
Formalisation
and Proof
Robert Clarisó

PID_00155542

The texts and images contained in this publication are subject –except where indicated to the contrary–

to an Attribution-NonCommercial-NoDerivs license (BY-NC-ND) v.3.0 Spain by Creative Commons. You

may copy, publically distribute and transfer them as long as the author and source are credited (FUOC.

Fundación para la Universitat Oberta de Catalunya (Open University of Catalonia Foundation)), neither the

work itself nor derived works may be used for commercial gain. The full terms of the license can be viewed at

http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

c© CC-BY-NC-ND • PID_00155542 Formalisation and Proof

Table of contents

Introduction . 5

Prerequisites . 6

Course materials . 7

Methodology . 8

Goals . 9

1. Introduction to formal proof . 10

1.1. Overview. 10

1.2. Required reading . 11

1.3. Reading tips . 12

1.4. Detailed exercise and reading plan . 12

1.5. Further reading . 14

2. Formal definitions . 15

2.1. Overview. 15

2.2. Classification of definitions . 17

2.3. Numbers . 18

2.4. Mathematical collections . 19

2.4.1. Tuples . 20

2.4.2. Sets . 20

2.4.3. Sequences . 21

2.5. Relationships among concepts . 22

2.6. Defining computations . 24

2.7. Putting everything together . 26

2.8. Exercises . 29

2.9. Further reading . 29

3. Proof strategies . 31

3.1. Overview. 31

3.2. Required reading . 31

3.3. Reading tips . 32

3.4. Detailed exercise and reading plan . 33

3.5. Further reading . 35

4. Applications of formal proof . 36

4.1. Overview. 36

4.2. Required reading . 36

c© CC-BY-NC-ND • PID_00155542 Formalisation and Proof

4.3. Reading tips . 37

4.4. Formal Verification of Safety-Critical Systems 37

4.4.1. Overview . 37

4.4.2. Required reading . 39

4.4.3. Detailed reading guide. 40

4.5. Concurrent and distributed systems . 41

4.5.1. Overview . 41

4.5.2. Required reading . 42

4.5.3. Detailed reading guide. 43

4.6. Security and Cryptographic Algorithms . 44

4.6.1. Overview . 44

4.6.2. Required reading . 45

4.6.3. Detailed reading guide. 45

4.7. Communication and Cryptographic Protocols 46

4.7.1. Overview . 46

4.7.2. Required reading . 47

4.7.3. Detailed reading guide. 48

4.8. Complexity theory . 49

4.8.1. Overview . 49

4.8.2. Complexity classes . 49

4.8.3. Decision problems . 50

4.8.4. Reductions . 51

4.8.5. Required reading . 52

4.8.6. Detailed reading guide. 52

Summary . 54

c© CC-BY-NC-ND • PID_00155542 5 Formalisation and Proof

Introduction

This document acts as a guide for the seminar “Formalisation and proof”.

This seminar presents formal proof, an approach to research with application

to many research problems in several disciplines such as information tech-

nology, information systems and computing. The contents of the course are

divided into the four blocks depicted in Figure 1:

Figure 1. Course design.

• The first part of the course is an introduction to formal proof as a research

strategy, presenting its goals, the vocabulary and structure of a proof, the

historical development of formal proof in mathematics and computing

and the use of software tools such as proof assistants.

• The second block introduces formal definitions as a mechanism to assign

a precise meaning to concepts. Before starting an argument, it is necessary

to understand the concepts being discussed. Mathematical notions such

as sets or sequences can be used to describe concepts unambiguously, and

notations like pseudocode can be used to formalise an algorithm in an

abstract way.

• The third block constitutes the core of the course: an analysis of different

strategies that can be used to develop proofs. In this section, each strategy

is studied in detail, considering the situations in which its use is recom-

mended, the directives for applying it correctly and the common pitfalls

in its application. This knowledge will allow us to write our own proofs,

to improve our understanding of proofs written by others and to identify

errors within a proof.

• The final block is a study of several specific research fields where formal

proof can be applied. The study is conducted through the review of real

research papers which rely on formal proofs.

c© CC-BY-NC-ND • PID_00155542 6 Formalisation and Proof

Prerequisites

All materials of the course (including this guide and all assessment activities)

are written in English. A good understanding of written technical English is

therefore a necessary requirement for all students.

Students of this course should also have a good understanding of fundamen-

tal notions of propositional and first-order logic. Concepts like truth tables,

tautology and contradiction, logical connectives (∧, ∨ ,¬, → , ↔), quantifiers

and deduction rules will be used throughout the course. Although some of

these concepts will be revised in the materials, it is recommended to refresh

these concepts beforehand. A sample reference which reviews these topics is:

W. Hodges (1991) Logic: an introduction to elementary logic. Penguin books.

The example proofs revised in the paper use basic notions of algebra and

combinatorics. Again, the necessary properties are introduced as needed but

a previous background will be helpful to the reader.

c© CC-BY-NC-ND • PID_00155542 7 Formalisation and Proof

Course materials

The course uses several additional materials besides this guide: the book The

Nuts and Bolts of Proofs; the module Formal Proof ; and several research papers

where formal proof is used. The book is available in print while the remaining

materials can be accessed from the classroom at the UOC virtual campus.

Although there are commercial proprietary programs for automating proofs,

most available software is freely available for academic or research purposes.

Activities that require the use of a specific software will provide pointers for

downloading it. However, most activities within the course will consist of

pen-and-paper proofs.

This guide references the required materials in each section and provides de-

tailed reading guides and lists of exercises.

c© CC-BY-NC-ND • PID_00155542 8 Formalisation and Proof

Methodology

At the start of the course, the instructor will propose a schedule for the study

of the contents and the assessment activities. Each section provides a list of

reading materials and self-assessment exercises, which should be performed

by the student in the order suggested by this guide. Any questions about

the reading materials or the exercises should be posted to the forum of the

virtual classroom, where doubts and their answers can be shared with your

peers.

Some proofs may require previous knowledge or reuse previous results proved

elsewhere. If you do not have enough information to understand the proof, it

is recommended to assume an active attitude and follow the thread: look up

the references of the paper and/or locate papers which introduce these prereq-

uisites. Before asking a question on the prerequisites of a proof, try to find an

answer yourself and then, if you need to, ask for clarification or confirmation.

On the other hand, it is always a good idea to request clarifications on proof

development. If you do not understand why a conclusion has been reached

or whether an alternative is possible, feel free to ask your questions in the

forum.

Regarding self-assessment exercises, the first block proposes general exercises

on locating resources or understanding proofs. Meanwhile, the second and

third blocks on definitions and proof strategies consider hands-on exercises

that will require writing short proofs and definitions for sample problems.

Finally, the exercises on the third block on the application of formal proof

consist of the comprehension and critical review of real proofs.

c© CC-BY-NC-ND • PID_00155542 9 Formalisation and Proof

Goals

1. Understand the goals and history of formal proof as a research strategy.

2. Learn the difference between computer-checked proofs and pen-and-paper

proofs and discover the tool-support possibilities for computer checked

proofs.

3. Become familiar with mathematical definitions, notation and concepts:

pair, tuple, set, function, . . .

4. Know how to formalise a real-world research problem.

5. Learn different proof strategies, how to apply them in practice and how to

choose the most suitable one for each problem.

6. Understand the value of formal proofs used in different research fields.

7. Be able to understand proofs, identify errors and correct them.

8. Write formal proofs in a variety of contexts.

c© CC-BY-NC-ND • PID_00155542 10 Formalisation and Proof

1. Introduction to formal proof

.

1.1. Overview

A formal proof is an argument that establishes the validity of a statement using

rigorous deduction. The purpose of a proof is to certify a result or property with

absolute certainty. This degree of confidence is achieved through the use of (a)

a precise notation based on mathematical concepts (which avoids ambiguity)

and (b) logic inference rules which establish how to derive valid consequences

from a set of premises (which avoid errors in the deduction process).

Before moving forward, let us consider a simple example of a formal proof:

Contrapositive

The concept of contrapositive

and its use in formal proof

will be discussed in depth in

Section 3 on proof strategies.

.

Theorem 1. Let a and b be two natural numbers. If their sum a + b is

odd, then a and b must be different (a 6= b).

Proof (by contraposition). We will prove instead the contrapositive

statement, which is equivalent to the original: if two numbers a and b

are equal, then their sum is an even number. If a = b then a + b can be

rewritten in the following way: a+b = a+a = 2a which is clearly an even

number. This proves the contrapositive.

This proof considers a mathematical statement about the addition of natu-

ral numbers. It requires previous knowledge of mathematical concepts (le-

gal manipulations of a + b, the definitions of “natural number”, “odd” and

“even”) and logical concepts (the idea of “contrapositive”). However, any

reader which this knowledge can use the proof as a tool to confirm the validity

of the property and, therefore, use this property as the basis to discover new

mathematical facts. Furthermore, the formal proof paradigm is not restricted

to the context of mathematics and it has many applications in computing

research.

In this section, we present an overview of formal proof. The goal is not show-

ing how to prove X but answering questions like “Is a proof for X required?” or

“What is considered a valid proof of X?”.

c© CC-BY-NC-ND • PID_00155542 11 Formalisation and Proof

1.2. Required reading

Goals and fundamentals

[CLA09] R. Clarisó (2009). Formal Proofs: Understanding, writing and evalu-

ating proofs. Editorial UOC.

[DAW06] J. W. Dawson (2006). Why Do Mathematicians Re-prove Theo-

rems?. Philosophia Mathematica 14(3):269-286, Oxford Journals.

[HA08A] T. C. Hales (2008). Formal Proof. Notices of the AMS,

55(11):1370–1381, AMS.

[HA08B] T. C. Hales (2008). Formal Proof: Theory and Practice. Notices of

the AMS, 55(11):1395–1406, AMS.

History of formal proofs

[KLE91] I. Kleiner (1991). Rigor and Proof in Mathematics: A Historical Per-

spective. Mathematics Magazine, 64(5):291–314, AMS.

[MAC95] D. MacKenzie (1995). The Automation of Proof: A Historical and

Sociological Exploration. IEEE Annals of the History of Computing,

17(3):7–29, IEEE CS Press.

Tool support for formal proofs

[BUN99] A. Bundy (1999). A Survey of Automated Reasoning. Artificial In-

telligence Today, LNCS 1600, pp.153–174, Springer.

[GEU09] H. Geuvers (2009). Proof assistants: History, ideas and future. Sad-

hana, 34(1):3–25, Indian Academy of Sciences.

• [CLA09], [DAW06], [HA08A] and [HA08B] are general references that pro-

vide an overview of formal proof and its goal: providing certainty about

the validity of a statement.

• [KLE91] and [MAC95] illustrate the history and evolution of formal proofs,

tracing its roots back to mathematics, logics and the origins of computing.

This history is closely related to profound questions on the philosophy of

science, like “what is knowledge?”, “what is truth’?” or “how can I be sure

that something is true?”. Also, it reveals different trends in the construc-

tion of formal proofs, such as the acceptance of machine-checked proofs

as valid proofs.

• [BUN99] and [GEU09] survey the tool-support for mechanized proofs. As

this field is very active, the papers have been selected to provide a big

picture of the area, rather than providing an up-to-date survey with the

latest tools and developments.

c© CC-BY-NC-ND • PID_00155542 12 Formalisation and Proof

1.3. Reading tips

• These papers constitute the introduction to the subject. At this point, it is

better not to waste too much time trying to understand the specific details

of each proof. Later sections provide additional contents that will improve

our understanding of such proofs. It is a good idea to revisit any proof that

you did not understand during the block on proof strategies.

• Some famous proofs referenced from the papers are extremely long, in-

volved and require an extensive amount of previous knowledge to be un-

derstood. In case you are interested in checking a proof like that of Fermat’s

Last Theorem, be aware of its complexity! Some of these complex proofs

provide a proof outline for the layman which is sufficient at this point.

On the other hand, other famous proofs like the existence of an infinite

number of primes are simple and constitute an interesting read.

1.4. Detailed exercise and reading plan

• Sections 1, 2 and 3 of the module [CLA09].

Reading: Section 1 (Defining formal proof) presents the goals of formal

proof and illustrates the types of problems where it can be applied. In Sec-

tion 2 (Anatomy of a formal proof), the overall structure of a formal proof

and the terminology used to designate its elements are presented. Finally,

Section 3 (Tool-supported proofs) discusses the different types of software

tools available that can automate all or part of the deduction process.

Exercises:

1. Using a web search engine, find three published research papers

where the term “proof” is used in the title without meaning “formal

proof”, e.g. as in experimental or empirical proofs. State the research

field of the paper, the intended meaning of the term “proof” and its

relation to a formal proof.

2. Collect a list of open problems in the area of research of your interest.

For each problem, describe the problem statement and locate the

reference where it was originally described.

3. Using a web search engine, locate a formal proof for each of the

following problems: (a) the Königsberg Bridge Problem, (b) the N-

Queens problem and (c) Fermat’s Little Theorem.

4. Identify the name of three journals, three conferences and three

workshops which have published research papers using formal proof

during the last two years. Start the search within the research field of

your interest.

c© CC-BY-NC-ND • PID_00155542 13 Formalisation and Proof

• The paper [DAW06].

Exercises:

1. Using a web search engine, find a published research paper which

reproves a previous result and is not referenced in [DAW06]. You can

use a search term like “new proof” or “reproof”. Identify the research

field and the contributions of the new proof with respect to the old

one.

2. Using a web search engine, find the description of an error in a

proof published in a conference or journal research paper. You can

use search terms like “erratum”, “errata” and “proof”. Identify the

research field and the type of problem being detected.

• The papers [HA08A] and [HA08B].

Reading: These papers provide general overviews on the area and also a

short introduction to an interactive proof assistant (HOL Light).

• The papers [KLE91] and [MAC95].

Reading: These papers present a historical review and should be easy to

read. Again, do not worry about the specific details of all proofs (some of

them require previous knowledge).

Exercises:

1. Using the texts [KLE91] and [MAC95], collect a list of people who

have contributed to the field of formal proof: their names, their re-

search fields and the type of contribution.

2. Using the texts [KLE91] and [MAC95], build a timeline of the most

relevant events (famous problem statements, landmark proofs) re-

lated to formal proof. Use a web search engine to complete this time-

line up to the present day.

• The papers [BUN99] and [GEU99].

Reading: Make sure to remember the major tools and the most relevant

techniques (term rewriting, unification, logic programming, abstract in-

terpretation, . . .) discussed in these surveys. They will be referenced later

when we study the application of formal proof using real-world research

papers.

Exercises:

1. Using a web search engine, find the two most recent papers which

perform a proof using the theorem provers Isabelle, HOL Light or

Coq. Describe the research field of the paper and the problem being

proved.

c© CC-BY-NC-ND • PID_00155542 14 Formalisation and Proof

2. Find a proof that
√

2 is an irrational number in an interactive theo-

rem prover like HOL light (http://www.cl.cam.ac.uk/~jrh13/

hol-light/), Isabelle (http://www.cl.cam.ac.uk/research/

hvg/Isabelle/) or Coq (http://coq.inria.fr). Document the

sequence of steps required to download the prover, install it in your

system and verify the proof.

3. Using a web search engine, find information on automated theo-

rem proving and constraint solver competitions. You can use search

terms like “prover”, “solver” and “competition”. Describe their pur-

pose and create a list of competitions indicating for each one (a) the

competition name and its associated conference, (b) its URL, (c) the

problem being studied, (d) the year of its last edition, and (e) the last

winner.

4. Using a web search engine, collect a list of collaborative repositories

of formal proofs, e.g. wikis.

1.5. Further reading

The bibliography of the material used in this block provides an extensive list

of recommended readings in the field or formal proof. The following books

can also be used as a reference:

D. J. Velleman (1994). How to Prove It: A Structured Approach. Cambridge Uni-

versity Press, 2nd edition.

D. Solow (2004). How to Read and Do Proofs: An Introduction to Mathematical

Thought Processes. Wiley, 4th edition.

T. Sundstrom (2006). Mathematical Reasoning: Writing and Proof. Prentice Hall,

2nd edition.

K. J. Devlin (2002). The Millenium Problems: The seven greatest unsolved mathe-

matical puzzles of our time. Basic Books.

W. Dunham (1991). Journey through Genius: The great theorems of Mathematics.

Penguin.

c© CC-BY-NC-ND • PID_00155542 15 Formalisation and Proof

2. Formal definitions

.

2.1. Overview

In order to reason about a problem, it is necessary to understand it correctly.

Natural language is a good means to present a problem or to argue about the

problem intuitively. However, natural language has an important shortcom-

ing: ambiguity. Terms and concepts may have several meanings, and usually

the language is not precise enough to provide an accurate description of a

problem.

In contrast, mathematical language offers a plethora of concepts and nota-

tions with well-defined meanings. Logic provides formal languages to describe

properties and deduction rules to infer consequences or detect contradictions.

The process of describing a problem in terms of mathematical and logical con-

cepts is called formalisation.

In a formal context, a definition is a precise description of an entity or concept,

which is referred from this point onward using a given term or notation. The

purpose of a definition is to provide a clear and unambiguous understanding

about the concept being described.

For example, the following is an example of definition from a branch of the-

oretical computer science, formal languages. This discipline studies properties

on words and collections of words called languages. One of the first concepts

that needs to be defined is the alphabet, the collection of symbols that can be

used to build a valid word:

.

Definition 1 (Alphabet). An alphabet is a finite and non-empty set of

elements called symbols. Alphabets are usually denoted using the greek

upper-case letter Σ. For example, the alphabet for writing binary num-

bers is the set {0,1}.

Let us examine this definition in detail to identify several good practices:

• It provides a term to refer to this concept, alphabet.

• It defines the notation that will be used to refer to alphabets, Σ.

• It provides an example of the concept being defined to facilitate the com-

prehension of the definition.

• It provides a precise, unambiguous and brief definition of the concept.

c© CC-BY-NC-ND • PID_00155542 16 Formalisation and Proof

As it is based on mathematical notions of sets, it is conveying a lot of

information compactly:

Set An alphabet is a collection of elements, with no or-

der among elements and no duplicates. Therefore,

{1,1} is not an alphabet and {0,1} is the same al-

phabet as {1,0}.

Finite The number of elements in the set must be finite.

Therefore, the set of integer numbers Z is not an

alphabet.

Non-empty There must be at least one element in the alphabet.

Thus, the empty set ∅ is not an alphabet.

Once such a definition is provided, it is possible to reason about alphabets

without misunderstandings: the reader will have a clear picture of what is

an alphabet and what are the properties of an alphabet. Consequently, this

definition will make our arguments more concise: if we are talking about an

entity Σ and we say it is an alphabet, we automatically know that it is a finite

and non-empty set.

Another advantage of definitions is their use as an abstraction mechanism: the

effort required to formalise a concept usually leads us to identify the relevant

aspects of the concepts and discard the rest. In this case, our only concern

is the set that all symbols have the same role within the same alphabet and

that the size of the alphabet cannot be infinite nor zero.

There are some fundamental ‘rules-of-thumb’ that should be considered when

creating a definition:

• Use terms and notations which are meaningful to the audience. Specifi-

cally, avoid using counter-intuitive definitions such as “a + b denotes the

product of a and b”: if a term has a well-established meaning in the re-

search field, use a new term to avoid misunderstandings.

• If a concept has been previously defined in the literature, it is (almost)

always better to reuse that previous definition verbatim, citing the original

source. The only reason not to reuse a previous definition is when a new

notation will clarify our exposition. Even then, it is a good idea to clarify

the differences between the old definition and the new one.

• Make sure that the audience understands the notions on which the defini-

tion is based. For example, if we define a Petri Net as a “directed bipartite

graph”, the readers should know what those terms mean beforehand: they

should either be part of the folklore of the research field or they should be

introduced prior to the definition.

c© CC-BY-NC-ND • PID_00155542 17 Formalisation and Proof

• If the concept being defined is very complex, it is better to define it incre-

mentally, i.e. start creating auxiliary definitions of its components before

describing the concept as a whole.

• Definitions may refer to other definitions, but it is necessary to avoid cir-

cular references. For example, two definitions like “a wolf is a member of a

pack” and “a pack is a group of wolves” are unacceptable because of their

circularity.

Twin primes

Two natural numbers x and y
are twin primes if both x and

y are primes and x = y + 2.

Some examples of twin

primes are: 5 and 7, or 11

and 13.

• Examples can clarify a definition, but they do not replace it. Saying that

“11 and 13 are twin primes” does not constitute a proper definition of

“twin prime”: it does not provide information about whether other num-

bers like 17 and 19 are twin primes.

In this section, we provide a classification of definitions, recall several math-

ematical concepts that can be used in a definition (the families of numbers,

collections like tuples or sets, functions, . . .) and describe several strategies to

formalise a computation. Finally, we also study examples of more complex

formal definitions.

2.2. Classification of definitions

There are several strategies to define a concept:

• Extensional definition: A concept can be defined by exhaustively enu-

merating the instances of this concept.

For example, if we need to define “week-days”, we can simply do it by

listing them: {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,

Sunday}. Obviously, this approach is more adequate to describe concepts

with a finite number of instances, as they are amenable to an exhaustive

enumeration. For example, if we need to define “even numbers” we can

enumerate them as {0, 2, 4, 6, . . . }. However, unless the list of remaining

terms is obvious or already known by the reader, using “. . . ” or etcetera

might create ambiguity and it is not recommended.

Necessary and sufficient

Necessary and sufficient are

relationships among two

properties A and B. A is

necessary for B if B implies A,

i.e. B can only be true when

A is true. A is sufficient for B if

A implies B, i.e. B is always

true when A is true. For

example, an atmosphere is a

necessary condition for the

habitability of a planet, but it

is not a sufficient condition.

• Intensional definition: A concept can be also be defined by stating the

properties that identify all the instances of this concept, i.e. the necessary

and sufficient conditions to be classified as an instance of the concept.

Usually, intensional definitions build upon a previously defined concept.

One way to do this is to add an additional constraint to a concept, estab-

lishing a subclass within that concept. For example, even numbers are a

subclass of natural numbers, those that are divisible by two. As another

example, an isosceles triangle is a class of triangle in which two sides have

the same length.

c© CC-BY-NC-ND • PID_00155542 18 Formalisation and Proof

Another way to build upon previous definitions is to combine different

concepts or several instances of the same concept. For instance, complex

numbers are defined as a pair of real numbers where the first number is the

real component and the second is the imaginary component. As another

example, in two-dimensional geometry a circle can defined using a point

(the centre of the circle) plus a natural number (its radius).

• Recursive definition: A concept can also be defined in terms of itself, al-

though special care needs to be taken to avoid a circular definition.

This definition usually starts with a set of base cases, which are instances

of this concept that can be identified directly. Other instances of the con-

cept are built incrementally from previously existing instances, i.e. each

instance should lead back to some base case in a finite number of steps.

For example, let us consider the following definition of the set of nat-

ural numbers (N). Let us define a constant, zero (0), and one operation,

next(N):N, which takes one natural number as an argument and returns a

natural number. The set of natural numbers N is defined as follows:

1. Zero is a natural number.

2. If n is a natural number, next(n) is a natural number.

3. Nothing else is a natural number.

The notation used by this definition is a bit cumbersome, as 2 will be ex-

pressed using next(next(zero)). However, it captures the notion of natural

numbers: the infinite set of positive whole numbers that start from zero.

Also, it is interesting to highlight the condition 3 of this definition, which

is sometimes found explicitly in recursive definitions and sometimes left

implicit.

2.3. Numbers

Numbers are the mathematical abstraction that captures quantity and they

can be used to express magnitude, duration, position, length, cost, . . . The

following is an incomplete list of families of numbers:

• Natural numbers (N): A natural is a positive whole number, e.g. 2, 35 or

2350. Depending on the context, this set can be defined to start from 0 or

from 1.

• Integer numbers (Z): An integer is a whole number which is either posi-

tive, negative or zero. Some examples of integers are 0, 13 or -976. Notice

that all natural numbers are also integers.

c© CC-BY-NC-ND • PID_00155542 19 Formalisation and Proof

• Rational numbers (Q): A rational is a number that can be expressed as

the division of two integers a/b, with b 6= 0. For example, 2/3 or -18/7 are

examples of rational numbers. Rational numbers also include integers, as b

can be equal to 1, e.g. 13/1 = 13.

• Real numbers (R): A real is any number which can be expressed as a fi-

nite sequence of digits (the whole part) and a possibly infinite sequence of

digits (the decimal part). This definition includes all rational numbers and

other irrational numbers that cannot be expressed as a fraction, like
√

2 or

π = 3.141592 . . .

• Complex numbers (C): A complex number is a pair of two reals, the real

component and the imaginary component. The imaginary component is a

multiple of the imaginary unit i, defined as
√

-1. Real numbers are specific

cases of complex numbers where the imaginary component is zero.

Regarding the use of numbers in definitions, natural and integer numbers

can be used to describe magnitudes that are measured in multiples of a dis-

crete unit like bits, instructions, cycles, . . . Some examples are: the length of a

message or document (in terms of bits, bytes, characters, . . .); the maximum

capacity or current size of a container (in terms of elements, bytes, pages,. . .);

the duration of an event (in terms of number of periods or cycles); or the

location of an object within a discrete grid. On the other hand, real and ra-

tional numbers are used to capture continuous magnitudes with an arbitrary

precision, e.g. the duration of an event in seconds (with decimals).

2.4. Mathematical collections

Some complex concepts can be described as an aggregation or collection of

simpler concepts. There are several ways to describe this collection, depending

on whether the order of elements matters, whether the number of elements

is fixed a priori and whether there can be duplicate elements. These different

views originate the concepts of tuple, set and sequence, that are detailed in

Table 1.

For collections with a variable number of elements, it is possible to describe

specific qualities of the size of this aggregation. For example, it is possible to

say it is empty (no elements) or non-empty (at least one element); that is is

finite or infinite; that it is bounded (the number of elements is fixed a priori)

or unbounded (the number of elements is arbitrary). Also, we can use the term

“possibly” to express that one of the previous properties may occur, but is not

required. For example, a collection may be described as “a finite non-empty

set” or as “a possibly infinite sequence”.

c© CC-BY-NC-ND • PID_00155542 20 Formalisation and Proof

Table 1: Mathematical collections.

Concept Size? Ordered? Duplicates? Example

Ordered pair Fixed (2) Yes Allowed Coordinates of a point in 2D

Triple Fixed (3) Yes Allowed Coordinates of a point in 3D

Quadruple Fixed (4) Yes Allowed
Parcel measures: Length +

Height + Width + Weight

k-Tuple Fixed (k) Yes Allowed Results of k blood analysis

Sequence Unbounded Yes Allowed Symbols of a word

Set Unbounded No Disallowed Integer numbers Z

Multiset Unbounded No Allowed Votes in a ballot box

2.4.1. Tuples

Tuples are ordered collections of elements with a fixed size and where dupli-

cates are allowed. Tuples may receive different names according to the number

of elements they hold: pair, triple, quadruple, quintuple, . . . For larger tuples,

they may be called k-tuples, where k is the number of elements, e.g. a chess

board can be defined as a 64-tuple.

The elements of the tuple are comma-separated and enclosed between paren-

theses (), brackets [] or angle parentheses 〈 〉, e.g.〈12,3,4.5〉. Usually, when the

tuple is defined, we should assign a name to each element in the tuple to allow

direct references. For example, a graph G can be defined as a tuple G = (V,E)

where V is called the set of vertices and E is a set of edges. Here, the names V

and E are used to directly identify each element in the tuple.

2.4.2. Sets

Sets are unbounded and unordered collections without duplicates. For exam-

ple, all families of numbers (N,Z,Q,R,C) are sets. It is also possible to define

special flavours of sets where duplicates are allowed (multisets).

Sets are denoted using capital letters (A, B, X) and, to perform an extensional

definition, their elements are listed within keys, e.g. {1,2,3}. It is also possible

to provide an intensional definition of a set, by defining the property satisfied

by its elements. The format used for this definition is { x ∈ domain | prop-

erty(x) }, where x denotes an element of the set. For example, the set of odd

natural numbers can be defined as:

ODD = {x ∈ N | ∃y ∈ N : x = 2y + 1}

This definition should be read as “the set of odd numbers is formed by natural

numbers which are equal to 2y+1, for some other natural number y”.

The fundamental operation on a set is membership: deciding whether an ele-

ment belongs to the set. The symbols ∈ and 6∈ are used to communicate that

c© CC-BY-NC-ND • PID_00155542 21 Formalisation and Proof

an element belongs or does not belong to a set, respectively. For example, 3

is a natural number (3 ∈ N) but the square root of 2 is not a natural number

(
√

2 6∈ N). The set with no members is called the empty set (∅). The number of

elements in a set A is called the cardinality of a set and it is denoted as |A|, e.g.

|∅| = 0.

Defining sets

The subset symbol can be

used to define a set implicitly.

For example, A ⊆ Z states

that A is a subset of the set of

integers: implicitly, it is

defining A as a set.

If all elements of a set A belong to another set B, we say that A is included in B

or that A is subset of B. The notation used is A ⊆ B (if A and B may be equal)

or A ⊂ B (if B has some elements that are not in A).

Defining sets of sets

If an aggregation is a set of

sets, its type can be defined

using the power set. For

example, A ⊆ P(R) means

that A is a set whose

elements are sets of real

numbers.

The power set of a set A is the set formed by all subsets of A. The power set can

be denoted as P(A) or 2A, as the number of subsets of a set with n elements is

precisely 2n. For example, if A = {a,b,c} then

P(A) = {∅,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

Sets can be combined using the union (∪) and intersection (∩) operators. The

result of these operators is a new set with the elements that belong to at

least one set (union) or both sets (intersection). For example, if A = {x,z}
and B = {y,z,w}, then A ∩ B = {z} and A ∪ B = {x,y,z,w}. If two sets have an

empty intersection, i.e. A ∩ B = ∅, they are called disjoint.

The difference of two sets A and B, A \ B, is the set having all members of A

that do not belong to B. For example, natural numbers are either even or odd:

EVEN = N \ODD. It is also possible to define the complement of a set A, denoted

as A, which is a new set formed by all elements that do not belong to A. In

order to define this complement, it is necessary to define what we consider

the universe, i.e. the complete set of elements. For example, if we consider the

set of natural numbers as our universe, then ∅ = N and ODD = EVEN.

Defining tuples

The cartesian product can be

used to describe the type of

each element in a tuple. For

example, an ordered pair x of

natural numbers can be

defined as x ∈ N × N and a

triple y of two reals and one

integer can be defined as

y ∈ R × R × Z.

Finally, the cartesian product of two sets A and B, denoted as A × B, is a set

formed by all pairs where the first element belongs to A and the second ele-

ment belongs to B. For example, if A = {x,y} and B = {1,2,3} then

A× B = {(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)}

2.4.3. Sequences

Fibonacci sequence

The Fibonacci sequence is a

sequence of numbers which

begins with 0 and 1 and

where each subsequent

number is the sum of the two

previous numbers. This

sequence exhibits many

interesting mathematical

properties and it occurs

naturally in different

biological settings.

Sequences are unbounded and ordered collections that allow duplicates. Ele-

ments of a sequence are typically presented as a comma-separated list, ended

in “. . . ” if the sequence is infinite. For example, the numbers in the Fibonacci

sequence are: 0, 1, 1, 2, 3, 5, 8, . . . Also, a word is formally defined as a finite se-

quence of symbols chosen from a finite alphabet, e.g. “abcd” is a sequence of

four symbols taken from the Latin alphabet.

c© CC-BY-NC-ND • PID_00155542 22 Formalisation and Proof

The symbol used to denote an empty sequence depends on the context. For

example, the Greek letters lambda (λ) and epsilon (ε) are both used to describe

an empty word in theoretical computer science.

Furthermore, there are different notations to refer to a sequence. In general,

the entire sequence is referenced using a variable name plus an index like i,n

or N as a subscript, e.g. the sequence of Fibonacci numbers is Fi. A specific

element within the sequence is identified by the value of the index, e.g. F2

is the element in position 2 in the Fibonacci sequence. Depending on the

context, the first element of a sequence can be 0 or 1. Thus, we should make

sure that we establish which of these conventions is used in our case.

Regarding the operations on a sequence, there is no generally accepted nota-

tion to describe that an element appears (or does not appear) in a sequence or

whether it appears before another one in the sequence. Also, it is possible to

define concepts like subsequence, but the exact meaning of these concepts and

the notation used to describe them depends on the problem.

2.5. Relationships among concepts

A concept does not exist in isolation and it is often related to other concepts.

For example, a person is related to his family and friends, a node in a network

is connected to other nodes, each item in an auction has a current price, . . .

There are different types of relationships and there are mathematical concepts

to formalise relationships: relations and functions.

A binary relation R among two sets A and B is a set of pairs (a,b) where a ∈ A

and b ∈ B, i.e. R ⊆ A×B. Set A is called the domain and set B is the codomain. In-

tuitively, each pair (a,b) in the relation denotes that a is related to b. For exam-

ple, given two sets People = {Ann,Peter} and Desserts = {ice - cream,cake,cookie},
the relation Likes = {(Ann,cookie),(Peter,ice - cream),(Peter,cookie)} could be used

to state the fact that Ann likes cookies and Peter likes both ice-cream and

cookies. Obviously, it is possible to extend binary relations into n-ary rela-

tions, where each element is a n-tuple.

.

There are many examples of binary relations in mathematics, such as

ordering relations. For example, the less-or-equal (≤) ordering among

the reals is a binary relation among Z and Z where, in all pairs,

the first element is less-or-equal than the second, i.e. LessOrEqualZ =

(0,0),(1,1),(0,2),(4,7), . . .

Relations can describe many different types of relationships as, for example,

they do not impose constraints on the number of occurrences of a specific el-

ement from the domain or codomain in the relation. This allows the descrip-

c© CC-BY-NC-ND • PID_00155542 23 Formalisation and Proof

tion of different types of mappings, e.g. one-to-one, one-to-many, many-to-

one and many-to-many mappings. For instance, equality (=) among integers

is a one-to-one mapping { . . . , (-1,-1), (0,0), (1,1), . . . } while disequality (6=) is

a many-to-many mapping.

However, sometimes the relation to be described is simpler: each element of

the domain is mapped to exactly one element of the codomain. This specific

type of relation is called a function, and it is formally represented as f : A→ B,

where f is the function name, A is the domain and B is the codomain. Given

an element x in the domain, the corresponding element y in the codomain is

called the image of x, as it denoted as f (x).

.

For example, let us formalise the execution time of a program in a ma-

chine language by assigning a duration (in terms of processor cycles) to

each instruction. First, we need to define our domain: I will be the finite

set of instructions labels in our machine language. The codomain will

be the set of natural numbers N. Let us choose the name d (from Du-

ration) for our function. Finally, our function can be formally defined

as d : I → N. For example, the fact that the goto instruction requires 2

processor cycles can be stated as d(goto) = 2.

A function is called injective if f (a) = f (b) implies a = b, i.e. two elements from

the domain have the same image only if they are equal. A function is called

surjective if every element in the codomain is the image of some element in

the domain. Finally, a bijection or bijective function is a function which is both

injective and surjective.

It is also possible to define a function with several inputs or outputs. From

the point of view of the definition, this is the same as considering that the

input or output of the function is a tuple, so its type can be defined using

the cartesian product operator. For example, the addition among reals can be

defined as the function add : R×R→ R, which receives two reals as input and

produces one real as output, e.g. add(1.3,2) = (3.3).

To specify a function, it is necessary to describe the mapping between the

input and the output. For example, add(x,y) = x + y is a sufficient description

for the addition of integers. Sometimes it is easier to describe the mapping in

terms of cases. For example, let us consider the sign function which, given an

integer, returns -1,0 or +1 depending on the sign of this integer. This function

can be formally defined as sgn : Z → {-1,0, + 1}, where the result of sgn is as

follows:

sgn(x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

-1 if x < 0

0 if x = 0

+1 if x > 0

c© CC-BY-NC-ND • PID_00155542 24 Formalisation and Proof

2.6. Defining computations

In computing, the research contribution may be a process, computation or

algorithm. In almost every context, it is not possible nor desirable to exhaus-

tively document the full source code or hardware architecture performing this

computation: the implementation might be too long and it might contain

many irrelevant details which are dependent on the specific platform. In-

stead, we should aim to provide an abstract description which is language and

platform-independent.

A first approximation is defining the result of the algorithm, rather than the

computation that leads to this result. In this way, the problem consists in

characterising the result as a function or mathematical formula on the inputs.

For example, let us consider the primality test, a function that checks whether

a given natural number is prime or not:

prime(x) =

8

>

>

<

>

>

:

0 if ∃y ∈ Z : x mod y = 0 ∧ y 6= 1 ∧ y 6= x)

1 otherwise

A number is prime if it can only be divided by and itself, i.e. the division

by any other number has a remainder or modulo different from zero. The

definition of the primality test as a function simply states this property, but it

does not describe the process required to conclude whether there are divisors

or not.

Another option to formally describe computations is to characterise the com-

putation recursively. For example, the greatest common divisor (gcd) of two non-

negative integers is another integer that can be computed recursively in the

following way:

gcd(x,y) =

8

>

>

<

>

>

:

x if y = 0

gcd(y,x - y
j

x
y

k

) otherwise

A critical aspect of a recursive definition is ensuring the termination of the

recursion. For example, in the previous definition, it is necessary to ensure

that the case y = 0 will eventually be reached for any arbitrary x and y after

a finite number of iterations. Termination may be non-obvious as in this ex-

ample and a complex proof may be required to ensure it. Another drawback

of recursive definitions is that they are not adequate for all problems, only for

those that can be addressed using a divide-and-conquer approach.

For more complex computations, the use of pseudocode is recommended. Pseu-

docode is a generic high-level algorithmic notation. Pseudocode provides ba-

sic control-flow primitives typically used in structured programming, such as

c© CC-BY-NC-ND • PID_00155542 25 Formalisation and Proof

if-then-else conditionals or for/while-do/repeat-until loops. For example, the

following is a pseudocode for a sorting algorithm called insertion sort:

Algorithm 1 InsertionSort(A): Array[0..N].

Precondition: The elements of A can be compared using an order relation <.

Postcondition: A is sorted in increasing order according to the relation <.

1: for i = 1 to N - 1 do

2: v← A[i] {Find a location for v in A[0..i].}

3: j← i - 1

{Decrease j until we reach the start of the array (j = -1) or

we find a value which is smaller or equal to v (A[j] ≤ v).}

4: while j ≥ 0 and v < A[j] do

5: A[j + 1]← A[j] {Advance A[j] as v needs be stored before it.}

6: j← j - 1

7: end while

8: A[j + 1]← v

9: end for

Let us take a closer look at this example of pseudocode:

• We describe the signature of the algorithm, i.e. the number of input and

output parameters and their types.

• The algorithm and each input and output parameter is given a name that

identifies it.

• The algorithm describes the requirements on the inputs (precondition) and

the expected outcome of the execution (postcondition) in natural language.

• The code is commented to improve its understanding while trying to avoid

being verbose, i.e. lines like j← j - 1 are self-explanatory.

• When they are not necessary, variable declarations are skipped: their type

is obvious from the context and variable names are not reused to avoid

confusion. Other syntactical constructs like the end-of-statement semi-

colon (;) are also skipped when they do not contribute to the clarity of

the pseudocode. On the other hand, keywords like “end” can be preserved

to clarify the nesting of control-flow constructs (when indentation is not

sufficient).

• All the instructions in the algorithm are numbered to allow references

from the text.

A disadvantage of pseudocode is that it is oriented towards an informal de-

scription of an algorithm. Usually, the description of the process abstracts

details to improve clarity or for brevity. This does not mean that a description

in pseudocode cannot become formal: if the algorithm is simple enough that

c© CC-BY-NC-ND • PID_00155542 26 Formalisation and Proof

each of its steps has a well-defined meaning, a pseudocode can be used to rea-

son about the correctness or efficiency of an algorithm. This is the case, for

example, for the insertion sort algorithm used as our previous example.

2.7. Putting everything together

To conclude, we will analyse several complex formal definitions which use the

mathematical concepts described in this section. The concept being defined

is a modelling notation for concurrent systems called Petri Nets.

Additional reading

[MUR89] T. Murata
(1989). Petri Nets: Properties,
Analysis and Applications.
Proceedings of the IEEE,

77(4):541–580, IEEE Press.

Intuition: A Petri Net is a directed graph with two types of nodes, places (mod-

elling variables or resources) and transitions (modelling computations or ac-

tions). Places can be connected to and from transitions through directed arcs.

Each place can be marked with tokens. Graphically, places are drawn as circles,

tokens as black dots within the place, transitions as rectangles or bars and arcs

as arrows. For example, Figure 2(left) depicts a Petri Net with fives places (a-e),

two transitions (t1-t2) and four tokens in total.

Figure 2. Example of a Petri Net.

The state of a Petri Net evolves by firing transitions. Firing a transition removes

tokens from its input places (places with an arc towards the transition) and

puts tokens on its output places (places with an arc from the transition). The

number of tokens being removed from an input place or created in an output

place is called weight and it is denoted as a number labelling the corresponding

arc. By convention, if the weight of an arc is one (the transition removes one

token or puts one token in that place) then it is not drawn in the arcs of the

figure.

For example, Figure 2(right) shows the result of firing transition t2 on the

Petri Net from Figure 2(left). In order to fire a transition, there must be a

sufficient number of tokens in the input places, i.e. the transition must be

enabled. For example, in Figure 2(left), transition t2 is enabled while transition

t1 is disabled as there are no tokens in its input place A.

c© CC-BY-NC-ND • PID_00155542 27 Formalisation and Proof

Definitions: The following is a formal definition of a Petri Net extracted from

[MUR89]:

.

Definition 2 (Petri Net): A Petri Net is a 5-tuple PN = (P,T,F,W,M0)

where:

P = {p1,p2, . . . ,pm} is a finite set of places

T = {t1,p2, . . . ,tn} is a finite set of transitions

F ⊆ (T × P) ∪ (P × T) is a set of arcs (flow relation)

W : F → {1,2,3,4, . . .} is a weight function

M0 : P→ {0,1,2,3, . . .} is the initial marking

P ∩ T = ∅ and P ∪ T 6= ∅
A Petri Net structure without any particular marking is denoted as

N = (P,T,F,W).

Again, let us study this definition in detail:

• The definitions of places and transitions state that they are finite sets.

Therefore, they cannot be infinite and there are no duplicates. Further-

more, we have that P ∩ T = ∅ (nothing can be simultaneously a place and

a transition) and P ∪ T 6= ∅ (a Petri Net must have at least one place or

transition).

• The flow relation is stating succinctly that arcs can only connect places

with transitions and transitions with places. Hence, there can be no edges

among pairs of places or transitions or from a place or transition to itself.

Here, an arc is being defined as a pair (source,target) where the first element

is the source of the arc and the second is the target. Therefore, T × P is

denoting all the potential arcs from transitions to places and P×T the set of

arcs from places to transitions. As F is a subset of both, we have that some

places and transitions may not be connected. Furthermore, there is no

requirement on F to be non-empty: therefore, it is possible to have a Petri

Net with no arcs among their elements. Moreover, there is no restriction

on a place being both input and output for the same transition, i.e. the

transition can remove tokens and then add tokens to the same place.

• W and M0 describe the assignment of a weight to each arc and a number

of initial tokens to each place, respectively. Notice that this assignment is

defined as a function and that the domains and codomains of the func-

tion provide relevant information. For example, the weight of a node is a

natural number greater or equal to 1: it is not possible to have weight 0

on an edge. On the contrary, it is possible to have 0 tokens in the initial

marking.

c© CC-BY-NC-ND • PID_00155542 28 Formalisation and Proof

Now let us consider how the concept of firing can be formally defined:

.

Definition 3 (Transition Enabling): A transition t of a Petri Net N =

(P,T,F,W) is called enabled in a given marking M : P → {0,1,2,3, . . .} if

for every place p ∈ P we have that (p,t) ∈ F → M(p) ≥ w(p,t). A non-

enabled transition is also called “disabled”.

Definition 4 (Transition Firing): The firing of a transition t of a Petri

Net N = (P,T,F,W) on a marking M where it is enabled produces a new

marking M′ such that:

M′(p) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

M(p) - w(p,t) (p,t) ∈ F ∧ (t,p) 6∈ F (input place)

M(p) + w(t,p) (p,t) 6∈ F ∧ (t,p) ∈ F (output place)

M(p) - w(p,t) + w(t,p) (p,t) ∈ F ∧ (t,p) ∈ F (in/out place)

M(p) otherwise (unaffected by the firing)

Let us review this definition one more time:

• Also, notice that we have split the definition of “enabling” and “firing”,

both to make them simpler and also to allow reference to each concept

individually.

• In order to define whether a transition is enabled or not, we need to know

which are its input and output places. This can be done using the flow rela-

tion F: if (p,t) belongs to F it means that p is an input place and conversely,

if (t,p) is in F it means p is an output place of t.

• Therefore, the property on enabling can be re-read as: the number of to-

kens M(p) in each input place p should be equal or larger to the number of

tokens consumed by the transition, i.e. the weight of the arc.

• Regarding the firing of a transition, we define the new marking after the

firing in terms of the marking before the firing. The relationship between

the new and old markings is also made explicit in the choice of names

for the markings: M′ vs M. The only difference is the deletion of tokens

in the input places and the creation of tokens in the output places, while

the remaining places are unchanged. Notice that we need to distinguish a

special case in our definition: those places that are both input and output

places!

• Finally, firing is only defined on enabled transitions. This avoids creating

markings where a place has a negative number of tokens.

c© CC-BY-NC-ND • PID_00155542 29 Formalisation and Proof

Petri Nets inspire many other concepts that require a formal definition: dead-

locks, invariants, boundedness, . . . [MUR89] provides a starting point to prac-

tise these formal definitions.

2.8. Exercises

1. Using a web search engine, find a formal definition for the following

concepts:

a) Finite State Machine (FSM).

b) Deadlock.

c) Linear optimization problem.

d) Constraint Satisfaction Problem (CSP).

e) Public-key cryptosystem.

f) Genetic algorithm.

g) Serialization of a set of transactions.

h) Longest common subsequence of two strings.

i) Inverse of a matrix.

For each concept, identify the most significant terms and notation in

the definition and analyse its meaning by creating specific instances of

the concept.

2. Write a formal definition for the following concepts:

a) The list of tasks in a TODO list, each consisting on a deadline, a

description and a leader.

b) The contents of a /etc/passwd file in the Unix operating system.

c) A single move in a game of chess. Refer to the alge-

braic chess notation (http://en.wikipedia.org/wiki/Algebraic_

chess_notation) for a description of the information provided by a

chess move.

d) A complete game of chess, including its conclusion as a win or draw.

You do not need to check whether each move is correct according to

the rules of chess.

e) The contents of a five-card hand in a game of poker.

f) The rock-paper-scissors game and the process for deciding the winner.

2.9. Further reading

In this section, we have considered basic mathematical concepts like sets or

functions and their use in definitions. Each research field uses its own family

c© CC-BY-NC-ND • PID_00155542 30 Formalisation and Proof

of concepts that are used to establish formal definitions: words, languages,

graphs, trees, groups, lattices, . . . Defining all these concepts is out of the scope

of this section. Our goal has been providing the basic techniques and several

examples on how to study formal definitions and extract their meaning.

The final section on applications of formal proof provides plenty of examples

of formal definitions in research papers. It is recommended to revise this sec-

tion if you are having trouble with a specific definition. Remember that before

understanding a definition, it is necessary to understand the terms and nota-

tion used inside, going back to the source where they defined if it is necessary.

c© CC-BY-NC-ND • PID_00155542 31 Formalisation and Proof

3. Proof strategies

.

3.1. Overview

This part of the course focuses on the techniques that can be used to develop

a formal proof. Each property is different and its proof may require using

a different approach. In this block, we will study the different approaches

to tackle a formal proof, learn how to apply them to specific problems and

understand which techniques are more suitable for each type of problem. To

sum up, our goals are three-fold:

• Learn to understand proofs by comprehending the overall approach used

in the proof.

• Learn to identify incorrect proofs and situations where a proof strategy has

not been applied correctly. This knowledge will be useful to avoid making

those mistakes in our proofs.

• Learn how to set up and write our own formal proofs for many different

types of properties.

3.2. Required reading

[CLA09] R. Clarisó (2009). Formal Proofs: Understanding, writing and evalu-

ating proofs. Editorial UOC.

[CUP05] A. Cupillari (2005). The Nuts and Bolts of Proofs. Elsevier.

[CAS00] B. Casselman (2000). Pictures as Proofs. Notices of the AMS,

47(10):1257–1266, 2000, AMS.

• Section 4 of [CLA09] presents the overall flow in the development of a

formal proof, focusing on the basic steps that need to be completed and

the common pitfalls in each of these steps. For example, at some point we

should assume a critical attitude towards the property that is being proved

and try to actually disprove it. This will either reveal flaws in the property

or provide an intuition on why the property holds.

• Section 5 of [CLA09] introduces the concept of proof strategy, a generic ap-

proach to complete proofs which can be applied to a variety of problems.

An example of a strategy is reduction to an absurd, where we assume that

the property to be proved is actually false and try to reach a contradic-

c© CC-BY-NC-ND • PID_00155542 32 Formalisation and Proof

tion (which leads us to conclude the impossibility of the property being

false). Each proof strategy is briefly presented, together with an example

of a formal proof using that approach. Finally, some suggestions on which

strategies might be more adequate for each specific type of problems are

presented.

• The core of the book [CUP05] is devoted to the study of proof strategies.

Each proof strategy is presented in detail individually, together with mo-

tivating examples and exercises. Finally, the book concludes with several

indications on selecting the most suitable strategy.

• Finally, the paper [CAS00] presents another proof strategy: using graphical

depictions as a formal proof. The paper shows several examples of these

proofs and discusses the conditions under which such a proof can be con-

sidered valid. This completes our catalogue of proof strategies.

3.3. Reading tips

• First and foremost, do not be discouraged by the apparent complexity of

any proof. Reading a proof related to any field outside of one’s area of ex-

pertise requires an additional effort, and many examples deal with math-

ematical properties that may be unfamiliar. Reading should be targeted at

comprehending the overall strategy rather than understanding the ratio-

nale behind every single step of the proof.

• Do not be fooled by papers and textbooks which always seem to make

the right choice directly and without effort: proofs are the result of an it-

erative process and the final version of the proof may not reflect all the

approaches that have been explored. Furthermore, selecting the most suit-

able proof strategy is a matter of experience. The saying “practice makes

perfect” applies to this context: exercise this skill to improve it. Choosing

the proper strategy will seem obvious in hindsight but it is not trivial, and

making a wrong choice is a good way to gather insights to select a better

alternative.

• In addition to learning proof strategies, proof examples are a good source

of tips on terminology, writing style and even formatting. Make sure to

notice these details in the examples as you read them.

• Notice that a property may be proved using different strategies. As an ex-

ample, consider the property “the sum of the first n natural numbers is

equal to n·(n+1)
2 ”. This property is proved both in Example 3 in Section Di-

rect Proof of [CUP05] and in Example 1 in Section Mathematical Induction

of [CUP05].

• These chapters show the most common mistakes that appear when per-

forming a proof. Make sure that you avoid those errors in your proofs.

c© CC-BY-NC-ND • PID_00155542 33 Formalisation and Proof

3.4. Detailed exercise and reading plan

1) [CUP05], Section Introduction and Basic Terminology.

2) [CUP05], Section General suggestions.

3) [CLA09], Section 4 (Planning formal proofs).

Reading: Understand that a proof is the result of an iterative process and that

proof strategies define the way the problem is approached. Learn about other

specifics of proof development: language, style, . . .

Exercises: None so far. The following readings will study each proof strategy

one by one and provide additional examples and exercises.

4) [CUP05], Section Basic Techniques to Prove If/Then Statements

Reading: This section focuses on the concepts of negation and implication,

which appear in many properties, and the concept of truth table as formal

means to analyse the veracity of a statement. It also introduces two basic

proof strategies: direct proof and proof by contrapositive.

Exercises: From this section of [CUP05], 1-10 (negation of statements), 11-24

(contrapositive, inverse and converse) and 25-28 (comprehension of proofs).

It is recommended to solve at least 4 from the first two blocks and at least one

from the latter.

5) [CLA09], Section 5 (Proof strategies).

Reading: This section provides a quick overview of several proof strategies

that will be reviewed in more detail in the following chapters of [CUP05].

6) [CUP05], Section “If and Only If” or “Equivalence Theorems”

Reading: The concept of “A if and only if B” (abbreviated as “A iff B” or

using the notation A ↔ B) denotes a double implication: A implies B and B

implies A. This means that A is true whenever B is true and false whenever B

is false, i.e. A and B can be used interchangeably. Equivalence properties are

very common!

Exercises: From this section of [CUP05], exercises 2, 3, 5 and 6.

7) [CUP05], Section Use of Counterexamples

Reading: If we want to prove that a property is false, it is sufficient to find a

case where it is not satisfied. This approach can sometimes be a useful proof

strategy. In order to fully take advantage of this chapter, it is necessary to re-

call the strategies for building the negation of a statement, from the previous

section How to construct the negation of a statement of [CUP05].

Exercises: From this section of [CUP05], exercises 1, 3 and 5 (find a coun-

terexample for statements that are known false) and 7, 8, 10 and 13 (decide

whether a statement is true or false, and if it is false, find a counterexample).

8) [CUP05], Section Mathematical induction

Reading: Induction is a powerful proof strategy used when the property being

proved involves an infinite collection of elements. As proving the property

element by element is impossible, induction offers a general mechanism to

complete the proof for all its elements at once.

Exercises: From this section of [CUP05], exercises 1, 3, 4, 6, 7 and 9.

c© CC-BY-NC-ND • PID_00155542 34 Formalisation and Proof

9) [CUP05], Section Existence theorems

Reading: The remaining sections of [CUP05] consider specific families of

properties and focus on specific strategies targeted at that kind of properties.

This section discusses existence theorems, i.e. theorems that assert the exis-

tence of at least one element satisfying a specific property. Then, it is necessary

to prove the existence of such element or to provide a systematic procedure

that constructs or selects such element.

Exercises: From this section of [CUP05], exercises 2, 5, 7 and 8.

10) [CUP05], Section Uniqueness theorems

Reading: Other theorems assert that there is at most one element satisfying

a specific property. Uniqueness properties are often combined with existence:

“there exists X such that p(X) and it is unique”.

Exercises: From this section of [CUP05], exercises 3 and 5.

11) [CUP05], Section Equality of sets

Reading: In this Section, properties on the equality of sets are considered.

These properties state that two sets have exactly the same collection of el-

ements. For example, this situation arises when we need to prove that two

definitions of the same set are equivalent.

Exercises: From this section of [CUP05], exercises 1, 5, 7 and 9.

12) [CUP05], Section Equality of numbers

Reading: Counting proofs and many proofs in arithmetic and analysis deal

with the equality of two numbers defined in two different ways. This section

shows several examples of such proofs of equality.

Exercises: From this section of [CUP05], exercises 1, 3 and 5.

13) [CUP05], Section Composite statements

Reading: Finally, the statement to be proved could be a combination of sev-

eral statements using logical operators, where each individual statement con-

forms to one of the patterns discussed in previous sections. This Section con-

siders how to analyse these complex statements in order to use the proof

strategies discussed so far.

Exercises: From this section of [CUP05], exercises 3, 4 and 5.

14) The paper [CAS00].

Reading: Theorems can also be proved with the use of graphical depictions,

and not only in geometrical problems, but also in other fields. This paper

shows several examples of these proofs and discusses when such a proof can

be considered valid.

Exercises: Prove graphically that for any pair of natural numbers a and b,

a2 + b2 ≤ (a + b)2. Also, prove graphically that there exists an integer k such

that for all x ≥ k, x ≥ log2(x), where log2 is the logarithm for base 2.

15) [CUP05], Section Collection of Proofs.

Reading: This section shows several examples of incorrect proofs, i.e. proofs

that allegedly certify the validity of a statement but have errors like ignor-

ing special cases or incurring in logical fallacies. Learning to detect errors in

a proof is as important as being able to create a correct proof. Section 5 of

c© CC-BY-NC-ND • PID_00155542 35 Formalisation and Proof

[CLA09] also showed several common pitfalls that may appear when using

several proof strategies.

Exercises: Find the errors in the alleged proofs.

16) [CUP05], Diagram in the last page and [CLA09], Closing table of Section 5.

Reading: The final step is a set of guidelines to decide which proof strategy

is most suitable for our theorems. In the real world, there is no silver bullet

that will tell us which is the best proof strategy. However, there are several

intuitions that can reveal suitable proof strategies, based on the structure of

the property to be proved. The diagram in [CUP05] and the table in [CLA09]

summarize those rules of thumb which have been discussed in the previous

chapters.

Exercises: From [CLA09], self-assessment exercises 1-4. From [CUP05], review

exercises 1, 2, 4, 5, 6, 10, 18, 21, 22, 23, 25, 33, 34, 37, 38 and 39. Finally, Sec-

tion Exercises without solutions in [CUP05] are good candidates for discussion

in the forum.

3.5. Further reading

• [CUP05] provides an additional section on proofs related to limits of func-

tions and sequences. Also, each Section provides more exercises in addition

to those discussed in this reading guide.

Fallacies in everyday life

Advertising, political

statements and articles of

opinion, specially in

controversial topics, can

contain fallacies that seem to

support the author’s point of

view.

• There are many available resources that study logical fallacies in detail. For

example, the following web resources provide a starting point to identify

incorrect arguments.

Wikipedia. List of fallacies

http://en.wikipedia.org/wiki/List_of_fallacies

Last retrieved on 20010/01/01.

Fallacy files portal.

http://www.fallacyfiles.org/

Last retrieved on 20010/01/01.

Michael C. Labossiere (1996) Tutorial on fallacies

http://www.nizkor.org/features/fallacies/index.html

Last retrieved on 20010/01/01.

Stephen Downe (2001). Stephen’s Guide to the Logical Fallacies.

http://onegoodmove.org/fallacy/toc.htm

Last retrieved on 20010/01/01.

Logical fallacies portal.

http://www.logicalfallacies.info

Last retrieved on 20010/01/01.

c© CC-BY-NC-ND • PID_00155542 36 Formalisation and Proof

4. Applications of formal proof

.

4.1. Overview

This section describes several research fields in computing where formal proof

can be useful. The goal of this section is three-fold. First, it is important to

understand the type of problems where formal proof can be applied. Second,

we will get to analyse several examples of proofs which are more complex

than textbook examples. Finally, we can learn different conventions for for-

mal proofs from different fields, e.g. notation, terminology, proof style, . . . The

list of research fields that will be considered is the following:

• Concurrent and distributed systems.

• Communication and cryptographic protocols.

• Formal verification of safety-critical systems.

• Computational complexity theory.

• Security and cryptography.

4.2. Required reading

[CLA09] R. Clarisó (2009). Formal Proofs: Understanding, writing and evalu-

ating proofs. Editorial UOC.

• Section 1 of [CLA09] presents a short overview of several research prob-

lems within computer science and information systems research that in-

volve formal proof. This list can be used as a starting point before moving

forward. Notice that formal proof is not the best fit for every discipline:

some problems should be evaluated empirically rather than being formally

proved. Formal proof is more adequate for problems where there is a need

for certainty and it is possible to eliminate ambiguity, e.g. mathematical

properties, solutions to abstract problems or safety-critical systems.

• Section 8 –Evaluating formal proofs– of [CLA09] provides an evaluation

framework to critically evaluate a formal proof. This checklist will be the

reference guide when studying the formal proofs used in real research pa-

pers.

• Section 7 –Examples of proofs in IS and computing– of [CLA09] provides a

small list of research papers that use formal proofs as part of their research.

c© CC-BY-NC-ND • PID_00155542 37 Formalisation and Proof

The remainder of the section is devoted to each of the research fields in the

previous list. For each field, we provide a general overview of the field and

the type of problems that are studied. This introduction attempts to iden-

tify the basic concepts and notation used in the field, in order to facilitate

the comprehension of research papers. Whenever possible, we also provide a

broad survey of the research fields that presents the relevant problems and

results. Finally, we provide some examples of real research papers from those

fields that base some or all of their contributions on formal proof. For each

paper, a short summary is provided to provide context for the proof being

used in the paper and to highlight the relevant aspects.

4.3. Reading tips

• The goal of this section of the course is not to cover all the research fields:

you should select only two of the research fields covered in this section. You

should choose the one which is closest to your research interest and any

other from the list. In case you cannot decide which two to focus on,

the recommended topics are “Concurrent and distributed systems” and

“Formal verification of safety-critical systems”.

• Keep the checklist in Section 8 of [CLA09] close while you are reading

research papers. Evaluate each aspect of the checklist in every formal proof:

this constitutes the exercises of this part of the course.

• Before reading proofs from a specific field, make sure that you understand

the basic concepts and notation that appear in the proof. Refer to the in-

troduction to each field provided in this guide and the surveys for further

information.

4.4. Formal Verification of Safety-Critical Systems

4.4.1. Overview

Formal Verification vs

Validation

Verification checks whether a

system satisfies a

specification, i.e. is the

system right? Meanwhile,

validation checks whether the

system being built matches

the intent of the designer,

i.e. is this the right system?

The process of deciding whether a program or hardware system (circuit, pro-

cessor, . . .) satisfies its specification is called formal verification. The term “for-

mal” is used because, in this process, both the implementation and specifica-

tion are expressed in a formal notation that assigns them a precise meaning

and, then, they can be compared using sound reasoning techniques. Usually,

this type of formal process is used in systems whose correct operation is critical

due to the potential impact of an error in the lives of their users, e.g. systems

in the medicine, automotive, aerospace or military industries.

A typical paper on formal verification needs to describe (1) the specifica-

tion, (2) the implementation, (3) the semantics of the selected formalism,

(4) the translation of the specification and implementation into that formal-

c© CC-BY-NC-ND • PID_00155542 38 Formalisation and Proof

ism, (5) the algorithm used to check the specification and (6) the results of

this analysis.

The specification can take several forms: a contract in the form of a precon-

dition and postcondition, the description of the protocol that is being im-

plemented, a mathematical formula describing the expected result, a state

diagram illustrating the expected changes in the behaviour of the system,...

Usually the specification describes the dynamic evolution of the system and,

in that case, the property being described can be classified into two categories:

• Safety properties describe something bad that should never happen in our

system, i.e. a set of error configurations that should not be reached by

our system. For instance, a typical safety property is the lack of runtime

errors: “the program should not execute a division by zero, access a null

pointer, access an array outside its bounds or throw a runtime exception”.

Another example of a safety property in the case of a traffic light controller

would be “the car and pedestrian lights should never be both green simul-

taneously”.

• Liveness properties describe something good that should happen in our sys-

tem, i.e. a set of correct configurations that should eventually be reached,

or that should be reached infinitely often. For example, some examples of

liveness properties are: “the program should terminate after a finite num-

ber of steps” or “both the car and pedestrian light should become green

infinitely often”.

The sheer size of current software and hardware systems makes manual for-

mal verification impractical in almost all scenarios. It would be possible, for

instance, to verify by hand very high-level abstractions of a real system. How-

ever, for larger systems, software tools are required to automate the deduction

process.

The selection of a tool is dictated by the type of property to be checked and the

type of system being checked: checking that a concurrent program terminates

is not the same as checking that the clock cycle time of circuit is sufficiently

long. In this sense, the characteristics of the specification and implementation

influence the choice of a formalism, and each formalism supports a range of

tools for reasoning purposes:

• When the formalism is a logic of some sort, the tool is called a theorem

prover.

• If the formalism is a temporal logic, i.e. a logic notation used to describe

properties about time, sequences of events and dynamic behaviour, then

the tool is called a model checker.

• If the formalism is an optimization problem or a system of constraints, the

tool is called a constraint solver. Some widely used families of constraints

problems are SAT (satisfiability of a logical formula in conjunctive normal

c© CC-BY-NC-ND • PID_00155542 39 Formalisation and Proof

form) and linear programming (maximising a linear expression that satis-

fies a system of linear inequalities such as x + 2y ≥ 7).

• Static analysers infer information about the dynamic behaviour of a system

from its structure, that is, without trying to simulate its execution. Static

analysis may be able to prove simple dynamic properties but, in general,

it is unable to prove every dynamic property. However, as static analysers

tend to be much more efficient, the potential lack of a conclusive answer

is considered a reasonable trade-off.

In any case, verification is a computationally complex problem: the time re-

quired to verify a property is usually at least exponential in terms of the size of

the system. Furthermore, several properties like termination are undecidable: it

is impossible to write a procedure able to check them in finite time for some

system. Even with approximated algorithms and accepting that the tool may

not terminate in some cases, most methods have scalability problems and

become unusable when the size of the implementation to be checked grows.

Finally, hardware and software systems have peculiarities that may affect the

way in which their verification is addressed. For example, in software systems

the flow of execution is sequential (except for concurrent/distributed systems)

and the control flow plays an important role (conditionals, loops, jumps, . . .).

On the other hand, hardware is inherently concurrent (logic gates operate

in parallel) while the computation is data-flow oriented. Also, the properties

of interest are different in software and hardware systems, e.g. termination

does not make sense in many hardware contexts. Consequently, although

theorem provers and solvers are general purpose, the verification tools built

upon them may be oriented towards hardware, software or embedded systems

(which combine software and hardware components).

4.4.2. Required reading

Surveys and introductory papers

[CWI96] E. C. Clarke, M. Wing (1996). Formal Methods: State of the Art

and Future Directions. ACM Computing Surveys, 28(4):626–643,

ACM.

[HJ+08] M. Hinchey, M. Jackson, P. Cousot, B. Cook, J. P. Bowen,

T. Margaria, T (2008). Software engineering and formal methods.

Communications of the ACM, 51(9):54–59, ACM.

[CG+05] E. C. Clarke, A. Gupta, H. Jain, H. Veith (2005). Model Checking:

Back and Forth between Hardware and Software. VSTTE 2005, LNCS

4171, pp. 251-255, Springer.

[WAN04] F. Wang (2004). Formal Verification of Timed Systems: A Survey and

Perspective. Proceedings of the IEEE, 92(8):1283–1305, IEEE Press.

c© CC-BY-NC-ND • PID_00155542 40 Formalisation and Proof

Papers using formal proofs

[KH+00] S. King, J. Hammond, R. Chapman, A. Pryor (2000). Is Proof

More Cost-Effective Than Testing?. IEEE Transactions on Software

Engineering, 26(8):675–686, IEEE CS Press.

[LER09] X. Leroy (2009). Formal Verification of a Realistic Compiler. Com-

munications of the ACM, 52(7):107–115,ACM.

[ALE95] M. Aagaard, M. Leeser (1995). Verifying a Logic-Synthesis Al-

gorithm and Implementation: A Case Study in Software Verifica-

tion. IEEE Transactions on Software Engineering, 21(10):822–834,

IEEE CS Press.

[DCB04] S. Dajani-Brown, D. Cofer, A. Bouali (2004). Formal Verification

of an Avionics Sensor Voter Using SCADE. FORMATS 2004, LNCS

3253, pp. 5-20, Springer.

4.4.3. Detailed reading guide

• [CWI96] provides a general view of formal verification approaches in sev-

eral disciplines, collectively described as formal methods. Several tools, ap-

proaches, and examples of successful verification are introduced.

• [HJ+08] discusses the role of formal verification in the software develop-

ment process, arguing that the use of formal methods can improve reli-

ability of software. Several promising trends in software verification are

discussed.

• [CG+05] provides a brief high-level overview of model checking, i.e. the

verification of dynamic properties of a system. The survey [WAN04] pro-

vides a more detailed discussion of this topic. However, due to its length

and density, it is better used as a reference material.

• [KH+00] combines formal proof with a quantitative analysis of the advan-

tages achieved by formal methods-based development over conventional

development strategies. The system under study is a safety-critical system

advising on the safety of flying helicopters from a naval vessel.

• [LER09] considers the verification of a compiler for a subset of the C lan-

guage. The goal is ensuring that the code generated by the compiler pre-

serves the semantics of the original code. The paper defines the notions

of “correctness” that will be checked in the compiler, outlines the over-

all structure of the compiler and provides an overview of the verification

process using the interactive theorem prover Coq.

• [ALE95] addresses the verification of a logic synthesis algorithm, a pro-

cedure which reduces the size of a boolean function to improve the per-

c© CC-BY-NC-ND • PID_00155542 41 Formalisation and Proof

formance of its physical implementation. Obviously, the optimised circuit

should compute the same output as the original circuit. The verification of

this property uses the theorem prove NuPRL.

• [DCB04] addresses the verification of a sensor voter algorithm, a safety

redundancy mechanism where multiple sensors are used to measure each

sample in order to detect potential sensor defects. The correct operation of

the protocol is analysed used the SCADE tool.

4.5. Concurrent and distributed systems

4.5.1. Overview

A concurrent system is any system containing multiple tasks that are executed

simultaneously. These tasks are not executed independently and they may in-

teract freely among them, e.g. exchanging intermediate results, coordinating

among them, sharing resources or even competing for mutual resources. The

set of tasks may be executing in a single-core processor (time-shared among

all tasks), a multi-core processor or multiple processors that may communi-

cate using a shared memory or a network that allows communication through

messages. In the latter case, we talk about distributed systems to emphasize that

there is communication taking place and that tasks may not be physically on

the same computer. Usually, tasks are described using terms like “thread” or

“process” for concurrent systems, and with the terms “node” or “processor”

for distributed systems.

In a similar way, a concurrent/distributed algorithm is the description of a

set of N tasks such that their concurrent/distributed execution produces a de-

sired result. The description is often provided in terms of pseudocode and

usually the code for all tasks is equal, except for a unique identifier given to

each task. A distributed algorithm may be replicating the computation of an

equivalent sequential algorithm, for example (a) to provide tolerance to fail-

ures, (b) to improve performance or split workload by dividing a computation

among multiple nodes or (c) to allow concurrent access to a shared resource.

In these scenarios, the correctness of the distributed algorithm will demand

that its execution provides identical results to a sequential execution. That

is, the concurrent system should avoid having intermediate results from one

task disrupt another. One common mechanism to achieve this goal is the def-

inition of critical sections, e.g. fragments of the task where its execution should

occur in mutual exclusion, that is, as if the task was executed individually in a

sequential system.

Nevertheless, a distributed algorithm may also attempt to achieve communi-

cation and interaction among the set of nodes. An example of such algorithms

is leader election, where a set of identical peers must designate a leader among

them. This algorithm belongs to a more general family of consensus algorithms

where different nodes must reach a common agreement.

c© CC-BY-NC-ND • PID_00155542 42 Formalisation and Proof

The correctness of concurrent/distributed systems considers some problems

that do not appear in sequential systems. For example, the system as a whole

should not starve, i.e. reach a configuration where each task is waiting for

resources allocated to other tasks. This type of configuration is called deadlock

and it can be ensured through careful policies for allocating and releasing

resources. Furthermore, the system should terminate or converge by producing

a result after a finite sequence of steps, e.g. if the goal is reaching an agreement,

such agreement must be reached after a finite sequence of steps.

Byzantine generals

problem

The Byzantine generals

problem is described in detail

in one of the required

readings of this section,

[TSA92].

Regarding distributed systems, another correctness concept which is intro-

duced is that of fault-tolerance: the resilience of the system as a whole to the

incorrect operation of one or more of its nodes. Errors may consist, for ex-

ample, in the failure to send/receive a message, sending unsolicited messages

or computing an incorrect result in one step of the algorithm. Specific pat-

terns of error models may receive a name, e.g. Byzantine errors usually refer

to unreliable communications among nodes. Usually, each algorithm is clas-

sified according to the type of errors and the number of erroneous nodes it

can withstand.

Notice that distributed algorithms deal with errors caused by crashes, mal-

functions or faulty communication channels, but they usually do not con-

sider malicious nodes in their analysis. This type of problem is studied by

cryptographic protocols, that are studied in detail in Section 4.7.

Finally, another notion which often appears in the context of distributed algo-

rithms is their cost: as communication among nodes may be slow, algorithms

are usually oriented towards exchanging the minimum amount of informa-

tion among nodes. It is common to provide formal proofs of correctness fol-

lowed by formal proofs of the lower/upper bounds on the number of messages

required to reach the result.

4.5.2. Required reading

Surveys and introductory papers

[FME03] M. J. Fischer, M. Merritt (2003).) Appraising two decades of dis-

tributed computing theory research. Distributed Computing, 16:

239-247, Springer.

[TSA92] J. Turek, D. Sasha (1992). The Many Faces of Consensus in Dis-

tributed Systems. Computer, 25(6):8–17, IEEE Computer Society

Press.

[THO98] A. Thomasian (1998). Concurrency control: methods, performance,

and analysis. ACM Computing Surveys, 30(1):70–119, ACM.

c© CC-BY-NC-ND • PID_00155542 43 Formalisation and Proof

Papers using formal proofs

[LAM74] L. Lamport (1974). A new solution to Dijkstra’s concurrent pro-

gramming problem. Communications of the ACM, 17(8):453–455,

ACM.

[LAM78] L. Lamport (1978). Time, Clocks, and the Ordering of Events in a

Distributed System. Communications of the ACM, 21(7):558–565,

ACM.

[FLP85] M. J. Fischer, N. A. Lynch, M. S. Paterson (1985). Impossibility of

Distributed Consensus with One Faulty Process. Journal of the ACM,

32(2):374–382, ACM.

[GLY02] S. Gilbert, N. Lynch (2002). Brewer’s conjecture and the feasibil-

ity of consistent, available, partition-tolerant web services. SIGACT

News, 33(2):51–59, ACM.

[SM+03] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, F. Dabek, H. Balakrishnan. (2003) Chord: A Scalable

Peer-to-peer Lookup Protocol for Internet Applications. IEEE/ACM

Transactions on Networking, 11(1):17–32, IEEE Press.

4.5.3. Detailed reading guide

• [FME03] provides a general description of the state of the art and theoreti-

cal problems in the field of distributed computing.

• [TSA92] focuses on a specific family of distributed algorithms, consensus

algorithms, and discusses different solutions to the problem in different

settings. For each algorithm, we need to ensure termination (eventually,

each node chooses a value), agreement (upon termination, all values cho-

sen by nodes are equal) and validity (if all nodes entered the consensus

with the same value, then consensus will be reached on that value).

• [THO98] discusses algorithms for ensuring that the concurrent execution

of a set of tasks produces an equivalent result to their sequential execution.

Again, this survey is very extensive and it is useful mainly as a reference. In

any case, it is recommended to read at least sections 1 and 2 to understand

the basic problems related to concurrency control.

• [LAM74] originally introduced the well-known bakery algorithm to achieve

mutual exclusion among a set of concurrent tasks. The paper describes

the algorithm using pseudocode and follows up with a formal proof of its

correctness.

• [LAM78] presents a method that allows the definition of an order among

all the events that occur in a distributed system. Its purpose is being able

to decide, for any pair of events a and b which may happen in different

nodes, whether a happens before b or vice versa.

c© CC-BY-NC-ND • PID_00155542 44 Formalisation and Proof

• [FLP85] reaches a theoretical result: consensus algorithms cannot ensure

termination in distributed systems where communication among nodes is

asynchronous (message delivery may take an arbitrary amount of time) and

there is at least one faulty node that can crash at any time.

• [GLY02] discusses a theoretical result about web services, which is some-

how related to [FLP85]: a web service cannot offer three notions which are

desirable for web services (consistency, availability and partition-tolerance).

The paper defines these notions and formally proves the impossibility of

ensuring all of them simultaneously.

• [SM+03] presents a distributed look-up system, Chord, addressed at an-

swering queries about which peer in the network has a desired data item.

The paper provides several proofs to ensure that the number of lookup op-

erations required to reach the right peer is proportional to log(n) where n

is the number of nodes in the network. As some aspects of the algorithm

involve using random number generators, the proofs use probability to

reach conclusions “with high probability”. In these proofs, it is generally

assumed that random number generators are “perfect” in the sense that

they achieve perfect randomness.

4.6. Security and Cryptographic Algorithms

4.6.1. Overview

Information security is a broad research field encompassing the access, trans-

mission, modification and storage of information. The underlying concept is

preventing malicious actors (attackers) from breaching the confidentiality (se-

crecy of designated information), integrity (avoiding or detecting unauthorised

data manipulation) or availability (allowing access to authorised users) of the

information. This idea can be applied to many different areas in computing

that deal with information and communication, e.g. networks, databases, op-

erating systems, . . .

One-way function

A one-way function is a

function where (a) the output

can be computed from the

input efficiently and (b)

inverting the function is

computationally complex:

given an output, it is hard to

compute an input that

produces that output.

Security is achieved through the use of mathematical algorithms devised for

hiding information, known as cryptographic algorithms. The classical exam-

ples of cryptographic algorithms are encryption algorithms: a procedure that

given a message (plaintext) and a key, generates a ciphertext from which it is

not possible to extract the original plaintext without the proper key. Another

typical cryptographic device is the one-way function or hash function, which

can be used to generate message digests that act as a proof of the integrity of

a message.

Research on information security is very dependent on proofs to demonstrate

the validity of its claims. A new encryption algorithm cannot be considered

secure unless it is possible to formally prove its immunity to the attacks rele-

c© CC-BY-NC-ND • PID_00155542 45 Formalisation and Proof

vant to its operation. Also, contrary to fields like formal verification, it is not

uncommon to find pen-and-paper proofs for security related problems.

A typical paper on (theoretical) information security needs to describe the set-

ting, the cryptographic algorithms being used and the attacker model, i.e. the

assumed capabilities of a potential attacker. Then, either the paper proves that

the system is secure to the attacks under consideration or it describes an un-

known vulnerability that can be abused by an attacker.

4.6.2. Required reading

Surveys and introductory papers

[DHE79] W. Diffie, M. E. Hellman (1979). Privacy and Authentication: An

Introduction to Cryptography. Proceedings of the IEEE, 67(2):397–

428, IEEE Press.

[GOL05] O. Goldreich (2005). Foundations of Cryptography - A primer.

Foundations and Trends in Theoretical Computer Science, 1(1):1-

116, Now Publishers.

[PAK99] F. A. P. Petitcolas, R. J. Anderson, M. G. Kuhn (1999). Informa-

tion hiding - a survey. Proceedings of the IEEE, 87(7):1062–1078,

1999.

Papers using formal proofs

[CAM00] J. Camenisch (2000). Efficient Anonymous Fingerprinting with

Group Signatures. ASIACRYPT2000, LNCS 1976, pp. 415-428,

Springer.

[ACP05] J. Andronik, B. Chetali, C. Paulin-Mohring (2005). Formal Ver-

ification of Security Properties of Smart Card Embedded Source Code.

FM 2005, LNCS 3582, pp. 302–317,Springer.

[GWO00] D. Wagner, I. Goldberg (2000). Proofs of Security for the Unix Pass-

word Hashing Algorithm. ASIACRYPT 2000, LNCS 1976, pp. 560–

572, Springer.

[BMO84] R. S. Boyer, J. S. Moore (1984). Proof Checking the RSA Pub-

lic Key Encryption Algorithm. American Mathematical Monthly,

91(3):181–189, AMS.

4.6.3. Detailed reading guide

• [DHE79] presents fundamental concepts in cryptography and information

security which have become part of the folklore of the field: encryption,

public and private key cryptography, . . . However, as a survey, this paper

is extremely outdated: many new cryptographic algorithms, protocols, at-

tacks and problems have been proposed since its publication.

c© CC-BY-NC-ND • PID_00155542 46 Formalisation and Proof

• [PAK99] introduces a specific subfield within information security: infor-

mation hiding, the embedding of a secret within a message. The paper dis-

cusses the basic concepts and applications of information hiding. Again,

the paper is too dated to provide a clear picture of the state-of-the-art in

the area but it is a useful summary of basic concepts.

• [GOL05] is a very extensive introduction to cryptography in general. It

is recommended to use it merely as a reference rather than reading it in

depth from start-to-end.

• [CAM00] discusses a method for computing fingerprints to identify prod-

ucts sold by a merchant. In that way, if unauthorised copies of a product

are discovered, it is possible to identify the buyer who created the copies.

Moreover, the paper characterises the security requirements of this sig-

nature method: it should enable the sellers to identify malicious buyers,

while protecting buyers from being falsely accused. The proof of these

properties is developed using the pen-and-paper style.

• [ACP05] considers the verification of security properties in an operating

system module embedded in a smartcard. More precisely, the smartcard

can be powered down at any time and this feature could be used by an

attacker to leave memory in an inconsistent state. The presented approach

annotates the model with correctness conditions and then performs an

analysis of the source code to ensure that those conditions are met. The

Coq interactive theorem prover is used to reason on correctness conditions

and source code behavior.

• [GWO00] analyses the security of the hashing algorithm used to store

passwords in the Unix operating system, i.e. it should be hard to recover

a password from a hash, even if the attacker is aware of the hashing algo-

rithm. The paper provides a formal definition of this security notion and

proves it in the pen-and-paper style.

• [BMO84] studies the correctness of the RSA encryption algorithm, a widely

used public key encryption algorithm. More precisely, it uses a theorem to

verify the invertibility of the algorithm, i.e. that it is possible to recover

information encrypted with the public key by using the private key.

4.7. Communication and Cryptographic Protocols

4.7.1. Overview

A protocol is a collection of rules that regulates the interaction among sev-

eral parties. A communication protocol governs the exchange of information

among several computer systems. For example, a protocol may dictate which

party can start the communication, the appropriate sequence of messages and

c© CC-BY-NC-ND • PID_00155542 47 Formalisation and Proof

responses, how to acknowledge the correct reception of a message or how to

deal with faulty error channels.

On the other hand, a cryptographic protocol is a collection of rules and crypto-

graphic procedures to achieve a desired security property, even in the presence

of an attacker, i.e. malicious individuals or systems interested in breaking the

security property for their own advantage. This goal is achieved through the

use of cryptographic methods: using keys and encryption algorithms to keep

the contents of a message secret, using timestamps to identify when each mes-

sage is exchanged, using one-way digest functions to detect data tampering,

using random numbers (nonces) to detect the reuse of old messages, . . .

Some possible goals of a cryptographic protocol may be authentication (estab-

lishing the identity of one of the parties), key agreement (choosing a key that

will be used in further communications) or non-repudiation (ensuring that no

party can claim that a message was not sent or received). Depending on the

property, the attacker or attackers will have a different goal: successfully repu-

diate a message, become authenticated as somebody else, learn the keys used

between two parties, . . . Also, the assumed capabilities of the attacker may

vary: he may be able to resend old messages (replay attack), intercept and alter

all communications among the parties (man-in-the-middle), . . .

A formal proof is required to ensure that the protocol has no holes that can

be abused by an attacker. The proof requires a precise description of the pro-

tocol and usually a careful case-by-case analysis of all possible scenarios. As

protocols have become more complex over time, it is more common to use

automated tools like theorem provers or model checkers to establish that a

protocol is secure.

4.7.2. Required reading

Surveys and introductory papers

[KIN91] P. W. King (1991). Formalization of protocol engineering concepts.

IEEE Transactions on Computers, 40(4):387–403, IEEE Press.

[LIE93] A. Liebel. Authentication in Distributed Systems: A Bibliography.

ACM SIGOPS Operating Systems Review, 27(4):31–41, ACM.

[MEA03] C. A. Meadows (2003). Formal Methods for Cryptographic Proto-

col Analysis: Emerging Issues and Trends. IEEE journal on Selected

Areas in Communication, 21(1):44-54, IEEE Press.

c© CC-BY-NC-ND • PID_00155542 48 Formalisation and Proof

Papers using formal proofs

[DLM82] R. A. DeMillo, N. A. Lynch, M. J. Merritt (1982). Cryptographic

protocols. STOC’82, pp.383–400, ACM.

[BOL96] D. Bolignano (1996). An Approach to the Formal Verification of

Cryptographic Protocols. CCS’96, pp. 106–118, ACM.

[BPA97] G. Bella, L. C. Paulson (1997). Using Isabelle to Prove Properties of

the Kerberos Authentication System. DIMACS Workshop on Design

and Formal Verification of Security Protocols.

[DMT00] G. Denker, J. Meseguer, C. Talcot (2000). Formal Specification

and Analysis of Active Networks and Communication Protocols: The

Maude Experience. DARPA Information Survivability Conference

& Exposition, 1:251–265.

4.7.3. Detailed reading guide

• [KIN91] focuses on the definition of communication protocols using dif-

ferent formal notations. The paper does not focus on security concerns.

• [LIE93] and [MEA03] are surveys on the formal verification of crypto-

graphic protocols, discussing the relevant problems in the field and the

different approximations that have been used in the literature. It is rec-

ommended to review them in chronological order, as they illustrate the

progress of the state of the art and the techniques being used increase in

complexity over time.

• [DLM82] and [BOL96] offer two examples of a manual proof of the se-

curity of a protocol. Both papers first discuss their model of the protocol

and the attackers and, then, they proceed to verify specific cryptographic

protocols in detail.

• On the other hand, [BPA97] and [DMT00] present mechanized proofs

of cryptographic protocols, using two different tools: the theorem prover

Isabelle and the rewriting system Maude. First, they discuss how to encode

their model of the protocol and the attackers in the formalism used by the

tool. After that, the tools automate part of the reasoning process. Notice

that creating an abstract but complete formalisation of the protocol which

is faithful to the original is the core of the problem.

c© CC-BY-NC-ND • PID_00155542 49 Formalisation and Proof

4.8. Complexity theory

4.8.1. Overview

Complexity theory is a discipline within theoretical computer science that

studies the inherent difficulty of problems, measured in terms of the com-

putational resources required to solve them. The resources being considered

are the memory usage and execution time of the most efficient program that

solves the problem. An algorithm may work better for some inputs than oth-

ers, so when measuring its resource usage we will have to consider its best

case, average case or worst case. We usually focus only on the latter, the cost

in the worst case.

Execution time is abstracted as the “number of operations to be executed” to

avoid conclusions that are dependent on a specific technology. Depending on

the context, our understanding of what operations are counted may vary. For

example, database algorithms may consider the number of disk read/write op-

erations and distributed algorithms may evaluate the number of messages be-

ing exchanged. Usually, if no context is provided, we are implicitly counting

the number of assignments and operators (logic, arithmetic and relational).

On the other hand, memory usage counts the storage space used by the inter-

mediate data required to compute the result. Storage is measured in terms of

the “number of bits”, again to be independent from technological choices.

Big O notation

This mathematical notation

describes the growth rate of a

function and it is often used

in complexity theory and

algorithmics. For example, a

program with execution time

O(n3) requires a number of

operations that is, at most,

proportional to n3.

Resource usage grows with the size of the input problem. For example, it will

take longer to sort 1.000.000 words in lexicographic order than to sort 10. For

this reason, the complexity of a problem is measured as the growth rate of re-

sources with respect to the input. We are not interested in the specific formula

(e.g. 3n3 + 17n - 1), but on the order of magnitude of the growth (e.g. propor-

tional to n3 or cubic). Some other examples of typical growth functions are

logarithmic (log n), linear (n), quasilinear (n log n) and quadratic (n2).

4.8.2. Complexity classes

Polynomial vs

Exponential

Deciding whether an

unsorted list contains a given

element can be done in

polynomial time (in fact,

linear time). However,

deciding whether checkmate

is inevitable from a given

chess position requires

exponential time: the

number of possible moves is

exponential with respect to

the size of the board.

In addition to identifying bounds on resource usage, a second goal of com-

plexity theory is comparing the relative difficulty of different problems. Thus,

complexity theory describes families of problems with the same difficulty and

the relationships between these families. Each family corresponds to a dif-

ferent category of growth rates, for example polynomial growth, i.e. O(nk) for

some constant k, or exponential growth, i.e. O(kn) for some constant k > 1 or

O(nn) or O(n!).

Exponential growth can rapidly lead to prohibitive costs in terms of mem-

ory usage or execution time. For instance, for a large input, the execution

time of the program could take longer than the life of the universe! Problems

c© CC-BY-NC-ND • PID_00155542 50 Formalisation and Proof

Table 2: Complexity classes

Cost Complexity class

Polynomial execution time PTIME or simply P

Polynomial memory usage PSPACE

Exponential execution time EXPTIME or simply EXP

Exponential memory usage EXPSPACE

where the most efficient procedure to find the solution has an exponential

cost are called intractable: they cannot be solved in practice beyond small in-

puts. Therefore, it is important to discern whether a problem is tractable or

intractable.

Remarkably, there is a large family of problems whose tractability is still un-

known. First, there is no known polynomial solution for any of these prob-

lems. On the other hand, there is no proof that it cannot exist. Furthermore,

those problems have an additional trait: for each solution it is possible to gen-

erate a certificate with a polynomial size in terms of the input, from which it is

possible to check whether the solution is correct in polynomial time or space.

These families of problems are called NP (non-deterministic polynomial time)

and NP-SPACE (non-deterministic polynomial space) respectively.

Let us consider, for instance, the PARTITION problem: given a set of integers,

decide whether it can be partitioned into two disjoint subsets with an equal

total sum. For example, the set {3, - 1,2,7,1} can be partitioned into {3,2,1}
and {7, - 1}, which both have a total sum of 6. A set of n integers can be

partitioned in 2n different ways and there is no known way of computing the

correct partition efficiently. However, checking if a partition is correct can be

done in polynomial time, by simply adding the numbers in both partitions:

a solution to PARTITION is also its certificate. Therefore, PARTITION belongs

to NP.

4.8.3. Decision problems

Problems can be classified into three categories according to the expected so-

lution. A decision problem attempts to answer a “yes or no” question. On the

other hand, a computation problem asks for any solution under some con-

straints. Finally, an optimisation problem asks for the optimal solution accord-

ing to some criteria. Usually, it is possible to define a decision, computation

and optimisation version for the same problem, each of which is harder than

the previous one.

Complexity theory usually studies decision problems because of two reasons.

First, it is the easiest version of a problem, i.e. if a decision problem is EXP,

the optimisation version will be at least EXP. Moreover, this simplicity allows

a convenient representation of the problem: the inputs can be divided into

those whose answer is “yes” and those whose answer is “no”.

c© CC-BY-NC-ND • PID_00155542 51 Formalisation and Proof

Table 3: Example of problem types.

Problem type Statement

Decision Starting from the initial chess board, can the white player win in five
moves or less?

Computation Starting from the initial chess board, compute a sequence of four
moves where the white player wins.

Optimisation Starting from the initial chess board, compute the shortest sequence
of moves where the white player wins.

4.8.4. Reductions

In order to classify the complexity of a problem A, it is useful to identify an

upper bound for its complexity, i.e. a problem B which is as hard as A or

harder. For example, if we consider the complexity of “computing the area of

a triangle”, the problem of “computing the area of a regular polygon” may

be used as an upper bound, as our original problem is just a special case.

Therefore, if we know that our hard problem B can be solved using a specific

amount of memory or a given execution time, these are upper bounds for any

solution to our simple problem A.

Sometimes, the relationship between the two problems is not so direct. It

might happen that the solution of one problem leads to a solution of the

other. For example, consider the problem PARTITION and SUBSET-SUM, we

can see that PARTITION is at most as hard as SUBSET-SUM:

PARTITION: Given a set of integers, decide if it can be divided into two dis-

joint subsets with an equal total sum.

Sample input: {1,2,3}.

Answer: Yes, it can be partitioned as {1,2} and {3}.

SUBSET-SUM: Given a set of integers and a value k, decide if there is a subset

whose total sum is equal to k.

Sample input: {1,2,3,4} and k = 8.

Answer: Yes, the subset {1,3,4} has a sum of 8.

If we have a program P that can decide SUBSET-SUM, it is very simple to build

a program that solves PARTITION using P. If the total sum of the elements

in the set is N, we simply call P providing the same set and the value N
2 .

If P answers “yes”, it means that a subset of the original set has a sum of
N
2 , but obviously the sum of the remaining elements will have to be N

2 as

we chose N to be the total sum. Therefore, the answer to PARTITION is also

“yes”. Similarly, we can see that if P answers “no”, it means that the original

set cannot be partitioned.

This relationship among two decision problems A and B in which A is at most

as hard as B is called a reduction and it is noted as A ≤p B, e.g. PARTITION ≤p

SUBSET-SUM. To conclude that A ≤p B, it is necessary to define a mapping

from the inputs of a problem A to the inputs of a problem B, just as we have

c© CC-BY-NC-ND • PID_00155542 52 Formalisation and Proof

done. This mapping can be defined as an algorithm that, given an input of

problem A, generates an input of problem B. The program computing this

mapping should satisfy two conditions:

• The answer for the input of A will be the same as the answer for the input

of B, i.e. if the answer for A is “yes”, the answer for B will be “yes” and,

similarly, if the answer for A is “no”, the answer for B will be “no”.

• Computing the input for B should need resources which are at most poly-

nomial in terms of the size of the input for A.

4.8.5. Required reading

Surveys and introductory papers

[COO93] S. A. Cook (1993). An Overview of Computational Complexity.

Communications of the ACM, 26(6):400–408, ACM.

[FOR09] L. Fortnow (2009). The Status of the P vs NP Problem. Communi-

cations of the ACM, 52(9):78–86, ACM.

Papers using formal proofs

[KAR72] R. M. Karp (1972). Reducibility among combinatorial problems.

Complexity of Computer Computations, pp. 85-103, Plenum.

[AKS04] M. Agrawal, N. Kayal, N. Saxena (2004). PRIMES is in P. Annals

of Mathematics, 160(2):781–793.

[DGP09] C. Daskalakis, P. W. Goldberg, C. H. Papadimitriou (2009). The

Complexity of Computing a Nash Equilibrium. Communications of

the ACM, 52(2):89–97, ACM.

4.8.6. Detailed reading guide

• [COO93] provides a general description of the field of computational com-

plexity, describing relevant open problems.

• [FOR09] describes the current status of one of the fundamental problems

in the field of computational complexity: the relationship between com-

plexity classes P and NP. Through this discussion, the paper provides a

clear definition of the key concepts in the field of complexity theory and

the consequences of a possible result regarding the equality of P and NP.

• [KAR72] is a landmark paper in the field which describes reduction rela-

tionships among several key NP problems and introduces the concept of

completeness. A problem p is called complete within a complexity class X

if any other problem within X can be reduced to p. Intuitively, complete

c© CC-BY-NC-ND • PID_00155542 53 Formalisation and Proof

problems are the hardest among their class, as solving them efficiently

provides an efficient solution for all other problems in the same class.

• [AKS04] proves that the problem PRIMES (deciding whether an input

number is a prime or not) can be solved in polynomial time. The solu-

tion consists on an algorithm that performs this test and a proof setting a

polynomial upper bound to its execution time. Interestingly, this problem

was considered open in [COO93].

• The paper [DGP09] is focused on the complexity of a problem arising

in game theory: the computation of a Nash equilibrium. This concept is

introduced in the paper, and a manual proof of the complexity of its com-

putation is provided.

c© CC-BY-NC-ND • PID_00155542 54 Formalisation and Proof

Summary

This course has introduced the use formal proof and provided strategies for

developing proofs which are applicable to a variety of disciplines. These tech-

niques are useful in the comprehension of proofs made by others and also in

the development of new proofs.

It is important to remember that the goal of a proof is the communication of

a result, which should be reproducible by others. Therefore, it is important to

ensure that our proofs are easy to understand by choosing the right vocab-

ulary and notation, as well as exercising care in the style and writing of the

proof.

The application of these strategies in real-world problems has also been stud-

ied in several research fields. As we have seen, each field has its own rules and

preferences when it comes to proofs, for example in the use of mathemat-

ical notation versus natural language. Before preparing a proof, it is highly

recommended to take into account the audience and the context.

