

High Performance Computing workload traces
standardization and characterization

Eneko Pérez Llamazares
Computer Science and Engineering student by The Open
University of Catalonia

BS Final Project
June 2017

Advanced Computer Architecture

Department

Open University of Catalonia

High Performance Computing workload traces
standardization and characterization

BS Final Project

Author: Eneko Pérez Llamazares

Computer Science and Engineering student by The
Open University of Catalonia

Advisor: Dr. Francesc Guim Bernat

Dr. Computer Science

2017

Eneko Pérez Llamazares 3

Title:
High Performance Computing workload traces
standardization and characterization

Author:
Eneko Pérez Llamazares

BS Final Project Committee:

President: PRESIDENT

Speaker: VOCAL

Secretary: SECRETARY

Agree to mark with the qualification:

Barcelona, 25th June, 2017

Eneko Pérez Llamazares 4

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-
SinObraDerivada 3.0 España de Creative
Commons

Acknowledgments

Me gustaría agradecer a Francesc Guim la oportunidad que me ha dado para
hacer este proyecto y por ayudarme durante la creación del mismo. A Dae-
Jin Lee por su paciencia y ayuda. La estadística, sobretodo la mía, no sería la
misma sin el. A Víctor, por su incondicional amistad y apoyo. A mi familia, en
particular a mis padres y mi sobrina, por sufrir mis cambios de humor. A
Beatriz, por haber aguantado probablemente demasiado, y por animarme a
hacer la carrera y sacarla adelante. Sin su ejemplo, no hubiese podido
conseguirlo.

Eneko Pérez Llamazares 6

Abstract

The evolution of the computers allowed us to create supercomputers able to
run thousands of jobs at the same time during long periods of time. Behind
these jobs there are multiple applications: forecasting, aerodynamics and
molecular simulations are just a small example of how supercomputers have
changed the world. However, we live in a moment where Big Data is a key
aspect in getting better insights of the huge amount of data that is constantly
generated. Clusters can provide two types of data: output from jobs and
workload traces. This project aims to provide a framework for workload
traces analysis and characterization. By performing such analysis, the project
tries to establish a standard to define the contents of a workload trace.
Besides that, the resulting framework can provide analysis results than can
help understanding the data, taking decisions, etc. While analyzing a very
specific data set, we concluded that three major group of variables define
most of the data set. We also detected a possible anomaly with the data due
to abnormal high values in two variables. Finally, a prediction was performed
against this data set and we were able to see how future data should be
classified.

Eneko Pérez Llamazares 7

Contents

Figures Index 8

1.	 Introduction	..	9	
1.1	 Project	motivation	...	9	
1.2	 Goals	and	objectives	...	10	
1.3	 Materials	and	Methods	..	11	

	 Requirements	..	11	1.3.1
	 Data	..	12	1.3.2
	 Statistical	Analysis	...	12	1.3.3

1.4	 Work	breakdown	..	12	
1.5	 Organization	of	the	BS	Final	Project	...	15	

2.	 Overview	of	workload	traces	..	16	
2.1	 Workload	traces:	key	concepts	of	the	data	...	16	
2.2	 Schema	and	Data	Format	..	18	

3.	 Case	Study:	Google	Trace	..	21	
3.1	 Introduction	..	21	
3.2	 Format	...	22	

4.	 Trace	Analysis	Implementation	...	23	
4.1	 Solution	architecture:	Installation	and	setup	..	23	

	 Installation	..	24	4.1.1
	 Additional	software	..	25	4.1.2

4.2	 Formatting	the	data	..	25	

5.	 Data	Analysis	...	27	
5.1	 Descriptive	Analysis	of	the	Variables	...	27	
5.2	 Variables	Discarding	..	33	
5.3	 Principal	Components	Analysis	(PCA)	...	34	

	 Introduction	...	34	5.3.1
	 Analysis	..	35	5.3.2

5.4	 K-Means	..	42	
	 Introduction	...	42	5.4.1
	 K-Means	Test	and	Train	..	44	5.4.2

5.5	 Interpretation	..	46	

6.	 Testing	...	49	
6.1	 Example	..	50	

7.	 Conclusion	and	Future	Work	...	51	
7.1	 Conclusions	...	51	
7.2	 Future	Work	..	52	

8.	 References	...	53	

Eneko Pérez Llamazares 8

9.	 Annex	A	...	56	
	

List of Figures

Figure 1 Gantt chart .. 14	
Figure 2 Simplified Gantt chart ... 14	
Figure 3 Basic Architecture Schema .. 23	
Figure 4 Sample of data from the Google data set .. 25	
Figure 5 Sample of the data set once normalized .. 27	
Figure 6 Max CPU distribution ... 30	
Figure 7 Max CPU distribution of data ... 31	
Figure 8 Max Memory distribution .. 31	
Figure 9 Max Memory distribution of data ... 32	
Figure 10 Variable comparison table .. 33	
Figure 11 Summary of the PCA analysis with 12 components 35	
Figure 12 Bar plot of the proportion of the variance 36	
Figure 13 Correlation between variables and PC1 and PC2 37	
Figure 14 Bar plot of correlation between Principal Components and

variables ... 39	
Figure 15 Bar plot of correlation between Principal Components and

variables ... 40	
Figure 16 Variables relationship in a matrix .. 41	
Figure 17 Clusters partitioning using K-means .. 43	
Figure 18 Data representation along the clusters ... 44	
Figure 19 Training test data .. 45	
Figure 20 Mean CPU usage across the different variables 47	
Figure 21 Data representation along the clusters with predictive ellipses and

components ... 48	
Figure 22 Data representing the Component 1 and 2 values with respect to

Clusters .. 49	

Eneko Pérez Llamazares 9

Chapter 1

1. Introduction

The beginning of the digital age is considered to be about 2002 and, at this
point, storage started to become more digital than analog. Storing
information digitally provided a faster and easier way to use it. However,
since the digital age began, digital data sets have been increasing
considerably to the point of being too large and complex to be processed
with traditional methods.

The concept of Big Data, a term used since the 1990s, pretends to provide
techniques and technologies to reveal insights from complex and of a
massive scale data sets.

In line with the evolution of the digital data, supercomputers, computers with
a high level of computing performance, have evolved and increased their
capabilities as well. Many applications, such as weather forecasting,
probabilistic analysis, nuclear tests simulations and molecular dynamics
simulation, use extensively this kind of supercomputers, coining the term
High Performance Computing.

In order to run an application in these computers, a job has to be created and
submitted to a job scheduler that will decide where to run the application,
depending on a set of constraints.

Apart from the corresponding output of each job sent to a supercomputer,
clusters administrators have access to workload traces. A trace is usually a
time stamped sequence of events captured on a computer with tools
designed for that purpose.

Traces are significantly useful, for example in order to make an analysis of
the different jobs running on a cluster. This kind of analysis can help make
decisions regarding new acquisitions, software configuration, job scheduler
setup, scalability, etc.

1.1 Project motivation

Many different cluster applications lead to different workload traces. These,
and the lack of a standard workload trace format, force us to analyze each
case separately. This entails different drawbacks, such as difficulty to

Eneko Pérez Llamazares 10

compare results and additional previous work of analysis. In addition,
workload traces are not usually publicly available.

However, one of the largest companies in the world, as well as one of the
most important technological companies, Google, made available traces
from their supercomputers. Due to the complexity of its infrastructure and the
inherent problems related to it, such as dealing with millions of different jobs
on thousands of different machines, analyzing the data of their clusters may
provide a valuable insight for making decisions in areas like acquisition,
cooling, software and systems configuration and more.

Google has been publishing what they call ‘Cluster workload traces’, making
available two versions of this data set. The first one, ‘TraceVersion 1’ is an
older, shorter trace describing a 7-hour period from one cluster. It is however
deprecated, and they encourage using the newer version,
‘ClusterData2011_2’. This data set provides data from a cluster of more than
twelve thousand machines for about a month period in 2011.

When we analyze information of a cluster, we instinctively think in a few
components of the system: processors, memory and storage. These are the
three pillars on which, we think, modern computers are seated. However,
partly thanks to the Big Data, we are capable now to extract valuable
information of a trace data set, and get an insight view beyond CPU, memory
and disks. For all of the above, we believe that a company like Google is the
perfect target for such kind of analysis.

Our motivation in this BS Final Project will be analyzing the traces made
available by Google, and offering an insight view of the real important data
inside. During this process, and due to a prior analysis, we will try to propose
a standardized workload trace format as well.

1.2 Goals and objectives

The main goal of this BS Final Project is to create a framework that can
analyze an input trace, as well as characterize the main metrics. The
following objectives have to be accomplished:

• Identify common and relevant fields in the trace by using statistical
analysis of the data.

• Propose a new format thanks to the prior analysis.

• Program a code that can analyze the information and extract key
components.

Eneko Pérez Llamazares 11

• Program a code that can create graphical characterization of the
above.

• Provide a framework to facilitate trace based simulation studies
leveraging a set of analysis that can be used prior to simulation to
quickly understand and characterize traces.

1.3 Materials and Methods

We describe the data that we use, the statistical analysis methods used and
the requirements of the process.

 Requirements 1.3.1

To achieve the goals and objectives described above, we will need a
standard computer or virtual machine running Linux operating system. A
description of additional software is shown below:

• Ubuntu Linux operating system or similar.

• R – The R Project for Statistical Computing.

In order to provide a reference, here are detailed the specifications of the
computer used for this Final Project. However, the same results should be
expected while using modern standard equipment, such us Intel Core I3 or
Core I5 processors and a maximum of 8GB of RAM memory. Keep in mind
though that if we wanted to analyze a larger data set (or the complete data
set published by Google), better specifications would be needed:

• Computer: Dell XPS 13” Developer Edition
• Processor: Intel I7-7560U.
• Memory (MB): 16000.
• Disk (GB): 512 NVMe.

Eneko Pérez Llamazares 12

 Data 1.3.2

The data for this project comes from a publicly available repository of
Google. This data is composed by a series of tables, each of one
representing a different data set with different variables. Despite the number
of available tables, we decided to use one of them due to the number and
type of variables that it has.

The other tables have information about machines, job and tasks and task
constraints. However, as we mentioned earlier, the task resource usage table
is the most relevant of the data set, and we will focus our project on this one.

 Statistical Analysis 1.3.3

Due to the nature of the data, originally composed by 20 variables, we
decided to use a statistical method to reduce the dimension of the data. This
method, called Principal Components Analysis, is a statistical procedure that
uses an orthogonal transformation to convert a set of observations of
possible correlated variables into a set of values of linearly uncorrelated
variables called principal components. After applying the method, the
dimension of the data set is reduced significantly and a few principal
components explain the majority of the data.

Besides that, we use a method for clustering and grouping data, known as k-
means, as well as a training method for predicting future behavior. K-means
clustering aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean.

1.4 Work breakdown

The work breakdown is shown below:

• Phase 0: Work breakdown and research (22/02/2017–19/03/2017, 26
days)

o Creating a work breakdown plan (BS Final Project – PEC 1)
o Information collection
o Information analysis

Eneko Pérez Llamazares 13

• Phase 1: Installation, Documentation and Analysis (19/03/2017–
12/04/2017, 25 days)

o Installing and setting up the environment
o Analysis and solutions proposal
o Documentation

• Phase 2: Design and implementation of the solution (12/04/2017–
06/05/2017, 25 days)

o Designing and implementing the solution

• Phase 3: Analysis and tests (06/05/2017–17/05/2017, 12 days)
o Analyzing the solution
o Final testing

• Phase 4: Final memory (17/05/2017–25/06/2017, 35 days)
o Writing Final Degree Project dissertation

Eneko Pérez Llamazares 14

Figure 1 Gantt chart

Figure 2 Simplified Gantt chart

Eneko Pérez Llamazares 15

1.5 Organization of the BS Final Project

The rest of this BS Final Project is organized as follows:

• Chapter 2 presents an overview of the workload traces data. We
describe workload traces key concepts as well as characteristics.
Furthermore, we aim to provide a general overview of the different
traces schema and data format.

• Chapter 3 describes our case study. We discuss about the Google
traces. The main goal is to dissect the traces format and try to
understand their metrics.

• Chapter 4 presents our trace analysis architecture implementation. In

the first part, we show the solution architecture. In the second part, we
explain the procedure of install the different applications and libraries
that form the framework that we have developed.

• Chapter 5 describes the analysis that we have made to the traces,
more specifically the Principal Component Analysis (PCA) that it has
been performed to the sample of data. Based on the PCA results, we
do a profile for a potential standard workload trace format. Besides
that, we perform a K-means analysis in order to group or cluster the
different tasks in our data set and perform a prediction.

• Chapter 6 describes the tests performed to the application. The main
goal is to check the code working with different traces with the same
format automatically.

• Chapter 7 presents our final conclusions and possible future studies.

Eneko Pérez Llamazares 16

Chapter 2

2. Overview of workload traces

In this chapter we present different workload traces found on the Internet.
Besides that, we analyze their key concepts and schema.

2.1 Workload traces: key concepts of the data

During the research phase of this Final Project, we have found some
workload traces with different formats, metrics and purposes. These traces
belong to Google, Carnegie Mellon University, University of California Santa
Barbara (UC Santa Barbara), Masaryk University and Facebook. We describe
here the main characteristics of every of them.

Google

'Google Clusterdata' is a large-scale production workload trace made
available by Google. These are production workloads running on Google
clusters. The workload consists of a set of tasks, where each task belongs to
a single job and a single job can have one or more tasks

The trace is made up of several data sets. Each data set contains different
tables and every table has its own format and represents one aspect of the
trace, as we will see in detail shortly. Data is highly anonymized.

Carnegie Mellon University

This workload trace contains Hadoop logs from OpenCloud cluster.
OpenCloud is a research cluster at Carnegie Mellon University managed by
the CMU Parallel Data Lab. Like in the previous example, data is highly
anonymized. The data set is significantly smaller than Google’s.

Eneko Pérez Llamazares 17

The trace is made up of several tables, each table containing different type of
data. There are mainly two types of logs of Hadoop: job configuration and job
history files.

UC Santa Barbara

This workload is composed of several files, each of one contains a trace of
start and stop events recorded by Eucalyptus Cluster Controller. Eucalyptus
is a computer software for building Amazon Web Services-compatible private
and hybrid cloud computing environments and it is marketed by the
company Eucalyptus Systems. As before, data is anonymized.

Masaryk University

This data set represents the job description and machine description
provided by TORQUE job scheduler during a period of 4 months in 2015. The
job log is provided in a per-user format but suitable for dynamic workload
simulations, fulfilling the specifications of the Standard Workflow Format.
Besides that, the log format is compatible with the Alea jobs scheduling
simulator.

Facebook

These workloads represent two periods of the same cluster at Facebook. FB-
2009 has historical Hadoop traces of a 600-machine cluster, while FB-2010
has historical Hadoop traces of the same upgraded cluster, composed by
3000 machines at that moment. Hadoop is an open source software
framework used for distributed storage and processing of a data set of big
data using the MapReduce programming model.

Summary

Besides these public workload traces, there is another trace, or more
specifically a proposed standard, that is worth studying and mentioning here.
The Standard Workload Format, SWF, was defined to provide a single format
of workload that could then be applied in simulation or analysis.

Eneko Pérez Llamazares 18

The Standard Workload Format was proposed by David Talby and improved
by Dror Feitelson, James Patton Jones, and others.

Along with the information about the SWF, the School of Computer Science
and Engineering of the Hebrew University of Jerusalem offers a Parallel
Worlkloads Archive. This archive provides with several traces from different
sources already adapted to SWF.

Unfortunately, this archive is not frequently updated.

2.2 Schema and Data Format

Google

Several tables compose Google cluster data set. Once analyzed, we decided
to use the table named Task Resource Usage, since this is the one giving
us more information. Google provides 500 compressed files, each of one
containing millions of entries following the schema of this table. This table is
composed by 20 variables.

As we will see later, some of these variables are not appropriate for the
analysis that we will perform.

Carnegie Mellon University

This trace is made of several tables as well. More specifically, it is composed
by the following tables:

• Job Configuration: contains fields that help to uniquely identify a
MapReduce job.

• Job History: basically contains the status of a job and the number of
map and reduce tasks in the job.

• Task History: the type of task, status and start and finish time.
• Task Attempt History: host where the task attempts to run, job id and

time stamp.
• Counter History: Historical data of counters for different type of

events.
• Split History: very briefly documented.

Eneko Pérez Llamazares 19

The most relevant table of the data set is Job History, since it has information
about the timestamp of submitted jobs, status, total number of map and
reduce tasks, etc.

UC Santa Barbara

This data set is simpler than those that we have described so far. Each file
contains a trace of the VM start and stop events recorded by a Eucalyptus
Cluster Controller. Besides the timestamp, there are several useful columns.
The start record format is:

START timestamp instance-id node-name core-count

The stop record format is:

STOP timestamp instance-id

Each instance-id should have both a START and STOP record in each file.

Masaryk University

The data set provided by this University follows the Standard Workflow
Format (URL). The SWF has 18 data fields. These are the data fields in order
of appearance in a log:

Job Number, Submit Time, Wait Time, Run Time, Number of Allocated
Processors, Average CPU Time Used, Used Memory, Requested Number of
Processors, Requested Time, Requested Memory, Status, User ID, Group ID,
Executable Number, Queue Number, Partition Number, Preceding Job
Number and Think Time from Preceding Job.

The log format is compatible with the Alea Jobs Scheduling Simulator.

Facebook

These workloads are previously synthesized. They are one day in duration
and contain 24 historical trace samples, each of one hour long. The format is:

• New_unique_job_id
• Submit_time_seconds
• Inter_job_submit_gap_seconds
• Map_input_bytes

Eneko Pérez Llamazares 20

• Shuffle_bytes
• Reduce_output_bytes
• Anonymized_input_path

Summary

After evaluating the different traces shown above, we believe that those
coming from Google can offer more detailed information about the jobs their
users run. Google provides much more information and it has many more
variables as well. Besides that, everything is very well documented.

Traces Comparison Table

Trace Features

Google Dedicated table to task usage
resources with 20 variables.

Carnegie Mellon University

Very specific data about map and
reduce tasks.

UC Santa Barbara Time-series data with processor
information but lacking of memory or
disk related data.

Masaryk University Interesting data with many variables
and following the standard workload
format. Still, it presents fewer
variables than the Google's data set.

Facebook Lack of information about processor,
memory or disk/storage usage.

Eneko Pérez Llamazares 21

Chapter 3

3. Case Study: Google Trace

In this chapter we present our case study. We discuss about the Google
traces mentioned before. The main goal is to dissect the traces format and
try to understand their metrics.

3.1 Introduction

Usually engineers and researchers in industry have access to large-scale
data. At the same time, researchers in academic suffer from a lack of publicly
available data from the industry.

Google is one of the companies making publicly available this kind of
valuable information. Their latest data, on which we based this project,
represents 29 days of cell information from May 2011 on a cluster of 12.500
machines.

As we have seen in the previous chapter, there are several possibilities that
offered important metrics like CPU and memory usage, storage, timestamps,
etc. However, we found Google's data set the most complete and well
documented. Besides that, Google is one of the biggest and one of the most
complicated too, in terms of complexity of the infrastructure.

Taking everything into account, we considered that having a better insight of
this data would worth it.

However, this data is not free of errors that we should consider while
performing the analysis and concluding. For instance, according to Google's
documentation, some cycles per instruction (CPI) and memory accesses per
instruction (MAI) measurements are clearly inaccurate. This is probably
caused by the data-capture system used. This behavior should be explained
later in this work.

Eneko Pérez Llamazares 22

3.2 Format

This a detailed description of the fields that are part of the Task Resource
Usage table:

• Start time of the measurement period

• End time of the measurement period

• Job ID

• Task Index

• Machine ID

• Mean CPU Usage Rate

• Canonical Memory Usage

• Assigned Memory Usage

• Unmapped page cache memory usage

• Total page cache memory usage

• Maximum memory usage

• Mean disk I/O time

• Mean local disk space used

• Maximum CPU Usage

• Maximum disk I/O time

• Cycles per Instruction (CPI)

• Memory Accesses per Instruction (MAI)

• Sample Portion

• Aggregation Type

• Sampled CPU usage

Eneko Pérez Llamazares 23

Chapter 4

4. Trace Analysis Implementation

In this chapter we present our data analysis software implementation. In the
first part, we show the requirements of the infrastructure and the installation
and configuration procedure. In the second part, we perform data formatting;
the procedure includes removing unwanted variables and renaming the
others. Once we finish this chapter, the data will be ready to be analyzed.

4.1 Solution architecture: Installation and
setup

Our solution is very simple in terms of requirements both hardware and
software. It is basically composed by thee big pieces of software: the data
itself, R and the Operating System on which everything runs.

Figure 3 Basic Architecture Schema

R is a free software environment for statistical computing and graphics.

Besides R, the following libraries have been used in this project:

R	and	R	Studio	

Libraries	and	functions	

Flexclust	 solaR	 hexbin	 kcca	 prcomp	 ggplot2	

Task	Resource	Usage	Table	

Eneko Pérez Llamazares 24

• solaR
• hexbin
• flexclust
• ggplot2

SolaR library is used along with hexbin to plot a scattered matrix that
represents the relationships of the variables. Flexclust is provides algorithms
to perform clustering analysis. Ggplot2 is used to plot some different graphs.

 Installation 4.1.1

We decided to use an standard operating system such as Ubuntu 16.04 LTS.

On top of the operating system, we installed R and R studio. R requires
about 1GB of RAM and a non-root with sudo privileges in the system.

R

The first step is to add the R repository to our Linux system. We need to
create an entry in /etc/apt/sources.list with this information:

deb https://cloud.r-project.org/bin/linux/ubuntu xernial/

After this step, we are ready to continue by updating the system so it
refreshes the packages available at the recently added repository. From a
terminal, write the following commands:

sudo apt-get update
sudo apt-get install r-base

After running these commands, R will be installed in our system.

Libraries

In order to install the libraries that we mentioned before, these steps should
be followed.

From a terminal, launch R by typing ‘R’ and pressing ‘enter’. Once we are
inside the R interpreter, we proceed to install the packages:

Eneko Pérez Llamazares 25

install.packages(c("solar","hexbin","flexclust","ggplot2"))

The installation process would probably ask the user to select a mirror from
which download required packages and their dependencies. If that is the
case, mirror 1, "cloud mirror", it is a good choice.

The system then downloads and installs all the packages that we specified
along with the dependencies these might have.

 Additional software 4.1.2

Another tool was used in this project: RStudio. This tool is not necessary for
the final outcome. However, it made the process of analysis and plotting
much more easier. If desired, RStudio can be downloaded from here
(https://www.rstudio.com) and easily installed.

4.2 Formatting the data

Before we perform an analysis on the data, it must be normalized. As shown
in the figure above, the data does not have a head that indicates us the name
of every variable. Every time that any of the 500 tables is loaded into R, the
software will provide standard names to those variables. For an easier work
and better result, our implementation will rename the variables so that they
match with the description provided by Google.

Figure 4 Sample of data from the Google data set

As we can see in the figure above, R generated automatically names for the
variables. However, these names mean nothing and they should be properly
named. For instance, the first field in the picture is the Mean CPU field, but

Eneko Pérez Llamazares 26

instead we see X600000000. Because all of this, we use R to rename all the
variables:

We import the data set first. In the final code this input is substituted for a
piece of code that reads the input file as an argument passed to the script.

Import data from csv file data <- read.csv("part-00000-of-
00500.csv")

We rename the variables

Renaming columns colnames(data)[1] <- "StartTime"
 colnames(data)[2] <- "EndTime"
 colnames(data)[3] <- "JobId"
 colnames(data)[4] <- "TaskIndex"
 colnames(data)[5] <- "MachineId"
 colnames(data)[6] <- "MeanCPU"
 colnames(data)[7] <- "CanMemory"
 colnames(data)[8] <- "AssignedMem"
 colnames(data)[9]<-

"UnmappedCache"
 colnames(data)[10] <-

"TotPageCache"
 colnames(data)[11] <- "MaxMem"
 colnames(data)[12] <- "MeanIO"
 colnames(data)[13] <-

"MeanDiskSpace"
 colnames(data)[14] <- "MaxCPU"
 colnames(data)[15] <- "MaxIOTime"
 colnames(data)[16] <- "CPI"
 colnames(data)[17] <- "MAI"
 colnames(data)[18] <- "Sample"
 colnames(data)[19] <- "AggregType"
 colnames(data)[20] <- "SampledCPU"

Once we have renamed all the variables, the data is ready to be analyzed.

The final result after the normalization and variable discarding looks like this
figure:

Eneko Pérez Llamazares 27

Figure 5 Sample of the data set once normalized

Chapter 5

5. Data Analysis

In the last chapter we saw the aspect of the Task Resource Usage table.
Besides that, we renamed the variables in order to make it friendlier.

In this chapter we perform a descriptive analysis of the different variables,
then we discard several of them. Once we have the final set, we perform a
Principal Component Analysis (PCA), a test and train procedure, a K-Means
analysis and the same test and train procedure as before.

We finish this chapter with our interpretation of the results of the analysis.

5.1 Descriptive Analysis of the Variables

In the previous chapter we talked about the variables of the data set and we
renamed them according to the data provided by Google. We describe here
the meaning of these variables.

Variables 1 and 2: start and end time of the measurement period

These two variables represent the timestamp for every record, which is in
microseconds since 600 seconds before beginning of the trace period, and
recorded as a 64-bit integer. Besides these numbers, there are two special
time values as well:

• A time of 0, that represents events that occurred before the beginning
of the trace period.

Eneko Pérez Llamazares 28

• A time of 263-1 that represents events that occur after the end of the
trace period.

Variables 3, 4 and 5: Job ID, Task Index and Machine ID.

Every job is assigned a unique 64-bit identifier. These IDs are never reused.
Task index is composed by the job ID of his job and a 0-based index within
the job. Regarding the Machine ID, it is unique as well but it may stay the
same when a machine is removed from the cluster and returned.

Variables 6 and 14: Mean and Maximum CPU

Both variables are measured in units of CPU-core seconds per second.
Besides that, one represents the mean CPU usage and the other one
represents maximum CPU usage.

Variables 7, 8, 9, 10 and 11: Memory related

All these variables are memory related. We must take into account that
memory isolation is achieved through Linux containers, so some kernel
memory usage on behalf of the tasks is accounted to the task. Here we
describe the different variables:

• Canonical Memory: Memory usage measurement. Represents the
number of user accessible pages.

• Assigned Memory: Memory usage based on the memory actually
assigned to the container but not necessarily used.

• Unmapped Cache: represents Linux page cache not mapped into any
user space process.

• Total Page Cache: Total Linux page cache.
• Maximum Memory: The maximum value of the canonical memory

usage measurement observed over the measurement interval. This
value might not be available for some tasks.

Eneko Pérez Llamazares 29

Variables 12, 13 and 15: Mean and Maximum Disk Input/Output time,
Mean Disk Space

Disk I/O time is measured using subsystem of the Linux containers. Usage
measurements are the sum across all disks on the machine, in units of disk-
time seconds per second. Disk space represents runtime local disk capacity
usage. Distributed storage is not accounted in this trace.

Variables 16 and 17: CPI and MAI

Cycles per Instruction and Memory Access per Instruction are collected from
processor performance counters and all the machines do not collect it.
Memory Access per Instruction measurements are based on last-level cache
misses.

Variables 18, 19 and 20: Sample, Aggregation Type and Sampled CPU

Sample portion is the rate between the number of expected samples to the
number of observed samples. Aggregation type defines the type of the
aggregation depending on the Linux containers. Aggregation is related to the
length of each measurement period. Sampled CPU represents the mean CPU
usage during a random 1-second sample in the measurement period. This
data can be used to build a stochastic model of CPU usage.

Distribution

Before continuing with the process, we analyzed the distribution of the
variables.

The distribution of the variables is positively skewed. This means that it has a
small variability and most of the values are within a small range of values. As
an example, we offer details about two of the most relevant variables in terms
of distribution.

MaxCPU

Positively Skewed Distribution. Standard Deviation: 0.10. Mean: 0.07

Eneko Pérez Llamazares 30

The figure below shows the data distribution of this variable.

Figure 6 Max CPU distribution

Looking at the Standard Deviation, we see that the value is small, meaning
that there is a small variability with respect to its mean.

Besides that, if we look at the plot of the data, it seems obvious that most of
the data is between '0' and '0.5', as we can see in the plot below.

Eneko Pérez Llamazares 31

Figure 7 Max CPU distribution of data

MaxMem

Positively Skewed Distribution. Standard Deviation: 0.03. Mean: 0.019

Figure 8 Max Memory distribution

As happened with the previous variable, standard deviation has a very low
value, indicating that it exists a small variability with respect to the mean.

Eneko Pérez Llamazares 32

Figure 9 Max Memory distribution of data

Again, if we look at the plot of the data, most of the data is between '0' and
'0.2', as we can see in the plot above.

Taking into account the distribution and the low variability of the different
variables, we will be dealing with a lot of data that is very similar to each
other. As a result, some of the plots will not be easy to interpret, making it
difficult to draw a conclusion.

Summary

In the figure below we represent a summary of the variables previously
explained.

Based on this information, we will proceed with the variable discarding, since
not all the information seemed to be relevant.

Variable Related to

1,2 Measurement Period. Time.

3,4,5 ID: Job ID, Machine ID, Task ID

Eneko Pérez Llamazares 33

6,14 CPU

7,8,9,10,11 Memory

12,13,15 Disk: space, Input/Output time

16,17 Instructions

18,19,20 Additional information like Sample
measurements and others.

Figure 10 Variable comparison table

5.2 Variables Discarding

The aim of the Principal Component Analysis, PCA, is to reduce the
dimension of the data set. That is, to discard variables by grouping them in
different components that will represent the vast majority of the data. Before
doing a PCA analysis, and due to the nature of the analysis, we have
identified several variables that we will remove manually from the data set.
These variables are: 1, 2, 3, 4, 5, 18, 19 and 20. We discarded these variables
for not being appropriate or relevant for the PCA analysis.

For instance, variables 1 and 2 would have been useful if they followed a
standard time format that on which we could apply a time series analysis for
prediction. However, that was not the case and we proceed to discard them.

Variables 3, 4 and 5 are unique identifiers that could not provide additional
value to the data set.

Variables 18, 19 and 20 are samples and aggregation types that would not be
useful for our analysis since we analyzing a wider and more detailed data. As
a consequence, there is no need for such sample variables.

At this moment, our data set is composed by 12 variables. In the next
analysis we reduce the dimension of the data set to a small number of
principal components and we explain the relationship between the
components and the variable as well as the meaning of the results.

Eneko Pérez Llamazares 34

In our code, variable removal is accomplished by doing:

data$name_of_the_variable <- NULL

5.3 Principal Components Analysis (PCA)

 Introduction 5.3.1

Principal components analysis is a statistical procedure that, given a set of
possibly correlated variables, makes a conversion into linear uncorrelated
variables called Principal Components.

When we gather data from a big data set, usually we want to take as many
variables as possible. However, taking too many variables will lead to a high
number of correlation coefficients. For example, if our data set has 20
variables, we should consider 20

2 = 180 possible correlation coefficients.
The higher this number, the harder to visualize relationships between these
variables.

Another issue that PCA tries to ease is the fact that if we have many
variables, they would probably be highly related between them. This could
mean that these variables are measuring the same date under different point
of view.

In order to study the relationships between p correlated variables, the original
data set can be converted into a new data set of uncorrelated variables
called set of principal components.

These new variables are lineal combinations of the previous ones and they
are composed according to the importance in terms of total variability of the
original data set.

We pretend to get m < p variables that would be linear combinations of the p
original variables, representing most of the variability of the data.

Eneko Pérez Llamazares 35

 Analysis 5.3.2

The table used for this study has about 2.5 million of rows. However, since
working with such a large data set would be really difficult in terms of
calculations and data management, we will work with a randomly selected
sample of 100.000 registries.

This is the command used in R to obtain this new data set:

data2=data[sample(nrow(data), replace=F, size=100000),]

Once we have our final data set, data should be normalized. More
specifically, we substituted any missing value with 0.

data2[is.na(data2)] <- 0

To perform the PCA analysis over this data set, we use prcomp function of R.
According to the R documentation, there are two possible ways of doing a
PCA analysis in R. One of them is prcomp, and the other one is princomp. R
help specifies that prcomp uses Singular Value Decomposition (SVD), and
SVD has slightly better numerical accuracy, making prcomp the preferred
function.

pca <- prcomp(data2, scale=TRUE)

Once the analysis finishes, a summary of the components can be displayed.

summary(pca)

Figure 11 Summary of the PCA analysis with 12 components

As we can see in Proportion of Variance, the first four components represent
the majority of the data. The first four components represent the 83.6 % of
the total entries in the data set.

Eneko Pérez Llamazares 36

Below, we can see a bar plot of the importance of these components in the
data set:

Figure 12 Bar plot of the proportion of the variance

This plot represents the importance of the components. It basically plots the
Proportion of variance. As we mentioned above, this represents the weight of
each component, or how much of the data represents every component.

Now that we have the components, it is interesting to see the relationship
between these components and the original variables of the data set.

In the picture below we can clearly see that there are three groups of related
variables. In the first place, we have CPI and MAI (both related to instructions
of the code) directly related to Principal Component 1 (PC1). Another group
of variables is the one composed by CPU and I/O time. These four variables
are grouped around the same component PC2. The third group is the one
composed by memory-related variables. Since they are located between the
negative side of both PC1 and PC2, they have similar significance in both
components, as we will see later.

Eneko Pérez Llamazares 37

Figure 13 Correlation between variables and PC1 and PC2

As we saw in the previous plot, all memory related variables have a similar
weight, being more close to PC2 than to PC1. However, other variables that
are important in PC2 are not significant for PC1, such us those related to the
CPU and storage.

Another important aspect that we can see also in the new plot below is the
relationship of instruction related variables with PC1. Analyzing this plot we
realized that there is a third group (PC3) that is not represented in the
previous biplot.

As we can appreciate, CPI and MAI variables have an important weight on
PC1. CPU and Input/Output-related variables have the same towards PC2.
However, something that was missing before is shown here: a third group
composed by cache, IO and instructions-related variables have a significant
presence on PC3. These variables are: UnmappedCache, TopPageCache,
MeanIO, MaxIOTime, CPI and MAI.

Eneko Pérez Llamazares 38

This relationship might mean that the cache used by these systems and jobs
are associated with the storage devices. This also might mean that the cache
is probably a software cache. According to Intel, higher CPI values mean that
there is more latency in the system. Cache misses, Input/Output and/or other
bottlenecks can cause this latency. According to this definition, our
observation makes sense since this group of variables are all related to
cache, Input/Output and CPI/MAI. According to the information on Figure 11,
Principal Component 3 (PC3) represents 15% of the data. This means that
15% of the analyzed data could suffer from cache misses and probably I/O
bottlenecks.

In the plots below, the darker grey represents PC1, the medium grey
represents PC2 and the light grey represents PC3.

Eneko Pérez Llamazares 39

Figure 14 Bar plot of correlation between Principal Components and variables

Eneko Pérez Llamazares 40

Figure 15 Bar plot of correlation between Principal Components and variables

We finish this analysis with an interesting plot that shows the relationship that
a variable has with each other. In this plot, the red line represents the type of
relationship between the variables. If the line is a perfect diagonal, the
variables are linearly related. This could let us discard or group some of the
variables, reducing even more the dimension of the data set.

Eneko Pérez Llamazares 41

Figure 16 Variables relationship in a matrix

In this plot, we can avoid the upper left part of the matrix, since it represents
the inverse of the lower right part of the matrix, which is where we painted
the trend of each variable relationship.

There are some variables that feature an almost linear similarity. For instance,
Mean Memory and Assigned Memory or CPI towards MAI. In the case of CPI
and MAI variables, their relationship with all the rest of the variables is mainly
the same. If we were trying to reduce even more the dimension of the data
set, we could remove one of this two variables and the final result should not
be significantly changed.

Eneko Pérez Llamazares 42

5.4 K-Means

Another tool to analyze data, such as the one we are working with, is K-
Means. K-Means clustering is a method of vector quantification that is
popular in data mining. It stores k centroids that it uses to define clusters. A
point is considered to be in a particular cluster if it is closer to that cluster's
centroid than any other centroid.

In this project we use K-Means along with a test and train procedure in order
to get a predictable categorization of the data.

 Introduction 5.4.1

In order to perform a K-means analysis with R, we decided to use the
function 'kcca', from the library 'Flexclust'. This function perform a k-
centroids clustering on a data matrix. Within this function we chose the
'family' parameter to be 'kmeans', which is based in an Euclidean distance
and mean. Besides that, we used kmeans++ (kmeanspp) centroid
initialization.

We performed a K-Means analysis with a k=3. We choose this number
because k=2 would be very simple and beyond 3 we get too many partitions
of similar data.

In the first place, we decided to use 94% of the data for training purposes
and the rest 6% of the data for testing or guessing purposes. More
specifically, we took the first 8.000 rows of the data set for the training part of
the process. This represents 94% of the 8.500 rows selected. The rest, from
row 8.001 to 8.500 represents our testing and learning data. The reason of
choosing just 8.500 tasks to work with is that plotting 100.000 dots would be
a waste of resources, it would take much more time to process and it would
difficult reading and interpreting the resulting image.

We used then a PCA analysis in order to use just two Principal Components
instead of working with 12 variables, which would difficult the K-means
analysis.

In the figure below we can see how the data set is partitioned in 3 clusters.
The numbers represent the centroids of every cluster, and the line width
between them represents how much these clusters are related. For instance,
clusters 1 and 3 have a stronger relationship than cluster 2 and 3.

Eneko Pérez Llamazares 43

Figure 17 Clusters partitioning using K-means

As we mentioned above, since plotting 100.000 points would render useless
due to the massive number of points in the image, we decided to plot the first
8000 rows in form of points that looks like the image below:

Eneko Pérez Llamazares 44

Figure 18 Data representation along the clusters

This plot represents the three different clusters or groups and the points
related to them.

Looking at Figure 18, we can observe that apparently cluster one (black) has
a bigger density of points followed by cluster three (green). Cluster two (red)
is the smallest one, meaning that it is the one with the fewest entries.

 K-Means Test and Train 5.4.2

The idea behind testing and training is that, given a data, the algorithm learns
from it and it is able to predict how the next data that we analyze would be

Eneko Pérez Llamazares 45

categorized. In our case, we provided 500 extra rows to see where they
would fit.

For this purpose, we used the function 'predict', a generic function for
predictions from the results of various fitting models. In this case, we used
'predict' with data from the cluster we created before and also with data from
the cluster and the two principal components of the PCA mentioned before.

The result is in the figure below:

Figure 19 Training test data

Eneko Pérez Llamazares 46

As we can see in the figure, most of the new entries would be fit into the
cluster on the right side.

In the next section we will interpret these results more in detail.

5.5 Interpretation

The objective during the analysis was to use statistical methods for analyzing
large data. In order to achieve a significant result, we reduced the dimension
of the data set by using the PCA analysis. Then, we performed a clustering
analysis in order to group observations. Finally, we performed a small
prediction based on the clustering results.

In the first place, we will come to a conclusion based on the PCA analysis. As
we mentioned before, principal components represent 100% of the data set.
However, even with a non-normal distribution data set like the one we are
studying, a few components represent most of the variance of the data set.
In our case, the first three components represented 72% of the data set.
Since the data set was randomly composed from a bigger data set, we can
consider that our analysis results are valid for most of this data set
composed by 2.5 million of results.

Based on the results obtained in section 5.3, we determined that all the data
in the data set is represented by three groups of variables. As we explained
before, this data is made of tasks, meaning that the tasks sent to the clusters
in order to be executed made an extensive use of CPU, memory and
input/output operations. We stated that CPU and input/output time were
grouped under the same component PC2. However, this does not
necessarily mean that they are related. In fact, a further inspection shows
that there is no high processor usage during the input/output operations.

The picture below shows this behavior:

Eneko Pérez Llamazares 47

Figure 20 Mean CPU usage across the different variables

As we can see in the figure, a higher processor usage is present in those
tasks related to the memory but not in those related to input/output
operations. According to what we explained before about the reason behind
the high CPI (cycles per instruction) and MAI (memory accesses per
instruction) values, a normal or even low processor usage in these tasks is
reasonable, since they probably have a bottleneck problem somewhere else.
We do know though that the processor is not causing this issue.

Another interesting aspect of the data is that principal component 3, PC3,
showed this relationship too. The variables related to this component were
those related to the cache, input/output time and CPI/MAI.

To summarize, while using PCA to analyze data we should consider more
than two components, since a different relationship could emerge. In our
case, PC3 demonstrated that there was a third group of variables not related
to intensive processor usage, despite the output of the biplot of PC1 and
PC2 where CPU-related variables seemed to be aligned with input/output
operations.

Eneko Pérez Llamazares 48

Regarding the K-means study, we decided to use three clusters to represent
the data. This clustering methodology allowed us to group data and also to
predict new tasks and catalog them in a group.

We saw that most of the new tasks would be classified inside cluster number
one. However, we were not aware of what different clusters meant. We
created a new plot showing the relationship between the three clusters and
the two first principal components of the PCA analysis. The result can be
seen in this plot:

Figure 21 Data representation along the clusters with predictive ellipses and components

A further analysis of this relationship was necessary. According to the plot
above, the data located in cluster 1 and cluster 3 should be related to
principal component 1. After checking the data itself, we realized that this is
indeed the relationship that we were seeing in the plot, as we can see in the
figure below.

Eneko Pérez Llamazares 49

Figure 22 Data representing the Component 1 and 2 values with respect to Clusters

This figure shows that positive and high numbers of Principal Component 1
and Principal Component 2 are grouped into cluster one and cluster three
respectively. As we saw before, Principal Component 1 groups CPI and MAI
variables, while Principal Component 2 groups CPU and input/output
variables.

In section 5.4.2 we established that most of the new tasks would fit in cluster
one. Since cluster one has a strong relationship with Principal Component 1,
we could summarize the outcome of this analysis by stating that many of the
new tasks sent to these clusters would have significant values of CPI and
MAI.

However, we should keep in mind what we mentioned in section 3.1.
According to the documentation released by Google, they detected a
possible error in CPI and MAI measurements, probably due to the system
they use for capturing the data.

Chapter 6

6. Testing

We have tested the solution with different traces from the same data set,
always using the Task Resource Usage table. It is important to note that,
since the data required manual manipulation, it will not work with a different
table or different trace.

In order to reproduce the tests, we can use Rscript, a command line tool
included with R, to execute the framework:

$ Rscript pca_google.R <input_file>

where <input_file> should be the file provided by Google in comma
separated values format. These files follow the following name format:

Eneko Pérez Llamazares 50

part-00000-of-00500.csv

Due to the size of the file, it cannot be included in the final project
submission. However, we uploaded this data set here:

https://github.com/e9169/UOCTfg

The whole data set in which this work has been based on, can be
downloaded following the instructions in this document:

https://drive.google.com/file/d/0B5g07T_gRDg9Z0lsSTEtTWtpOW8/view

6.1 Example

In this section we will run a complete example with a different data set. This
additional data set can also be downloaded from:

https://github.com/e9169/UOCTfg

After downloading and uncompressing the data set, we executed the
platform:

Rscript pca_google.R part-00001-of-00500.csv

The framework that we have developed will normalize the data accordingly
and will perform all the analysis as well as create the different plots that help
to understand the analysis. After a few minutes, a 'figures' folder is created
inside the folder from which the code is executed. Inside this folder we put all
the plots mentioned before.

The code might throw some 'null device' errors. This is because of the way
we save 'png' images into the 'figures' folder. They can be discarded since
they do not affect the performance or final result of the analysis.

Chapter 7

Eneko Pérez Llamazares 51

7. Conclusion and Future Work

In this final chapter we present the conclusions of the analysis. Besides that,
we mention several topics that could be treated in the future.

7.1 Conclusions

With the help of the analysis of the data and the plots, we can render some
interesting conclusions about the data type of the clusters used by Google. It
will also help us to understand what is more relevant and, thus, propose a
standard with fewer variables.

Starting with the PCA analysis, we concluded in section 5.5 that three
components represented 72% of our data. It is important to mention that all
the analysis performed in this study was done against a randomly selected
data of 100.000 tasks. The original file used for this selection has about 2.5
million of tasks. This means that, if we do not use the whole data set of 2.5
tasks, we will get different results every time we use this solution. Working
with such a number of tasks can be tedious and slow in performance, and
using just the 100.000 first tasks of the data set would not take into account
changes in the rest of the data set. That is, the first 100.000 tasks will not
represent the whole data set. However, there is a higher change that 100.000
random tasks will.

In section 5 we concluded that CPU and Input/output variables were grouped
under the same Principal Component. However, we also realized that this
does not mean they are directly related, as we demonstrated. It is important
then not to use just a simple analysis of a few principal components.

Besides that, we identified a potential problem with 15% of the tasks. This
problem is related to possible bottlenecks due to input/output operations,
cache misses or other problems.

Regarding the K-means analysis, we classified data into three groups and
performed a prediction of several new tasks in order to see where they would
fit. The conclusion was that most of the new tasks would be classified or
grouped under the cluster number one. We also realized that cluster one is
directly related with higher values of Principal Component 1, meaning that
most of the new tasks would have a high value of CPI (cycles per instruction)
and MAI (memory accesses per instruction).

Eneko Pérez Llamazares 52

We also noticed that higher values of mean CPU usage are related to the
memory variables, meaning that using more processor power involves using
more memory, something that we can consider a normal and expected
behavior.

While trying to define a standard workload format that could integrate the
most relevant data, we identified three areas with the PCA analysis. These
three areas are: processor related variables, memory related variables and
instructions related data. Another group of variables that should be part of
this standard that we are trying to define is the one composed by time
related variables, such as starting and ending of a job or task. However, this
data was not part of the data set we analyzed, since the time variables
provided were relative to a certain moment that was not properly specified.

Time-series data could help us by predicting in a different way, allowing us to
compare the current K-means based prediction with this other method.

To summarize, we identified a potential problem with an important number of
tasks, we grouped most of the data into three different principal components,
we analyzed the relationships between these components and the variables
of the data set, we grouped the data into clusters, analyzed the relationship
between the clusters and principal components and we finally predicted the
classification of new tasks by a train and test method on the k-means
analysis.

7.2 Future Work

Since at the moment of the creation of this project we are not aware of an
updated and commonly used format, this work could be highly improved in
the future by implementing such a non-existent standard. This way, the
analysis process could be fully automated.

In the previous section we have proposed a standard format based on the
results of the Google workload traces. However, an exhaustive and
dedicated analysis should be applied to many traces, since different traces
represent different needs in terms of computing resources. Because of this,
we can consider this work as a first and necessary step before we can
consider a standard.

Besides that, additional analysis methods could be used, for example
topological data analysis (TDA). TDA provides a framework to analyze high-
dimensional, incomplete and noisy data sets. It provides dimensionality

Eneko Pérez Llamazares 53

reduction and robustness. The motivation of this kind of analysis is to study
the shape of data. The main tool of TDA is persistent homology. These
algorithms look for topological invariants across various scales of a
topological manifold.

Another aspect that can be extended is prediction. As we explained before, a
brief k-means based prediction is achieved with this framework. However, we
could expect a more detailed approach by using decision trees, also known
as regression trees, as a predictive model. This model is used in statistics,
data mining and machine learning. The algorithm finds the variable that does
the best job of separating the data into two groups. The operation is
repeated with the other variables, resulting in a tree graph where each split
represents a decision. The biggest advantage of this model is that it is really
intuitive and can be easily understood by people with no or little experience.

We would like to mention an interesting library for prediction based on time-
series that could be applied to a data set similar to the one this project is
based on. The library is called Prophet, a Facebook open-source library for
forecasting. As we mentioned before, due to the nature of the time-related
variables of the data set of this project, we could not use this library for
prediction, but it seems to be interesting and we should consider its
application.

Basically, improving three major areas could extend this work: automation,
wider data analysis and prediction.

8. References

Cs.ucsb.edu. (2015). University of California Santa Barbara. [online] Available
at: https://www.cs.ucsb.edu/~rich/workload/ [Accessed 28 May 2017].

En.wikipedia.org. (2017). Principal component analysis. [online] Available at:
https://en.wikipedia.org/wiki/Principal_component_analysis [Accessed 28
May 2017].

Ftp.pdl.cmu.edu. (2013). OpenCloud Hadoop cluster trace : format and
schema. [online] Available at:
http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html [Accessed 28 May
2017].

Eneko Pérez Llamazares 54

GitHub. (2012). SWIMProjectUCB/SWIM. [online] Available at:
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
[Accessed 28 May 2017].

GitHub. (2017). google/cluster-data. [online] Available at:
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
[Accessed 28 May 2017].

Klusacek, D. (2017). Dalibor Klusacek - Home page. [online] Fi.muni.cz.
Available at: http://www.fi.muni.cz/~xklusac/index.php?page=meta2009
[Accessed 28 May 2017].

Marín Diazaraque, J. (2017). Análisis de Componentes Principales. [online]
Available at:
http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/AMult/tema3am.
pdf [Accessed 28 May 2017].

Planspace.org. (2013). PCA, 3D Visualization, and Clustering in R. [online]
Available at: http://planspace.org/2013/02/03/pca-3d-visualization-and-
clustering-in-r/ [Accessed 28 May 2017].

Pucher, A. (2015). Cloud Traces and Production Workloads for Your Research
| Alexander Pucher. [online] Alexpucher.com. Available at:
https://alexpucher.com/blog/2015/06/29/cloud-traces-and-production-
workloads-for-your-research/ [Accessed 28 May 2017].

R-bloggers. (2017). Passing arguments to an R script from command lines.
[online] Available at: https://www.r-bloggers.com/passing-arguments-to-an-
r-script-from-command-lines/ [Accessed 28 May 2017].

R-project.org. (2017). R: The R Project for Statistical Computing. [online]
Available at: https://www.r-project.org [Accessed 28 May 2017].

RStudio. (2017). RStudio. [online] Available at:
https://www.rstudio.com/products/rstudio/ [Accessed 28 May 2017].

Rstudio-pubs-static.s3.amazonaws.com. (2017). Análisis de Componentes
Principales en R. [online] Available at: http://rstudio-pubs-
static.s3.amazonaws.com/2387_ee73f69e5ba04498a93e5bb12f636591.html
[Accessed 28 May 2017].

Sthda.com. (2017). Principal component analysis in R : prcomp() vs.
princomp() - R software and data mining - Easy Guides - Wiki - STHDA.
[online] Available at: http://www.sthda.com/english/wiki/principal-

Eneko Pérez Llamazares 55

component-analysis-in-r-prcomp-vs-princomp-r-software-and-data-mining
[Accessed 28 May 2017].

Terrádez Gurrea, M. (2017). Análisis de Componentes Principales. [online]
Available at:
https://www.uoc.edu/in3/emath/docs/Componentes_principales.pdf
[Accessed 28 May 2017].

Thiago G. Martins. (2017). Computing and visualizing PCA in R. [online]
Available at: https://tgmstat.wordpress.com/2013/11/28/computing-and-
visualizing-pca-in-r/ [Accessed 28 May 2017].

Tsafrir, D. (2015). Parallel Workloads Archive: Logs. [online] Cs.huji.ac.il.
Available at: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
[Accessed 28 May 2017].

Kodali, T. (2015). Using Decision Trees to Predict Infant Birth Weights. [online]
Available at: https://www.r-bloggers.com/using-decision-trees-to-
predict-infant-birth-weights/ [Accessed 21 June 2017].

En.wikipedia.org. (2017). Big Data. [online] Available at:
https://en.wikipedia.org/wiki/Big_data [Accessed 22 June 2017].

En.wikipedia.org. (2017). Supercomputer. [online] Available at:
https://en.wikipedia.org/wiki/Supercomputer [Accessed 22 June 2017].

En.wikipedia.org. (2017). Topological Data Analysis. [online] Available at:
https://en.wikipedia.org/wiki/Topological_data_analysis [Accessed 23 June
2017].

Software.intel.com. (2017). Clockticks per Instructions Retired. [online]
Available at: https://software.intel.com/en-us/node/544403 [Accessed 24
June 2017].

Carmona, F. (2014). Un ejemplo de ACP paso a paso. [online] Available at:
http://www.ub.edu/stat/docencia/Mates/ejemploACP.PDF [Accessed 23
June 2017]

Facebookincubator.github.io. (2017). Prophet. [online] Available at:
https://facebookincubator.github.io/prophet/ [Accessed 5 June 2017]

Eneko Pérez Llamazares 56

9. Annex A

In this chapter we provide the source code of the framework in R language.
Besides that, we provide a public repository for the data sets related to this
project.

Data Sets

https://github.com/e9169/UOCTfg

R code

Installation requirements

require(solaR)
require(hexbin)
require(ggplot2)

if (file.exists("figures")){
 message ("Figures folder already exists")
} else {
 dir.create("figures")
}

Read data (csv file)
args <- commandArgs(TRUE)
data <- read.csv(args[1])

Removing unwanted columns manually
data <- data[-c(1:5)]
data <- data[-c(13:15)]

Renaming column names
colnames(data)[1] <- "MeanCPU"
colnames(data)[2] <- "CanMemory"
colnames(data)[3] <- "AssignedMem"
colnames(data)[4] <- "UnmappedCache"
colnames(data)[5] <- "TotPageCache"
colnames(data)[6] <- "MaxMem"
colnames(data)[7] <- "MeanIO"
colnames(data)[8] <- "MeanDiskSpace"
colnames(data)[9] <- "MaxCPU"
colnames(data)[10] <- "MaxIOTime"

Eneko Pérez Llamazares 57

colnames(data)[11] <- "CPI"
colnames(data)[12] <- "MAI"

I generate a random sample of the original dataset of
2.5 million rows.
data2=data[sample(nrow(data), replace=F, size=100000),]

I normalyze the data so there is no NA. I replace it
with 0 so that everything is numerical.
data2[is.na(data2)] <- 0

PCA Analysis
pca <- prcomp(data2, scale=TRUE)

With covariance matrix
(pca.cov <- prcomp(data2))
diag(1/sqrt(diag(cov(data2)))) %*% pca.cov$rotation %*%
diag(pca.cov$sdev)
(corvar2 <- pca.cov$rotation %*% diag(pca.cov$sdev))

Summary
summary(pca)

Correlation between variables and components
(corvar <- pca$rotation %*% diag(pca$sdev))

Representation
Bar plot of the weight of each component

png(filename="figures/barplot1.png", width = 1024, height
= 768)
barplot(summary(pca)$importance[2,])
dev.off()

Correlation between variables and components PC1 and
PC2
png(filename="figures/correlation.png", width = 1000,
height = 1000)
plot(-1:1, -1:1, type='n', xlab='PC1', ylab='PC2', xlim =
c(-1,1))
abline(h=0, v=0, lty=2, col=8)
arrows(0, 0, corvar[,1], corvar[,2], length=.1)
text(corvar[,1], corvar[,2], colnames(data2), pos=4,
offset=.6, col=2, font=2)
dev.off()

Correlation between variables and components PC1, PC2
and PC3 in a bar plot

Eneko Pérez Llamazares 58

png(filename="figures/barplot2.png", width = 1920, height
= 1080)
barplot(t(corvar[,1:3]),beside=TRUE, ylim=c(-1,1))
legend("topleft",legend = c("PC1","PC2","PC3"), fill =
c("black","darkgray","lightgray"))
dev.off()

Variables relationship. Requires Hexbin and solaR
png(filename="figures/matrix.png", width = 1400, height =
1400)
splom(data2[1:15000,1:12],
 panel=panel.hexbinplot,
 diag.panel = function(x, ...){
 yrng <- current.panel.limits()$ylim
 d <- density(x, na.rm=TRUE)
 d$y <- with(d, yrng[1] + 0.95 * diff(yrng) * y /
max(y))
 panel.lines(d)
 diag.panel.splom(x, ...)
 },
 lower.panel = function(x, y, ...){
 panel.hexbinplot(x, y, ...)
 panel.loess(x, y, ..., col = 'red')
 },
 pscale=0, varname.cex=1.5
)
dev.off()

Training and Test. K-Means.
library(flexclust)

Train <- data2[1:8000,]
Test <- data2[8001:8500,]

pca.train <- princomp(Train,cor=TRUE)
pca3.train <- prcomp(Train, scale=TRUE)
png(filename="figures/pca.train.png", width = 1024,
height = 768)
plot(pca.train)
dev.off()

pc1.train <- pca.train$scores[,1]
pc2.train <- pca.train$scores[,2]

X.train <- cbind(pc1.train,pc2.train)

pca.test <- predict(pca.train, newdata=Test)

Eneko Pérez Llamazares 59

pc.comp.test <- pca.test[,1:2]
pc1.test <- pc.comp.test[,1]
pc2.test <- pc.comp.test[,2]

X.test <- cbind(pc1.test,pc2.test)

cl <- kcca(X.train,k=3,kccaFamily("kmeans"),control =
list(initcent="kmeanspp"))

pred_train <- predict(cl)
pred_test <- predict(cl,newdata=X.test)

pdf(file="figures/k-means.pdf")
image(cl,fastcol=FALSE,graph=TRUE)

image(cl,fastcol=FALSE,graph=TRUE)
points(X.train,col=pred_train,cex=.3)

image(cl,fastcol=FALSE,graph=TRUE)
points(X.train,col=pred_train,cex=.3)
points(X.test,col=pred_test,pch=22,bg="orange")
dev.off()

Additonal K-Means plot with PCA components
scores4<-pca.train$scores
ggdata2<-data.frame(scores4, Cluster=cl@cluster)
png(filename="figures/kmeans_cluster_pca.png", width =
1024, height = 768)
ggplot(ggdata2) + geom_point(aes(x=Comp.1, y=Comp.2,
color=factor(Cluster)), size=5, shape=20) +
stat_ellipse(aes(x=Comp.1,y=Comp.2,fill=factor(Cluster)),
geom = "polygon", level=0.95, alpha=0.4) +
guides(color=guide_legend("Cluster"),
fill=guide_legend("Cluster"))
dev.off()

