
This response means that server could not
understand the request due to invalid syntax. HTTP/0.9 and later

401 Unauthorized
Authentication is needed to get requested response.
This is similar to 403, but in this case, authentication is
possible.

HTTP/0.9 and later

402 Payment
Required

This response code is reserved for future use. Initial
aim for creating this code was using it for digital
payment systems however this is not used currently.

HTTP/0.9 and 1.1

403 Forbidden
Client does not have access rights to the content so
server is rejecting to give proper response. HTTP/0.9 and later

404 Not Found
Server can not find requested resource. This response
code probably is most famous one due to its
frequency to occur in web.

HTTP/0.9 and later

405 Method Not
Allowed

The request method is known by the server but has
been disabled and cannot be used. The two

HTTP/1.1 only

http://greenbytes.de/tech/webdav/draft-reschke-http-status-308-07.html
http://greenbytes.de/tech/webdav/draft-reschke-http-status-308-07.html
http://greenbytes.de/tech/webdav/#draft-reschke-http-status-308

Status
code

Status text Description HTTP version

mandatory methods, GET and HEAD, must never be
disabled and should not return this error code.

406 Not Acceptable

This response is sent when the web server, after
performing server-driven content negotiation, doesn't
find any content following the criteria given by the
user agent.

HTTP/1.1 only

407
Proxy
Authentication
Required

This is similar to 401 but authentication is needed to
be done by a proxy. HTTP/1.1 only

408 Request Timeout

This response is sent on an idle connection by some
servers, even without any previous request by the
client. It means that the server would like to shut
down this unused connection. This response is used
much more since some browsers, like Chrome or IE9,
use HTTP preconnection mechanisms to speed up
surfing (see bug 881804, which tracks the future
implementation of such a mechanism in Firefox). Also
note that some servers merely shut down the
connection without sending this message.

HTTP/1.1 only

409 Conflict This response would be sent when a request conflict
with current state of server.

HTTP/1.1 only

410 Gone This response would be sent when requested content
has been deleted from server.

HTTP/1.1 only

411 Length Required
Server rejected the request because the Content-
Length header field is not defined and the server
requires it.

HTTP/1.1 only

412 Precondition
Failed

The client has indicated preconditions in its headers
which the server does not meet.

HTTP/1.1 only

413 Payload Too
Large

Request entity is larger than limits defined by server;
the server might close the connection or return
an Retry-After header field.

HTTP/1.1 only

414 URI Too Long The URI requested by the client is longer than the
server is willing to interpret.

HTTP/1.1 only

415
Unsupported
Media Type

The media format of the requested data is not
supported by the server, so the server is rejecting the
request.

HTTP/1.1 only

416 Requested Range
Not Satisfiable

The range specified by the Range header field in the
request can't be fulfilled; it's possible that the range is
outside the size of the target URI's data.

HTTP/1.1 only

417 Expectation
Failed

This response code means the expectation indicated
by the Expect request header field can't be met by
the server.

HTTP/1.1 only

418 I'm a teapot
Any attempt to brew coffee with a teapot should
result in the error code "418 I'm a teapot". The
resulting entity body MAY be short and stout.

HTCPCP/1.0

421
Misdirected
Request

The request was directed at a server that is not able to
produce a response. This can be sent by a server that
is not configured to produce responses for the
combination of scheme and authority that are
included in the request URI.

HTTP/2.0

https://bugzilla.mozilla.org/show_bug.cgi?id=881804
http://www.belshe.com/2011/02/10/the-era-of-browser-preconnect/
https://developer.mozilla.org/en/HTTP/Content_negotiation#Server-driven_negotiation

Status
code

Status text Description HTTP version

426 Upgrade
Required

The server refuses to perform the request using the
current protocol but might be willing to do so after
the client upgrades to a different protocol. The server
MUST send an Upgrade header field in a 426 response
to indicate the required protocol(s) (Section 6.7 of
[RFC7230]).

HTTP/1.1 and newer

428 Precondition
Required

The origin server requires the request to be
conditional. Intended to prevent "the 'lost update'
problem, where a client GETs a resource's state,
modifies it, and PUTs it back to the server, when
meanwhile a third party has modified the state on the
server, leading to a conflict."

HTTP/1.1 and newer

429 Too Many
Requests

The user has sent too many requests in a given
amount of time ("rate limiting").

HTTP/1.1 and newer

431 Request Header
Fields Too Large

The server is unwilling to process the request because
its header fields are too large. The request MAY be
resubmitted after reducing the size of the request
header fields.

HTTP/1.1 and newer

Server error responses

500
Internal Server
Error

The server has encountered a situation it doesn't
know how to handle. HTTP/0.9 and later

501 Not
Implemented

The request method is not supported by the server
and cannot be handled. The only methods that
servers are required to support (and therefore that
must not return this code) are GET and HEAD.

HTTP/0.9 and later

502 Bad Gateway
This error response means that the server, while
working as a gateway to get a response needed to
handle the request, got an invalid response.

HTTP/0.9 and later

503
Service
Unavailable

The server is not ready to handle the request.
Common causes are a server that is down for
maintenance or that is overloaded. Note that together
with this response, a user-friendly page explaining the
problem should be sent. This responses should be
used for temporary conditions and the Retry-
After: HTTP header should, if possible, contain the
estimated time before the recovery of the service. The
webmaster must also take care about the caching-
related headers that are sent along with this response,
as these temporary condition responses should
usually not be cached.

HTTP/0.9 and later

504
Gateway
Timeout

This error response is given when the server is acting
as a gateway and cannot get a response in time. HTTP/1.1 only

505
HTTP Version
Not Supported

The HTTP version used in the request is not supported
by the server. HTTP/1.1 only

506 Variant Also
Negotiates

The server has an internal configuration error:
transparent content negotiation for the request
results in a circular reference.

HTTP/1.1

507
Variant Also
Negotiates

The server has an internal configuration error: the
chosen variant resource is configured to engage in
transparent content negotiation itself, and is therefore
not a proper end point in the negotiation process.

HTTP/1.1

511 Network
Authentication

The 511 status code indicates that the client needs to
authenticate to gain network access.

HTTP/1.1

https://tools.ietf.org/html/rfc7230#section-6.7
https://tools.ietf.org/html/rfc7230#section-6.7

Status
code

Status text Description HTTP version

Required

Taula de serveis Web1 definits al servidor.

1 Endpoints (serveis web)

Serveis Web d'usuari User/
/user/list?q={}
/user/listall
/user/:user_id
/user/del

Serveis Web de jocs /game
/game/list?q={}
/game/listall
/game/:game
/game/:game/like
/game/:game/unlike
/games/del

Detall

user/

URL: /user
METHOD: POST
PARAMS: name required

login required

Object: Adds a new user in the system

Info stru

Info Out: None.

Info Saved: var user = {
login: req.body.login,
name: req.body.name,
created_at: now,
updated_at: now,
status: 1

}

/user/list?q={}

URL: /user/list?q={ JSON query }
METHOD: GET
PARAMS: { JSON MongoDB query } optional

Object: List users under a free condition
* if no parameter passed, all users are listed
* the 'q' query must be a valid JSON query condition in MongoBD format

Llista de usuaris sota una condició parametritzable
* Si no hi ha cap paràmetre, es retornen tots els usuaris del sistema
* La consulta 'q' ha de ser una cadena JSON per filtratges segons la sintaxi de
MongoDB

Info stru:

info Out: A MongoDB cursor containing list of users.
Un cursor de MongoDB que conté la col·lecció de registres demanda.

/user/listall

URL: /user/listall
METHOD: GET
PARAMS: No parameters

Object: List users ALL the users in the system
* No parameters needed

Llista tots els usuaris del sistema
* No necessita cap paràmetre

Info stru:

info Out: A MongoDB cursor containing list of users.
Un cursor de MongoDB que conté la col·lecció de registres demanda.

/user/:user

URL: /user/user
METHOD: GET
PARAMS: user

Object: List info of ONE user (by Id of the user)
* user_id : id of the user in the system

Llista UN usuari del sistema
* user: la Id del usuari requerit

Info stru:

info Out: A MongoDB cursor containing info of the required user
Un cursor de MongoDB que conté la informació del registre demanda.

/user/del

URL: /user/del
METHOD: POST
PARAMS: user_id The Id of the user

Object: Deletes the user from the system
IN FACT , just changes the status value into '3' , deleted!

* Sets status = 3 , (meaning DELETED)

Esborra un usuari del sistema. De fet, simplement estableix el camp ststus a '3'
per indicar que el usuari esta 'esborrat'

* user_id: identificador del usuari

Info stru:

info Out: No Out

/game

URL: /game
METHOD: POST
PARAMS: name required

owner_id required

Object: Adds a new game in the system

Info stru

Info Out: None.

Info Saved: var game = {
name: req.body.name,
owner: req.body.owner_id,
status: 1,
nlikes: 0,
created_at: now,
updated_at: now

}

/game/list?q={}

URL: /games/list?q={ JSON query }
METHOD: GET
PARAMS: { JSON MongoDB query } optional

Object: List games under a free condition
* if no parameter passed, all games are listed
* the 'q' query must be a valid JSON query condition in MongoBD format

Llista de jocs sota una condició parametritzable
* Si no hi ha cap paràmetre, es retornen tots els jocs del sistema
* La consulta 'q' ha de ser una cadena JSON per filtratges segons la sintaxi de
MongoDB

Info stru:

info Out: A MongoDB cursor containing list of games.
Un cursor de MongoDB que conté la col·lecció de registres demanda.

/game/listall

URL: /games/listall
METHOD: GET
PARAMS: No parameters

Object: List games ALL the games in the system
* No parameters needed

Llista tots els jocs del sistema
* No necessita cap paràmetre

Info stru:

info Out: A MongoDB cursor containing list of games.
Un cursor de MongoDB que conté la col·lecció de registres demanda.

/game/:game

URL: /games/:game
METHOD: GET
PARAMS: game (id)

Object: List info of ONE game (by Id of the Game)
* game (id) : id of the Game in the system

Llista UN joc del sistema
* game (id): la Id del Joc requerit

Info stru:

info Out: A MongoDB cursor containing info of the required game
Un cursor de MongoDB que conté la informació del registre demanda.

/game/:game/like

URL: /games/like
METHOD: POST
PARAMS: name The name of the game

Object: Stores additional info of user_id and date/time

* adds 1 to the nlike counter of the game , identified by game_id
* additinal info of user and date/time when the 'nlike' is added

Incrementa el comptador nlike del joc identificat pel seu nom
* name: nom del joc en el sistema
* grava informació del l'usuari i la data i hora en que s'ha produït el like,
sempre que no repeteixi el like sobre el mateix joc; en aquest darrer cas no
actua.

Info stru:

info Out: No Out

/game/:game/unlike

URL: /games/unlike
METHOD: POST
PARAMS: game The Id of the game

user The user who un-likes the program

Object: decreases by one the nlikes countes
 Stores additional info of user_id and date/time

* adds 1 to the nlike counter of the game , identified by game_id
* additinal info of user and date/time when the 'nlike' is added

Decrementa el comptador nlike del joc identificat pel Id
* game (id): identificador del joc
* user (id) : identificador de l'usuari que marca el 'nlike'
* esborra del sistema la informació del like de l'usuari, si previamenta havia
marca el joc amb like, si no, no realitza cap acció.

Info stru:

info Out: No Out

/games/del

URL: /games/del
METHOD: POST
PARAMS: game_id The Id of the game

Object: Deletes the game from the system
IN FACT , just changes the status value into '3' , deleted!

* Sets status = 3 , (meaning DELETED)

Esborra un joc del sistema. De fet, simplement estableix el camp ststus a '3' per
indicar que el joc esta 'esborrat'

* game_id: identificador del joc

Info stru:

info Out: No Out

	Detall
	Annexes
	Taula HTTP response codes
	Taula de serveis Web definits al servidor.
	

	user/
	/user/list?q={}
	/user/listall
	/user/:user
	/user/del
	/game
	/game/list?q={}
	/game/listall
	/game/:game
	/game/:game/like
	/game/:game/unlike
	/games/del

