From the Turtle to the Beetle

The Beetle Blocks programming environment

Bernat Romagosa
Arduino.org
Via Romano, 12
10010 Scarmagno (TO)
Italy
bernat@arduino.org

ABSTRACT

Beetle Blocks is a visual, blocks-based programming lan-
guage/environment for 3D design and fabrication, imple-
mented on top of Berkeley Snap!/ and the ThreeJS 3D graph-
ics library. Beetle Blocks programs move a graphical beetle
around a 3D world, where it can place 3D shapes, extrude its
path as a tube and generate geometry in other ways. The
resulting 3D geometry can be exported as a 3D-printable
file. Beetle Blocks also aims to offer a cloud system and so-
cial platform meant to provide the community with ways to
interact and learn from each other. Beetle Blocks was pre-
viously implemented as a Scratch extension, and migrated
into Snap! in 2014. We explain how the project has evolved
since this migration, and in particular how the advanced
programming features it inherited from Snap/ shaped the
kind of designs that are now possible with the new system.

CCS Concepts

eSocial and professional topics — Computing edu-
cation; eSoftware and its engineering — Visual lan-
guages; eComputing methodologies — Shape model-
ing; eApplied computing — Interactive learning envi-
ronments; eHuman-centered computing — Social net-
works;

Keywords

Visual programming; blocks-based programming; construc-
tionism; 3D printing; educational programming;

1. INTRODUCTION

Since the early years of computing, programming has been
thought to help develop analytical thinking, decision mak-
ing, acquisition of mathematical concepts and problem solv-
ing abilities, among other skills. However, programming lan-
guages are built by people who are already very proficient
at computer programming, and for this reason they tend to

©00]

This work is licensed under the Creative Commons Attribution-ShareAlike
4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Com-
mons, PO Box 1866, Mountain View, CA 94042, USA.

(© 2016 Copyright held by the owner/author(s).

Eric Rosenbaum
Google Creative Lab
76 Ninth Avenue, 4F
New York, NY 10011

_ USA .
eric.rosenbaum@gmail.com

Duks Koschitz
Pratt Institute
200 Willoughby Avenue
Brooklyn, NY 11205

USA
duks@pratt.edu

present several learning barriers that make them unsuitable
for beginners and people with no technological background,
thus making it very hard to study the hypotheses that link
programming to the acquisition of these abilities.

There have been numerous attempts at building languages
that aim to overcome these barriers, but our main focus is
in the approach started by Seymour Papert with LOGO[18].
With this language, Papert opened the path to several other
languages that built on his constructionist principles, such
as Smalltalk[12], Etoys[13] or Scratch[9]. The latter has
become the de-facto standard of educational programming
languages and, with more than 12 million users worldwide,
Scratch has made dynamic, parallel, live programming avail-
able to all by means of a visual metaphor inspired by build-
ing blocks. Scratch has also paved the way for several new
blocks-based languages, such as Snap![5], a complete reim-
plementation of Scratch aimed at bringing powerful compu-
tational ideas into the world of visual drag-and-drop pro-
gramming.

Beetle Blocks is part of this constructionist line of lan-
guages and, by being built on top of Snap/, it inherits its
advanced programming features[6], such as closures, first
class lists or continuations. However, Snap/ still lags be-
hind Scratch in its lack of a social platform and community
management tools. The future new cloud system and project
sharing social site for Beetle Blocks aim to overcome these
shortcomings and provide the user community with a set of
tools with which they can learn from each other’s projects
and both share their creations and discover the creations
of others. Eventually, the system can easily be adapted to
work with Snap/ in benefit of its much larger user base.

In Beetle Blocks, the LOGO turtle becomes a beetle that
moves around a three-dimensional world and, instead of be-
ing programmed in a textual fashion, it embraces the dy-
namic, live, parallel blocks-based programming paradigm
made popular by Scratch. This mixture of programming
and computer-generated graphics aims to bring closer the
worlds of computation, art, 3D design and the maker move-
ment in both directions: by allowing to approach the more
artistic side of the environment from a computational point
of view, and by allowing to approach the world of program-
ming from an artistic point of view.

2. RELATED AND PRIOR WORK
2.1 Brief History of Beetle Blocks

The early origin of Beetle Blocks traces back to a couple of

side projects by Eric Rosenbaum dating between 2005 and
2008, in which he explored L-Systems and 3D turtle geom-
etry in different ways. In one of these projects, Scratch for
Second Life[20], one could build scripts in Scratch and trans-
late them automatically into text-based snippets that could
be later ran by a three-dimensional object in the Second Life
virtual world. These objects had the capability of leaving
line segments behind them in a similar fashion to what we
currently call extrusions in the Beetle Blocks system.

The actual project in its current vein was started around
2010 at MIT by Duks Koschitz and Eric Rosenbaum, and
was inspired in Rosenbaum’s early projects, the Design-

blocks[3] project, by Evelyn Eastmond, and StarLogo TNGJ[16],

by Mitchel Resnik et al. Beetle Blocks began as a possi-
ble doctorate path for Duks Koschitz, who was interested
in making programming accessible to designers, with early
prototypes being built in Flash, Paperspace and Processing.
The latest prototype was built as a Scratch 2.0 extension and
presented in a co-authored paper at the ICGG conference in
Montreal in 2012[17].

Towards the end of 2013, Jens Monig and Bernat Ro-
magosa joined the project and began porting it to Snap/,
with Romagosa becoming its main developer soon after the
initial port had been concluded.

Shura Chechel, an undergraduate architecture student and
research assistant for Duks Koschitz, has been helping in the
graphic design of the user interface and social platform since
July 2015.

2.2 Similar Projects

There are several other systems that accomplish similar
purposes in that they allow users to create three-dimensional

models programmatically. Environments such as OpenSCAD][15]

or OpenJSCADJ10] are also aimed at generating 3D ge-
ometries in a programmatic fashion, but differ from Beetle
Blocks in three fundamental points: they are text-based,
they do not embrace turtle geometry and they are non-
interactive, in the sense that the whole program must be
ran at once and cannot be modified live at runtime.

In contrast, there have been many 3D turtle geometry
environments and even 3D LOGO implementations in the
past[19][23]. These are generally also text-based and, al-
though they are interactive in the sense that individual in-
structions can be ran arbitrarily at any time, they do not
allow for real-time modification of running scripts.

BlocksCADJ11] is a blocks-based environment that, in ap-
pearance, is very similar to Beetle Blocks. However, it does
not provide a turtle graphics metaphor and is also non-
interactive. In fact, BlocksCAD and other Blockly-based en-
vironments are not actual languages[4], but graphical repre-
sentations of an underlying textual language. In that sense,
one could argue that these are just very visually advanced
syntax highlighters. They do offer many of the advantages of
blocks-based languages, such as removing the need to mem-
orize instructions or making syntax errors impossible, but
they lack the constructionist capabilities of exploration of-
fered by a live, real-time system. In comparison, languages
like Scratch or Snap! -and, thus, Beetle Blocks- do not
translate blocks into text, but instead directly read them
and interpret them live inside their environment[9].

Antimony|[14] is a system that presents itself as a Lisp-
evolved CAD tool, embracing a different visual metaphor
based in flowcharts. This environment is both visual and

real-time, and it does offer 3D modeling features that are
far more powerful than the ones present in Beetle Blocks,
such as revolution solids or proper constructive solid ge-
ometry (CSG) operations. The main conceptual differences
between Antimony and Beetle Blocks lay in their different
approaches to modeling. In Antimony, the user sequences
inputs and outputs instead of building computer programs,
and is also allowed to modify shapes via direct manipulation,
as opposed to the Beetle Blocks idea of static geometry only
modifiable by algorithmic means. Lastly, Antimony does
not provide first-person-like turtle geometry operations.
Another Snap! modification that tackles 3D computer
graphics is CSnapl[8], by the Renssaeler Polytechnic Insti-
tute. CSnap features 3D sprites and allows for generation
of 3D shapes, albeit also not in a turtle-graphics manner.

3. THE SNAP! FOOTPRINT

Switching to Snap/ has provided Beetle Blocks with a
wide range of advanced programming features, shaping both
the way users can construct their geometries and the kind
of geometries the system can produce.

The following subsections are dedicated to showing par-
ticular applications of these features in Beetle Blocks.

3.1 Custom Blocks

Functions are the natural way in which programmers ab-
stract complexity. In Snap/, functions come in the shape
of custom blocks that users can create at their own will to
extend the standard library of the language.

In workshops aimed at children aged 15 and younger, we
noticed most students faced difficulties in grasping the con-
cept of moving the beetle along its three local axis, but they
did easily understand what it meant to move an object rel-
ative to the six faces of its imaginary bounding box. Simi-
larly, it was hard for them to understand what rotating an
object around its local three axes meant, whereas they had
no problem understanding it when we rephrased our expla-
nations in terms of rolling left and right, and turning up,
down, left and right.

The possibility of creating custom blocks allows us to
adapt the system to circumstances like these by building
a special library that moves the beetle around in a way that
feels more natural to children.

walk 9 steps jorward

turn degrees right

s forward
right backwards
up
up
down down
left
right

roll degrees |z

Figure 1: Simplified first person movement library

However, custom procedures are not only useful for teach-
ers to adapt the system to the needs of their students. Being
able to abstract complex operations in a three-dimensional
environment is especially important, as building 3D geome-
tries usually takes a substantial amount of individual in-
structions that would otherwise clutter our work space, mak-

ing it very hard to understand, debug and extend our pro-
grams.

Take, for instance, the script that instructs the beetle to
build a ring of 24 spheres shown in figure 2. Once we have
understood how relative movement works and how many
times we need to rotate a particular amount of degrees to
complete a full circle, it is in our best interest to abstract
this process so that we can reuse it later on.

repeat
move &P

rotate ;

sphere Dia. @

Figure 2: A script that builds a ring, and the result
of running it

Abstracting this script into a custom block not only un-
clutters our workspace, but also serves as a perfect opportu-
nity to think of possible parameters that will make it useful
for different cases. In the case of figure 3, we added a param-
eter to our new block that lets users customize the number
of spheres of a ring.

ring of amount # spheres

repeat amount
move EP

rotate =

by &P / amount
sphere Dia.

ring of ELP spheres

Figure 3: Definition of a custom block for building
rings, and an instance of the new block

3.2 First Class Procedures

The ring generator example makes for an interesting exer-
cise that many languages, especially educational ones, would
be forced to solve only partially and in a not very elegant
way:

How could we generalize the definition of our cus-
tom block so that it can be used to generate any
shape we want?

In traditional imperative languages, one can only solve
this problem by enumerating a predefined list of possible
shapes, like figure 4 shows.

ring of amount # shape

ra:ueat amount

by EZP / amount

rotate =

Figure 4: An imperative language approach to gen-
eralizing behavior

Although this certainly gives our new block the power to
generate different shapes, we are going to need to modify this
definition every time we want to add a new case, along with
remembering the name we have given to it. Languages with
first class procedures solve this by simply allowing functions
as regular parameters. We can thus redo our generalized
ring generator as displayed in figure 5.

ring of amount # shape A

ra:re.at amount

move §P

rotate =

by J/ amount

run shape

cube Dim. P

Figure 5: A custom block taking a procedure as an
argument, plus an example of the block being used
to generate a ring of 30 cubes

Snap!’s visual metaphor helps us easily understand that
we are parametrizing entire scripts, not just individual shapes,

allowing us to create rings of shapes as complex as we wish.

ring of

change hus

by
i sphere Dia. P
[rotate - by @D
ituhe Ik outer: P inner: P
I rotate - by @@

Figure 6: A ring of colorful spheres connected by
tubes

3.3 Recursion

Although first class procedures are not at all indispens-
able for recursion, they certainly help recursion show up
naturally. A very likely next step for curious programmers
is to embed this ring generator inside another one and see
what happens. After adding a new parameter to our block
to control spacing between ring steps, we can now generate
rings of rings in a very natural way.

ring of @D steps spaced &P steps
| ring of @D steps spaced EFP steps
| sphere Dia. @FP

| change hue by @B

Figure 7: A recursive ring of depth 1, built by em-
bedding a ring generator inside another one

The example in figure 7 shows a first class function being
passed as a parameter of itself and how this results in a
recursive 3D geometry. The circular pattern repeats itself
in a way that resembles what we see when looking at a fractal
shape. Fractals are, however, infinitely repeating structures,
whereas our ring of rings only repeats itself once.

When drawing fractals we always need to make a compro-
mise between the definition of the term and what is tech-
nically feasible. Drawing an infinite structure would take
infinite time, and since our screens have a finite number of
pixels, it makes no sense to keep on calculating beyond what
we can represent with them. That is why, when defining a
fractal shape generator, we always implement a base case
for which our procedure will stop drawing deeper.

Having real procedures allows us to call a block from inside
itself in a recursive manner, so that we can abstract the
process shown in figure 7 by parametrizing how many times
the procedure is going to be embedded in itself.

Figure 8 shows a generalized ring of rings that lets us
choose how many levels of recursion we want the beetle to
draw, keeping the amount of steps constant through depth
levels, and reducing the space between each step by a factor
of half the number of steps at each depth level.

One advantage of working with a dynamic and graphi-
cal environment is that it makes it easy to experiment with
code and see the results of our tinkering in real time. Often,

level depth # ring of rings of amount #
shape A

steps spaced
space #
repeat amount
move space
rotate = by (EZP / amount
it depth =[]
level depth — @) ring of rings of amount steps spaced
space / amount / {EP shape

else

| run shape

level @D ring of rings of FP steps spaced ETP
cube Dim. XD

Figure 8: An implementation of a recursive ring of
arbitrary depth, along with an example of generat-
ing a depth-3 ring of cubes

this can give us hints of properties of code that would have
otherwise been very hard to notice, like how we can gen-
erate a Koch snowflake fractal by defining it as a recursive
6-stepped ring.

.!.- .'*:. .*. 3t §

EE S
W i
i & Ly
* 3 ba
- £ M 0
LP%P BB

.-:*:. .:*’fa.- egf . ,-:*:.
.-:*:. .*, _J“E" -{ :.
£35p S3E
.’:*:. .i. -."*:. .i.

level @@ ring of rings of P steps spaced

|cuhe Dim.

Figure 9: A Koch snowflake emerging from a 6-
stepped recursive ring of depth 5

3.4 First Class Lists

When drawing geometries in Beetle Blocks or other turtle
geometry systems, we need to think in first person. That is:

we do not draw geometries according to formulas that define
positions of an infinite set of points in space, but rather in
terms of relative movement and rotation of a drawing head.
Drawing shapes such as polygons of definite side length and
irrelevant center becomes a trivial task in turtle geometry,
but this change of perspective can make it harder to draw
shapes such as ellipses or polygons with a definite center.

A useful application for lists of lists in a programming en-
vironment for 3D geometries is to represent points in space.
In Snap! and, thus, in Beetle Blocks, this can be done by
initializing a variable to an empty list to later fill it with new
lists containing the x, y and z components of different po-
sitions. These positions can later be retrieved by accessing
the items in our positions list, and used to set the position
of the Beetle. We can then easily abstract these operations
into custom blocks that hide their internal complexity.

Take, for instance, the seemingly easy task of drawing
a circle of a definite radius centered at a particular point
in space. We know, from having built the ring code, that
drawing circumferences in turtle geometry is just a matter of
turning a particular amount of degrees and moving forward
until we complete a full circle, but centering a circle built
in that way and defining its exact radius entails non trivial
trigonometric calculations.

A promising approach is to move the beetle to the center
of the circle we want to draw, then have it move as many
steps as the radius of the circle, go back to the center, rotate
a particular amount of degrees and repeat until the whole
circle is closed. Indeed, this would work for drawing rings
of spheres or cubes, like we have done before, but not if we
wanted to extrude our path in a circular way, as figure 10
shows.

start extruding ines
repeat &P
move P

move &P

rotate :

stop extruding

Figure 10: Failed attempt at drawing a radius 5 cir-
cle centered at origin

The process of searching for points in a radial way requires
us to jump back and forth to the center between each point
in the perimeter. Movement does not happen between each
point, but between each point and the center. In cases like
this, we can always first take the beetle to all positions in
the circle and store them in a list, then later tell the beetle
to revisit these positions one by one, as figure 11 shows.

As usual, once we have mastered the process, we could
abstract it into a new block that lets us also choose how
many control points we want our circle to have. As a side
note, it is worth noticing that we are using curved extru-
sions in order to obtain a circle. The same code using linear
extrusions would otherwise produce n-sided polygons.

Another advantage of heterogeneous first class lists is that
one can implement and convert between any data type[6] by

script variables circle points

repeat €3
ad_d current position to circle points

rotate - by

go to item of circle points
start extruding curves
for each point circle points

g: to each point

sl_op extruding

Figure 11: A radius 5 circle centered at origin,
drawn by storing coordinates in a list and revisit-
ing them later

means of them. This gives Beetle Blocks users the ability
to work with data in elegant ways by building their own
powerful abstractions. Additionally, the standard library in
Snap! allows us to deal with data as lists in several ways,
and lets us convert between text and lists by the usual split
and join mechanisms. By making use of these blocks we
could, for instance, read a point cloud ASCII data file, split
it by lines to obtain coordinates, and split those by spaces
to obtain each individual component. Telling the beetle to
visit each one of these points and drop a solid would then
result in the point cloud geometry showing up in our scene.

set points to list

LCLC T RN Bl ocalhos tB0B0/British_Museum.ascill A line v |

go to split each line by B
sphere Dia.)

Figure 12: BM Egyptian Antiquities #114 sculp-
ture, read from a locally hosted point cloud file [7]
and reconstructed in 51,096 spheres

3.5 The JavaScript Interface

Snap!/ is implemented in JavaScript, but that does not
mean it translates blocks into JavaScript. In the same way

a Lua interpreter is written in C but does not translate Lua
programs into C, Snap/ has its own evaluator and runtime
environment, and executes instructions in Snap! itself.

However, in the same way that Lua lets programmers
write inline C straight into Lua source code, Snap! has a
JavaScript interface that lets us extend the language beyond
what is possible with the standard library.

This opens up a wide range of possibilities, from building
simple blocks that open a website in a new browser tab (fig.
13), to adding new shape generators (fig. 14) or even im-
porting full JavaScript libraries and abstracting them into
higher order blocks.

open new tab with URL http:// URL

run
JavaScript function { [
with inputs 'URL

AR @window. open{ 'http://' + url, ' blank'}; [

open new tab with URL http://

Figure 13: Definition and instance of a block that
opens a website in a new browser tab.

wedge I: length # w: width # h: height #

ran

JavaScript function (=

triangleshape. LineTo(0, 0}

var ry = new THREE.Extr
triangleShape,
{ amount: length,
Steps: Math.abs(length),
bevelEnabled: false});

var mesh = new THREE this.beetl 1al());
eesh-position. copy{this beetle. positiont:

72);
mesh . rotation. copy{this.beetle, rotation);

this.parentThatIsA(StageMarph} .myQbjects. add(mesh);
this.parentThatTsA{StaaeMorph) . reRender();

with inputs length width height

wedge I: @ w: €D h:

Figure 14: A wedge generator implemented in plain
JavaScript

Although Beetle Blocks was designed with 3D fabrication
in mind, being built on top of a dynamic, live and concur-
rent environment allows for different approaches to the sys-
tem. Even more so given that we can access the underlying
JavaScript runtime.

Beetle Blocks makes use of Three.js for all of its 3D-related
operations, but builds a very high level interface on top of
it so that users do not have to worry about cameras, fields
of view, vertices, faces, textures, lighting or clipping planes.
Nevertheless, the JavaScript interface opens a window for
curious hackers to abuse the system by directly accessing
these hidden Three.js objects, modifying their properties
and making use of their methods. One could, for instance,
make a block that sets the camera position and rotation to
be right behind the beetle, then run this block continuously
and build a script that lets us move the beetle by means
of our mouse and keyboard. Pressing the space key, for
example, could toggle between extruding our path or not,
thereby allowing us to free draw in space by mimicking the
way characters are driven in 3D video games.

Hacking the system in such ways pushes the limits of what
is possible in Beetle Blocks, and it lets us produce shapes

when " elicked
follow beetle in perspective person

i keyu pressed?

move walk speed

JavaSeript function ()

i key: pressed?

move @ - walk speed

it key : pressed?
rotate = by @D
move walk speed

rotate = by @D

i key . pressed?
rotate = by @D
move walk speed

rotate = by @3

when sooco key pressed

set aundng? to mot extruding?

i extruding?
start extruding curves
else

stop extruding

Figure 15: Program that lets us draw free shapes
by moving the beetle by means of mouse and key-
board (a), definition of the beetle camera follower
(b) and views of an extrusion being drawn (c) and
the resulting final shape (d).

that would otherwise be unthinkable in the standard way
of generating geometries by composing scripts. One could
even go further by storing all these positions and commands
into a list that could later be revisited to regenerate our free
drawn shapes.

3.6 Input Sliders

One of the key differences between languages in the Scratch
family and other block-based systems lies in their emphasis
on interactivity. Scratch and Snap/, very much in the line of
Smalltalk systems, are implemented as full live runtime en-
vironments where the language is embedded, whereas other
systems like Blockly are built exactly the other way around.
This approach allows Snap! to implement widgets such as
live input sliders inspired by the real time widgets Bret Vic-
tor makes use of in his interactive demos[22].

In Beetle Blocks, this feature inherited from Snap!/ has
become one of the key tools for live coding and, especially,
for finding appropriate parameter values for geometries by
trial and error.

Live input sliders execute the script they belong to as we
slide their handles around, hence making for a very graphical
and interactive way of grasping what kind of results we can
obtain from different values, and what these numbers mean
in the context of our particular scripts. Moving a slider that
controls the amount of iterations in a repeat block can give
us hints on what the program is doing at each step, and
playing with the rotation of a particular axis in real time
can help us find out whether it is the z, y or z axis the one
that is controlling how wide a shape becomes.

In the ring generator block we created before, it may not
be clear at first sight that the amount of steps is what con-
trols the radius of the ring, or how different a ring may
look when we make the spheres that compose it bigger or
smaller. In non-live languages, playing with these values
would mean having to either recompile or rerun the whole
program, whereas in live languages we would just have to
rerun a small code snippet.

Live input sliders go one step further and make for a more
interactive experience, allowing us to see the result of run-
ning a script for different parameter values without even
having to type numbers into input slots and restart their
scripts.

rIﬁg of steps spaced €D
El;nere Dia.

reset
ring of steps spaced

reset
ring of @ steps spaced

Figure 16: Playing with live input sliders to under-
stand how different diameters for spheres in the ring
generator affect the resulting shape (top, middle)
and how the amount of steps modifies the radius of
the ring (bottom).

4. KEY DIFFERENCES TO SNAP!

Although Beetle Blocks is built by reusing a lot of the
Snap! environment, it presents several substantial differ-
ences. We explain the rationale behind these omissions and
modifications.

4.1 A Single Beetle

Snap/ takes from Scratch the idea of building worlds
out of multiple programmable objects called sprites. These
objects can interact with each other according to several
events, including global messages that can be intercepted by
any object. All these sprites share a common space called
Stage that is also programmable. This, added to the fact
that sprites and stage can take on multiple appearances,
makes these environments perfect for building several types
of projects, ranging from animations and interactive stories
to games and simulations.

The idea behind Beetle Blocks was not to add 3D capabil-
ities to Snap/, but to create an environment with one single
purpose focused on generating three-dimensional geometries
by programming, and for this reason it did not make much
sense to inherit the concept of multiple beetles with different
appearances that would interact with each other.

Another reason for keeping Beetle Blocks simple by featur-
ing a single programmable object was the fact that adding a
third dimension to the Snap/ world had increased the com-
plexity of moving objects in space and having them generate

shapes.

Allowing the beetle to change appearances did not make
sense to the purpose of the system either. Beetle Blocks pro-
grams always have the very definite objective of generating
shapes, and the fact that the shape builder takes the appear-
ance of a beetle is irrelevant to this objective in the same
way that the triangular turtle shape is superfluous in the
graphical versions of LOGO. The shape of sprites in Scratch
and Snap! is part of the result of the program, whereas the
shape of the beetle object in Beetle Blocks is just a helper
that graphically shows us the state and position in space of
a programmable shape generator.

Besides supporting multiple programmable objects, both
Scratch and Snap! also give users the possibility of cloning
these objects. Cloned objects keep on doing what their orig-
inal instances were doing at the time of duplication, and can
be given extra behavior upon creation by means of special
When I start as a clone hat blocks.

Since Beetle Blocks was to be a single object environment,
we considered it did not make sense to keep any of the clone-
related features either, although being able to clone the bee-
tle would allow Beetle Blocks to tackle recursivity in an ad-
ditional and entirely different way by delegating behavior to
clones, as one can do in Snap! (fig. 17).

It is not clear whether this approach to recursion presents
any educational or computational advantages to the one pre-
sented in section 3.3, which is why we may decide to include
it in future releases and study what users make out of it.

P change iovel by @&
pen down level > E
set jovel to

. move EIP steps
et (I tien b @D degrees -

create a clone of mysal ™

turn (* @& degrees

create a clone of mysall *

delete this clone

Figure 17: A recursive tree drawn in Snap!/ by del-
egating behavior to clones.

Although we have removed the ability of objects to switch
appearances, we are considering to, in the near future, pro-
vide the system with a way to import static images and 3D
objects that can serve as references around which geometries
can be built. This way one could, for instance, import the
3D scan of a cell phone and design a cover around it without
having to take measurements in the real world. One could
also import the 2D blueprints of an object and bring its
design to completion by using them as reference drawings.

4.2 User Interface

In the aim of building a bridge between programming and
3D design, we have modified the Snap! graphical user inter-
face to try to fit users of both worlds. These modifications
have been done in a gradual way and often according to
suggestions made by students of the Design & Computation
course by Duks Koschitz at the Pratt Institute. During the
fall of 2014 and spring of 2015, students in this course have
also been our main testers, providing us with comments on
our design decisions and ideas.

The first quick port of Beetle Blocks to Snap! was based
on the Scratch extension prototype by Eric Rosenbaum. It
added a Three.js canvas into the stage, along with a new cat-
egory where all new blocks resided (figure 18, top). Scratch
extensions are built in JavaScript, which made porting it
into Snap/ an easy task.

R & & = untitled " 7 M~ [

Sprte.

>
Seripts
> 7
>
stststst
Stano
RIS B & # w0 untitled " s ~ ®
\\
...
Position: 0,0,0 Color: [N
Rotation: 0,0,0 HSL: 30, 50, 50
Scale: 1(100%) Opacity: 100%
BeetieBlocks My 4t~ untitled oy NEN NE M~ L]
Z
v
Sl
X
.......... Wirsframe # Bestie
T Paraliol projection # axes
Turba mode % ora
change scale b
otton x.0 Retton 0 seaes 1 (100%)
[scalc J ¥:0 5

z0

HSL: 180, 50, 50 I Opacity: 100%

Figure 18: Evolution of the Beetle Blocks interface.
Top to bottom: November 2014, April 2015 and
June 2016.

In the early versions, we added a new camera menu at the
top bar that held functions related to the 3D viewport, such

as resetting the camera position, changing the background
color, or configuring the properties of a helper grid.

The next items to be redesigned would be the block cat-
egories and their corresponding block palettes. All blocks
and categories that had to do with sprites or media were
removed, whereas blocks related to programming constructs
and computer interaction were kept in their original cat-
egories. All blocks in the old Beetleblocks category were
spread out across multiple categories according to their func-
tions.

We then began to eliminate all components superfluous to
the Beetle Blocks idea of a single object world. We decided
to remove everything in the central part of the interface to
give more room to the scripting area, where programs are
built. The bottom part of the stage, originally dedicated
to managing the stage and sprites, was also removed com-
pletely, which resulted in a new empty space where we even-
tually decided to add controls for view-related functions and
beetle state monitoring (figure 18, middle).

In the current interface (figure 18, bottom) we have re-
designed the space below the stage by turning all buttons
into checkboxes and organizing the beetle state monitor into
more meaningful sections. With the objective of making all
options easy to find and not spread among too many loca-
tions, the camera and cloud menus at the top bar have also
been removed, and their options have either been reassigned
to the other two menus at the top bar or turned into check-
boxes below the stage. The original Snap/ menus at the top
bar are very crowded with options and functionalities that
Beetle Blocks does not need because of its much narrower
domain, which gave us the opportunity to compress the rest
of the menu items while still keeping them short and concise.

The block color schema has gone through many iterations
along the redesign process, and is in fact still under active
discussion, as colors cannot represent concepts such as move-
ment or program flow control. The Snap/ color schema is
inherited from the one Scratch uses, and was designed to
be attractive to children and bear enough differences be-
tween blocks belonging to different categories to help users
find them easily[9]. In Beetle Blocks, our target audience is
considerably older than in Scratch, which is why we settled
for less saturated colors. We chose to keep their hues close
to the originals in categories that Beetle Blocks shares with
Scratch and Snap/, as many of our users come from these
two communities and are already accustomed to these.

It is worth noting that the first beetle had the shape of
a cone as a nod to the triangle that represented the LOGO
turtle[21], but being a revolution solid, a cone stays the same
when rotated around its z axis, and for this reason we de-
cided to turn it into an actual beetle.

Future evolutions of the interface may feature stateful
icons instead of labeled checkboxes in the area below the
stage. Once the social platform is released, we will have to
design new components and redesign some of the existing
ones.

S. SOCIAL PLATFORM

Snap!/ has a cloud system that allows users to save and re-
trieve projects, where one can also mark a project as public
and obtain a URL to share it with others. In the Snap! com-
munity, users send projects to each other by means of email
or social networks, but there is no central project repository
or meeting hub that gathers all users and projects together.

As a Snap!/ derivative, Beetle Blocks has benefited from
the Snap/ cloud system since the beginning of 2015, when it
was made available to forks and modifications. This system
has proven very useful to us, but its lack of API calls to
retrieve lists of users and their public projects, along with
the necessary infrastructure to allow users to like and com-
ment on projects, makes it unsuitable for building a social
platform around it.

5.1 Node.js Prototype

When faced with the perspective of having to build an
entire new system, we decided to begin by implementing an
intermediate solution that reused what the Snap! cloud was
already offering and just added the missing features for the
social platform to be feasible.

The Snap! cloud offers an HTTP API that exposes some
functionality to the outside, but it does not have any end-
points to access projects that users mark as public unless we
already know the project name and user name, or unless we
have access to credentials of said user. There is no way to
know the name of all public projects by a user unless we are
that user.

Snap!/ is free software licensed under the Affero GNU
Public License v3, but its cloud is a proprietary system.
This meant that we could not add functionality to its API,
so we had to envision a way to work around its shortcomings.
The solution we settled on was to modify the Beetle Blocks
interface to the cloud so that each time a user chose to share
a project it would also send a request to a different API of
ours. This request would contain the user name, project
thumbnail, project name and public URL.

With this information, we had everything we needed to
build a showcase site for Beetle Blocks, and although this
approach would not give us information on previously cre-
ated and shared projects, we would at least be able to start
collecting projects that our users were sharing from then on
and gauge the size of our growing community.

This first prototype (figure 19) was quickly sketched in the
Express web framework for Node.js. We designed a simple
API that exposed a few API endpoints and stored data into
a PostgreSQL database. The amount of data we needed to
handle was minimal, as the bulk of it was still being dealt
with by the Snap/ cloud system.

Even though the system worked, it was still just a project
showcase and very far from a social platform. It was clear
that we needed a bigger infrastructure that let users like and
comment on projects, allowed them to fork projects created
by others and was designed from the beginning to be shared
by both the social platform and the Beetle Blocks editor,
so that users could jump back and forth between the two
without the need of additional credentials.

We thereby decided to implement a free cloud system from
scratch that would fit our needs and, potentially, also the
needs of other projects such as Snap!/ itself.

5.2 The Beetle Cloud

When faced with the task of designing a project sharing
social site for our community, we took inspiration from the
Scratch website[1][2]. Beetle Blocks belongs to the same
family of languages as Scratch, and so the ideas behind its
sharing site mostly apply to our case as well. Additionally,
the Scratch site is a huge project that has been being used by
millions of users around the world for several years, having

Users with shared projects

18hennessyb (1 projects)
aganesh (1 projects)

allish1018 (1 projects)

Arnie (1 projects)

bromagosa (34 projects)

Bubba (1 projects)
courtneypeterson16 (1 projects)
crstory3457 (1 projects)

descomp (2 projects) = £
eileenaking (3 projects) -

Elijah Ager Luckett (1 projects)

ericrosenbizzle (15 projects)

erithom (2 projects) &

francesg (1 projects)
leemartind2 (1 projects)
schillacesofial8 (1 projects)

grillenberger (1 projects) 3D sierpinsky archimedes screw asteroid and fireba 8 generator
mpdtpe (1 projects)
shura (30 projects)

Earth mapper edutec floating cube FPS

Projects by bromagosa

bb cross fractal

jens (7 projects)
rabosakaki (1 projects) bb sierpinsky big bang spaghetti big bang spaghetti... big bang spaghetti.. bush

jogaye (1 projects)
kimchichi126 (1 projects)
rosskm (2 projects) "
ryanyee18 (1 projects) " RS S: \
|
V4 Y
cart wheel chess citilab «coral dna

haysdthprojectmake (2 projects)
mrchretien (7 projects)
slimeball06 (1 projects)

function plotter

Figure 19: The only two views of the first Beetle-
Cloud prototype, showing a list of users with public
projects and a list of projects by one of these users.
November 2015.

consequently undergone heavy public scrutiny and extensive
user experience testing.

The social platform for Beetle Blocks would essentially
need to implement some of the basic features of the Scratch
community site, namely user and project pages, lists of fea-
tured projects, lists of users, lists of public projects by each
user, ability to like, comment, and fork projects created by
others, and shared credentials with the Beetle Blocks envi-
ronment.

For the new Beetle Cloud system and its social platform,
we settled on Lapis, a dynamic lightweight server-side web
framework for Lua, a solution that made sense for our needs
given that our social site does not make heavy use of real-
time data, nor does it need instant synchronization with its
backend or vice-versa.

Explore Forum Examples Run Beetle Blocks _Join Beele Blocks Login

@ Beetle Blocks

Visual Code for 3D Design

© About & Credits # Work in progress

Beet Blocks is a graphical blocks-based By
programming environment for 3D design and o
fabrication.

um, Duks Koschitz, and Bermat Please note: Beete Biocks is alpha software,
yyyyyyy . Only the Chrome

lythe Chrome browser is
currently supported. We'd ove to hear your feature
requests and bug reporls on github,

and extrude its path as a tube. Then make a 3D print!

.

Newest Projects

“This project has been partially sponsored by the Pratt
instiute, Citiab - Cornella and Arduino.org

Run Beetle Blocks b

01 grd draving random walk nested sphere
Bysacha by oncrost

Figure 20: Landing page of the new Beetle Blocks
social web platform in the works

For storage, we decided on PostgreSQL because of its
proven scalability and the fact that the Lapis framework pro-
vides an automatic synchronization mechanism that maps

between PostgreSQL table rows and Lua tables.

The system is currently in active development and test-
ing, and we have so far already implemented the storage
backend along with its REST API, and a first version of the
social site is being built around it. We have deployed a test
version of Beetle Blocks that effectively makes use of the
new backend system and can successfully handle the same
functionalities that the original Snap!/ cloud system offered,
and a first public release of the whole system is expected to
be presented at the forthcoming Scratch@MIT conference in
August 2016.

6. SUMMARY AND CONCLUSIONS

The Beetle Blocks approach to 3D geometry by means of
real-time, dynamic, blocks-based programming is innovative
for both the world of design and the world of computation.
We have found the powerful ideas of computing in Snap/
to be a perfect match for Beetle Blocks. Snap!/ provides
straightforward abstractions for computational constructs
that have supplied Beetle Blocks with ways to produce very
intricate shapes in an elegant and natural way. Shapes such
as fractals and other recursive or repetitive structures are
examples of this.

We have found our simplification of the Snap! world into
a single-object environment to help tame the complexity of
three-dimensional spatial operations. However, we do not
rule out providing Beetle Blocks with the object-cloning ca-
pabilities found in Scratch and Snap/ in the future, as they
may bring certain benefits to tackling recursivity from a dif-
ferent perspective.

The Scratch project illustrates how important it is for
learners to be able to remix and share projects with each
other. We expect our new cloud system and social platform
to serve as a learning hub for Beetle Blocks users. The
social platform should also help us understand how our users
are building their programs and whether the abstractions
provided by Snap! and Beetle Blocks are indeed adequate
to the purpose of designing 3D objects.

7. ACKNOWLEDGMENTS

This work was partially supported by the Pratt Institute,
Citilab-Cornella and Arduino.org.

We would like to thank Jordi Delgado Pin for the counsel-
ing and academic supervision of this article. Jordi Delgado
is both a consultant and teaching collaborator at UOC, and
a senior lecturer in the computer science department at the
Barcelona Faculty of Informatics, UPC.

8. REFERENCES

[1] K. Brennan and M. Resnick. Imagining, creating,
playing, sharing, reflecting: How online community
supports young people as designers of interactive
media. In Emerging Technologies for the Classroom: A
Learning Sciences Perspective, pages 253—268.
Springer, New York, September 2013.

[2] S. Dasgupta, W. Hale, A. Monroy-Herndndez, and
B. M. Hill. Remixing as a pathway to computational
thinking. In Proceedings of the 19th ACM Conference
on Computer-Supported Cooperative Work & Social
Computing, CSCW ’16, pages 14381449, New York,
NY, USA, 2016. ACM.

[3] E. Eastmond. Designblocks.

[4] N. F. et al. Blockly: A visual programming editor,
2013.

[5] B. Harvey and J. Monig. Snap! reference manual.

[6] B. Harvey and J. Ménig. Bringing “no ceiling” to
scratch: Can one language serve kids and computer
scientists? In Constructionism Conference, Paris,
2010.

[7] INSIGHT, Cain, Martinez, and Munn. A sculpture in
the british museum (bm egyptian antiquities #114),
March 2000.

[8] R. P. Institute. Csnap.
https://community.csdt.rpi.edu/.

[9] N. R. B. S. John Maloney, Mitchel Resnick and
E. Eastmond. The scratch programming language and
environment. ACM Transactions on Computing
Education, 10(4), November 2010. Article no. 16.

[10] S. B. Z. D. E. B. G. H. Joost Nieuwenhuijse, René
K. Miiller. Openjscad. http://openjscad.org/.

[11] J. Y. Katy Hamilton and M. Minuti. Blockscad.
http://blockscad.com/.

[12] A. C. Kay. The early history of smalltalk. SIGPLAN
Not., 28(3):69-95, Mar. 1993.

[13] A. C. Kay. Squeak etoys, children & learning. 2005.
VPRI Research Note RN-2005-001.

[14] M. Keeter. Antimony.
http://www.mattkeeter.com/projects/antimony/.

[15] M. Kintel and C. Clifford Wolf. Openscad, the
programmers solid 3d cad modeller, 2011.

[16] E. Klopfer, H. Scheintaub, W. Huang, and D. Wendel.
Starlogo tng. In Artificial Life Models in Software,
pages 151-182. Springer, 2009.

[17] D. Koschitz and E. Rosenbaum. Exploring algorithmic
geometry with “beetle blocks:” a graphical
programming language for generating 3d forms. In
15th International Conference on Geometry and
Graphics Proceedings, Montreal, August 2012.
International Society for Geometry and Graphics.
Paper no. 102.

[18] S. Papert. Mindstorms: Children, Computers and
Powerful Ideas. Basic Books, Inc., New York, 1980.

[19] M. Petts. Life after turtle geometry with a 3d logo
microworld. Mathematics in School, 17(5):2-7, 1988.

[20] E. Rosenbaum. Scratch for second life.
http://web.mit.edu/~eric_ r/Public/S4SL/.

[21] C. Solomon. Logo, papert and constructionist
learning. http://logothings.wikispaces.com/.

[22] B. Victor. Learnable programming, September 2012.
http://worrydream.com/LearnableProgramming/.

[23] A. Yeh and R. A. Nason. Vrmath: A 3d microworld
for learning 3d geometry. In World Conference on
Educational Multimedia, Hypermedia &
Telecommunications, Lugano, Switzerland, 2004.
Association for the Advancement of Computing in
Education (AACE).

