[image: image9.png]versitat Oberta
GelCatakmya

[image: image1.png]. UNIVERSITAT
ROVIRA 1 VIRGILI

Master In Computational and Mathematical Engineering

Final Master Project (FMP)

Metaheuristic Algorithms for solving the Multi-Depot Arc Routing Problem

Name of the Student: Patricio Page Carro
Area of the FMP: Modelización y Simulación

Name of the Tutor: Jesica de Armas Adrián

Name of the Professor in Charge of the Subject: Angel Alejandro Juan Pérez

Date of Delivery: 18/06/2017

[image: image2.png]

This work is subject to a licence of Recognition-NonCommercial- NoDerivs 3.0 Creative Commons
Alternative licences (choose any of the following and substitute the one of the previous page)

To) Creative Commons:

[image: image3.png]

This work is subject to a licence of Attribution-NonCommercial-NoDerivs 3.0 of Creative Commons
[image: image4.png]

This work is subject to a licence of Attribution-NonCommercial-ShareAlike 3.0 of Creative Commons
[image: image5.png]) O ©

This work is subject to a licence of Attribution-NonCommercial 3.0 of Creative Commons
[image: image6.png]

This work is subject to a licence of Attribution- NoDerivs 3.0 of Creative Commons
[image: image7.png]) ®O

This work is subject to a licence of Attribution-ShareAlike 3.0 of Creative Commons
[image: image8.png]

This work is subject to a licence of Attribution 3.0 of Creative Commons
B) GNU Free Documentation License (GNU FDL)

Copyright © YEAR YOUR-NAME.

Permission is granted to copy, distribute and/*or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no **Back-Cover Texts.

To copy of the license is included in the section **entitled "GNU Free Documentation License".

C) Copyright

© (The author/to)

Reserved all the rights. It is forbidden the total or partial reproduction of this work by any half or procedure, comprised the impression, the reprography, the microfilm, the computer treatment or any another system, as well as the distribution of copies by means of rent and loan, without the permission written of the author or of the limits that authorise the Law of Copyright.

INDEX CARD OF THE FINAL MASTER PROJECT

	Title of the FMP:
	Metaheuristic Algorithms for solving the Multi-Depot Arc Routing Problem

	Name of the author:
	Patricio Page Carro

	Name of the TUTOR:
	Jesica de Armas Adrián

	Name of the PRA:
	Angel Alejandro Juan Pérez

	Date of delivery (mm/aaaa):
	06/2017

	Degree:
	Master In Computational and Mathematical Engineering

	Area of the Final Work:
	Modelización y Simulación

	Language of the work:
	English

	Keywords
	Arc routing problem, randomized algorithms, heuristics

	 Summary of the Work (maximum 250 words): With the purpose, context of application, methodology, results and conclusions of the work.

	The main objective of the present work is to elaborate the most effective algorithm for solving the Multi-Depot Arc Routing Problem (MDARP), taking the Randomized Sharp as base algorithm and starting point, and particularly to study different alternatives for developing the edge-to-depot assignment. Concrete applications of this problem are garbage collection, electricity meter reading, mail distribution and door-to-door selling. To accomplish this several edge-to-depot allocation strategies in conjunction with variations on the Randomized Sharp algorithm were implemented in the Java language and tested against one another and using the existing benchmarks for this problem.

The results show that assigning edges to depots using a biased-randomized strategy offers the best results. Also the present work's algorithm, which combines the Randomized Sharp algorithm with a splitting search, simulated annealing and a cache strategy gives competitive results compared to current benchmarks.

	 Abstract (in English, 250 words or less):

	The Multi-depot Arc Routing Problem (MDARP) is a combinatorial optimization problem belonging to a family of related problems that have in common the objective of finding the optimal route for a vehicle or a fleet of vehicles in order to satisfy demand located at the nodes or along the edges of a graph. When the demand is located at nodes it is called a Vehicle Routing Problem (VRP) and when it is located along the edges it is called Arc Routing Problem (ARP). For the present work, the ARP problem is studied, enriched by having multiple starting and finishing nodes, called depots. This problem is known in literature as Multi-depot Arc Routing Problem (MDARP). The aim of the present work is to study algorithms for the solution of the MDARP and some of its variants using as base the Randomized SHARP algorithm from González et al. (2012). This base algorithm is a randomized Clarke & Wright Savings heuristic (Clarke and Wright (1964)) for the construction of the solutions. Several strategies for the allocation of edges to each available depot were studied and compared in their results and efficiency.

According to the results, the assignment of edges to depots using a biased-randomized strategy combined with the Randomized Sharp algorithm, a splitting search, simulated annealing and a cache strategy gives competitive results compared to current benchmarks.

Index

1. Introduction
1
1.1 Context and justification of the Work
1
1.2 Aims of the Work
1
1.3 Approach and method followed
1
1.4 Planning of the Work
1
1.5 Brief summary of products obtained
1
1.6 Brief description of the others chapters of the memory
1
2. Brief description of the problem
2
3. Literature Review

 HYPERLINK \l "__RefHeading__30472_1067695875"
4
4. Present Approach

 HYPERLINK \l "__RefHeading__30472_1067695875"
4
5. Computational Results
9

6. Conclusions
20
7. Glossary
22
8. Bibliography
23
List of figures
Figure 1: MDARP representation

Figure 2: Splitting procedure

Figure 3: gdb6

Figure 4: gdb8

Figure 5: gdb9

Figure 6: gdb11

Figure 7: gdb12

Figure 8: gdb13

Figure 9: gdb21

Figure 10: gdb22

Figure 11: All Instances

Figure 12: Accepting only solutions improving best solution

Figure 13: Accepting solutions improving base solution

1. Introduction

1.1 Context and justification of the Work

The ARP family of problems has not been studied as exhaustively as Vehicle Routing Problems (VRP). Particulary the multi-depot versions have significantly less bibliography. The purpose of the present work is to contribute by comparing several strategies for the allocation of edges-to-depots and present a competitive algorithm which can be used to explore further variations of the problem.

1.2 Aims of the Work

· Study the effectiveness of different edge-to-depot allocation strategies
for the MDARP.

· Develop an algorithm based on the most effective str
ategy identified.

· Compare the final algorithm with the current benchmarks.

1.3 Approach and method followed

As a starting point, the state of the art algorithms for the ARP and MDARP are reviewed. This includes similar problems that serve as a good starting point for the MDARP, such as the VRP and Multi-depot VRP. The main objective of this initial phase is to develop an
understanding of the use of the CWS heuristic, its randomized variation, and the various frameworks in which they work, including multi-start, ILS, tabu-search and cache schemes. Also, the main strategies for node allocation to depots are reviewed.

Next, several node allocation strategies in conjunction with the Randomized Sharp algorithm are implemented and tested against one another and using the existing benchmarks for this
problem. This serves the purpose of increasing the understanding of the way each strategy impacts the end result, and their strengths and weaknesses. The next step is to develop different modifications of the existing strategies and methodologies for node allocation to depots and route generation. The implementation of these variations of the main Randomized Sharp algorithm are done using the Java language due to the ease of modelling the language provides and its widespread use.

Having implemented several different strategies and variations on the Randomized Sharp algorithm, they are tested using the problem’s benchmarks to determine the quality of the solutions each of them provides. This is performed simultaneously with some parameter-tweaking worthy of studying.

Along with the optimality of the solutions, the time cost is taken into account, not discarding strategies solely based on time performance, but including it into the final considerations of the global performance of each of the strategies.

Finally, conclusions are extracted regarding the effect of applying the various node allocation strategies, as well as variations of the Randomized Sharp algorithm and the impact of the
tweaking of the parameters. Also the efficiency of the studied algorithms is analyzed. To
conclude, paths for future investigations are proposed.
1.4 Planning of the Work
	Task
	Days
	Starting date
	Finishing date

	End of Master Paper Realization
	187
	5-Dec-2016
	10-Jun-2017

	Work Plan preparation
	16
	5-Dec-2016
	21-Dec-2016

	Literature revision
	16
	5-Dec-2016
	5-Jan-2016

	Study of the Randomized Sharp algorithm
	31
	5-Dec-2016
	5-Jan-2017

	Formulation of improvement strategies
	13
	2-Jan-2017
	15-Jan-2017

	Implementation of improvement strategies for the algorithm
	59
	16-Jan-2017
	16-Mar-2017

	Comparative analysis of improvement strategies for the algorithm
	31
	17-Mar-2017
	17-Apr-2017

	Elaboration of conclusions
	17
	18-Apr-2017
	5-May-2017

	Composition of the preliminary report
	15
	6-May-2017
	21-May-2017

	Revision of the paper
	10
	22-May-2017
	1-Jun-2017

	Composition of the final report
	8
	2-Jun-2017
	10-Jun-2017

1.5 Brief summary of products obtained

An algorithm for the MDARP was developed, which offers competitive results compared to benchmarks and proves to be a good starting point to explore richer versions of the MDARP.

1.6 Brief description of the others chapters of the memory

The article is structured as follows: Chapter 2 gives a brief introduction to the MDARP problem, Chapter 3 highlights some related works on the ARP and its variants. Details and implementation of the solutions analyzed in this article are given in Chapter 4. The experiments carried out and their results are described in Chapter 5. Lastly, Chapter 6 points out the key aspects of this paper and identifies the possibilities for some future research lines.

2. Brief description of the problem
This paper aims at exploring various strategies for solving the Multi-Depot Arc Routing Problem (MDARP). In this problem, there is a graph G = (N,E) (where N is the number of nodes and E the number of edges) to be traversed in any number of different routes which start and end in one of the depots. Some of this graph’s edges are required to be part of a route and some are not required. Concrete problems that could be modeled this way are garbage collection, electricity meter reading, mail distribution and door-to-door selling Assad and Golden (1995)[2], Dror (2000)[5].

In Figure 1 an MDARP graph is presented, with its nodes, depot nodes and edges. The bold edges represent edges that are required and contain demand to be serviced by routes beginning and ending in one of the depots. The dashed edges are not required but may or may not be needed as part of one of the routes. The problem then is how to construct routes to service each of the required edges with the least cost, each route beginning and ending in the same depot.
Figure 1: MDARP representation
[image: image10.png]

Differently from a single-depot ARP, where the problem consists in finding the best route to serve all required edges, when approaching a MDARP, a previous phase can be identified. This first phase is related to the problem of determining which depots will be serving each one of the required edges, referred to as edge allocation. This part of the problem will output as a result a submap for each depot, meaning a subset of edges from the full graph. The second phase is involved in determining the routes through the required edges for each of the depots. In this work the focus is placed mainly on the first phase, the edge allocation, for which many strategies for generating submaps are explored. Also different schemes for applying the Randomized SHARP are analyzed: the use of a cache strategy and a simulated annealing approach combined with a local search procedure. Different combinations of these strategies are tested and compared regarding the minimum and average values obtained.
3. Literature review
The amount of literature devoted to the ARP is significantly lower than that dedicated to the Vehicle Routing Problem. Nevertheless, many parallelisms can be drawn between the two types of problems and what serves as good literature for one might prove valuable for the other.

The ARP might have begun with Leonhard Euler’s solution to the Königsberg bridges problem (Sachs

et al. (1988)). In this problem, a connected graph G = (N,E) is given and the task is to find a closed tour

that visits every edge in the graph exactly once or prove that no such tour exists. Such tours, if found, are

known as Euler tours. Two algorithms were presented some years later for constructing the Euler Tour,

the first one by C. Hierholzer (Hierholzer (1873)[11]) and another version, less efficient, by M. Fleury (Fleury (1883)[8]). Another famous ARP is the Chinese Postman Problem, posed by Kwan Mei-Ko (Mei-Ko (1962)[17]). It is similar to Euler’s problem: Given a connected graph G = (N,E,C), where N are the nodes of the graph, E are the edges and C is a distance matrix, find a tour that traverses every edge in the graph, but does so in the least amount of time. Assad and Golden (1995)[2] state the basic methodology for solving generic ARPs, and describe several application areas. Similarly, Eiselt et al, write two papers (Eiselt et al. (1995a)[6], Eiselt et al. (1995b)[7]) to review the algorithmic methods for solving the chinese postman problem. There exist other surveys on the various methods for solving the ARP such as Dror (2000)[5], Wohlk (2008)[20], this last one more focused on the capacitated version of the ARP. Another survey of methods was published in Corberán and Prins (2010)[4] in which two important versions of the problem are discussed: the standard ARP and the capacitated ARP (CARP), in which an additional constraint is imposed on the ARP: the routes serving edges with demand have a limited capacity to satisfy that demand.

Metaheuristic approaches have been explored, some of which are used in the present work as well. For

instance, the use of simulated annealing techniques has been applied to the ARP family of problems such

as in Wohlk (2005)[19] and Amberg et al. (2000)[1], the latter of which also a tabu search is tested.

Many evolutionary approaches have been used for the MDARP and CARP as well, such as Hongtao et al.

(2013)[12], Tiantang et al. (2014)[18], Xing et al. (2009)[21] and Kansou (2010)[14].

Finally, some Ant Colony Optimization algorithms have been used in Kansou and Yassine (2009)[15] and

Kansou and Yassine (2012)[16]. The present article is strongly based on the SHARP algorithm presented

in González et al. (2012)[10] which makes use of the Clarke & Wright savings heuristic from Clarke and

Wright (1964)[3]. This heuristic has been succesfully applied to Vehicle Routing Problems and in their paper, González et al present a framework for applying the CWS heuristic to the ARP, and also present a biased randomized version for use in multistart algorithm.

Regarding the approach to the Multi-Depot version of the problem, the paper by Juan et al. (2014)[13], provides a good framework for the VRP, particularly for the allocation of nodes to each depot. The mentioned work provides valuable ideas and methods that can be translated into the MDARP.
4. Present approach

As stated in a previous section, the MDARP problems can be divided into an edge allocation problem and a simpler ARP problem. The first phase produces a submap for every depot in the graph, that is it establishes a relationship of ”belonging” of every required edge to a depot. The second phase of solving each of these submaps using the Randomized SHARP algorithm in conjunction with other techniques will determine the most successful of these allocation strategies. This work first tries to select the best edge allocation strategy in this way, and subsequently different combinations of techniques for solving the submaps will be compared as well.

4.1 Edge Allocation Strategies

Edge allocation strategies can be divided into two groups: the savings-based strategies and strategies not

based in the concept of savings. For the first group it is necessary to elaborate on the concept of savings as it is applied to edge allocation, since it differs slightly from the concept presented in Clarke and Wright (1964)[3]. In the most common sense, what is referred to as ”saving” associated to an edge is how much cost is prevented if that edge is traversed, as opposed to returning to the depot from that edge’s starting node and then travelling again from the depot to the edge’s finishing node. In the case of edge allocation, we can see savings in the following way. When an edge is assigned to a depot, there is a certain cost of travelling from the depot to the edge’s starting node, plus the cost of traversing the edge, plus the cost of returning to the depot from the edge’s finishing node. For a particular edge there is going to be a different total cost depending on the depot to which it is assigned, therefore we can understand a saving associated to a depot-edge pair as the difference of cost between assigning that edge to that depot and assigning it to the closest of the remaining depots.

The following table briefly references each of the strategies tested in this work:
[image: image11.png]Table 1: Edge Allocation Strategies

Savings-Based strategies

Round-Robin

Round-Robin With Capacity

Random With Savings

Depot With Highest Saving

Edge-To-Edge Savings

Distance (or cost)-based

Edge Probability

Randomized Depot Distance

Depot And Edge Distance

Depot And Two Edges Distance

Depot And Edge Average Distance

Random Edge Distance

Two Random Edges Distance

Closest Edge In Submap

Not Savings nor Cost-Based

Random

4.1.1 Savings-Based strategies
Round-Robin: This strategy will select one depot at a time and assign an edge to it according to the savings of the edge for that depot, with some randomization given by a geometric distribution. This loop will continue assigning an edge to each depot at a time, until all edges have been assigned.

Round-Robin With Capacity: Similarly to the previous strategy, this one attempts to assign edges to

depots one depot at a time. The difference between the two strategies is that this one will always assign an

edge to the depot with the least amount of demand served so far in an attempt to achieve a more uniform

distribution of loads among depots.

Random With Savings: Taking into account the savings for each depot-edge pair, this strategy assigns

edges to depots one depot at a time, but every time a random depot is chosen among all the depots following a uniform distribution.

Depot With Highest Saving: In this case, for each edge the depot which produces the highest saving

is determined and the edge is assigned to it.

Edge-To-Edge Savings: This strategy assigns the first edge of every submap according to its distance to

the depot. Afterwards it iterates over every unassigned edge and calculates the savings caused by connecting that edge to every edge in each submap, finally the edge is assigned to the submap that contains the edge for which the savings are greater.
4.1.2 Distance (or cost)-based
Edge Probability: for this strategy, we first calculate the costs of assigning the edge to every depot and

select the two closest least costly depots for this edge. Then a ”probability” of assigning the edge to the

closest depot is calculated. This is done by taking the cost of assigning the edge to the farthest depot of

the two and dividing this cost by the sum of both costs. This number is then multiplied by a factor of

1.5 to increase the probability of assignment to the closest depot. During the assignment phase, for each

edge, a random number with uniform distribution is obtained and if this number is less than the assignment probability of the edge, it is assigned to the closest depot, otherwise it is assigned to the second closest depot.

Randomized Depot Distance: This strategy first determines the closest depot to the nodes of an edge

and assigns the edge to that depot. To determine the closest depot, the distance to each of the edge’s

nodes must be minimal. In the case of a depot having a closer distance to one of the nodes, this is

labeled as ”second closest” depot and the edge is assigned to one of these depots according to a uniform

distribution. In the case that only one closest depot is found, the edge is assigned to this depot with 70% probability, the remaining 30% of the times the edge is assigned to any depot according to a uniform distribution.

Depot And Edge Distance: This strategy iterates over every edge and finds its distance to each of the

depots and its distance to a randomly chosen edge already assigned to that depot. Both this distances are

added, and this is done for every depot. Finally the edge is assigned to the submap for which this sum is

minimal.

Depot And Two Edges Distance: Like the previous strategy, this one takes into account the distance of

the edge to the depot and its distance to two random edges already assigned to that depot, assigning the

edge to the submap for which the sum of these distances is minimal.

Depot And Edge Average Distance: Just like Depot And Edge Distance, with the difference that instead

of taking the sum of the distances, it takes the average, and assigns the edge to the submap for which this

average is minimal.

Random Edge Distance: This strategy iterates over all the edges and for each one it select a random,

already assigned edge of each submap and calculates the distance between them, keeping the edge for

which this distance is minimal. Finally, the edge is assigned to the same submap as this edge.

Two Random Edges Distance: Like the previous strategy, this one takes into account the distance to

two edges already assigned to each submap.

Closest Edge In Submap: In this case for each edge that we need to assign, all of the currently assigned

edges per submap are evaluated for distance. The edge is assigned to that submap which contains the edge

that is closest to it.

Finally there is a strategy which is neither savings-based nor cost based:

Random: This strategy simply iterates over all of the edges and for each one it selects the depot with

a uniform distribution.

4.2 General testing algorithm
For testing these allocation strategies an algorithm was used that combines a multistart procedure for

generating several initial solutions based on the Randomized SHARP algorithm with a simulated annealing scheme which utilizes a splitting procedure and a cache of best known routes.

In Algorithms 1, 2 and 3 the main algorithm and it’s most important parts are detailed.

Algorithm 1: Main algorithm
[image: image12.png]1;
3
2
B

37,

38

Map « assignEdgesToDepots(strategy, graph)
SolPool +— solution pool of size five
Cache - cache of best solutions
Nlter « number of iterations
while iterations < Nirer do
sol + MDRandSHARP(Map, Cache)
if sol.cost < highesiCostInSol Pool then
addSolToPool(sol, SolPool)
removeHighestCostSolutionFromPool
if sol.cost < lowesiCostInSol Pool then
BestOverallSol + sol
end if
end if
end while
Forcelmprovement « false
for all Sol in SolPool do
BaseSol « splitSolution(Sol, Cache, Splitlter, Forcelmprovement)
BestSol + BaseSol
temperature « Initial Temperature
while elapsedTime < maxTime seconds and temperature >0 do
temperature + decreaseTemperature(temperature)
NewsSol « splitSolution(BaseSol, Cache, Iter, Forcelmprovement)
Delta = NewSol .cost — BaseSol .cost
if Delta < 0 then
temperature +— decreaseTemperature(temperature)
if Newsol.cost < BestSol.cost then
BaseSol + Newsol
BestSol Newsol
else if Random < exp (delta/r) then
BaseSol + Newsol
end if
end if
end while
BestSol + improveEdgesorder(BestSol)
if BestSol.cost < BestOverallSol then
BestOverallSol « BestSol
end if
end for

Algorithm 2: MDRandSHARP(Map, Cache)
[image: image13.png]for all Submap in Map do
SubSol ¢ rand SHARP(Submap, Cache)
appendSubSolToSol(Subsol, Sol)

end for

Algorithm 3: splitSolution(Sol, Cache, SplitIter, ForceImprovement)
[image: image14.png]:
2
bt
2t

if Forcelmprovement = true then
BestSol + Sol
else
BestSol ¢ null
end if
improvements 0
BaseSol ¢ sol
while improvements < Splitlter do
improvements + improvements-+ 1
partialRoute, remaining Route + removeRandomEdgesFromSol(BaseSol)
for i = 010 sharplterations do
newPartialRoute + MDRandSHARP(partialRoute, Cache)
if newPartialRoute.cost < partial Route.cost then
partialRoute + newPartialRoute
end if
end for
newSol + mergeSolutions(partialRoute, remainingRoute)
newSol +- improveWithCache(newSol, Cache)
if BestSol = null or newSol.cost < bestSol cost then
BaseSol + newsol
BestSol - newsol
end if
end while
return Bestsol

4.2.1 First Phase: Multistart Algorithm
After assigning the edges to the depots according to the selected allocation strategy (Algorithm 1, line 1), the algorithm begins an initial multi-start procedure (Algorithm 1, line 5) that takes advantage of a randomized version of the SHARP algorithm González et al. (2012)[10] for multiple depots to generate many different solutions (Algorithm 1, line 6). This multi-depot version of the Randomized SHARP is succinctly detailed in Algorithm 2, where for each submap in the graph, the Randomized SHARP procedure is applied.

Briefly, the SHARP procedure ranks the edges in a graph according to the savings produced by traversing the edge with a single vehicle instead of visiting its nodes in two different routes. In order to construct a full route, one could simply choose those edges with highest savings and start joining them to form routes with high savings. This process, when done in a Capacitated Vehicle Routing Problem (CVRP) is known as the Clarke & Wright Savings heuristics, widely recognized to be the best heuristic for solving the CVRP. The limitation of using this heuristic is that the resulting solution is always the same. By using a guided randomization process we can obtain several different solutions, many of which might improve the original CWS solution. This ”guided randomization” consists in not simply selecting the highest saving edge when constructing a solution, but randomly select the edge following a geometric distribution. This results in the best edges being selected with higher probability, but allowing for some ”not so good” edges to be selected at times. After running this process for a number of iterations (NIter), (Algorithm 1, line 5) the best five of these solutions are kept in a ”solution pool” (Algorithm 1, lines 7-13) and a second search phase is applied to each of them (Algorithm 1, line 16-38).
4.2.2 Second Phase: Local Splitting Search with Simulated Annealing
For each solution in the solution pool generated in the previous phase, the solutions are split into the routes that compose them. Then each route in the solution is split (Algorithm 1, line 17). This means the route has a random number of routes extracted from it (Algorithm 2, line 10). The route that has been extracted is solved again iteratively using the Randomized SHARP procedure to obtain a new route (Algorithm 2, line 12). This splitting and searching is repeated until no improvements have been obtained

after a number of iterations equal to splitIter. After the final route is obtained, it is merged back with the remaining routes (Algorithm 2, line 17). Using this final route, the cache is searched to attempt to improve the solution (Algorithm 2, line 18). If the final solution improves the best known solution, the new solution is accepted as best solution (Algorithm 2, line 19-22).

Figure 2 illustrates this splitting procedure: starting from a graph with three routes, one of them is selected, and solved through the Randomized SHARP algorithm, before being merged back into the solution.

Figure 2: Splitting procedure
[image: image15.png]

The splitting procedure can be set to enforce improvements or not. In the case where improvements are enforced the best known solution is set to the initial solution (Algorithm 2, line 1-2), so that the newly obtained solutions will only be accepted if they improve the initial solution. Otherwise, if the procedure is

set not to enforce improvements, the best known solution is set to null (Algorithm 2, line 4), which results

in accepting the best of the generated solutions whether it improves the initial solution or not. This results in a starting solution for a simulated annealing search (Algorithm 1, line 19-33), which runs until the elapsed time reaches the maximum time set or the temperature parameter reaches zero. In this iterative process the solution is split again (Algorithm 1, line 22) and accepted according to a simulated annealing-based acceptance criterion (Algorithm 1, line 23-32). At each iteration of the process, temperature is decreased(Algorithm 1, line 21), and the difference of cost between the new solution and the current solution evaluated as Delta (Algorithm 1, line 23-24). If Delta is less than zero, temperature is again decreased (Algorithm 1, line 24-25), if the cost of new solution is less than that of the best known solution, both the best known solution and the best known solution are updated with the new value (Algorithm 1, line 26-28), otherwise if a uniformly random number is less than e (delta/t) , the base solution is updated with the new solution, the best known solution remains unchanged(Algorithm 1, line 29-31).

With the solution obtained from this process, the order of the edges is analyzed in search for ”knots” (Algorithm 1, line 34). This means in practice that every three consecutive edges in a route, a different ordering is analyzed and if the cost diminishes in any other ordering, the solution is updated with this new

order.

This process is repeated for every solution in the pool and the best solution is kept as a result(Algorithm

1, line 35-37).

4.2.3 Use of a memory cache

At all moments during these search, a cache of best found routes for servicing the edges with demand is kept and constantly updated with improving routes. This cache is perused throughout the algorithm (Algorithm 1, line 6, 17, 22; Algorithm 2, line 2; Algorithm 3, line 12, 18), always comparing the present

route with routes previously found for a given list of edges with demand.
5. Computational Results
This algorithm was coded in the Java language and tested on a Core i3 CPU @ 2.4GHz and 4GB RAM.

For the computational experiments, the gdb set proposed in Golden et al. (1983)[9] were used. These instances contain dense and sparse networks of small to medium size (from 10 to 50 edges). All of the edges contain required demand. In every instance the depots have been set to the first and last nodes of

the graph.

During the multistart procedure, the number of iterations is set to 100.000 (NIter = 100.000; Algorithm

1, line 4), and the size of the solution pool is set to 5 (Algorithm 1, line 2). In the first splitting search, the search is performed until no improvements have been made for 10 iterations of the splitting procedure (SplitIter = 10; Algorithm 1, line 17), keeping the best solution. The simulated annealing search is performed until the elapsed time reaches 5 seconds (maxTime = 5), the following splitting searches are performed until reaching 30 non-improving iterations (Iter = 30; Algorithm 1, line 22), also keeping the best solution. Within the splitting procedure, the Randomized SHARP algorithm is executed on the extracted routes for 30 iterations (sharpIterations = 30; Algorithm 3, line 12). Regarding the simulated annealing parameters, the initial temperature is set to 15.000 (Algorithm 1, line 19). It is decreased in every iteration by a uniformly random amount between 0 and 10 (Algorithm 1, line 21), and when an improving solution is found the temperature is decreased by a uniformly random number between 0 and delta × 2 , delta being the difference of cost between the new solution and the old solution (Algorithm 1, line 25).
First set of experiments
In this first set of experiments, the edge allocation strategies are considered, using the base algorithm described previously. Each strategy is used to generate the edge allocation map for each gdb instance, with fifteen different runs associated with fifteen different seed numbers for the random number generator. Both the minimum cost attained by the strategy and the average cost are taken into account for deciding which is the optimal strategy.
[image: image16.png]Table 2: Compare Minimum Cost of Strategies

Tostamce
Sty T @b by bl gdl g b7 gdbS gaby pdbl0 gdbll gdbil gibli sdbli gdbls gdbl6 gdbl7 gbls gdbld mdhlo bl gabl gahrs o o
Clowst Edge I Submap T7 m Wl m W ml 6 aw n W5 W 56 I 5y 13 9 Im 55 1m Iw w 55 @l
ot Bie In Sobmap Wih Probiiliy 316397 267 %7 5 M S 3K W w5 W5 4w w6 W % 1m0 e 5 BT 1% aw B ek
Depor And Two Edges Dlsamee 3159093710 3% W0 w3 3 W w7 W _aw S % 5% 7 W w55 T % % 35 W
Dopot And Edge Avere Disance 3002030570 S N N TR AT VAR S S S N S Y S N RN]
pot And Edge Disanee TS R /S Y NS A T S YW O S - 1T
Randomized Depol Disanee s N N NS N NS S N S N Y T ST)
Depor Wit Highes Saving T TS A TS v
Edge Probabilty W0 @I 2% %6 0 MBS 3M o %3 W 4w s6 o5 58 15 o1 i@ 55 DI S i% 33 S8
g To-Ftge Savings EET T S N v P SV S S TN VR VR]
T Random Biges Disaree EEN S N R o I ST S v TS YN A - 11
Random E S RN TR 23 T s % s w5 0% % 3n 9w
Fandom Fage Dianee EE N T S TR TR 5w ETR T N R S N S S Y S TS R 2
Random With Swing W W W rr W W Bl T O ® W S % 5% s W @ 5% B0 1% B em
Rowd Robin N 2 TR N N P N T w6 W W % I @
Rond Robin With Capciy W6 3w A W I I W B ™ m sH s % T W w1 maw
Mirimam Cost W I e e B ms m m ms W aw s % s s IS FET N TN

[image: image17.png]Table 3: Compare Average Cost of Strategics

Tostance
St T 5T T 50 b b7 §a5 g0 @10 Il gdhiT_gibi3 bl gdbiS gdbic whi7 ghis gdhl g0 ghi gdhm gy el o
ot Edge I Submap AL EEER N T N A R R T TS R TS R
ot e Tn Sobmap Witk Probibiiy 316315 T w W m w am s w5 1m e [T S R R T
Depot And o Edges Distamee 316313 EF S TV N N S TS TE T N TR V- T
Depor And Edge Average Disarcs 01555 EE O A S S S [T S R TN S]
Dpor And e Disanee 60 E O S S E T S =} 55w me oA
Randomized Depol Disanee ETE ETONE A N N S TN R N (S R S W 5} T TR VA
Depor With Highes Saving EINE E T S T A S E R TS EER B
e Probability I) BB S P T R TN W NS TR S T @ BN 1
Fige To-Bige Savings =7 EE T TS VE N R E N T m o i
T Random Eges Distree ETEE EE VR T N SN TR R TR R R R
Random EEN) E TP I PR] EEE I S E [R
Fandom Fige Disee TS RN B N N T (E R S S R}
Random With Swings = w0 ET = I TN R) EETS TR N S Y TE N T Y
Round Robin EEE) EIC S R TR N 7 ES R R S [E R T N
R Robin With Capaciy BN EI N SR R EE N R S TS R U N
Minimum Average Cost ET) BB S TS R N1 W s w s S A T T

Using both minimum cost and average cost metrics the lowest cost is obtained through the Edge-probability strategy. Other strategies have come to results close to this, particularly ”Depot And Edge Average distance” and this strategies might become more relevant in different setting, like larger networks with more depots.

To better visualize the difference among strategies, a sample of all the instances were selected to be

represented by box-plots in the following figures.
Figure 3: gdb6
[image: image18.png]- fimosouoyunoy

-1
o b [e

= -]]

b |- soumisgsepauopey

 S— - e

° b | eamisasseruometion.

|- susesseposceen

]

gdb6

]

-1 | b 4 [s]

b--| 1 | cmsossmameea

[Y S ——

o Lu ———

I O

_ -

Figure 4: gdb8
[image: image19.png]gdb8

- fimosouoyunoy

|- uaopunoy

]

|- soumisgsepauopey

e

- ssumisassepguopeon,

|- susesseposceen

]

]

| rueusaeisaiss

b sueisqssrapoecsa

- saumisonsbpmpuyiscen

|- samisgssepzompariossg

b fmceooasmssumrsusepaisssors

I ceumnsuscpzissors

[image: image20.png]gdb11

- fimosouoyunoy

|- uaopunoy

]

|- soumisgsepauopey

e

- ssumisassepguopeon,

|- susesseposceen

]

]

| rueusaeisaiss

b sueisqssrapoecsa

- saumisonsbpmpuyiscen

|- samisgssepzompariossg

b fmceooasmssumrsusepaisssors

I ceumnsuscpzissors

Figure 5: gdb9
Figure 6: gdb11
[image: image21.png]gdb12

b-- 1 - fimosouoyunoy

I - |- uaopunoy

I 4 [~ seumesuumuopsey

1 —

L] o
o;—v [R Ep——
T‘* T I ——

0

-pii;ﬁg
LH_T P
T I

o_ I —

T_”D+ |- samisgssepzompariossg

_ P

_ PSS,

o we om0 o

Figure 7: gdb12
[image: image22.png]gdb13

- fimosouoyunoy
|- uaopunoy
]

| emmoseeucpuey

e

- ssumisassepguopeon,

- sunessepossces
]
]

| rueusaeisaiss

|- ssumisqsbeapayiocen

- saumisonsbpmpuyiscen

|- samisgssepzompariossg

I oamosuasustrzison

I ceumnsuscpzissors

Figure 8: gdb13
[image: image23.png]gdb21

- fimosouoyunoy

|- uaopunoy

]

|- soumisgsepauopey

- ssumisassepguopeon,

|- susesseposceen

| rmcoseen

]

| rueusaeisaiss

|| smsassrpoeasa

- saumisonsbpmpuyiscen

|- samisgssepzompariossg

b fmceooasmssumrsusepaisssors

I ceumnsuscpzissors

[image: image24.png]gdb22

- fimosouoyunoy

|- uaopunoy

]

|- soumisgsepauopey

- ssumisassepguopeon,

|- susesseposceen

]

]

| rueusaeisaiss

b sueisqssrapoecsa

- saumisonsbpmpuyiscen

|- samisgssepzompariossg

b fmceooasmssumrsusepaisssors

I ceumnsuscpzissors

Figure 9: gdb21

Figure 10: gdb22
[image: image25.png]All Instances

oo

oo

oo

oo

[ssumisqssepguopeon

|- fimosoumouunoy

- uaoupunoy

]

|- sumisgsepaucpey

[cusesseposceen

]

]

b rueusaeisaissg

|- samisgssepzompariossg

[smisqsspapuecsg

- saumisonstpapuyiscen

S

L ceumsuscpzissors

It is noticeable how for some instances one strategy greatly outperforms another. For example, in instance

gdb6 the strategy ”DepotAndEdgeAvgDistance” is significantly better than ”EdgeProbability”. In gdb22,

”EdgeProbability” is clearly better between the two, but is again outperformed by ”ManyRandomEdges

Distance”.

By analyzing the cost of each strategy to run an all instances, a broader conclusion can be made. The

following chart shows this comparison.

Figure 11: All Instances
[image: image26.png]Table 4: Friedman’s test Ranks

Strategy Sum Of Ranks Range Std. Dev. Min Max
ClosestEdgeInSubmap 181.5 7.89 4.06 15§ 135
ClosestEdgeinSubmapWithProbability = 92.5 4.02 1.86 S8
DepotAndTwoEdgesDistance 168 7.30 2.89 2 13
DepotAndEdgeAvgDistance 80 348 2.27 1 11
DepotAndEdgeDistance 140.5 6.11 3.20 1 13
DepotDistanceRand 187.5 8.15 2.31 3 12
DepotHighestSaving 305.5 1328 3.30 4 15
EdgeProbability 77 3.35 2.16 1 8.5
EdgeToEdgeSaving 313 13.61 1.62 9 15
TwoRandomEdgesDistance 158 6.87 3.61 1 14
Random 259.5 11.28 1.86 7 14
RandomEdgeDistance 115.5 5.02 2.16 2 10
RandomWithSavings 227.5 9.89 2.79 3 14
RoundRobin 234.5 1020 3.64 1 15
RoundRobinCapacity 219.5 9.54 3.70 1 14

From this chart it is clearer that ”EdgeProbability” performs better on average, but some other strategies, like ”DepotAndEdgeAvgDistance”,”ClosestEdgeInSubmapWithProbability” and ”RandomEdgeDistance”

seem to be very close both on average and on the minimum values obtained.

To analyze the statistical significance of the difference between these strategies, a multiple comparison

was made using Friedman’s test in which each strategy is assigned a rank within each instance. Table 4

shows the statistics of the ranks for each strategy.
[image: image27.png]Table 5: Friedman’s Groups

Strategy Sum of Ranks Group
EdgeProbability 77.00 a
DepotAndEdgeAvgDistance 30.00 a
ClosestEdgeinSubmapWithProbability 92.50 a
RandomEdgeDistance 11550 ab
DepotAndEdgeDistance 14050 be
TwoRandomEdgesDistance 158.00 cd
DepotAndTwoEdgesDistance 168.00 od
ClosestEdgeInSubmap 18150 de
DepotDistanceRand 18750 de
RoundRobinCapacity 21950 of
RandomWithSavings 22750 fg
RoundRobin 23450 fg
Random 25950 2
DepotHighestSaving 30550 h
EdgeToEdgeSaving 313.00 h

Through Friedman’s test strategies are grouped. Each group is represented by a letter, each group contains

strategies that are not significantly different. Strategies in different groups are significantly different. Table 5 shows the groups obtained.

[image: image28.png]Table 6: First Phase

Settings T [1b [l [1-d [1-e [I-f [1-g [I-h
Use Randomized Solve | Yes | Yes | Yes | Yes | Yes | Yes | No | No
Use Cache Yes | Yes | Yes | No | No | No | Yes | No
Pool (A/B/C) A |[B |[C [A [B [C [C [C

We see that RandomEdgeDistance, ClosestEdgeinSubmapWithProbability, DepotAndEdgeAvgDistance

and EdgeProbability are not significantly different between themselves. Nevertheless, since EdgeProbability is the lowest ranked strategy of the group, it is selected as the top strategy for the remainder of this work.

Second set of experiments

In this second set of experiments we maintain the ”Edge Probability” strategy fixed and test different

settings to the main algorithm. To reduce the amount of tests to run, instead of running the whole combinations of settings, they have been organized in ”phases”. In each phase, every combination of a

reduced set of settings is studied and the optimal settings are kept for the subsequent phases.

In the first phase, we test the use of a randomized versus a greedy version of the SHARP algorithm, along

with the use of the cache and the use of the solution pool. The solution pool setting can be: A) add every

solution that improves the worst solution in the pool (in other words, keeping the top five solutions), B)

add only solutions that improve the best solution in the pool or C) not use the pool at all.

The combination of these settings can be summarized in Table 6. It is clear that when the greedy version

of the SHARP algorithm is used, there is no need of a pool of solutions, since every time the algorithm is

run, the solution is going to be the same.

[image: image29.png]Table 7: Phase 1:

Compare Minimum Cost of Settings

T e
20T _gdb2 gdhS gdbd g gdbe gdh7 gdb gdb9 g0 gdbil gdbiZ gdbi3 gdbld gdbIS gdblc gdb17 gibIS gdbIy gdbd0 gdbai gihzr gy o Ot
o w9 a6 e a5 s oM W 4m w6 S U 9 i@ & im i b am s
W0 M 19 6 % N 3 W N W W W o % % IS 9 e s Dl T B s
i EETI PR IR N N N N I N T N N [N
D PN N T N N TR A N N Y RS 5075
£ ELN N NN NN NN N S N NN RN SR) o5
0 EEOE SR N N W U N N N S N i)
D EITI N (TO BN TR T NN S N TR N R ot
0 EITIE N TR B N TR AT A | N N R N R R ot
£ PN N TS TR A N TN RN T Eo
Table 8: Phase 1: Compare Average Cost of Settings
Instance Total cost
Tor T ST T A T S 9 G T i s T s e i i i e i
T 0 I e e BR300 B aw W we S w & im0 e & im iw iw me ww
m P (YA - S - S ™ T 1
e EE N T T O < U N S R T N N S 1.
7 TN YT N N RN YR N N L SN T - R N N i
ie R IR N N PR T S I S S ™ W
i EE I N T N O (N SO R T - T N - 11
T EL N I TN TV W N N (AN R U TR R R R TR
i L) S O . T A/ O
T TP W TN LT N A N N Y W N I N 1

The results of this tests are exposed in the following tables.
[image: image30.png]Table 9: Phase 1: Compare Average Time of Settings

L . L L L A L bl
Te T84T 27589 2ARST 5497 mET 0l HAE 5e6i I85T I ISAIS 35507 0% 334 692 20909 4408 14151 8352 94T 2087 TGl Zioos TG
To 713 [6831 [61% 162 I6I8H 16158 168557 075 2510 143973 1067 268751 [LIGL 127876 ST87 (9510 459% 121931 8525 0415 1225 [EONI_9013 ST
T 0T O0R0Y ST 0057 00785 00307 00787 01T 01375 00556 0IS1S 0687 0065 00726 0% 0055 00T 0I5 00371 0057101980107 0T8T 0mse
N A N A W Y W S - T TS N TS TR FE N P
T I10759 19991 15990 5767 ISESTI 16001 167022 08 (21092 1975 (27507 35937 0950 13355 37701 (5365 4112 120395 7391 §9773 12009 T80 5 IR0
T 00%77 0TI 00172 —0IGT U0ISE U808 0017 00T 0029 072 00297 00133 0000 W00EK 0057008 0007 TIS 0002 0001 (01 TS 0010z 00T 0Ie,
T, 0% 00T 007 0078 028 0218 0107 01379 03500 0I5 01800057 _0095T 0162 006 00351006 015100000 0005 00977 0.130% 0375003y
T 0097 0043 0018 000K 00197 00097 00T 00352 0011s 00127 00172 0085 00T 00001 _0MIT 00092 0006 0071 0005 0007 001 00105 0021500163

[image: image31.png]Table 10: Phase2: Compare Minimum Cost of Settings

Tasiance o
b1 b gdhs gdbd b gdbe g7 gdbE_gdby gdhio bl gdbiz_gdbl3 gdbli gdbis zidbie b7 gdbis gdbly gaba0 gdbai sihaz_gas o
3000 259 26 361 285 35 39 286 M1 38 47 S8 9% 6 1 91 12 55 DI 1% 18 28 561
i 3005 259 26 61 W5 s 3W W6 ML I8 47 8 9% 6 13 91 12 55 DI 1% 1828 5677
Cosi 0 B39 366 6128 B5 W M6 W W M7 S8 %6 s 1F ST 1@ 5 DI 15 B8 293 S

It is clear from the results exposed in the previous table that using the randomized version of the SHARP

algorithm along with the cache and a pool of solutions accepting every solution improving the worst solution in the pool is the best combination of settings. It is also worthy to notice that the use of cache hasn’t improved the solution very much, but the penalty in processing time for using it seems to be too small to discard its use. It is likely that for larger instances, the cache might gain much more relevance. As stated before, this settings are kept constant for the following phases.

In the second phase we test the use of the ”unknotting” of the routes by the use of the function ”ImproveEdgesOrder”. The options are simple, either use the function or not use it. For that reason there

is no need for a table to detail the tests that were performed.

In the following tables the results from this phase are exposed.

[image: image32.png]Table 11:

Phase2: Compare Average Cost of Settings

Tostance

Tt AL P T L O L L L L
3 T 9 O 26 ¥ B8 W S0 B4 W 4 S W S % 51 i S5 1 1520 2% 7A
™ i 2 30 26 W6 9% 3w W9 B2 v af S & i 51 ia S5 i i 9 2% S
Minimum Aversgs Cost_300_$9 209366 W6 D% 30 [9 91 28 W 47 5% 05 16 91 12 55 DI 1w 19 2% s

[image: image33.png]Table 12: Phase 2: Compare Average Time of Settings

. . S L L L L - i

o TIPSy RIS T 2T T TSR JSAG IS 1T TS 35507 I TA9% SI600 69386 2989108 IR 8 3525 9T T 27008 TR,

N X RN TSV N 52 TN R 5 P S T T W R S T S R T

[image: image34.png]wpasadTime.

Figure 12: Accepting only solutions improving best solution

In this second phase we get very similar results between using and not using the ”unknotting” function,

only in instance gdb2 we can see an improvement. It is to be noticed that in the average cost table, not using the function provided the best results. This could be due to the algorithm of the function actually producing knots in the routes while undoing other knots. Still, since we are more concerned with the minimum values than the average, the use of the unknotting function is kept for the next phase.

In this last phase there are three modifications to the simulated annealing algorithm that we test. The

splitting search used both to generate the starting solution for the SA algorithm and the one used within this algorithm can be set to only return solutions that improve the original solutions, or to return solutions that don’t necessarily do. This gives modifications to test. Furthermore, the direct acceptance of solutions can be set to only apply for solutions improving the best solution overall, or for solutions improving only the base solution used within the simulated annealing algorithm, not caring if it improves the best overall solution. The following flowcharts clarify this, each flowchart details each one of the setups described previously.
[image: image35.png]Bestsol = spisouton)

Set il temperaure

NewSol = Spisolion)

Dta = NowSol Cost
BaseSol Cost

Figure 13: Accepting solutions improving base solution

[image: image36.png]Table 13: Third Phase

Phase 3 (SA Algorithm variations) 3-a[3-b [3< | 3d | 3e [3f [3g [3h
Outer MultiSplit With improvement No [No | No | No | Yes | Yes | Yes | Yes
Tnner MultiSplit With improvement No | No | Yes | Yes | No | No | Yes | Yes
‘Accept solutions improving base but not best (baseSol = newSoD) | No | Yes | No | Yes | No | Yes | No | Yes

The following tables detail the tests that were performed and the results of those tests.
[image: image37.png]Table 14: Phase3: Compare Minimum Cost of Settings

Tastance Total G
T FI gdbd g5 §dhG g7 i gdb9 b0 gdb{T gbIZ_gdbl3 gdbid gdb1S gdblo gdbT7 gdbI8 bl gdha gabil sz gahas ol Ot
S £ 25 266 36l 255 35 33 286 13 4 S8 9% S I 91 1oz 55 D1 1% DS 253 Se7S
b 300 259 266 36l 285 35 33 28 81 37 4 S8 96 S6 I o1 ez 55 DI 15 DS 253 Se13
S 300 25 266 6l 285 325 33 26 L3 47 S8 9% S 15 91 ez 55 DI 1% DS 253 Sers
30 25 26 6l 28 325 33 26 L3 4 S0 9% S I 91 Te2 55 DI 1% DS 253 Seis
£ T %6 el 28 35 33 26 I3 4 S8 9% S I 91 ez 55 I 1% DS 353 5617
500 25 26 36l 285 35 33 26 L3 4 S8 96 S5 x5 91 ez 55 D 1% DS 353 Sery
500 25 26 36l 285 35 33 26 L3 4 S8 96 S5 x5 91 ez 55 D 1% DS 353 Sery
£ 25 26 36l 28 35 3326 L3 4 S8 96 S6 1% 91 ez 55 DI 1% DS 353 Sery
um Cost 300 259 266 36l 285 325 33 26 813 47 S8 96 Se U3 91 ez 55 121 16 B8 233 Ser3

[image: image38.png]Table 15: Phase3: Compare Average Cost of Settings

Trstnee

Tt L L T L O A T - - L
En S0 320 271 266 3% D8 W 0 B %1 3 w9 5y 0 57 136 51 iz 55 131 IS 200 26 57
£ I @8 30 26 ¥ P53 a» B % w7 % & 16 51 i@ 5 DI i 19 B8 5@
T S0 D8 37T 36 ¥ PS 3W 0 B By S w9 Sy W0 & 1% 51 iz S DI 5% 195 o 5
5 S0 20 371 366 ¥ PE 30 B i aw w9 S & 136 51 i@ 5 i i 19 65
5o S D0 30 366 3% B8 30 _3H I mi 3w w7 5% 0S5 136 51 i@ 5 I 8 5 B85 s
T T D9 30 6 I PSS I B w7 5% 0§ 6 51 i@ 5 DI B 9 56 57
& S D) 30 366 3% B5 W0 3 BB w7 S 0 & 136 51 i@ 5 i % 5 58 5
) S D) 30 366 3% B8 30 _3H B w1 3w w7 S% 0§ 136 51 i@ 5 DI B8 6 5
Minimom Avera Cost_ 31098209 %66 3% B8 30 39 B B WE 47 5% 0§ % 91 1 % B B8 199 B 5o

[image: image39.png]Table

16: Phase 3: Compare Average Time of Settings

Tostance
Tl b gl @3 gihi g g6 _gd7 @Y @ @il gl _gib _gibls _gihil @b gibic _gliT b @0 g _g@a i s R TR
To TONTIT 27590 GNIST STM7 28T 23807 23980 25660 IRIS TS5 IS 255077 [L926 254600 6936 2T 4087 1908 852 900 05T 17630 2100w TR0GH
b TLIOTT JRI6ES 21359 50850 21I6H ZI28T 2110 233275 T836% IS0 267 3578 136055 2121 57170 008N 42801 IS8 §1995 018 232159 213505 s
16T 700 I S0 DE0T 2800 23808 L6 D0 RS 1637 G005 L8] DA G170 D9 1457 TS s 208ET 1750 TROLE
E ST 2 B NN O o S P R Y Y S PR 5 0051 _T75e0 T,
S TS 3790 NS SO0 31707 20155 ILI 2352 03507 010 I 5107r 155 I0T 1898 018 13608 5000 To1157 23am1 120 s
EEN YR AT W TR T W e Yk BN e N Ve W 1 N/ BTN T TR R YR T TS
T 00 meT T 500 IR 0050 LK IS0 0 597 19557 B G500 I 555 RI76 1518 SIE G150 10107 23005 217 AL
ES N T W N A W A N ST P N ¥ YO W I T SR RN S E AT Tows

[image: image40.png]Table 17: Comparison of results

Ransou 2012 Kansou 2010 HongTao Present Algorithmn

Tnstance _HACO Time DACOS Time MDMA tme HGAP Time Resull Time Gap (HACO) Gap (DACOS) Gap (MDMA) Gap (HGAP)

S0 <1 T <1 TS BD 567 567 67 X2}
EETRT T2 T T T oor 030 218
=1 T T T W0 a7 BB}

6 =1 T T T S8 000 000 000

E 3 T T 6 1% 36 35

T T T T BN (33 a1 550

T T T T PAE N Y 53 T30

TS T8 7 [x) PR R ¥)) 337

7 B a7 36 ar =8 EA)

T T T T 05 527 337 306

T 17 T X 1327z 347 051

T T T a0 =1 PR Y] 5o 0

TS0 1 T w1 Gol 0 o7t =

I T % T PIRERTY a7 EAC)

% T o T 57 IR0 IR0 210

N T T s =1 008 om 07 038

ot T ot T ey 000 000 000

T e 15 5% =1 W T I8] 355 247

T T s s T 530 000 000 000

T T 15 T T BT o s 000 000

s T s % 5 38 15 ma 000 000 65

5 a1 00 26 196 47 1% 2136 -1y 100 L6l

To 3% 15 3w 53 3 6 3w B 000 000 768

[image: image41.png]gdb9

- fimosouoyunoy

|- uaopunoy

]

|- soumisgsepauopey

e

- ssumisassepguopeon,

|- susesseposceen

]

]

| rueusaeisaiss

b sueisqssrapoecsa

- saumisonsbpmpuyiscen

| |

b fmceooasmssumrsusepaisssors

I ceumnsuscpzissors

From these results we can conclude that it is better to not force the splitting procedure to only return improving solutions. It is coherent with the random nature of a simulated annealing approach, which needs of some non-improving solutions to function as it is intended. Regarding the acceptance of solutions improving only the base solution, this also seems to offer better results as can be seen in the results for the average cost. It even reaches the solution in less time than its counterpart.

Table 17 shows the results of the present algorithm and those of Hongtao et al. (2013)[12], Kansou (2010)[14] and Kansou and Yassine (2012)[16].
[image: image42.png]Table 13: Third Phase

Phase 3 (SA Algorithm variations) 3-a[3-b [3< | 3d | 3e [3f [3g [3h
Outer MultiSplit With improvement No [No | No | No | Yes | Yes | Yes | Yes
Tnner MultiSplit With improvement No | No | Yes | Yes | No | No | Yes | Yes
‘Accept solutions improving base but not best (baseSol = newSoD) | No | Yes | No | Yes | No | Yes | No | Yes

From the results we see that the algorithm gives good results, and in some instances it equals the results of Hongtao et al. (2013)[12], but it seems clear that there are many improvements to be made to the algorithm to achieve it’s values. Particularly the running time of the algorithm should be improved.
6. Conclusions

In this article several strategies for approaching the Multi-depot ARP. Particular attention has been

placed on the strategies to decide which depot will be serving which edge, but also some variations on

a main algorithm were tested to determine the value of pursuing the refinement of these variations. The

computational experiments show that the best way to assign edges to depots is by assigning a probability

of assignment of this edge to the two closest depots according to the cost associated to traveling from each depot to the edge, and then randomly making the assignment with this probabilities. Other assignment strategies have returned good solutions and might even perform better on larger networks, with more depots and edges without required demand. Regarding the variations on the main algorithm, a randomized version of the SHARP has proven to offer better results, since from the variety of solutions it can return, many search algorithms can be applied, and pairing these with a simulated annealing approach might prove to be a most valuable use of these various solutions. The use of a cache mechanism has improved the time it takes the algorithm to achieve the minimum, but it hasn’t significantly decreased the cost of the solutions. Again this might be more valuable in larger networks. Also, the use of a pool of solutions obtained from the initial multi-start procedure gives the possibility of exploring more solutions and not get trapped in local optima. Like it has been proven with the splitting search, accepting non improving solutions in thecontext of a simulated annealing framework is desirable. Finally, the ”unknotting” procedure hasn’t proved to be definitely favorable or unfavorable. Although theoretically it should never increase the cost of a solution, the results show that this might be the case for some instances. One thing to analyze is whether in the process of ”unknotting” a subset of three edges, it is creating a new knot in previously ”unknotted” edges.

Some ideas for future work are: (i) run these full suite of tests to larger networks with more depots and

including edges without required demand, since the allocation strategies might perform very differently in

these networks; (ii) further analyze the ”unknotting” algorithm, isolated from the other strategies; (iii) test

in isolation the cache mechanism in larger networks since its value might actually reside in those kinds

of networks; (iv) analyze different alternatives to reduce the time performance of the algorithm (v) add

capacity restrictions to the depots; and (vi) add restrictions on time-capacity to the problem.
7. Glossary

ARP: Arc Routing Problem

VRP: Vehicle Routing Problem

MDARP: Multi-Depot Arc Routing Problem

MDVRP: Multi-Depot Vehicle Routing Problem

CARP: Capacitated Arc Routing Problem

CVRP: Capacitated Vehicle Routing Problem

SHARP: Savings-based Heuristic for the ARP

CWS: Clarke And Wright Savings
8. Bibliography

[1]Amberg, A., W. Domschke, and S. Voß. 2000. “Multiple center capacitated arc routing problems: A tabu search algorithm using capacitated trees”. European Journal Of Operational Research.

[2]Assad, A., and B. Golden. 1995. “Arc routing methods and applications”. Handbooks in operations research and management science.

[3]Clarke, G., and J. Wright. 1964. “Scheduling of vehicles from a central depot to a number of delivery points”. Journal Of Operations Research.

[4]Corberán, A., and C. Prins. 2010. “Recent results on Arc Routing Problems: An annotated bibliography”. Networks.

[5]Dror, M. 2000. Arc routing: theory, solutions, and applications. Springer.

[6]Eiselt, H., M. Gendreau, and G. Laporte. 1995a. “Arc routing problems, part I: The Chinese postman problem”. Operations Research.

[7]Eiselt, H., M. Gendreau, and G. Laporte. 1995b. “Arc routing problems, part II : The Rural Postman Problem”. Operations Research.

[8]Fleury, M. 1883. “Deux problemes de geometrie de situation”. Journal de mathematiques elementaires.

[9]Golden, B., J. Dearmon, and E. Baker. 1983. “Computational experiments with algorithms for a class of routing problems”. Computers & Operations Research 10 (1): 47 – 59.

[10]González, S., A. A. Juan, D. Riera, Q. Castellà, R. Muoz, and A. Prez. 2012. “Development and assessment of the SHARP and RandSharp algorithms for the arc routing problem”. AI Communications.

[11]Hierholzer, C. 1873. “ber die Mglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren”. Mathematische Annalen VI.

[12]Hongtao, H., L. Tangtao, Z. Ning, Z. Yiting, and M. Dequan. 2013. “A hybrid genetic algorithm with perturbation for the multi-depot capacitated arc routing problem”. Journal of Applied Sciences.

[13]Juan, A., I. Pascual, D. Guimarans, and B. Barrios. 2014. “Combining biased randomization with iterated local search for solving the multidepot vehicle routing problem”. International Transactions in Operational Research.

[14]Kansou, A. 2010. “New upper bounds for the multi-depot capacitated arc routing problem”. International Journal of Metaheuristics 1:81–95.

[15]Kansou, A., and A. Yassine. 2009. “A two ant colony approaches for the multi-depot capacitated arc routing problem”. Technical report, Laboratoire de Mathematiques Appliquees du Havre (LMAH), Universite du Havre, France, 1nstitut Superieure d’Etudes Logistiques (ISEL), Universite du Havre, France.

[16]Kansou, A., and A. Yassine. 2012. “Splitting algorithms for the multiple depot arc routing problem: application by ant colony optimization”. International Journal of Combinatorial Optimization Problems and Informatics 3 (3): 20 – 34.

[17]Mei-Ko, K. 1962. “Graphic Programming Using Odd or Even Points”. Chinese Mathematics.

Sachs, H., M. Stiebitz, , and R. J. Wilson. 1988. “An historical note: Eulers Knigberg letters”. Journal Of Graph Theory.

[18]Tiantang, L., J. Zhibin, and G. Na. 2014. “A genetic local search algorithm for the multi-depot heterogeneous fleet capacitated arc routing problem”. Flexible Services And Manufacturing Journal.

[19]Wohlk, S. 2005. Contributions to Arc Routing. MSc. thesis, University of Southern Denmark.

[20]Wohlk, S. 2008. “A Decade of Capacitated Arc Routing”. In The Vehicle Routing Problem; Latest Advances and New Challenges. Springer.

[21]Xing, L., P. Rohlfshagen, Y. Chen, , and X. Yao. 2009. “An Evolutionary Approach to the Multidepot Capacitated Arc Routing Problem”. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION.

