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Abstract 
 
 
The evolution of the computers allowed us to create supercomputers able to 
run thousands of jobs at the same time during long periods of time. Behind 
these jobs there are multiple applications: forecasting, aerodynamics and 
molecular simulations are just a small example of how supercomputers have 
changed the world. However, we live in a moment where Big Data is a key 
aspect in getting better insights of the huge amount of data that is constantly 
generated. Clusters can provide two types of data: output from jobs and 
workload traces. This project aims to provide a framework for workload 
traces analysis and characterization. By performing such analysis, the project 
tries to establish a standard to define the contents of a workload trace. 
Besides that, the resulting framework can provide analysis results than can 
help understanding the data, taking decisions, etc. While analyzing a very 
specific data set, we concluded that three major group of variables define 
most of the data set. We also detected a possible anomaly with the data due 
to abnormal high values in two variables. Finally, a prediction was performed 
against this data set and we were able to see how future data should be 
classified. 
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Chapter 1 

1. Introduction 
 
 
The beginning of the digital age is considered to be about 2002 and, at this 
point, storage started to become more digital than analog. Storing 
information digitally provided a faster and easier way to use it. However, 
since the digital age began, digital data sets have been increasing 
considerably to the point of being too large and complex to be processed 
with traditional methods.  
 
The concept of Big Data, a term used since the 1990s, pretends to provide 
techniques and technologies to reveal insights from complex and of a 
massive scale data sets. 
 
In line with the evolution of the digital data, supercomputers, computers with 
a high level of computing performance, have evolved and increased their 
capabilities as well. Many applications, such as weather forecasting, 
probabilistic analysis, nuclear tests simulations and molecular dynamics 
simulation, use extensively this kind of supercomputers, coining the term 
High Performance Computing. 
 
In order to run an application in these computers, a job has to be created and 
submitted to a job scheduler that will decide where to run the application, 
depending on a set of constraints. 
 
Apart from the corresponding output of each job sent to a supercomputer, 
clusters administrators have access to workload traces. A trace is usually a 
time stamped sequence of events captured on a computer with tools 
designed for that purpose.  
 
Traces are significantly useful, for example in order to make an analysis of 
the different jobs running on a cluster. This kind of analysis can help make 
decisions regarding new acquisitions, software configuration, job scheduler 
setup, scalability, etc. 
 

 

1.1 Project motivation 
 

Many different cluster applications lead to different workload traces. These, 
and the lack of a standard workload trace format, force us to analyze each 
case separately. This entails different drawbacks, such as difficulty to 
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compare results and additional previous work of analysis. In addition, 
workload traces are not usually publicly available.  
 
However, one of the largest companies in the world, as well as one of the 
most important technological companies, Google, made available traces 
from their supercomputers. Due to the complexity of its infrastructure and the 
inherent problems related to it, such as dealing with millions of different jobs 
on thousands of different machines, analyzing the data of their clusters may 
provide a valuable insight for making decisions in areas like acquisition, 
cooling, software and systems configuration and more.  
  
Google has been publishing what they call ‘Cluster workload traces’, making 
available two versions of this data set. The first one, ‘TraceVersion 1’ is an 
older, shorter trace describing a 7-hour period from one cluster. It is however 
deprecated, and they encourage using the newer version, 
‘ClusterData2011_2’. This data set provides data from a cluster of more than 
twelve thousand machines for about a month period in 2011.  
 
When we analyze information of a cluster, we instinctively think in a few 
components of the system: processors, memory and storage. These are the 
three pillars on which, we think, modern computers are seated. However, 
partly thanks to the Big Data, we are capable now to extract valuable 
information of a trace data set, and get an insight view beyond CPU, memory 
and disks. For all of the above, we believe that a company like Google is the 
perfect target for such kind of analysis. 
 
Our motivation in this BS Final Project will be analyzing the traces made 
available by Google, and offering an insight view of the real important data 
inside.  During this process, and due to a prior analysis, we will try to propose 
a standardized workload trace format as well. 
 

1.2 Goals and objectives 
 

The main goal of this BS Final Project is to create a framework that can 
analyze an input trace, as well as characterize the main metrics. The 
following objectives have to be accomplished: 
 
 

•  Identify common and relevant fields in the trace by using statistical 
analysis of the data. 
 

•  Propose a new format thanks to the prior analysis. 
 

•  Program a code that can analyze the information and extract key 
components. 
 



Eneko Pérez Llamazares   11 

•  Program a code that can create graphical characterization of the 
above. 
 

•  Provide a framework to facilitate trace based simulation studies 
leveraging a set of analysis that can be used prior to simulation to 
quickly understand and characterize traces. 

 

1.3 Materials and Methods 
 

We describe the data that we use, the statistical analysis methods used and 
the requirements of the process. 

 

  Requirements 1.3.1
 

To achieve the goals and objectives described above, we will need a 
standard computer or virtual machine running Linux operating system.  A 
description of additional software is shown below: 

• Ubuntu Linux operating system or similar. 
 

• R – The R Project for Statistical Computing. 
 
In order to provide a reference, here are detailed the specifications of the 
computer used for this Final Project. However, the same results should be 
expected while using modern standard equipment, such us Intel Core I3 or 
Core I5 processors and a maximum of 8GB of RAM memory. Keep in mind 
though that if we wanted to analyze a larger data set (or the complete data 
set published by Google), better specifications would be needed: 

 
• Computer: Dell XPS 13” Developer Edition 
• Processor: Intel I7-7560U. 
• Memory (MB): 16000. 
• Disk (GB): 512 NVMe. 
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  Data 1.3.2
 

The data for this project comes from a publicly available repository of 
Google. This data is composed by a series of tables, each of one 
representing a different data set with different variables. Despite the number 
of available tables, we decided to use one of them due to the number and 
type of variables that it has. 

The other tables have information about machines, job and tasks and task 
constraints. However, as we mentioned earlier, the task resource usage table 
is the most relevant of the data set, and we will focus our project on this one. 
 

  Statistical Analysis 1.3.3
 
 
Due to the nature of the data, originally composed by 20 variables, we 
decided to use a statistical method to reduce the dimension of the data. This 
method, called Principal Components Analysis, is a statistical procedure that 
uses an orthogonal transformation to convert a set of observations of 
possible correlated variables into a set of values of linearly uncorrelated 
variables called principal components. After applying the method, the 
dimension of the data set is reduced significantly and a few principal 
components explain the majority of the data. 
 
Besides that, we use a method for clustering and grouping data, known as k-
means, as well as a training method for predicting future behavior. K-means 
clustering aims to partition n observations into k clusters in which each 
observation belongs to the cluster with the nearest mean.  
 
 
 
 

1.4 Work breakdown 
 

The work breakdown is shown below: 

• Phase 0: Work breakdown and research (22/02/2017–19/03/2017, 26 
days) 

o Creating a work breakdown plan (BS Final Project – PEC 1) 
o Information collection 
o Information analysis 
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• Phase 1: Installation, Documentation and Analysis (19/03/2017–
12/04/2017, 25 days) 

o Installing and setting up the environment 
o Analysis and solutions proposal 
o Documentation 

 
 

• Phase 2: Design and implementation of the solution (12/04/2017–
06/05/2017, 25 days) 

o Designing and implementing the solution 
 
 

• Phase 3: Analysis and tests (06/05/2017–17/05/2017, 12 days) 
o Analyzing the solution 
o Final testing 

 
 

• Phase 4: Final memory (17/05/2017–25/06/2017, 35 days) 
o Writing Final Degree Project dissertation 
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Figure 1 Gantt chart 

 

 
Figure 2 Simplified Gantt chart 
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1.5 Organization of the BS Final Project 
 

The rest of this BS Final Project is organized as follows: 

 
 

• Chapter 2 presents an overview of the workload traces data. We 
describe workload traces key concepts as well as characteristics. 
Furthermore, we aim to provide a general overview of the different 
traces schema and data format. 
 

• Chapter 3 describes our case study. We discuss about the Google 
traces. The main goal is to dissect the traces format and try to 
understand their metrics. 

 
• Chapter 4 presents our trace analysis architecture implementation. In 

the first part, we show the solution architecture. In the second part, we 
explain the procedure of install the different applications and libraries 
that form the framework that we have developed. 
 

• Chapter 5 describes the analysis that we have made to the traces, 
more specifically the Principal Component Analysis (PCA) that it has 
been performed to the sample of data. Based on the PCA results, we 
do a profile for a potential standard workload trace format. Besides 
that, we perform a K-means analysis in order to group or cluster the 
different tasks in our data set and perform a prediction. 
 

• Chapter 6 describes the tests performed to the application. The main 
goal is to check the code working with different traces with the same 
format automatically.  
  

• Chapter 7 presents our final conclusions and possible future studies. 
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Chapter 2 
 

2. Overview of workload traces 
 

In this chapter we present different workload traces found on the Internet. 
Besides that, we analyze their key concepts and schema. 

 

2.1 Workload traces: key concepts of the data 
 

During the research phase of this Final Project, we have found some 
workload traces with different formats, metrics and purposes. These traces 
belong to Google, Carnegie Mellon University, University of California Santa 
Barbara (UC Santa Barbara), Masaryk University and Facebook. We describe 
here the main characteristics of every of them. 

 
 
Google 
 

'Google Clusterdata' is a large-scale production workload trace made 
available by Google. These are production workloads running on Google 
clusters. The workload consists of a set of tasks, where each task belongs to 
a single job and a single job can have one or more tasks 

The trace is made up of several data sets. Each data set contains different 
tables and every table has its own format and represents one aspect of the 
trace, as we will see in detail shortly. Data is highly anonymized.  

 
Carnegie Mellon University 
 

This workload trace contains Hadoop logs from OpenCloud cluster. 
OpenCloud is a research cluster at Carnegie Mellon University managed by 
the CMU Parallel Data Lab.  Like in the previous example, data is highly 
anonymized. The data set is significantly smaller than Google’s.  
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The trace is made up of several tables, each table containing different type of 
data. There are mainly two types of logs of Hadoop: job configuration and job 
history files.  

 
UC Santa Barbara 
 

This workload is composed of several files, each of one contains a trace of 
start and stop events recorded by Eucalyptus Cluster Controller. Eucalyptus 
is a computer software for building Amazon Web Services-compatible private 
and hybrid cloud computing environments and it is marketed by the 
company Eucalyptus Systems. As before, data is anonymized.  

 
Masaryk University 
 

This data set represents the job description and machine description 
provided by TORQUE job scheduler during a period of 4 months in 2015. The 
job log is provided in a per-user format but suitable for dynamic workload 
simulations, fulfilling the specifications of the Standard Workflow Format. 
Besides that, the log format is compatible with the Alea jobs scheduling 
simulator. 

 
Facebook 

These workloads represent two periods of the same cluster at Facebook. FB-
2009 has historical Hadoop traces of a 600-machine cluster, while FB-2010 
has historical Hadoop traces of the same upgraded cluster, composed by 
3000 machines at that moment. Hadoop is an open source software 
framework used for distributed storage  and processing of a data set of big 
data using the MapReduce programming model.  

 
Summary 
 
Besides these public workload traces, there is another trace, or more 
specifically a proposed standard, that is worth studying and mentioning here. 
The Standard Workload Format, SWF, was defined to provide a single format 
of workload that could then be applied in simulation or analysis.  
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The Standard Workload Format was proposed by David Talby and improved 
by Dror Feitelson, James Patton Jones, and others. 
 
Along with the information about the SWF, the School of Computer Science 
and Engineering of the Hebrew University of Jerusalem offers a Parallel 
Worlkloads Archive. This archive provides with several traces from different 
sources already adapted to SWF. 
 
Unfortunately, this archive is not frequently updated. 
 
 
 

2.2 Schema and Data Format 
 

Google 

Several tables compose Google cluster data set. Once analyzed, we decided 
to use the table named Task Resource Usage, since this is the one giving 
us more information. Google provides 500 compressed files, each of one 
containing millions of entries following the schema of this table. This table is 
composed by 20 variables.  

As we will see later, some of these variables are not appropriate for the 
analysis that we will perform.  

 

Carnegie Mellon University 

This trace is made of several tables as well. More specifically, it is composed 
by the following tables:  

•  Job Configuration: contains fields that help to uniquely identify a 
MapReduce job. 

•  Job History: basically contains the status of a job and the number of 
map and reduce tasks in the job. 

•  Task History: the type of task, status and start and finish time. 
•  Task Attempt History: host where the task attempts to run, job id and 

time stamp. 
•  Counter History: Historical data of counters for different type of 

events. 
•  Split History: very briefly documented. 
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The most relevant table of the data set is Job History, since it has information 
about the timestamp of submitted jobs, status, total number of map and 
reduce tasks, etc. 

 

UC Santa Barbara 

This data set is simpler than those that we have described so far. Each file 
contains a trace of the VM start and stop events recorded by a Eucalyptus 
Cluster Controller. Besides the timestamp, there are several useful columns. 
The start record format is: 

START timestamp instance-id node-name core-count 

The stop record format is: 

STOP timestamp instance-id 

Each instance-id should have both a START and STOP record in each file. 

 

Masaryk University 

The data set provided by this University follows the Standard Workflow 
Format (URL). The SWF has 18 data fields. These are the data fields in order 
of appearance in a log: 

Job Number, Submit Time, Wait Time, Run Time, Number of Allocated 
Processors, Average CPU Time Used, Used Memory, Requested Number of 
Processors, Requested Time, Requested Memory, Status, User ID, Group ID, 
Executable Number, Queue Number, Partition Number, Preceding Job 
Number and Think Time from Preceding Job. 

The log format is compatible with the Alea Jobs Scheduling Simulator. 

 

Facebook 

These workloads are previously synthesized. They are one day in duration 
and contain 24 historical trace samples, each of one hour long. The format is: 

• New_unique_job_id 
• Submit_time_seconds 
• Inter_job_submit_gap_seconds 
• Map_input_bytes 
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• Shuffle_bytes 
• Reduce_output_bytes 
• Anonymized_input_path 

 

Summary 

After evaluating the different traces shown above, we believe that those 
coming from Google can offer more detailed information about the jobs their 
users run. Google provides much more information and it has many more 
variables as well. Besides that, everything is very well documented. 

 

Traces Comparison Table 

 

Trace Features 

Google Dedicated table to task usage 
resources with 20 variables.  

Carnegie Mellon University 

 

Very specific data about map and 
reduce tasks.  

UC Santa Barbara Time-series data with processor 
information but lacking of memory or 
disk related data. 

Masaryk University Interesting data with many variables 
and following the standard workload 
format. Still, it presents fewer 
variables than the Google's data set. 

Facebook Lack of information about processor, 
memory or disk/storage usage. 
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Chapter 3 
 

3. Case Study: Google Trace 
 
In this chapter we present our case study. We discuss about the Google 
traces mentioned before. The main goal is to dissect the traces format and 
try to understand their metrics. 

 

3.1 Introduction  
 

Usually engineers and researchers in industry have access to large-scale 
data. At the same time, researchers in academic suffer from a lack of publicly 
available data from the industry. 

Google is one of the companies making publicly available this kind of 
valuable information. Their latest data, on which we based this project, 
represents 29 days of cell information from May 2011 on a cluster of 12.500 
machines. 

As we have seen in the previous chapter, there are several possibilities that 
offered important metrics like CPU and memory usage, storage, timestamps, 
etc. However, we found Google's data set the most complete and well 
documented. Besides that, Google is one of the biggest and one of the most 
complicated too, in terms of complexity of the infrastructure.  

Taking everything into account, we considered that having a better insight of 
this data would worth it.  

However, this data is not free of errors that we should consider while 
performing the analysis and concluding. For instance, according to Google's 
documentation, some cycles per instruction (CPI) and memory accesses per 
instruction (MAI) measurements are clearly inaccurate. This is probably 
caused by the data-capture system used. This behavior should be explained 
later in this work. 
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3.2 Format 
 

This a detailed description of the fields that are part of the Task Resource 
Usage table: 

• Start time of the measurement period 

• End time of the measurement period 

• Job ID 

• Task Index 

• Machine ID 

• Mean CPU Usage Rate 

• Canonical Memory Usage 

• Assigned Memory Usage 

• Unmapped page cache memory usage 

• Total page cache memory usage 

• Maximum memory usage 

• Mean disk I/O time 

• Mean local disk space used 

• Maximum CPU Usage 

• Maximum disk I/O time 

• Cycles per Instruction (CPI) 

• Memory Accesses per Instruction (MAI) 

• Sample Portion 

• Aggregation Type 

• Sampled CPU usage 
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Chapter 4 

4. Trace Analysis Implementation 
 

In this chapter we present our data analysis software implementation. In the 
first part, we show the requirements of the infrastructure and the installation 
and configuration procedure. In the second part, we perform data formatting; 
the procedure includes removing unwanted variables and renaming the 
others. Once we finish this chapter, the data will be ready to be analyzed. 

 

4.1 Solution architecture: Installation and 
setup 

 

Our solution is very simple in terms of requirements both hardware and 
software. It is basically composed by thee big pieces of software: the data 
itself, R and the Operating System on which everything runs. 

 

                    
Figure 3 Basic Architecture Schema 

 

R is a free software environment for statistical computing and graphics. 

Besides R, the following libraries have been used in this project: 

R	and	R	Studio	

Libraries	and	functions	

Flexclust	 solaR	 hexbin	 kcca	 prcomp	 ggplot2	

Task	Resource	Usage	Table	
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• solaR  
• hexbin 
• flexclust 
• ggplot2 

 

SolaR library is used along with hexbin to plot a scattered matrix that 
represents the relationships of the variables. Flexclust is provides algorithms 
to perform clustering analysis. Ggplot2 is used to plot some different graphs. 

 

  Installation 4.1.1
 

We decided to use an standard operating system such as Ubuntu 16.04 LTS.  

On top of the operating system, we installed R and R studio. R requires 
about 1GB of RAM and a non-root with sudo privileges in the system.  

 

R 

The first step is to add the R repository to our Linux system. We need to 
create an entry in /etc/apt/sources.list with this information: 

deb https://cloud.r-project.org/bin/linux/ubuntu xernial/ 

After this step, we are ready to continue by updating the system so it 
refreshes the packages available at the recently added repository. From a 
terminal, write the following commands: 

sudo apt-get update 
sudo apt-get install r-base 

After running these commands, R will be installed in our system.  

 

Libraries 

In order to install the libraries that we mentioned before, these steps should 
be followed. 

From a terminal, launch R by typing ‘R’ and pressing ‘enter’. Once we are 
inside the R interpreter, we proceed to install the packages: 
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install.packages(c("solar","hexbin","flexclust","ggplot2")) 

The installation process would probably ask the user to select a mirror from 
which download required packages and their dependencies. If that is the 
case, mirror 1, "cloud mirror", it is a good choice.  

The system then downloads and installs all the packages that we specified 
along with the dependencies these might have.  

 

 

  Additional software 4.1.2
 

Another tool was used in this project: RStudio. This tool is not necessary for 
the final outcome. However, it made the process of analysis and plotting 
much more easier. If desired, RStudio can be downloaded from here 
(https://www.rstudio.com) and easily installed. 

 

4.2 Formatting the data 
 

Before we perform an analysis on the data, it must be normalized. As shown 
in the figure above, the data does not have a head that indicates us the name 
of every variable. Every time that any of the 500 tables is loaded into R, the 
software will provide standard names to those variables. For an easier work 
and better result, our implementation will rename the variables so that they 
match with the description provided by Google. 

 
 

                        
 

Figure 4 Sample of data from the Google data set 

 
As we can see in the figure above, R generated automatically names for the 
variables. However, these names mean nothing and they should be properly 
named. For instance, the first field in the picture is the Mean CPU field, but 
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instead we see X600000000. Because all of this, we use R to rename all the 
variables: 
 
# We import the data set first. In the final code this input is substituted for a 
piece of code that reads the input file as an argument passed to the script. 

Import data from csv file data <- read.csv("part-00000-of-
00500.csv") 
 

 
 
# We rename the variables 
 
Renaming columns colnames(data)[1] <- "StartTime" 
 colnames(data)[2] <- "EndTime" 
 colnames(data)[3] <- "JobId" 
 colnames(data)[4] <- "TaskIndex" 
 colnames(data)[5] <- "MachineId" 
 colnames(data)[6] <- "MeanCPU" 
 colnames(data)[7] <- "CanMemory" 
 colnames(data)[8] <- "AssignedMem" 
 colnames(data)[9]<-

"UnmappedCache" 
 colnames(data)[10] <- 

"TotPageCache" 
 colnames(data)[11] <- "MaxMem" 
 colnames(data)[12] <- "MeanIO" 
 colnames(data)[13] <- 

"MeanDiskSpace" 
 colnames(data)[14] <- "MaxCPU" 
 colnames(data)[15] <- "MaxIOTime" 
 colnames(data)[16] <- "CPI" 
 colnames(data)[17] <- "MAI" 
 colnames(data)[18] <- "Sample" 
 colnames(data)[19] <- "AggregType" 
 colnames(data)[20] <- "SampledCPU" 
 
 
 
Once we have renamed all the variables, the data is ready to be analyzed.  
 
The final result after the normalization and variable discarding looks like this 
figure: 
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Figure 5 Sample of the data set once normalized 

Chapter 5 
 
 

5. Data Analysis 
 

In the last chapter we saw the aspect of the Task Resource Usage table. 
Besides that, we renamed the variables in order to make it friendlier.  

In this chapter we perform a descriptive analysis of the different variables, 
then we discard several of them. Once we have the final set, we perform a 
Principal Component Analysis (PCA), a test and train procedure, a K-Means 
analysis and the same test and train procedure as before.  

We finish this chapter with our interpretation of the results of the analysis.  

 

5.1 Descriptive Analysis of the Variables 
 

In the previous chapter we talked about the variables of the data set and we 
renamed them according to the data provided by Google. We describe here 
the meaning of these variables. 

Variables 1 and 2: start and end time of the measurement period 

These two variables represent the timestamp for every record, which is in 
microseconds since 600 seconds before beginning of the trace period, and 
recorded as a 64-bit integer. Besides these numbers, there are two special 
time values as well: 

• A time of 0, that represents events that occurred before the beginning 
of the trace period. 
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• A time of 263-1 that represents events that occur after the end of the 
trace period. 

 

 

 

Variables 3, 4 and 5: Job ID, Task Index and Machine ID. 

Every job is assigned a unique 64-bit identifier. These IDs are never reused. 
Task index is composed by the job ID of his job and a 0-based index within 
the job. Regarding the Machine ID, it is unique as well but it may stay the 
same when a machine is removed from the cluster and returned.  

 

Variables 6 and 14: Mean and Maximum CPU 

Both variables are measured in units of CPU-core seconds per second. 
Besides that, one represents the mean CPU usage and the other one 
represents maximum CPU usage. 

 

Variables 7, 8, 9, 10 and 11: Memory related 

All these variables are memory related. We must take into account that 
memory isolation is achieved through Linux containers, so some kernel 
memory usage on behalf of the tasks is accounted to the task. Here we 
describe the different variables: 

• Canonical Memory: Memory usage measurement. Represents the 
number of user accessible pages.  

• Assigned Memory: Memory usage based on the memory actually 
assigned to the container but not necessarily used. 

• Unmapped Cache: represents Linux page cache not mapped into any 
user space process. 

• Total Page Cache: Total Linux page cache. 
• Maximum Memory: The maximum value of the canonical memory 

usage measurement observed over the measurement interval. This 
value might not be available for some tasks. 
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Variables 12, 13 and 15: Mean and Maximum Disk Input/Output time, 
Mean Disk Space 

Disk I/O time is measured using subsystem of the Linux containers. Usage 
measurements are the sum across all disks on the machine, in units of disk-
time seconds per second. Disk space represents runtime local disk capacity 
usage. Distributed storage is not accounted in this trace. 

 

 

Variables 16 and 17: CPI and MAI 

Cycles per Instruction and Memory Access per Instruction are collected from 
processor performance counters and all the machines do not collect it. 
Memory Access per Instruction measurements are based on last-level cache 
misses.  

 

Variables 18, 19 and 20: Sample, Aggregation Type and Sampled CPU 

Sample portion is the rate between the number of expected samples to the 
number of observed samples. Aggregation type defines the type of the 
aggregation depending on the Linux containers. Aggregation is related to the 
length of each measurement period. Sampled CPU represents the mean CPU 
usage during a random 1-second sample in the measurement period. This 
data can be used to build a stochastic model of CPU usage. 

 

Distribution 

Before continuing with the process, we analyzed the distribution of the 
variables.  

The distribution of the variables is positively skewed. This means that it has a 
small variability and most of the values are within a small range of values. As 
an example, we offer details about two of the most relevant variables in terms 
of distribution. 

 

MaxCPU 

Positively Skewed Distribution. Standard Deviation: 0.10. Mean: 0.07 
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The figure below shows the data distribution of this variable. 

 

 
Figure 6 Max CPU distribution 

 

Looking at the Standard Deviation, we see that the value is small, meaning 
that there is a small variability with respect to its mean. 

Besides that, if we look at the plot of the data, it seems obvious that most of 
the data is between '0' and '0.5', as we can see in the plot below. 
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Figure 7 Max CPU distribution of data 

MaxMem 

Positively Skewed Distribution. Standard Deviation: 0.03. Mean: 0.019 

 
Figure 8 Max Memory distribution 

As happened with the previous variable, standard deviation has a very low 
value, indicating that it exists a small variability with respect to the mean. 



Eneko Pérez Llamazares   32 

 
Figure 9 Max Memory distribution of data 

 

Again, if we look at the plot of the data, most of the data is between '0' and 
'0.2', as we can see in the plot above. 

Taking into account the distribution and the low variability of the different 
variables, we will be dealing with a lot of data that is very similar to each 
other. As a result, some of the plots will not be easy to interpret, making it 
difficult to draw a conclusion. 

 

Summary 

In the figure below we represent a summary of the variables previously 
explained.  

Based on this information, we will proceed with the variable discarding, since 
not all the information seemed to be relevant. 

 

Variable Related to 

1,2 Measurement Period. Time. 

3,4,5 ID: Job ID, Machine ID, Task ID 
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6,14 CPU 

7,8,9,10,11 Memory 

12,13,15 Disk: space, Input/Output time 

16,17 Instructions 

18,19,20 Additional information like Sample 
measurements and others. 

 

Figure 10 Variable comparison table 

 

 

 

5.2 Variables Discarding 
 

The aim of the Principal Component Analysis, PCA, is to reduce the 
dimension of the data set. That is, to discard variables by grouping them in 
different components that will represent the vast majority of the data. Before 
doing a PCA analysis, and due to the nature of the analysis, we have 
identified several variables that we will remove manually from the data set. 
These variables are: 1, 2, 3, 4, 5, 18, 19 and 20. We discarded these variables 
for not being appropriate or relevant for the PCA analysis.  

For instance, variables 1 and 2 would have been useful if they followed a 
standard time format that on which we could apply a time series analysis for 
prediction. However, that was not the case and we proceed to discard them. 

Variables 3, 4 and 5 are unique identifiers that could not provide additional 
value to the data set. 

Variables 18, 19 and 20 are samples and aggregation types that would not be 
useful for our analysis since we analyzing a wider and more detailed data. As 
a consequence, there is no need for such sample variables. 

At this moment, our data set is composed by 12 variables. In the next 
analysis we reduce the dimension of the data set to a small number of 
principal components and we explain the relationship between the 
components and the variable as well as the meaning of the results. 
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In our code, variable removal is accomplished by doing: 

data$name_of_the_variable <- NULL 

 

5.3 Principal Components Analysis (PCA) 
 

  Introduction 5.3.1
 

Principal components analysis is a statistical procedure that, given a set of 
possibly correlated variables, makes a conversion into linear uncorrelated 
variables called Principal Components.  

When we gather data from a big data set, usually we want to take as many 
variables as possible. However, taking too many variables will lead to a high 
number of correlation coefficients. For example, if our data set has 20 
variables, we should consider 20

2 = 180 possible correlation coefficients. 
The higher this number, the harder to visualize relationships between these 
variables. 

Another issue that PCA tries to ease is the fact that if we have many 
variables, they would probably be highly related between them. This could 
mean that these variables are measuring the same date under different point 
of view.  

In order to study the relationships between p correlated variables, the original 
data set can be converted into a new data set of uncorrelated variables 
called set of principal components.  

These new variables are lineal combinations of the previous ones and they 
are composed according to the importance in terms of total variability of the 
original data set. 

We pretend to get m < p variables that would be linear combinations of the p 
original variables, representing most of the variability of the data. 
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  Analysis 5.3.2
 

The table used for this study has about 2.5 million of rows. However, since 
working with such a large data set would be really difficult in terms of 
calculations and data management, we will work with a randomly selected 
sample of 100.000 registries.  

This is the command used in R to obtain this new data set: 

data2=data[sample(nrow(data), replace=F, size=100000),] 

Once we have our final data set, data should be normalized. More 
specifically, we substituted any missing value with 0.  

data2[is.na(data2)] <- 0 

To perform the PCA analysis over this data set, we use prcomp function of R. 
According to the R documentation, there are two possible ways of doing a 
PCA analysis in R. One of them is prcomp, and the other one is princomp. R 
help specifies that prcomp uses Singular Value Decomposition (SVD), and 
SVD has slightly better numerical accuracy, making prcomp the preferred 
function. 

pca <- prcomp(data2, scale=TRUE) 

Once the analysis finishes, a summary of the components can be displayed. 

summary(pca) 

 

 
Figure 11 Summary of the PCA analysis with 12 components 

 

As we can see in Proportion of Variance, the first four components represent 
the majority of the data. The first four components represent the 83.6 % of 
the total entries in the data set. 
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Below, we can see a bar plot of the importance of these components in the 
data set: 

 
Figure 12 Bar plot of the proportion of the variance 

 

This plot represents the importance of the components. It basically plots the 
Proportion of variance. As we mentioned above, this represents the weight of 
each component, or how much of the data represents every component. 

Now that we have the components, it is interesting to see the relationship 
between these components and the original variables of the data set.  

In the picture below we can clearly see that there are three groups of related 
variables. In the first place, we have CPI and MAI (both related to instructions 
of the code) directly related to Principal Component 1 (PC1). Another group 
of variables is the one composed by CPU and I/O time. These four variables 
are grouped around the same component PC2. The third group is the one 
composed by memory-related variables. Since they are located between the 
negative side of both PC1 and PC2, they have similar significance in both 
components, as we will see later. 
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Figure 13 Correlation between variables and PC1 and PC2  

As we saw in the previous plot, all memory related variables have a similar 
weight, being more close to PC2 than to PC1. However, other variables that 
are important in PC2 are not significant for PC1, such us those related to the 
CPU and storage. 

Another important aspect that we can see also in the new plot below is the 
relationship of instruction related variables with PC1. Analyzing this plot we 
realized that there is a third group (PC3) that is not represented in the 
previous biplot.  

As we can appreciate, CPI and MAI variables have an important weight on 
PC1. CPU and Input/Output-related variables have the same towards PC2. 
However, something that was missing before is shown here: a third group 
composed by cache, IO and instructions-related variables have a significant 
presence on PC3. These variables are: UnmappedCache, TopPageCache, 
MeanIO, MaxIOTime, CPI and MAI.  
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This relationship might mean that the cache used by these systems and jobs 
are associated with the storage devices. This also might mean that the cache 
is probably a software cache. According to Intel, higher CPI values mean that 
there is more latency in the system. Cache misses, Input/Output and/or other 
bottlenecks can cause this latency. According to this definition, our 
observation makes sense since this group of variables are all related to 
cache, Input/Output and CPI/MAI. According to the information on Figure 11, 
Principal Component 3 (PC3) represents 15% of the data. This means that 
15% of the analyzed data could suffer from cache misses and probably I/O 
bottlenecks.  

In the plots below, the darker grey represents PC1, the medium grey 
represents PC2 and the light grey represents PC3.  
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Figure 14 Bar plot of correlation between Principal Components and variables 
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Figure 15 Bar plot of correlation between Principal Components and variables 

 

We finish this analysis with an interesting plot that shows the relationship that 
a variable has with each other. In this plot, the red line represents the type of 
relationship between the variables. If the line is a perfect diagonal, the 
variables are linearly related. This could let us discard or group some of the 
variables, reducing even more the dimension of the data set. 
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Figure 16 Variables relationship in a matrix 

In this plot, we can avoid the upper left part of the matrix, since it represents 
the inverse of the lower right part of the matrix, which is where we painted 
the trend of each variable relationship. 

There are some variables that feature an almost linear similarity. For instance, 
Mean Memory and Assigned Memory or CPI towards MAI. In the case of CPI 
and MAI variables, their relationship with all the rest of the variables is mainly 
the same. If we were trying to reduce even more the dimension of the data 
set, we could remove one of this two variables and the final result should not 
be significantly changed.   
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5.4 K-Means 
 

Another tool to analyze data, such as the one we are working with, is K-
Means. K-Means clustering is a method of vector quantification that is 
popular in data mining. It stores k centroids that it uses to define clusters. A 
point is considered to be in a particular cluster if it is closer to that cluster's 
centroid than any other centroid.  

In this project we use K-Means along with a test and train procedure in order 
to get a predictable categorization of the data. 

 

  Introduction 5.4.1
 

In order to perform a K-means analysis with R, we decided to use the 
function 'kcca', from the library 'Flexclust'. This function perform a k-
centroids clustering on a data matrix. Within this function we chose the 
'family' parameter to be 'kmeans', which is based in an Euclidean distance 
and mean. Besides that, we used kmeans++ (kmeanspp) centroid 
initialization. 

We performed a K-Means analysis with a k=3. We choose this number 
because k=2 would be very simple and beyond 3 we get too many partitions 
of similar data. 

In the first place, we decided to use 94% of the data for training purposes 
and the rest 6% of the data for testing or guessing purposes. More 
specifically, we took the first 8.000 rows of the data set for the training part of 
the process. This represents 94% of the 8.500 rows selected. The rest, from 
row 8.001 to 8.500 represents our testing and learning data. The reason of 
choosing just 8.500 tasks to work with is that plotting 100.000 dots would be 
a waste of resources, it would take much more time to process and it would 
difficult reading and interpreting the resulting image. 

We used then a PCA analysis in order to use just two Principal Components 
instead of working with 12 variables, which would difficult the K-means 
analysis. 

In the figure below we can see how the data set is partitioned in 3 clusters. 
The numbers represent the centroids of every cluster, and the line width 
between them represents how much these clusters are related. For instance, 
clusters 1 and 3 have a stronger relationship than cluster 2 and 3. 
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Figure 17 Clusters partitioning using K-means 

 

 

As we mentioned above, since plotting 100.000 points would render useless 
due to the massive number of points in the image, we decided to plot the first 
8000 rows in form of points that looks like the image below: 
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Figure 18 Data representation along the clusters 

 

 

This plot represents the three different clusters or groups and the points 
related to them.  

Looking at Figure 18, we can observe that apparently cluster one (black) has 
a bigger density of points followed by cluster three (green). Cluster two (red) 
is the smallest one, meaning that it is the one with the fewest entries. 

 

  K-Means Test and Train 5.4.2
 

The idea behind testing and training is that, given a data, the algorithm learns 
from it and it is able to predict how the next data that we analyze would be 
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categorized. In our case, we provided 500 extra rows to see where they 
would fit.  

 

For this purpose, we used the function 'predict', a generic function for 
predictions from the results of various fitting models. In this case, we used 
'predict' with data from the cluster we created before and also with data from 
the cluster and the two principal components of the PCA mentioned before.  

 

The result is in the figure below: 

 

 
Figure 19 Training test data 
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As we can see in the figure, most of the new entries would be fit into the 
cluster on the right side. 

In the next section we will interpret these results more in detail. 

 

 

5.5 Interpretation 
 

The objective during the analysis was to use statistical methods for analyzing 
large data. In order to achieve a significant result, we reduced the dimension 
of the data set by using the PCA analysis. Then, we performed a clustering 
analysis in order to group observations. Finally, we performed a small 
prediction based on the clustering results.  

In the first place, we will come to a conclusion based on the PCA analysis. As 
we mentioned before, principal components represent 100% of the data set. 
However, even with a non-normal distribution data set like the one we are 
studying, a few components represent most of the variance of the data set. 
In our case, the first three components represented 72% of the data set. 
Since the data set was randomly composed from a bigger data set, we can 
consider that our analysis results are valid for most of this data set 
composed by 2.5 million of results. 

Based on the results obtained in section 5.3, we determined that all the data 
in the data set is represented by three groups of variables. As we explained 
before, this data is made of tasks, meaning that the tasks sent to the clusters 
in order to be executed made an extensive use of CPU, memory and 
input/output operations. We stated that CPU and input/output time were 
grouped under the same component PC2. However, this does not 
necessarily mean that they are related. In fact, a further inspection shows 
that there is no high processor usage during the input/output operations.  

 

The picture below shows this behavior: 
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Figure 20 Mean CPU usage across the different variables 

 

As we can see in the figure, a higher processor usage is present in those 
tasks related to the memory but not in those related to input/output 
operations. According to what we explained before about the reason behind 
the high CPI (cycles per instruction) and MAI (memory accesses per 
instruction) values, a normal or even low processor usage in these tasks is 
reasonable, since they probably have a bottleneck problem somewhere else. 
We do know though that the processor is not causing this issue.  

Another interesting aspect of the data is that principal component 3, PC3, 
showed this relationship too. The variables related to this component were 
those related to the cache, input/output time and CPI/MAI.  

To summarize, while using PCA to analyze data we should consider more 
than two components, since a different relationship could emerge. In our 
case, PC3 demonstrated that there was a third group of variables not related 
to intensive processor usage, despite the output of the biplot of PC1 and 
PC2 where CPU-related variables seemed to be aligned with input/output 
operations. 
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Regarding the K-means study, we decided to use three clusters to represent 
the data. This clustering methodology allowed us to group data and also to 
predict new tasks and catalog them in a group.  

We saw that most of the new tasks would be classified inside cluster number 
one. However, we were not aware of what different clusters meant. We 
created a new plot showing the relationship between the three clusters and 
the two first principal components of the PCA analysis. The result can be 
seen in this plot: 

 

 
Figure 21 Data representation along the clusters with predictive ellipses and components 

 

A further analysis of this relationship was necessary. According to the plot 
above, the data located in cluster 1 and cluster 3 should be related to 
principal component 1. After checking the data itself, we realized that this is 
indeed the relationship that we were seeing in the plot, as we can see in the 
figure below. 
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Figure 22 Data representing the Component 1 and 2 values with respect to Clusters 

 

This figure shows that positive and high numbers of Principal Component 1 
and Principal Component 2 are grouped into cluster one and cluster three 
respectively. As we saw before, Principal Component 1 groups CPI and MAI 
variables, while Principal Component 2 groups CPU and input/output 
variables.  

In section 5.4.2 we established that most of the new tasks would fit in cluster 
one. Since cluster one has a strong relationship with Principal Component 1, 
we could summarize the outcome of this analysis by stating that many of the 
new tasks sent to these clusters would have significant values of CPI and 
MAI.    

However, we should keep in mind what we mentioned in section 3.1. 
According to the documentation released by Google, they detected a 
possible error in CPI and MAI measurements, probably due to the system 
they use for capturing the data. 

 

Chapter 6 

6. Testing 
 

We have tested the solution with different traces from the same data set, 
always using the Task Resource Usage table. It is important to note that, 
since the data required manual manipulation, it will not work with a different 
table or different trace.  

In order to reproduce the tests, we can use Rscript, a command line tool 
included with R, to execute the framework: 

$ Rscript pca_google.R <input_file> 

where <input_file> should be the file provided by Google in comma 
separated values format. These files follow the following name format: 
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part-00000-of-00500.csv 

Due to the size of the file, it cannot be included in the final project 
submission. However, we uploaded this data set here: 

https://github.com/e9169/UOCTfg 

 

The whole data set in which this work has been based on, can be 
downloaded following the instructions in this document: 

https://drive.google.com/file/d/0B5g07T_gRDg9Z0lsSTEtTWtpOW8/view 

 

6.1 Example 
 

In this section we will run a complete example with a different data set.  This 
additional data set can also be downloaded from: 

https://github.com/e9169/UOCTfg 

After downloading and uncompressing the data set, we executed the 
platform: 

Rscript pca_google.R part-00001-of-00500.csv 

The framework that we have developed will normalize the data accordingly 
and will perform all the analysis as well as create the different plots that help 
to understand the analysis. After a few minutes, a 'figures' folder is created 
inside the folder from which the code is executed. Inside this folder we put all 
the plots mentioned before.  

The code might throw some 'null device' errors. This is because of the way 
we save 'png' images into the 'figures' folder. They can be discarded since 
they do not affect the performance or final result of the analysis. 

 

 

Chapter 7 
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7. Conclusion and Future Work 
 

In this final chapter we present the conclusions of the analysis. Besides that, 
we mention several topics that could be treated in the future. 

 

7.1 Conclusions 
 

With the help of the analysis of the data and the plots, we can render some 
interesting conclusions about the data type of the clusters used by Google. It 
will also help us to understand what is more relevant and, thus, propose a 
standard with fewer variables.  

Starting with the PCA analysis, we concluded in section 5.5 that three 
components represented 72% of our data. It is important to mention that all 
the analysis performed in this study was done against a randomly selected 
data of 100.000 tasks. The original file used for this selection has about 2.5 
million of tasks. This means that, if we do not use the whole data set of 2.5 
tasks, we will get different results every time we use this solution. Working 
with such a number of tasks can be tedious and slow in performance, and 
using just the 100.000 first tasks of the data set would not take into account 
changes in the rest of the data set. That is, the first 100.000 tasks will not 
represent the whole data set. However, there is a higher change that 100.000 
random tasks will. 

In section 5 we concluded that CPU and Input/output variables were grouped 
under the same Principal Component. However, we also realized that this 
does not mean they are directly related, as we demonstrated. It is important 
then not to use just a simple analysis of a few principal components.  

Besides that, we identified a potential problem with 15% of the tasks. This 
problem is related to possible bottlenecks due to input/output operations, 
cache misses or other problems. 

Regarding the K-means analysis, we classified data into three groups and 
performed a prediction of several new tasks in order to see where they would 
fit. The conclusion was that most of the new tasks would be classified or 
grouped under the cluster number one. We also realized that cluster one is 
directly related with higher values of Principal Component 1, meaning that 
most of the new tasks would have a high value of CPI (cycles per instruction) 
and MAI (memory accesses per instruction).  
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We also noticed that higher values of mean CPU usage are related to the 
memory variables, meaning that using more processor power involves using 
more memory, something that we can consider a normal and expected 
behavior.  

While trying to define a standard workload format that could integrate the 
most relevant data, we identified three areas with the PCA analysis. These 
three areas are: processor related variables, memory related variables and 
instructions related data. Another group of variables that should be part of 
this standard that we are trying to define is the one composed by time 
related variables, such as starting and ending of a job or task. However, this 
data was not part of the data set we analyzed, since the time variables 
provided were relative to a certain moment that was not properly specified.  

Time-series data could help us by predicting in a different way, allowing us to 
compare the current K-means based prediction with this other method. 

To summarize, we identified a potential problem with an important number of 
tasks, we grouped most of the data into three different principal components, 
we analyzed the relationships between these components and the variables 
of the data set, we grouped the data into clusters, analyzed the relationship 
between the clusters and principal components and we finally predicted the 
classification of new tasks by a train and test method on the k-means 
analysis.  

 

7.2 Future Work 
 

Since at the moment of the creation of this project we are not aware of an 
updated and commonly used format, this work could be highly improved in 
the future by implementing such a non-existent standard. This way, the 
analysis process could be fully automated.  

In the previous section we have proposed a standard format based on the 
results of the Google workload traces. However, an exhaustive and 
dedicated analysis should be applied to many traces, since different traces 
represent different needs in terms of computing resources. Because of this, 
we can consider this work as a first and necessary step before we can 
consider a standard.  

Besides that, additional analysis methods could be used, for example 
topological data analysis (TDA). TDA provides a framework to analyze high-
dimensional, incomplete and noisy data sets. It provides dimensionality 
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reduction and robustness. The motivation of this kind of analysis is to study 
the shape of data. The main tool of TDA is persistent homology. These 
algorithms look for topological invariants across various scales of a 
topological manifold.  

Another aspect that can be extended is prediction. As we explained before, a 
brief k-means based prediction is achieved with this framework. However, we 
could expect a more detailed approach by using decision trees, also known 
as regression trees, as a predictive model. This model is used in statistics, 
data mining and machine learning. The algorithm finds the variable that does 
the best job of separating the data into two groups. The operation is 
repeated with the other variables, resulting in a tree graph where each split 
represents a decision. The biggest advantage of this model is that it is really 
intuitive and can be easily understood by people with no or little experience. 

We would like to mention an interesting library for prediction based on time-
series that could be applied to a data set similar to the one this project is 
based on. The library is called Prophet, a Facebook open-source library for 
forecasting. As we mentioned before, due to the nature of the time-related 
variables of the data set of this project, we could not use this library for 
prediction, but it seems to be interesting and we should consider its 
application. 

Basically, improving three major areas could extend this work: automation, 
wider data analysis and prediction. 
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9. Annex A 
 

In this chapter we provide the source code of the framework in R language. 
Besides that, we provide a public repository for the data sets related to this 
project.  

Data Sets 

https://github.com/e9169/UOCTfg 

 

R code 

 
# Installation requirements 
 
require(solaR) 
require(hexbin) 
require(ggplot2) 
 
 
if (file.exists("figures")){ 
  message ("Figures folder already exists") 
} else { 
  dir.create("figures") 
} 
 
# Read data (csv file) 
args <- commandArgs(TRUE) 
data <- read.csv(args[1]) 
 
# Removing unwanted columns manually 
data <- data[ -c(1:5)] 
data <- data[ -c(13:15)] 
 
 
# Renaming column names 
colnames(data)[1] <- "MeanCPU" 
colnames(data)[2] <- "CanMemory" 
colnames(data)[3] <- "AssignedMem" 
colnames(data)[4] <- "UnmappedCache" 
colnames(data)[5] <- "TotPageCache" 
colnames(data)[6] <- "MaxMem" 
colnames(data)[7] <- "MeanIO" 
colnames(data)[8] <- "MeanDiskSpace" 
colnames(data)[9] <- "MaxCPU" 
colnames(data)[10] <- "MaxIOTime" 
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colnames(data)[11] <- "CPI" 
colnames(data)[12] <- "MAI" 
 
 
# I generate a random sample of the original dataset of 
2.5 million rows. 
data2=data[sample(nrow(data), replace=F, size=100000),] 
 
# I normalyze the data so there is no NA. I replace it 
with 0 so that everything is numerical. 
data2[is.na(data2)] <- 0 
 
# PCA Analysis 
pca <- prcomp(data2, scale=TRUE) 
 
# With covariance matrix 
(pca.cov <- prcomp(data2)) 
diag(1/sqrt(diag(cov(data2)))) %*% pca.cov$rotation %*% 
diag(pca.cov$sdev) 
(corvar2 <- pca.cov$rotation %*% diag(pca.cov$sdev)) 
 
# Summary 
summary(pca) 
 
# Correlation between variables and components 
(corvar <- pca$rotation %*% diag(pca$sdev)) 
 
# Representation 
# Bar plot of the weight of each component 
 
png(filename="figures/barplot1.png", width = 1024, height 
= 768) 
barplot(summary(pca)$importance[2,]) 
dev.off() 
 
# Correlation between variables and components PC1 and 
PC2 
png(filename="figures/correlation.png", width = 1000, 
height = 1000) 
plot(-1:1, -1:1, type='n', xlab='PC1', ylab='PC2', xlim = 
c(-1,1)) 
abline(h=0, v=0, lty=2, col=8) 
arrows(0, 0, corvar[,1], corvar[,2], length=.1) 
text(corvar[,1], corvar[,2], colnames(data2), pos=4, 
offset=.6, col=2, font=2) 
dev.off() 
 
# Correlation between variables and components PC1, PC2 
and PC3 in a bar plot 
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png(filename="figures/barplot2.png", width = 1920, height 
= 1080) 
barplot(t(corvar[,1:3]),beside=TRUE, ylim=c(-1,1)) 
legend("topleft",legend = c("PC1","PC2","PC3"), fill = 
c("black","darkgray","lightgray")) 
dev.off() 
 
 
# Variables relationship. Requires Hexbin and solaR 
png(filename="figures/matrix.png", width = 1400, height = 
1400) 
splom(data2[1:15000,1:12], 
      panel=panel.hexbinplot, 
      diag.panel = function(x, ...){ 
        yrng <- current.panel.limits()$ylim 
        d <- density(x, na.rm=TRUE) 
        d$y <- with(d, yrng[1] + 0.95 * diff(yrng) * y / 
max(y) ) 
        panel.lines(d) 
        diag.panel.splom(x, ...) 
      }, 
      lower.panel = function(x, y, ...){ 
        panel.hexbinplot(x, y, ...) 
        panel.loess(x, y, ..., col = 'red') 
      }, 
      pscale=0, varname.cex=1.5 
) 
dev.off() 
 
# Training and Test. K-Means. 
library(flexclust) 
 
Train <- data2[1:8000,] 
Test <- data2[8001:8500,] 
 
pca.train <- princomp(Train,cor=TRUE) 
pca3.train <- prcomp(Train, scale=TRUE) 
png(filename="figures/pca.train.png", width = 1024, 
height = 768) 
plot(pca.train) 
dev.off() 
 
pc1.train <- pca.train$scores[,1] 
pc2.train <- pca.train$scores[,2] 
 
X.train <- cbind(pc1.train,pc2.train)  
 
pca.test <- predict(pca.train, newdata=Test) 
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pc.comp.test <- pca.test[,1:2] 
pc1.test <- pc.comp.test[,1] 
pc2.test <- pc.comp.test[,2] 
 
X.test <- cbind(pc1.test,pc2.test) 
 
cl <- kcca(X.train,k=3,kccaFamily("kmeans"),control = 
list(initcent="kmeanspp")) 
 
pred_train <- predict(cl) 
pred_test <- predict(cl,newdata=X.test) 
 
pdf(file="figures/k-means.pdf") 
image(cl,fastcol=FALSE,graph=TRUE) 
 
image(cl,fastcol=FALSE,graph=TRUE) 
points(X.train,col=pred_train,cex=.3) 
 
image(cl,fastcol=FALSE,graph=TRUE) 
points(X.train,col=pred_train,cex=.3) 
points(X.test,col=pred_test,pch=22,bg="orange") 
dev.off() 
 
# Additonal K-Means plot with PCA components 
scores4<-pca.train$scores 
ggdata2<-data.frame(scores4, Cluster=cl@cluster) 
png(filename="figures/kmeans_cluster_pca.png", width = 
1024, height = 768) 
ggplot(ggdata2) + geom_point(aes(x=Comp.1, y=Comp.2, 
color=factor(Cluster)), size=5, shape=20) + 
stat_ellipse(aes(x=Comp.1,y=Comp.2,fill=factor(Cluster)), 
geom = "polygon", level=0.95, alpha=0.4) + 
guides(color=guide_legend("Cluster"), 
fill=guide_legend("Cluster")) 
dev.off() 
 


