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Abstract 
Microaggregation is a Statistical Disclosure Control technique in which similar 

records are clustered into groups containing a minimum of k records that are later 
replaced by group centroids, so that released data preserve some of their statistical 
properties while reducing the risk of re-identification. A fixed-size microaggregation 
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method clusters data into groups of size k except perhaps one group with size between 
k and 2k -1, whereas a data-oriented (variable-size) method allows group size to vary 
between k and 2k -1. 

Heuristic clustering methods are needed since the minimum information loss 
microaggregation problem is NP-hard (Oganian and Domingo-Ferrer, 2001). 

 
In this paper we studied various microaggregation methods in the literature and we 
have proposed a new heuristic approach for multivariate fixed-size microaggregation 
based on the triangulation of a set of points in ℝ�. A reference data set and a random 
generated one are used to compare the method outcomes, in terms of information 
loss, with other previous proposals and the results summarized. 

 

Keywords 
microaggregation, microdata protection, Statistical disclosure control, privacy, 
triangulation. 
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Introduction 

Principle 6 of the United Nations Economic Commission Report Fundamental 
Principles for Official Statistics states that “Individual data collected by statistical 
agencies for statistical compilation, whether they refer to natural or legal persons, are 
to be strictly confidential and used exclusively for statistical purposes” (UN Statistical 
Commission, 1994, p. 2). So microdata - information at the level of individual 
respondents – should never be released to the public. 

Summarizing data to an aggregate level is the fastest way to protect individual 
privacy; however, aggregated data is not a useful tool to do research - i.e. to explore a 
relationship between two variables – because of the information loss. So access to 
certain level of detail must be provided in order to do some practical inference. Plus, 
with increased computing power and new inference and processing techniques like big 
data and machine learning to identify individual respondents by means of their 
confidential microdata, it’s becoming easier than ever. So privacy risks are quickly 
rising in a serious way. 

Statistical Disclosure Control (SDC) seeks to protect data so that sensitive 
information cannot be linked to specific individuals, thus allowing the information to be 
released without any privacy issues. SDC techniques must be applied to microdata 
sets prior releasing, either by masking data or generating new synthetic data, to avoid 
leaking of confidential information. But the data released must preserve its value as an 
analytical resource, so the information loss must be minimized during the process. 

 
This research has been conducted in order to study the application of the 

triangulation of a set of points problem to the microaggregation of two-dimensional 
numerical data. Its main goal is to determine if there exists some point set 
triangulation-based method which satisfies the constraints imposed by 
microaggregation. And, in case a suitable method was found, a comparative study 
would be carried out to compare its outcomes with those of other well-known methods. 
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1. State of the art. 

Microaggregation  (Defays and Anwar, 1995) is a masking perturbative SDC 
technique for microdata. The main goal of microaggregation is to achieve a clustering 
of numerical data so that there is an upper bound for the size of groups, k that 
maximizes intra-group homogeneity. Then, microdata are replaced by their 
corresponding cluster centroids. 

 
In the context of information security, microaggregation can be used as a technique for 
achieving Statistical Disclosure Control in microdata because it provides a k-
anonymized version of the microdata set that is suitable for subsequent public releases 
while preserving data utility (minimizing information loss), so that the altered dataset 
can still be used for scientific or statistical research. 

 
In microaggregation, each group has at least k data points. This characteristic 

provides the k-anonymity of the data been released. A fixed-size method divides data 
into groups of size k except perhaps one group with size between k and 2k -1, whereas 
a data-oriented (variable-size) method allows group sizes to vary between k and 2k - 1. 
While fixed-size methods tend to be more computationally efficient, data-oriented 
methods are more flexible and can adapt better to different data distributions and thus 
achieve a lower information loss than the former. 

 
Given a parameter k, any optimal microaggregation has minimum information loss 

for that k. All the groups into an optimal microaggregation have at most 2k - 1 records, 
since each group with size 2k can be partitioned into smaller groups in order to further 
reduce information loss (Domingo-Ferrer and Mateo-Sanz, 2002). 

Regarding the metrics to evaluate the quality of the methods, an approach has 
been presented in (Domingo-Ferrer and Torra, 2001; Sebé et al., 2002; Nin, Herranz 
and Torra, 2008) where both information loss (IL) and disclosure risk (DR) are 
combined into a score: score = 0.5 IL + 0.5 DR.  

An optimal microaggregation method must minimize the information loss resulting 
from this replacement process because lower IL means less distortion and hence more 
utility of the data. But a trade-off between the information loss and the disclosure risk is 
needed. 
 
On univariate data, a polynomial-time optimal microaggregation algorithm is given in 
(Hansen and Mukherjee, 2003) but, for multivariate data, the optimal micro-
aggregation was proved to be an NP-hard problem (Oganian and Domingo-Ferrer, 
2001). It cannot be solved in polynomial time, so several  heuristic methods have been 
proposed in the literature to approximate the results. 
 
 



Title of the document 

 Juvenal Machín Casañas and Agustí Solanas 

8 

IN3 Working Paper Series is a monograph series promoted by the Internet Interdisciplinary Institute (IN3) of the UOC 
IN3 Working Paper Series (2010) | ISSN 2013-8644 | http://in3-working-paper-series.uoc.edu 

 
Given a set of points P in the Euclidean plane, a triangulation  of the set is a 

breakdown of its convex hull into triangles whose vertices belong to P, with all the 
points of P are vertices of its triangulations, and so that each pair of triangles has its 
inner disjoint. We will focus on two well-known triangulations: 
 

A Delaunay triangulation  for a set of points is a triangulation such that satisfies the 
empty sphere test geometric criterion (Delaunay, 1934): the circumcircle of each 
triangle does not contain any other point in its interior. This condition ensures that the 
inner minimum angle of the triangles is maximized. The Delaunay triangulation is the 
dual graph of the Voronoi diagram (Voronoï, 1908) and contains O(n⌈d / 2⌉) simplices 
(Seidel, 1995). The closest neighbor b to any point p is on an edge bp in the Delaunay 
triangulation since the Euclidean Minimum Spanning Tree (tree of minimum total length 
whose vertices are the given points) is a subgraph of the Delaunay Triangulation 
(Preparata and Shamos, 1985). 
 
On the other hand, Minimum-Weight Triangulation  (MWT), also called Optimal 
Triangulation or Minimum Length Triangulation problem, is the computational geometry 
optimization problem of finding, for a set of points, a triangulation that has minimal 
edge length. It has been shown that the MWT is an NP-hard type problem (Mulzer and 
Rote, 2008), although Remy and Steger showed an approximation scheme for the 
MWT where, for any constant  ε > 0, a triangulation  achieving the approximation ratio 
of 1 + ε  can be computed in a quasi-polynomial time (Remy and Steger, 2009). 
 

The Delaunay triangulation has an approximation ratio of Θ(n) to MWT  (Kirkpatrick, 
1980) and the greedy triangulation is known to have an approximation ratio of Θ(√n) 
(Levcopoulos and  Krznaric, 1998). 
 
 
The next section will offer a more technical review in the context of the state of the art 
in both multivariate microaggregation and triangulation methods. 

1.1. Multivariate microaggregation methods 

In 1998, Mateo Sanz and Domingo Ferrer proposed the first multivariate (fixed size)  
microaggregation method, called MD (maximum distance) method, where the grouping 
process is applied to subsets of variables of the microdata set: “The idea is to form 
groups of size k without projecting multivariate data in one-dimension. Instead, a 
multivariate distance is used” (Mateo-Sanz and Domingo-Ferrer, 1998, p. 518). This 
method was later improved in (Domingo-Ferrer et al., 2006) with a data-oriented 
version called MD-MHM, which uses an adaptation of Hansen-Mukherjee algorithm in 
(Hansen and Mukherjee, 2003). In 2003, a fixed-size method called MDAV  - Maximum 
distance to average vector –  was first proposed in (Hunderpool, et al., 2003) and 
implemented in the µ-Argus package for statistical disclosure control. This method 
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would be later modified in (Laszlo and Mukherjee, 2005) with the name Centroid-based 
fixed size microaggregation (CBFS) and finally improved by (Domingo-Ferrer et al., 
2006) with a data-oriented version which uses a multivariate version of the Hansen-
Mukherjee algorithm (Hansen and Mukherjee,  2003), called MDAV-MHM. MDAV has 
become a usual reference for multivariate microaggregation methods (Solanas, 2008; 
Lin et al., 2010; Mortazavi, Jalili and Goharzagi, 2013). It works by first computing a 
square matrix of distances between all records. Then, for every iteration, the average 
vector of the unassigned records, c, is computed and two clusters of k records will be 
grown: one from the farthest record (r) from c and one from the farthest record (s) from 
r. Finally, the remaining records are assigned to their closest group. 

An MDAV-based data-oriented method has been proposed in (Solanas, Martínez-
Ballesté, and Domingo-Ferrrer, 2006) with the name V-MDAV (Variable-size Maximum 
Distance to Average Vector), which generates k-partitions with group sizes varying 
between k and 2k-1 and thus with higher within-group homogeneity. This implies 
improved flexibility, which can adapt well to poorly homogeneous datasets. The 
method uses a gain factor that has to be tuned “in order to improve the adaptability of 
V-MDAV” (Solanas and Martínez-Ballesté, 2006, p. 5) depending on the data 
distribution. A multivariate data-oriented microaggregation method based on V-MDAV 
has been proposed in (Chettri, Paul and Dutta, 2013), with the name CV-MDAV - 
Centroid based Variable size Maximum Distance to Average Vector. The CV-MDAV 
algorithm iterates as long as at least 3k records remain unassigned. For each iteration, 
the algorithm computes the centroid of the remaining records in the dataset and the 
farthest record from it, xr. Then it finds the 2k nearest neighbours of xr. Current cluster, 
ci is formed with the first (k-1) neighbours of xr. Each of the other yj

 neighbours is tested 
for inclusion in the currently formed cluster by computing a heuristic. This algorithm 
also uses a constant gain factor, γ, in the heuristic to conservatively expand the 
cluster. The heuristic compares two distances: the distance from yj to the cluster 
centroid (d2) and the distance from yj to the centroid of its k-nearest neighbours (d3). If 
d2 is less than d3 (d2 < γd3) it expands the current cluster and re-computes its centroid. 
This test is repeated for the remaining y2k-1 records to be included in cluster ci so the 
cluster is expanded as long as it has less than 2k-1 records in it. When there are less 
than 3k records, if there is more than 2k, it will form a cluster around xr with its nearest 
k-1 neighbours. And finally, a new cluster with the remaining records. 

A two-stage fixed-size method, TFRP (Two Fixed Reference Points), has been 
proposed in (Chang, Li and Huang, 2007). “In the first phase, TFRP uses a novel fixed-
size algorithm to shorten the running time efficiently. In the second phase, TFRP 
reduces the number of groups generated by the first phase to improve the data 
quality”. (Chang, Li and Huang, 2007, p. 1868). This second phase is intended to 
reduce the information loss, as the within group sum of squares (SSE) of the resulting 
groups in phase 1 is high. After applying the TFRP-2, if several groups contains 
greater than or equal to 2k records then the groups are broken down using any fixed-
size microaggregation method. And in case the size of the closest group to which a 
vector xi has to be assigned is (4k-1) records then the vector xi is assigned to its 
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second closest group. Another two-stage method called DBA  (Density-Based 
Algorithm) has been proposed in (Lin et al., 2010). This microaggregation method 
works with the concepts of k-neighborhood of a record x, Nk(x,T), defined as the set 
containing x and the k -1 nearest records to x, and the k-density of x, dK(x,T), defined 
as the inverse of the sum of Euclidean distance from each record in Nk(x,T) to the 
centroid of Nk(x,T). The first stage partitions a data set into groups using the k-
neighborhood of the record with the highest k-density among all the records still 
unassigned to any group, until less than k records remain unassigned. Then, these 
remaining records are assigned to their respective nearest groups. The second stage 
will try to fine tune the results in order to achieve low information loss by decomposing 
or merging the groups in accordance with the information loss been measured. If, at 
the end, few groups end up having more than 2k-1 records, then it applies MDAV 
algorithm to each group with size greater than 2k-1. This second stage is similar to the 
second stage in TFRP, but TFRP-2 disallows merging a record to a group of size over 
4k -1.  

A Genetic Algorithm  for solving the microaggregation problem has been proposed 
in (Solanas, 2008). K-partitions are represented as strings (chromosomes) of length N 
= number of records, where each gene stores the cluster number to which that 
particular record is assigned to. It uses a Fitness function to evaluate the chromosome 
in the population, ����	

 =  



����
, thus giving the level of homogeneity of the groups in 

the k-partition represented by a given chromosome. As operator, the method uses one-
point crossover and mutation. In case of large data sets, the performance of this 
method decreases. So, a hybrid approach method has also been proposed in 
(Solanas, 2008) which takes the advantage of both MDAV and classic GA by mixing 
them and produces better result in terms of SSE.  

A fixed-size multivariate microaggregation method has been proposed in (Kokolakis 
and Fouskakis, 2009), named IP (Importance Partitioning), which basically works by 
iteratively building a group of k points around the most distant point from the 
unassigned data set total mean.  

An iterative optimization  method has been proposed in (Mortazavi, Jalili and 
Gohargazi, 2013). This method, called IMHM (Iterative MHM-based microaggregation), 
is based on the optimal univariate microaggregation algorithm MHM proposed in 
(Hansen and Mukherjee, 2003) and focuses on reducing the information loss. It builds 
the clusters using an iterative optimization method which, for each iteration, reduces 
SSE after calculating the assignment to centroids. It uses an improved MHM to avoid 
the local optimum. IMHM strategy is to reformulate the microaggregation problem as a 
Linear Program that the algorithm will try to minimize. The microaggregation problem is  
formulated as minimizing ∑ ∑ ��� ∙ ���

�
��

�
��

1, with a couple of constraints regarding  the 

                                                      
1 The assignment of the j-th record to the i-th cluster is denoted by bij = 1 and the cost of bij is denoted by 

wij = || Ci – Xj ||, where Ci denotes the i-th cluster centroid and Xj is the j-th record. ��� ∈ {0,1} 
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point-to-cluster assignations (total sum of bij must be equal to 1, to satisfy that all 
records are assigned to exactly one cluster) and the intrinsic constraints regarding data 
privacy and utility of microaggregation ( ≤ ∑ ���

�
�� < 2 ). 

 
An O(n2logn) time method based on the sequential minimization  of SSE has been 

proposed in (Panagiotakis and Tziritas, 2013) with the name GSMS (Group selection 
based on sequential minimization of SSE). According to this method, each point of the 
data set is a cluster “centre” candidate. The corresponding cluster is defined by the k−1 
closest records to the centre. The method consists of two phases: In the first phase, 
the candidate cluster that minimizes the current SSE of the remaining data gets 
discarded in every iteration. Finally, in the second phase the remaining records are 
assigned to their closest cluster. In order to fast compute the closest records to the 
“centre” of a candidate cluster, the method uses n priority queues, one for each point of 
the data set. Authors have also presented an improved version of the algorithm, called 
GSMS-T2, by applying the Phase II of TFRP algorithm, as seen in (Chang, Li and 
Huang, 2007). 

In 2014, a new approach based on the well-known NP-hard combinatorial 
optimization problem the travelling salesman problem  (TSP) has been introduced in 
(Mortazavi and Jalili, 2014), with the name FDM (Fast Data-oriented 
Microaggregation). This TSP-based variable-size method is intended to achieve 
resource-efficient multivariate microaggregation method for large numerical data sets 
and it can produce multiple protected versions of a data set within a single load. FDM 
provides two approximation parameters that enable the data publisher to select a 
desired trade-off between data quality (in terms of information loss) and execution 
time. Main idea is to sequence data records in a TSP tour and then applying an 
adapted MHM algorithm to produce optimal partitioning in terms of SSE with respect to 
that tour. The tour construction algorithm uses an improved version of the savings 
heuristics proposed in (Clarke and Wright, 1964) by means of a heap data structure 
and an optimized sorting method that “sorts all records based on their distances to the 
hub node and only calculates the savings of the node pairs that their end point 
distances to the hub are at least half of the current maximum savings” (Mortazavi and 
Jalili, 2014, p. 198), so not all pairs need to be considered during tour construction. In 
fact, only the nearest active2 neighbours are considered for pairings. If the neighbour of 
a node is inactivated during execution, the neighbourhood will be updated with the next 
nearest active node. The improved version of MHM is based on the optimal MHM 
proposed in (Hansen and Mukherjee, 2003), modified to efficiently partitions a 
sequence of records in a tour in O(nk2) time. Another TSP-based method has been 
proposed in (Maya and Solanas, 2015). It is a fixed-size microaggregation method in 

                                                      
2 A node xi, i ≠ 1 is active, if its degree in the partial tour is less than 2. (Mortazavi and Jalili, 2014, p. 

198). 
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which, following the TSP analogy, each record is represented by a city whose 
attributes are the position of the city in the graph. 

A data-oriented microaggregation O(n2) time method has been proposed in (Laszlo 
and Mukherjee, 2015) with the name ILS (Iterated Local Search). It uses a local 
search  which finds a local minimum, inside an iterated local search algorithm to find 
the final solution. Given P, the collection of all k-partitions for fixed k, they define the 
neighbourhood of P as N(P): P → 2P formed by all the partitions that can be obtained 
either by shifting a point from some cluster C  in P to another cluster in P, where |C| >k  
- shift - or  by exchanging a pair of points between two clusters in P - swap. LS starts 
with a valid k-partition P and iteratively generates (updates) new feasible partitions 
from N(P) with monotonically decreasing information loss (lower SSE) until 
convergence, which occurs when the update step fails to improve the partition, that is: 
it can't find any lower SSE partition performing any update operations.  

This update is defined in terms of the swap and shift operations seen before. Both 
operations are defined to satisfy the cluster size constraints but also to preserve the 
number of clusters in the partition. 

 
A tree-decomposition  approach has been proposed in (Panagiotakis and Tziritas, 

2015). The algorithm, called HTEPM (Hierarchical Tree Equi-Partition for 
Microaggregation) is an adaptation of the HTEP algorithm in (Panagiotakis, Grinias 
and Tziritas, 2011) with a cardinality constraint so that the microaggregation conditions 
are satisfied. It is an O(N2) multivariate micro-aggregation method and works by 
considering that each group is equivalent to a sub-tree, which is then  iteratively 
evaluated and the one with the highest score (SSE) is split into two sub-trees, resulting 
in a hierarchical forest of trees with almost equal score. 

 
 
Despite of the numerous microaggregation methods proposed in the literature, we 

haven’t found any triangulation-based microaggregation method. 
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1.2. Triangulation methods 

1.2.1. Delaunay triangulation. 

The most straightforward method, triangle-flipping , works by computing an 
arbitrary triangulation of the points in P and then gradually altering it by flipping edges 
of the triangles until no triangle is non-Delaunay. This approach is historically due to 
Lawson (Lawson, 1977). Triangle flipping requires O(n2) flips in a worst-case scenario 
(De Berg et al., 2008).  

Another approach, Incremental construction , has been proposed in (Mc Lain, 
1976). It builds the triangulation by successively generating simplices whose 
circumhyperspheres contain no points in P. Another approach, called on-line  or 
incremental insertion , is proposed in (Guibas, Knuth and Sharir, 1990; Edelsbrunner 
and Shah, 1992; Su and Drysdale, 1995). These methods are based on the results in 
(Joe, 1989, 1991). Starting with a simplex which contains the convex hull of the point 
set, these algorithms repeatedly partition the simplex by adding one vertex at a time to 
the triangulation. The circumsphere criterion is then recursively tested on all the 
simplices adjacent to the new ones and, if necessary, their faces are flipped 
retriangulating only the part of the graph affected by the addition of the point. The 
Bowyer-Watson algorithm (Bowyer, 1981; Watson, 1981) provides a non-flipping 
alternative by deleting, after every insertion, any triangles whose circumcircles contain 
the new point. This operation leaves a star-shaped polygonal hole which is then re-
triangulated using the new point.  

A Divide and Conquer (D&C)  approach to solve the Delaunay triangulation in the 
two dimension case was first proposed in (Lee and Schachter, 1980), improved in 
(Guibas and Stolfi, 1985) and later in (Dwyer, 1987) with an O(n log log n) time 
algorithm. A modified D&C approach is used in (Cignoni, Montani and Scopigno, 1998) 
to perform a triangulation in d dimensions to solve the Ed case. This approach works by 
recursively splitting the points into two sets, computing Delaunay triangulation  for each 
set and finally merging the sets along the splitting lines. D&C has been shown to be 
the fastest way of computing the Delaunay triangulation (Su and Drysdale, 1995).  

A hybrid algorithm, Sweep-hull , proposed in (Sinclair, 2010) uses a radially 
propagating sweep-hull, generated from a radially sorted set of points in two 
dimensions. This, coupled with a final triangle flipping step provides the Delaunay 
triangulation for the set of points. 
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1.2.2. Minimum-Weight Triangulation. 

Due to its complexity and the difficulty of finding an exact solution, many heuristics 
have been proposed in the literature in order to approximate the solution, generally 
focusing on finding a good subgraph of the MWT. 

 
β-skeletons are defined by Kirkpatrick and Radke in (Kirkpatrick and Radke, 1985) 

to describe the shape of a set of points. They are proximity graphs whose region of 
influence is modulated by a parameter, β. It has been shown that the √2-skeleton of S 
is a subgraph of the minimum weight triangulation of S (Keil, 1994). This result was 
later improved by Cheng and Xu who proved that, for β > 1/ sin k (with k ≈ π/3.1), the 
β-skeleton of S is a subgraph of a minimum weight triangulation of S (Cheng and Xu, 
2001). Using circle-based β-skeletons , an O(nk+2) exhaustive search algorithm is 
given in (Cheng, Golin and Tsang, 1995) to compute the MWT of n points in the plane, 
where k is the number of connected components in the planar graph - without edge 
crossings - consisting of the convex hull and the β-skeletons  of S. Later, Shiyan Hu 
introduced one-sided β-skeleton and gave an algorithm for identifying subgraphs of the 
MWT using the one-sided (√2β)-skeleton (Hu, 2009). Another approach, based on the 
locally minimal skeleton, or LMT-skeleton for short, has been proposed in (Dickerson 
and Montague, 1996). This method computes the LMT subgraph of the MWT in O(n4) 
time, O(n3) space. This subgraph, usually connected, contains a set of edges that must 
be in every locally minimal triangulation. The remaining untriangulated space are 
simple polygons. But It has been shown that, on the average, for large data sets the 
number of components is linear and, therefore, the LMT-skeleton does not provide 
enough information in order to compute the MWT  of a particular point set in 
polynomial time (Bose, Devroye and Evans, 2002). 
 

A genetic algorithm  for the MWT has been proposed in (Qin, Wang and Gong, 
1997), with the name Genetic Minimum Weight Triangulation (GMWT). This method 
encodes a solution (string) as a lower triangular matrix M in which the element Mij is 1 if 
the edge between points i and j is selected in the triangulation (otherwise Mij=0). The 
fitness function is %�&'( = ∑ ∑ )��&1 − '��(�

��+
�
��+ , where Lij is the distance between Pi 

and Pj. As a selection strategy, the fitness value fi of the best string of generation k is 
compared with the fitness value fJ of the worst string of generation k + 1 , if fi > fJ , then 
string Mi( k ) is substituted for MJ(k + 1), so that the maximum fitness value of the 
population never decreases as the process of evolution continues. They use a new 
crossover operator called polygon crossover and a mutation operator where the 
probability of mutation is dynamically determined depending on the fitness values. 
Mutation involves the perturbation of two adjacent triangles, one of which is randomly 
chosen and the other is chosen to be adjacent to the first, and polygon crossover only 
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produces legal triangulations. The results are way better than those of a greedy 
algorithm but the matrix representation requires space proportional to n2. 

A new weighted coding GA has been proposed in (Capp and Julstrom, 1998) which 
improves the space complexity of GMWT.  It is called weight-coded GA for MWT  and 
associates an integer-valued to each point, so the number of weights in a chromosome 
equals the number of points in the problem instance. The triangulation represented by 
a chromosome is identified by adding each point's weight to the lengths of the edges in 
which it participates and applying a heuristic for MWT to the modified lengths, so this 
heuristic is used as a decoding algorithm. The length of the resulting triangulation, with 
the original lengths, is the chromosome's fitness and the single best chromosome is 
preserved for the next generation. The heuristic works as follows: it identifies the 
points' convex hull, sorts the unused edges into ascending order of their lengths and 
then an iterated greedy algorithm attempts to insert the next shortest edge into the 
triangulation. If the edge doesn't cross any edge already in the triangulation, the 
heuristic includes it (otherwise, the edge is discarded). This iterates until the 
triangulation is complete.  
 

A branch-and-cut  approach of the MWT problem has been proposed in (Kyoda et 
al., 1997). It works by combining the branch-and-cut paradigm with the β-skeleton 
method and reformulating the MWT problem as an Integer Program: “a subset of the 
complete graph of the n points such that no two edges intersect with each other and 
the number of edges is M, a constant for any triangulation.” (Kyoda et al., 1997, p. 
385). The branch-and-bound algorithm solves the LP. If the solution is integral, then is 
the solution for the IP. If no, it appends to the LP some cutting planes that are 
guaranteed to be satisfied by the optimal solution to IP. Then, it solves the LP again 
and iterates until the IP solution is obtained or no cutting planes violate the solution. If 
this happens, the algorithm selects one of the variables which are neither 0 nor 1 and 
branches into two cases: in case a) the variable is set to 0 and in case b) the variable 
is set to 1. For each case, the algorithm applies cutting planes and solves the LP 
obtained. Then, the minimum value of the function with integral solution is obtained. 

Here, “branching” corresponds to the cases “adopting the edge” and “discarding the 
edge”. 

 
 
An ant colony optimization algorithm  for MWT, ACO_MWT, has been proposed 

In (Jahani, Bigham and Askari, 2010), where the process of constructing solutions is 
viewed as a walk on the fully connected graph whose vertices are the point set that we 
want to compute MWT on it.  
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2. Methodology. 

Spiral prototyping (Boehm, 1986) has been used in the design of a new 
microaggregation method and tested against different toy example microdata sets to 
evaluate the fitness of the microaggregated set produced, and therefore the feasibility 
of the method. Different versions of the method have been refined based on the 
information loss outcomes. 

 
Experimental tests have been conducted to measure the outcomes of the proposed 

method and compared to other well-known methods when fed with reference and 
random data set test file. The tests have been iterated for different values of the 
security parameter and combination of attributes and finally averaged to observe the 
trends in information loss. 

 
All the necessary program modules and functions have been developed in R 

(Hornik, 2008), a programming language for statistical computing that has been  widely 
used for developing statistical software and data analysis (Vance, 2009) with 
increasing popularity (Tiobe, 2016). We have implemented from scratch our 
microaggregation method, the SSE, SST and Information Loss function, as well as 
several testing modules to carry out the experiments.  

 
We have used the implementation of the Delaunay triangulation in package tripack 

(Renka, et al., 2015) with a modification to allow duplicate records. This modification 
consisted of a pre-processing ordering of the records and a post-processing to add 
different triangles for the duplicate records (vertices). 

 

3. Proposed method. 

We propose the following fixed-size multivariate microaggregation method, based 
on the well-known Delaunay triangulation. It uses the triangles generated by the 
triangulation as a 'pre-clustering' heuristic. The triangulation is computed only once, at 
the beginning of the algorithm, and then post-processed to include repeated values so 
any vertex in a triangle can be seen as a vector of (possible) n duplicated points. 

The method generates groups of k records except maybe one last group which may 
contain between k and 2k-1 records. Within each iteration, the algorithm calculates the 
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two more distant triangles of the unassigned points, based on the Euclidean distance 
between their centroids. It will then grow two clusters of k records, alternatively starting 
from these two farthest triangles.   

For any cluster, it chooses the points to add based on the Euclidean distance from 
the current – provisional - cluster centroid to the corresponding triangle centroid. Then, 
the points will be added to the cluster ordered by its Euclidean distance to the centroid, 
until k points are assigned.  

Therefore, for each iteration the algorithm assigns 2k points and the process goes 
on until less than 2k points remain unassigned,  building an extra cluster of k records if 
necessary. 
Finally, the remaining points – if any - are assigned to the closest group by computing 
its centroid and the new centroid of the cluster is re-computed. 
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Algorithm 1 Triangulation-Based Multivariate Microaggregation w ith Fixed Group Size 

(TBM) 
 
 
Require:  D data set with N 2-dimensional data points 

Require:  k Minimum cardinality constraint 

Ensure:  M Microaggregated data set 

 
1: T ←  ComputeTriangulation(D) 
2: TriangleCentroids ←  GetCentroids(T) 
3: Distance ← ComputeDistanceMatrix(TriangleCentroids) 
4: Unassigned ←  D 
5: M ← matrix[N,2] 
6: remain ← Length(Unassigned) 
7: while  ( remain >= 2k ) 
8:       Cent ← ComputeCentroid(Unassigned) 
9:       CentB ← GetFarthestTriangle(Cent) 
10:     CentA ← GetFarthestTriangle(CentB) 
11:     Cluster , Centroid ← GrowCluster(CentA, k) 
12:     M ← InsertCentroid(Centroid,Cluster) 
13:     Unassigned ← Unassigned – Cluster 
14:     Cluster , Centroid ← GrowCluster(CentB, k) 
15:     M ← InsertCentroid(Centroid, Cluster) 
16:     Unassigned ← Unassigned – Cluster     
17:     remain ← remain – 2k 
18: end while  
19: if ( remain >= k ) 
20:     Cent ← ComputeCentroid(Unassigned) 
21:     CentA ← GetClosestTriangle(Cent) 
22:     Cluster, Centroid ← GrowCluster(CentA, k) 
23:     M ← InsertCentroid(Centroid, Cluster) 
24:     Unassigned ← Unassigned – Cluster 
25:     remain ← remain – k 
26:      if  ( remain  > 0 ) 
27:           Cent ← ComputeCentroid(Unassigned) 
28:           CentA ← GetClosestCluster(Cent) 
29:           Cluster ← ExtendCluster(CentA, Unassigned) 
30:           Centroid ← ComputeCentroid(Cluster) 
31:           M ← InsertCentroid(Centroid, Cluster) 
32:     end if 
32: end if  
34: return (M) 
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Algorithm 1.1 GrowCluster (Origin , k) 
 
Require:  origin initial triangle. 
Require:  k minimum cardinality constraint 
Ensure:  k-length Cluster 
 
1: Cluster ← () 
2: P ← () 
3: C1← GetTriangleCentroid(origin) 
4: ClusterCentroid ← C1 
5: while  ( Length(Cluster)<k ) 
6:       l ← 0 
7:       while  (l ==0) 
8:               P2 ← GetTriangleVertex(origin) 
9:              P ← P2 U P - Visited 
10:            l ← Length(P) 
11:            if  (l ==0) 
12:                  if  (Length(Cluster)==0) 
13:                        Ce ← GetTriangleCentroid(i)       
14:                 else 
15:                        Ce ← ComputeCentroid(Cluster) 
16:                 end if 
17:                SetVisited(i) 
18:                i ← GetClosestTriangle(Ce) 
19:            end if  
20:     end while  
21:     P ← SortPfromDistanceTo(P, ClusterCentroid) 
22:     n ← 1 
23:     while  ((Length(Cluster) < k ) and (l >0)) 
24:            cluster ← InsertIntoCluster(Cluster, P[1]) 
25:            SetVisited(P[1]) 
26:            P ← P - P[1] 
28:            l ← Length(P) 
29:            n ← n +1 
30:      end while 

      31:      if  (Length(P)==0) 
      32:           SetCentroidVisited(i) 
      33:      ClusterCentroid ← ComputeCentroid(Cluster) 
      34:      i ← GetClosestTriangle(ClusterCentroid) 
      35: end while  
      36: return  (Cluster, ClusterCentroid)  
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A simple example with 10 random points, k = 4 is given below. In figure 1 we can 
see the input data set for our example. 

 
Fig. 1.  Input data set 

 
Source: Own elaboration. 

 
In figure 2 we can see our method computes the triangulation of the set of points -  

in this case, a Delaunay triangulation - and calculates the baricenters of the triangles 
[line 2] (the green ‘plus’ signs, eleven triangles in the example) and their distance 
matrix [line 3]. Then, for every iteration it computes the centroid [line 8] of the 
unassigned points (the yellow ‘star’), the farthest triangle [line 9] from it (the red ‘star’) 
and the farthest triangle [line 10] from the latter (the green ‘star’). These two triangles 
will be the source triangles from which the clusters A and B will begin to grow. 

 
Fig. 2.  Triangulation and source points 

 
Source: Own elaboration. 
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Once cluster A is completed, the algorithm will grow the second cluster 

from the other source point (
B, marked with circles. 
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[lines 11] function will choose the k = 4 closest points to the 
centroid, according to the triangles proximity. The corresponding clusters 
recalculated every time a point is assigned. Figure 3 shows the points assigned to 

marked as squares) and the centroid of cluster A (the bigger square mark).

Fig. 3.  Cluster A. 

 
Source: Own elaboration. 

is completed, the algorithm will grow the second cluster 
int (the red star). Figure 4 shows the points assigned to cluster 

Fig. 4.  Cluster B. 

 
Source: Own elaboration. 

ries is a monograph series promoted by the Internet Interdisciplinary Institute (IN3) of the UOC 
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4 closest points to the 
 centroids are 

s the points assigned to 
(the bigger square mark). 

is completed, the algorithm will grow the second cluster [line 22] 
red star). Figure 4 shows the points assigned to cluster 
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As a result, the first group (
marked with circles. In our examp
unassigned (less than k)
points to its closest cluster
calculated [lines 26:32],. Figure 5
mark which has slightly “moved” towards the 

Fig. 

 
So, finally, the algorithm has 

four points. Figure 6 shows the clustering outcome, with the records in cluster A (red) 
and cluster B (black). 

 

And, after replacing the 
34.712% information loss.
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result, the first group (A) is marked with squares and the second group (
In our example, after one single iteration, only two records remain 

. So the algorithm calculates their centroid and assigns these 
points to its closest cluster, which is the cluster A (squares), and its centroid is 

. Figure 5 shows this process (hence the big golden square 
mark which has slightly “moved” towards the upper-right side of the image

 
Fig. 5. Remaining points assigned to cluster A. 

 
Source: Own elaboration. 

So, finally, the algorithm has grown one cluster of six points and a second cluster of 
shows the clustering outcome, with the records in cluster A (red) 

 

Fig. 6. Clustering outcome. 

 
Source: Own elaboration. 

the records by their corresponding cluster centroids, 
information loss. 

ries is a monograph series promoted by the Internet Interdisciplinary Institute (IN3) of the UOC 
.uoc.edu 

marked with squares and the second group (B) is 
le, after one single iteration, only two records remain 

centroid and assigns these 
centroid is then re-

(hence the big golden square 
image). 

x points and a second cluster of 
shows the clustering outcome, with the records in cluster A (red) 

cluster centroids, we get 
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4. Experimental results. 

In this section, empirical results on the proposed heuristic are reported and 
compared with those obtained by other microaggregation methods available in the 
sdcMicro R package (Templ, Kowarik and Meind, 2015): the simple3 method and state-
of-the-art mdav. 

 
To study the information loss of our method and compare its outcomes, we have 

implemented an iterative testing procedure. Two experiments have been conducted by 
means of this procedure: the first one having a reference data set as input and the 
second one using a random-generated data set. 

4.1. Experiment #1 

The first experiment was carried out using the Census data set, that has become 
usual reference for testing multivariate microaggregation methods (Brand, 
Domingo-Ferrer and Mateo-Sanz, 2002; Laszlo and Mukherjee, 2005; Solanas, 
2015). This microdata set contains 1080 records with 13 numerical attributes.  
 
The experiment involved repeating thirty times the following procedure: 

• According to the goals and constraints of this research regarding the 
bivariate case, two different attributes from the data set were chosen on a 
random basis to create a reduced data set, D. (Every test using a distinct 
combination of attributes). 

• Both attributes were standardized to have mean 0 and variance 1 before 
microaggregation, in order to give them equal weight regardless of their 
scale, getting data set D’. 

• D’ was then sorted by first and second attributes in ascending order to get 
an ordered data set D’’. This was done in order to simplify the pre-
processing of the Delaunay implementation, as stated in section 2, and to 
avoid a worst-case scenario for the simple method. 

• Every method tested was fed with the same input, D’’, and iterated for 
different values of the security parameter, k, in the range [2:50], to produce 
a k-Anonymized version of the original data. 

• Results were de-standardized. 

                                                      
3 Simple method clusters k records sequentially. “With method ‘simple’ one can apply microaggregation 
directly on the (unsorted) data. It is useful for the comparison with other methods as a benchmark […]” 
(Templ, Kowaric and Meindl, 2016, p. 45). 
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• Information loss was measured for every single method iteration. 
Finally, all the tests results were averaged, to get a unique information loss value 
for every combination of method and security parameter. Standard deviation was 
also computed. 

 
Table 1 shows the average information loss caused by each method for different 

values of the security parameter k, measured using the following expression: 
 

,-.// =
001

002
∙  100 (1) 

 

Where SST is the total sum of squares (sum of squared Euclidean distances from 
all records to the data set centroid). 

 
 

Table 1: Comparison of information loss (%). Census data set. 

 
k simple mdav tbm 

 
mean sd mean sd mean sd 

2 13.823 15.951 0.210 0.117 0.312 0.196 

3 19.074 22.096 0.451 0.292 0.591 0.349 

4 21.940 25.249 0.637 0.323 0.784 0.380 

5 23.385 26.626 0.854 0.406 0.963 0.451 

6 24.600 28.139 1.027 0.451 1.174 0.533 

7 25.427 28.911 1.192 0.496 1.348 0.585 

8 26.145 29.676 1.359 0.551 1.551 0.672 

9 26.628 30.236 1.497 0.559 1.783 0.752 

10 26.924 30.438 1.644 0.619 1.931 0.769 

20 28.805 32.177 3.075 1.012 3.315 1.049 

30 29.590 32.826 4.421 1.429 4.681 1.361 

40 30.011 33.023 5.590 1.744 6.035 1.825 

50 30.899 33.363 6.974 2.122 7.435 2.391 
 

Source: Own elaboration. 
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Figure 7 shows the graph of information loss for each k in the range 2 to 50. 
 

Fig. 7. Information loss (%) graph for k in [2:50]. Census dataset. 

 

 

4.2. Experiment #2 

For the second experiment, a test was performed on 30 uniform random data sets, 
each data set consisting of 1080 records with 2 numerical attributes. These are 
referred to as Sim data sets. Attribute values were independently drawn from the 
[−10000, 10000] interval by simple random sampling. 

 
The experiment involved repeating thirty times the following procedure: 

• A Sim two-dimensional data set, D, was generated. 
• Both attributes were standardized to have mean 0 and variance 1 before 

microaggregation, in order to give them equal weight, regardless of their 
scale, getting data set D’. 
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• D’ was then sorted by first and second attributes in ascending order to get 
an ordered data set, D’’. 

• Each method tested was fed with the same input, D’’, and iterated for 
different values of the security parameter, k, in the range [2:50], to produce 
a k-Anonymized version of the original data. 

• Results were de-standardized. 
• Information loss was measured for every single method iteration. 

 
Finally, all the tests results were averaged, to get a unique value of information loss for 
every combination of method and security parameter. 
 

Table 2 shows the information loss caused by each method, for different values of 
the security parameter k, measured using expression (1): 
 

 
Table 2: Comparison of information loss (%). Sim  random-generated data sets. 

 
k simple mdav tbm 

 mean sd mean sd mean sd 

2 25.269 1.082 0.113 0.003 0.165 0.015 

3 33.546 0.939 0.240 0.008 0.318 0.015 

4 37.680 0.846 0.365 0.014 0.444 0.024 

5 40.109 1.048 0.497 0.017 0.575 0.029 

6 41.743 0.989 0.624 0.018 0.697 0.030 

7 43.038 0.942 0.741 0.023 0.823 0.033 

8 43.791 0.908 0.861 0.030 0.958 0.030 

9 44.477 0.781 0.983 0.028 1.092 0.044 

10 44.947 0.931 1.107 0.029 1.229 0.051 

20 47.548 0.923 2.300 0.063 2.568 0.095 

30 48.389 0.941 3.474 0.115 3.893 0.217 

40 48.890 0.880 4.760 0.190 5.532 0.403 

50 49.241 1.014 6.099 0.237 6.731 0.530 
 

Source: Own elaboration. 
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Figure 8 shows the graph of information loss for each k in the range 2 to 50. 
 
 

Fig. 8. Information loss (%) graph for k in [2:50]. Sim datasets. 

 
Source: Own elaboration. 

 

4.3. Discussion 

The results show that the performance of our method is close to that of MDAV, 
though slightly inferior (less than 1% information loss within the studied range of k). 

We believe that this inferior result is due to the characteristics of the chosen 
triangulation (Delaunay) and the algorithm heuristic itself, which chooses the closest 
triangle’s baricenter from a given point. Since minimizing the distance between the 
triangles doesn’t necessarily imply minimizing the distance between their points 
(unless the triangles’ edges are minimal), an error might be introduced every time a 
point is added to a cluster because the next point is not exactly the closest one. 

 
With regard to stability, MDAV have shown to be the most stable method. 
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5. Conclusion and further research. 

• In this paper we have shown that it is possible to use a triangulation-based 
heuristic method for microaggregation with satisfactory outcomes in terms of 
information loss. 

 
• A new fixed-size heuristic method for multivariate microaggregation has been 

proposed. 
 
• The experiments we have carried out show that our method performance is 

close to that of MDAV in terms of information loss. 
 

 
Further work needs to be done to compare the various microaggregation methods 

with different reference data sets, including the trade-off between data disclosure risk 
and information loss.  
 
Finally, optimizing the outcome of the method using an optimal triangulation (MWT) 
heuristic can be a promising line of research. 
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Resumen 
La microgregación es una técnica para el Control de Divulgación Estadística en el 

que los registros similares se agregan en grupos que contienen un mínimo de k 
registros y son luego sustituidos por los centroides de cada grupo, de modo que los 
datos liberados preserven algunas de sus propiedades estadísticas al mismo tiempo 
que se reduzca el riesgo de re-identificación. Un método de tamaño fijo divide los 
datos en grupos de tamaño k, excepto tal vez un grupo con tamaño entre k y 2k-1, 
mientras que un método orientado a datos (de tamaño variable) permite que el tamaño 
de grupo esté comprendido entre k y 2k-1. Es necesario emplear métodos heurísticos, 
ya que el problema de la microagregación es de tipo NP-duro. 

 
En este trabajo hemos realizado un estudio de los diversos métodos de 

microagregación en la literatura y proponemos un nuevo enfoque heurístico para la 
microagregación multivariable de tamaño fijo, basado en la triangulación del conjunto 
de puntos en ℝ�. Se han utilizado un conjunto de datos de referencia y otro conjunto 
generado aleatoriamente para comparar los resultados del método propuesto, en 
términos de pérdida de información, con los de otros métodos conocidos. 

Palabras clave 
microagregación, protección de microdatos, control de divulgación estadística, 
privacidad, triangulación. 
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Resum 
Fusce vestibulum lorem ac turpis cursus fermentum. Vivamus pharetra bibendum velit 
nec rutrum. Duis arcu massa, posuere vel consectetur quis, suscipit ac massa. Duis 
convallis rutrum justo, vitae sodales velit aliquam et. Integer enim nibh, tristique quis 
lacinia et, porta vitae lorem. 

Sed placerat luctus erat, sed pellentesque justo gravida tristique. In magna sem, 
fermentum sit amet elementum sit amet, eleifend eget nulla. Vestibulum vitae ante 
metus, non imperdiet orci. Vestibulum ante ipsum primis in faucibus orci luctus et 
ultrices posuere cubilia Curae; Sed dolor velit, malesuada at consectetur eu, volutpat 
in tortor. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos 
himenaeos. Praesent ac pellentesque enim. Nunc elementum volutpat metus vel 
pharetra. Vivamus faucibus lorem non ante ultricies scelerisque 

Paraules clau 
vestibulum vitae, ante metus, non imperdiet orc, ipsum primis, faucibus luctus, ultrices 
posuere, cubilia Curae 
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