

Citation for published version

Clarisó, R., González, C.A. & Cabot, J. (2017). Smart Bound Selection for
the Verification of UML/OCL Class Diagrams. IEEE Transactions on
Software Engineering.

DOI
https://doi.org/10.1109/TSE.2017.2777830

Document Version

This is the Submitted Manuscript version.
The version in the Universitat Oberta de Catalunya institutional repository,
O2 may differ from the final published version.

Copyright and Reuse

This manuscript version is made available under the terms
of the Creative Commons Attribution Non Commercial No Derivatives
licence (CC-BY-NC-ND)
http://creativecommons.org/licenses/by-nc-nd/3.0/es/, which permits
others to download it and share it with others as long as they credit you,
but they can’t change it in any way or use them commercially.

Enquiries

If you believe this document infringes copyright, please contact the
Research Team at: repositori@uoc.edu

Universitat Oberta de Catalunya Research archive

https://doi.org/10.1109/TSE.2017.2777830
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 1

Smart Bound Selection for the
Verification of UML/OCL Class Diagrams

Robert Clarisó, Carlos A. González and Jordi Cabot

Abstract—Correctness of UML class diagrams annotated with OCL constraints can be checked using bounded verification techniques,
e.g., SAT or constraint programming (CP) solvers. Bounded verification detects faults efficiently but, on the other hand, the absence of
faults does not guarantee a correct behavior outside the bounded domain. Hence, choosing suitable bounds is a non-trivial process as
there is a trade-off between the verification time (faster for smaller domains) and the confidence in the result (better for larger domains).
Unfortunately, bounded verification tools provide little support in the bound selection process.
In this paper, we present a technique that can be used to (i) automatically infer verification bounds whenever possible, (ii) tighten a set
of bounds proposed by the user and (iii) guide the user in the bound selection process. This approach may increase the usability of
UML/OCL bounded verification tools and improve the efficiency of the verification process.

Index Terms—Formal Verification, UML, Class Diagram, OCL, Constraint Propagation, SAT

F

1 INTRODUCTION

ENSURING software correctness is a challenging problem
in software engineering. Techniques such as testing or

formal verification can be used to identify and diagnose soft-
ware defects. These analyses can be performed at a low level
of abstraction, i.e., to detect faults in an implementation, but
they can also be used earlier in the development process
to inspect software models, facilitating error detection and
correction.

There are several available notations for modeling soft-
ware systems, such as UML [1] or Alloy [2]. Among them,
UML class diagrams are arguably the most commonly used
models for describing the specification of a software sys-
tem [3]. In order to increase their precision and expres-
siveness, class diagrams can be annotated with constraints
written in the Object Constraint Language (OCL). Check-
ing the correctness of a UML/OCL model is a complex
problem and, in general, undecidable [4]. This has forced
existing tools for UML/OCL analysis [5] to accept a series
of trade-offs: reducing the expressiveness of the modeling
language [6]; performing an incomplete search [7]; requiring
user guidance to conduct the verification [8]; or, finally,
limiting the search space [9].

The latter strategy, called bounded verification, allows
an efficient and automatic analysis of expressive models.
Hence, it is popular among existing tools [9], [10], [11], [12],
[13], [14]. Nevertheless, bounded verification only proves
the presence or absence of faults within the bounded search
space, with no guarantees about what happens beyond
these bounds. Therefore, bounded verification is useful in

• R. Clarisó is with the IT, Multimedia and Telecommunication Department,
Universitat Oberta de Catalunya, Barcelona, Spain.
E-mail: rclariso@uoc.edu

• Carlos A. González is with the SnT Centre for Security, Reliability and
Trust, University of Luxembourg, Luxembourg.
E-mail: carlos.gonzalez@uni.lu

• J. Cabot is with ICREA, Pg. Lluı́s Companys 23, 08010 Barcelona, Spain.
E-mail: jordi.cabot@icrea.cat

Manuscript received Month DD, YYYY; revised Month DD, YYYY.

two scenarios: (a) when a fault is found within the search
space; or (b) when no fault is found but the search space
is large enough to provide sufficient confidence about the
model correctness to practitioners. In both scenarios, the
choice of suitable verification bounds is critical. Unfortu-
nately, setting search space boundaries is a limiting factor,
since current tools provide little support, either setting in-
adequate default values or forcing users to manually define
these bounds for each model element, which is impractical
for large models.

Using an unnecessarily large search space makes
bounded verification less efficient. For instance, if a model
is analyzed with a SAT solver, large domains require more
boolean variables for the encoding and produce larger
formulas. Still, selecting optimal boundaries for a search
problem, i.e., as narrow as possible, is also a computationally
complex problem [15]. Thus, currently users may only rely
on heuristics such as the small scope hypothesis [16], [17] (use
small domains assuming that they will suffice to detect most
faults) or incremental scoping (invoke the solver repeatedly
using progressively larger domains until a fault is detected).

In this paper, we present a technique that can assist
users of any UML/OCL bounded verification tool to effec-
tively set the boundaries of the search space, regardless of
the specific solver employed by such tool. This approach
starts from a set of initial bounds, which may be infinite.
Then, the constraints in the model are abstracted as size
constraints [18]: rather than defining the set of valid instances
of the model, they restrict the size (min and max values) and
population (number of objects) of those instances. In this
system of size constraints, we use a technique called interval
constraint propagation to discard unproductive values from
domain bounds. This process is efficient because (a) abstrac-
tion makes the system of constraints more amenable to anal-
ysis than the original verification problem and (b) pruning
values does not require solving the system of constraints.
Lastly, we provide the tightened bounds to the UML/OCL
verification tool, which has a better performance on the

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 2

AbstractMachine
ready: Boolean

Uses

Cutter Grinder

Part
serial: Integer

0..1
device

pieces

4

context Part inv UniqueSerials :
Part.allInstances()→ isUnique(p | p.serial)

context AbstractMachine inv MachineAvailability :
Cutter.allInstances()→ exists(c | c.ready) and
Grinder.allInstances()→ exists(g | g.ready)

Fig. 1. UML/OCL class diagram used as example

reduced bounds. We report our experiments using the USE
model validator plug-in [13] as the underlying bounded
verification tool, and describe the performance gains.
Example 1. Let us consider the class diagram from Figure 1

describing the relationship between machines and parts.
Graphical constraints such as association end multiplici-
ties and inheritance hierarchies define constraints on the
valid populations for classes and associations, e.g., there
are four parts for each machine.
OCL invariants define additional restrictions on these
populations and the domains of attributes. For instance,
the invariants in the example require serial numbers to
be unique (UniqueSerial) and at least one machine
of each type to be ready (MachineAvailability).
From the point of view of class populations, invari-
ant UniqueSerial implicitly sets an upper bound on
the population of class Part: the number of values in
the domain of attribute serial. As another example,
MachineAvailability implicitly sets a lower bound
of 1 for the population of class Cutter and Grinder.
These constraints can be used to automatically in-
fer bounds without any user intervention, e.g., for
the MachineAvailability invariant this results in a
lower bound of 1 for classes Cutter and Grinder, of 8
for class Part and 8 for association Uses. However, this
inference is most effective when used to refine partial
bound information provided by a designer. For instance,
just by assuming a limit of 10 serial numbers, we can
infer that there is exactly 1 Cutter and 1 Grinder,
between 8 and 10 parts and at most 8 links among
machines and parts.

Even if the constraints in Example 1 seem trivial in hind-
sight, a UML/OCL model may contain many constraints
like these that will typically interact, making it impossible
for users to consider all of them when choosing a proper set
of verification bounds. Moreover, trivial approaches such
as using a default bound for all model elements make
verification inefficient. Hence, providing automatic support
to guide bound selection can be helpful.

There are three usage scenarios for bound selec-
tion/tightening, depending on the information provided
by the user. With no user inputs (i.e., all bounds are as-
sumed to be infinite), the method operates as an automatic
“one-off” pre-processing step before the verification takes
place, attempting to infer suitable verification bounds from

the constraints in the model. If the user provides some
candidate verification bounds, the method automatically
improves those bounds, thus reducing the search space and
making verification more efficient. It may also be able to
detect that the initial bounds are too tight without needing
to start the verification, i.e., by returning empty bounds as
the result of bound tightening. Finally, the method could
operate interactively, with users providing partial bounds
and using the method to tighten them as much information
as possible and suggest what to bound next.

This manuscript is an extended version of a short paper
published in the 13th International Conference on Software
Engineering and Formal Methods (SEFM’2015) [19]. The
contributions of this extended version are: (1) a comprehen-
sive description of bound propagation, its computational
complexity and limitations; (2) a more complete description
of the bound tightening process; (3) additional experimental
results; (4) a more extensive description of the state-of-the-
art and (5) a discussion of the application scenarios of this
method.

The rest of the paper is organized as follows: Section 2
gives an overview of the method. Section 3 gets into detail
on how constraint propagation works and what information
is inferred from the different modeling constructs. Section 4
presents the experimental results and the performance gains
obtained. Section 5 discusses several verification problems
where this approach can be applied. Section 6 covers the
related work. Finally, conclusions and future work are pre-
sented in Section 7.

2 OVERVIEW

The designer of UML/OCL class diagrams has several ex-
pectations about its applicability and quality [9], [20]. For
instance, it should be possible to create an instance that
satisfies all the constraints in the model simultaneously.
Also, it is desirable to be aware of redundancies among
constraints [21], [22], [23]. These correctness properties can
be formally checked using bounded verification.

Bounded verification tools explore a finite search space
looking for an instance of the model that acts as a witness
of the correctness property under analysis (see Fig. 2, non-
dashed elements). For existential properties, the witness
is an example (proving the property) while for universal
properties this witness is a counterexample (disproving it).
If no witness is found, we cannot conclude anything about
the property: a witness may lie outside this search space.

Current approaches work by directly translating the
model into a finite domain constraint formalism where
efficient off-the-shelf solvers are available, e.g., SAT or con-
straint satisfaction problems (CSP). However, they either
force default bounds to the search space or let the user in
charge of manually deciding which bounds to use. This
is by no means an easy task since it requires to specify
upper and lower bounds for the population of each class
and association in the model, as well as finite domains for
each attribute. When facing large models, this translates
into setting boundary values for a set of modeling elements
ranging above the hundreds, a tedious and potentially error
prone activity.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 3

Verification Problem

OCL
invariants

UML Class
Diagram

Correctness
property

context A
inv: . . .
context B
inv: ... ?

Finite bounds

[2,29] [0,5] . . . [14,16] [-20,50]

Bound
tightening

tool

Interval
Constraint
Propagation

Bounded
verification

tool

CP solver

. . .

SAT solver

Relational solver

Yes + Witness

No?
(No witness
within these
bounds)

[3,7] [1,5] . . . [15,15] [2, 14]

Tighter bounds

A

B C

Fig. 2. Typical flow with a bounded verification tool and the role of bound tightening

In this paper, we propose an alternative approach that
refines a set of bounds (either from scratch or by tightening
an initial set of bounds proposed by the designer) and
then relays these improved bounds to the solver (see the
dashed elements in Fig. 2). The computation of the bounds
relies on interval constraint propagation techniques. As we
explain in the following Section, our approach collects all
implicit and explicit constraints from the UML/OCL model
and formalizes them as a CSP over a set of variables repre-
senting the search space boundaries. As we will see in the
experimental results, tightening bounds does not add a lot
of overhead to the whole verification process and has the
potential to drastically reduce the time needed to verify the
model. This process is not optimal but it is safe, i.e., it may
fail to compute the tightest bounds, but it will preserve any
witnesses within the original bounds.

3 BOUND TIGHTENING PROCEDURE

This section describes the derivation of a CSP from the
initial UML/OCL model. The analysis of this CSP returns
an appropriate set of bounds to be used in the subsequent
verification of that model. These improved bounds can be
used by any UML/OCL bounded verification tool indepen-
dently of the approach used by its underlying solver (SAT,
constraint programming, . . .), as it is shown in Figure 2.

We first review some basic concepts about CSPs and
the constraint propagation capabilities of constraint solvers
(Sec. 3.1). Then, we describe the structure of the CSP
(Sec. 3.2) and how the UML and OCL constraints in the
input model are formalized (Sec. 3.3). Finally, we discuss
how the generated constraints are used to tighten bounds
(Sec. 3.4).

3.1 CSPs and Propagation

A Constraint Satisfaction Problem (CSP) is characterized by
three elements:

• A finite set of variables V .
• The set of domains D of potential values for each

variable.
• The set of constraints C over the variables in V .

Solving a CSP consists in choosing, for each variable, one
value from its domain such that all constraints are satisfied.
Example 2. Let us consider a CSP with three variables X , Y

and Z , each taking values in the integer interval [−2, 10],
and the constraints: X = Y + Z, Y = max(X,Z) and
X + 2Z ≤ 2. Two potential solutions to this CSP are
X = 0, Y = 0, Z = 0 and X = −2, Y = −1, Z = −1.

A typical approach for computing a satisfying assign-
ment consists in searching it by assigning values to variables
one at a time in a certain order and backtracking when a par-
tial assignment cannot be extended any further. This search
process is aided by early evaluation (i.e., detecting when a
partial assignment is unfeasible and can be discarded) and
propagation (i.e., removing values from the domain of unas-
signed variables using information about the constraints
and the values of previously assigned variables).

While solving a CSP is computationally expensive, prop-
agation is much faster: practical implementations attempt to
tighten domains in a pragmatic cost-effective way, instead
of computing the optimal bounds with potentially slow
computations. As the goal of this paper is tightening do-
main bounds rather than finding a specific instance within
those bounds, propagation suits our needs better than CSP-
solving. Thus, the CSP we define from our UML/OCL
model will only be used to apply propagation. To this end,
we will use the hybrid integer-real Interval arithmetic Con-
straint solver (IC) from the ECLiPSe Constraint Programming
System [24]. The IC solver can handle both integral and
real variables and it provides powerful interval constraint
propagation capabilities.
Example 3. Given the CSP from Example 2, the propagation

implemented by the IC solver can tighten the original

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 4

bounds to the following: X ∈ [−2, 6], Y ∈ [−2, 6], Z ∈
[−2, 2]. Notice that propagation reduces the search space
but in general it is unable to discard all unfeasible value
assignments. For instance, in this example it cannot
detect that there is no solution with Z = 2.

During the search process, it is desirable to detect the
unfeasibility of partial assignments as early as possible. This
helps to avoid backtracking so, unless the computational
overhead is too high, it will reduce the total execution
time of the search. To this end, one potential strategy is to
consider a subset of the entire problem and check the feasi-
bility of the partial assignment in this subset. This concept
is called local consistency, with different levels of precision
depending on how the subset of interest is selected, e.g., node
consistency, arc consistency or path consistency, among others.

Local consistency is defined in an abstract way in terms
of a constraint network: an undirected graph with one node
per variable and one node per constraint, with edges be-
tween a constraint and the variables that participate in it.
In this network, the following consistency notions can be
defined:

• Node consistency: Let C(X) be a unary constraint
C over a variable X with domain D. Then, node X
is node consistent if, for each value d ∈ D, C(d) is
satisfied. The constraint network is node consistent if
all nodes are node consistent.

• Arc consistency: Let C(X,Y) be a binary constraint
C over variables X and Y with domains Dx and
Dy respectively. The arc defined by variable X and
constraint C is arc consistent if, for each value x ∈
Dx, there is a value in y ∈ Dy such that C(x, y) is
satisfied. The constraint network is arc consistent if
all arcs are arc consistent.

• Path consistency: Let X , Y and Z be three variables
with domains Dx, Dy and Dz and let Cxy , Cxz and
Cyz be the binary constraints among them. The pair
〈X,Y 〉 is path consistent with respect to Z if, for
any pair of values dx ∈ Dx and dy ∈ Dy such that
Cxy(dx, dy) is satisfied, then there is a value dz ∈ Dz

such that both Cxz(dx, dz) and Cyz(dy, dz) are satis-
fied. The constraint network is path consistent if all
triples of variables are path consistent.

Notice that achieving local consistency in a CSP with
non-empty domains is necessary for having a satisfying
assignment, but in the general case it is not sufficient: a con-
straint problem may be locally consistent but still unfeasible.
Example 4. Figure 3(a) shows an example of a constraint

satisfaction problem with 3 integer variables (X , Y and
Z) and 5 constraints (1 unary and 4 binary). This CSP can
be represented as the constraint network in Figure 3(b)
in order to study its local consistency. Considering the
domains proposed in Figure 3(c), we can see that:

• The CSP is not node consistent with the domains α:
values [−10, 0] in the domain of X do not satisfy the
unary constraint (X ≥ 1).

• Using the domains β, the CSP is now node consis-
tent, but not arc consistent. For instance, consider the
arc defined by variable Z and the binary constraint
(2X > Z2). Given that X is smaller or equal to

X + Y = 10

X ≥ 1

2X > Z2

Y · Z ≤ 8

Y ≤ Z

(a) Constraint system

X

X + Y = 10

Y

X ≥ 1

2X > Z2

Y · Z ≤ 8 Y ≤ Z

Z

(b) Constraint network

Domains Consistent?
X Y Z Node Arc Path

α [-10,10] [-10,10] [-10,10] No No No
β [1,10] [-10,10] [-10,10] Yes No No
γ [6,10] [0,4] [0,4] Yes Yes No
δ [9,9] [1,1] [1,1] Yes Yes Yes

(c) Consistency analysis of sample domains α, β, γ and δ

Domain Constraint Propagation
1 X :[−10, 10] X ≥ 1 X :[−10, 10]→[1, 10]
2 X :[1, 10] 2X > Z2 Z :[−10, 10]→[−4, 4]
3 Z:[−4, 4] Y ≤ Z Y :[−10, 10]→[−10, 4]
4 Y :[−4, 4] X + Y = 10 X : [1, 10]→[6,10]
5 X :[6, 10] X + Y = 10 Y : [−10, 4]→[0,4]
6 Y :[0, 4] Y ≤ Z Z : [−4, 4]→[0,4]

(d) Propagation steps from domains α to arc-consistent domains γ

Fig. 3. Example of local consistency in a CSP.

10, values for Z outside [-4,4] do not satisfy the
constraint.

• The domains γ make the CSP arc consistent, but not
path consistent: considering Z = 4 and Y = 4, there
is no value for X that can simultaneously satisfy
(X + Y = 10) and (2X > Z2). The former requires
X = 6 while the latter requires X > 8.

• Finally, the domains δ make the CSP path consistent.
In fact, they encode a potential solution to the CSP.

As stated before, constraint propagation is the process
of checking and enforcing local consistency in a CSP. The
computational effort required by propagation depends on
the level of consistency being enforced. For instance, Fig-
ure 3(d) describes how propagation can convert the initial
domains α into the arc-consistent domains γ. In this case, 6
propagation steps are required.

The IC library uses two different notions of local consis-
tency depending on the relational operator used in the con-
straints. This design decision aims to achieve a reasonable
trade-off between the richness of the supported constraints
and the efficiency of constraint propagation. For inequal-
ity constraints, arc consistency is enforced. Arc consistency
requires that, for each binary constraint, each value in the
domain of the first variable has a corresponding value in
the domain of the second one that satisfies the constraint.
However, for equality constraints a weaker notion called
bound consistency: only the extreme values of the domain (the

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 5

minimum and the maximum of the interval) are checked for
consistency. This means that bound consistency is unable to
propagate holes, e.g., for X = Y the domains X : [0, 4] and
Y : {0, 2, 4} would be bound consistent, ignoring the fact
that X cannot take the values 1 and 3.

The algorithms employed to enforce arc consistency in
ECLiPSe are variants of two well-known algorithms, AC-3
and AC-5 [25]. AC-3 has a worst-case complexity of O(ed3),
where e is the number of binary constraints and d is the size
of the largest domain. For special cases it can operate faster,
i.e., if the constraint graph is a tree its worst-case complexity
drops to O(ed). Meanwhile, AC-5 is a generic algorithm,
that can achieve a worst-case bound of O(ed) for restricted
constraint types.

3.2 Structure of the CSP

In order to apply CSP techniques, the first step is character-
izing the problem in terms of a set of variables, domains and
constraints. In our case, the problem is establishing bounds
for the verification of UML/OCL models. Hence, instead
of a CSP whose solutions are witnesses to the verification
problem, we will define a CSP that constrains the size of
these witnesses. A suitable CSP formalization is described
in Table 1:

• The variables of this CSP will not characterize a com-
plete instance, but rather the search space bound-
aries: how many objects and links and which at-
tribute values should be considered when instanti-
ating the model. Additional auxiliary variables are
used for convenience to encode complex constraints
associated with rich OCL expressions.

• The domains of this CSP will be the output of our
approach, as we are addressing a bound tightening
problem. The analysis may start without providing
any information about the domains, e.g., from 0 to
∞ objects per class. In this way, we can attempt
to automatically infer finite bounds for each of the
variables in our problem. As this is usually not pos-
sible, the designer may also define the set of bounds
that he intended to use and let the constraint solver
propagate the restrictions in order to tighten these
bounds.

• The constraints of the CSP include graphical restric-
tions from the UML class diagram and the textual
OCL invariants. In the case of OCL, the constraints in
the CSP are not a direct translation of the invariants
(e.g., as done in [9]), but rather an abstraction of
the invariants that only considers size information.
Moreover, the correctness property under analysis is
another constraint of the CSP.

Example 5. Let us revisit the UML/OCL model from Exam-
ple 1. The model has four classes (AbstractMachine,
Cutter, Grinder and Part), one association (Uses)
and one attribute (serial), so the CSP will have six
variables. The domain of each class (association) variable
will be [0,N], where N is the maximum number of
objects (links) allowed for the class (association) and its
subclasses. As abstract classes cannot be instantiated, N
is simply an upper bound for the number of objects in all

of its subclasses. For the attribute variable, the domain
is [−M,M] where M is the minimum/maximum value
for this attribute.
Using these variables, the graphical elements in the
model define the following constraints:

AbstractMachine = Cutter+ Grinder (1)
Uses ≤ Part ∗ AbstractMachine (2)
Uses = 4 ∗ AbstractMachine (3)
Uses ≤ Part (4)

where (1) is the inheritance hierarchy, (2) is the defini-
tion of association “Uses”, (3) is the multiplicity 4 of
association end “pieces” and (4) is the multiplicity 0..1
of association end “device”.

3.3 OCL Constraint analysis

There are several proposals in the literature for formalizing
UML class diagrams as a CSP [4], [9], [26]. Regarding
OCL, CSPs have been used for verification [9], but that
formalization is unsuitable for bound tightening. In this
section, we detail how OCL invariants can be encoded
as CSP constraints in order to perform bound tightening.
Notice that this analysis can also be applied to any graphical
constraint in the UML model since, as stated in [27], they can
also be expressed as a combination of OCL expressions.

Our method builds upon the work of Yu et al. [18], which
addresses the verification of size properties of collection
types in OCL. Abstracting away the contents of collections
but preserving the constraints on their sizes, it computes
an abstract system of constraints that is sufficient to detect
size-related errors such as buffer overflows. Rather than
solving this abstract system of constraints, our proposal uses
it to tighten bounds. As a result, we are able to accelerate
the verification of complex properties that may require
knowledge beyond the size of collections. Furthermore, the
abstraction process is extended to cover more operations in-
volving other data types (e.g., isUnique), thus supporting
the majority of operations in OCL.

Table 2 summarizes how OCL invariants are abstracted
into a size constraint. This table only considers the subset
of the OCL language required to analyze the invariants
from Example 1. Due to space constraints, the complete
analysis of the remaining operations available in the OCL
specification can be found in Appendix A.

The first column of this Table represents the OCL ex-
pression e being abstracted. The second column identifies
the different combinations of data types that can occur in
the context of e, where t(e) denotes the type of the value
resulting from the evaluation of e (r, i, n, b, s, st, os, bg
and sq are shorthand notations for the OCL real, integer,
unlimited natural, boolean, string, set, ordered set, bag
and sequence types, respectively). Finally, the third column
shows the size constraint e.c derived from the analysis of e.
This size constraint is expressed with the help of an auxiliary
variable e.v, which is of integer type when dealing with op-
erations over collections or strings, and shares the operation
data type otherwise. When e.c holds, e.v represents the size
of the collection or the length of the string, for the case of

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 6

TABLE 1
Definition of the CSP used to tighten verification bounds

Vars (V) Domains (D) Constraints (C)

A variable cl for each
class

Potential number of objects
in class cl, either [0,∞) or a
user-provided domain

– UML: generalizations, association end
multiplicities, class multiplicities

– OCL: all invariants
– Correctness property under analysis,

e.g., no redundant invariants

A variable as for each
association

Potential number of links in
association as, either [0,∞)
or a user-provided domain

– UML: association end multiplicities
– OCL: invariants containing navigations

through association as

A variable at for each
attribute

Potential values of attribute
at, depending on its data
type, e.g., [0, 1] for boolean,
(−∞,∞) for integers or a
user-provided domain

– OCL: invariants accessing the value of
attribute at

An auxiliary variable
auxe for each subex-
pression e in each OCL
constraint

Potential values of the ex-
pression e depending on its
data type. Non-basic types
are abstracted, e.g., collec-
tions are abstracted as inte-
gers encoding their size.

– A constraint establishing the value of e
in terms of the values of its subexpres-
sions.

– Correctness property under analysis,
e.g., the root expression of each invariant
must evaluate to 1 (all invariants must
be true)

TABLE 2
Analysis of OCL operations from Example 1

OCL Expression Type Size Constraint
e t(e) : [t(e1)][t(c1)] e.c

1 e1.attr {r,i,n,b,s}: {r,i,n,b,s} domain(e.v) ⊆ domain(attr)
2 c1 → exists(e1) b: {st,os,sq,bg},b (0 ≤ e.v ≤ 1) ∧

((c1.v = 0 ∨ e1.v = 0)→ (e.v = 0)) ∧
((e1.v = 1)→ (e.v = (c1.v ≥ 1))) ∧
c1.c ∧ e1.c

3 c1 → isUnique(e1) b: {st,os,sq,bg}, {r,i,n} (0 ≤ e.v ≤ 1) ∧
((e.v = 0)→ (c1.v ≥ 2)) ∧
((e.v = 1)→ (domain size(e1.v) ≥ c1.v)) ∧
c1.c ∧ e1.c

b: {st,os,sq,bg}, b (0 ≤ e.v ≤ 1) ∧
((e.v = 1)→ (c1.v ≤ 2)) ∧
((e.v = 0)→ (c1.v ≥ 2)) ∧
((e.v = 1)→ (domain size(e1.v) ≥ c1.v)) ∧
c1.c ∧ e1.c

b: {st,os,sq,bg}, s (0 ≤ e.v ≤ 1) ∧
((e.v = 0)→ (c1.v ≥ 2)) ∧ c1.c

4 Type.allInstances() e.v = num obj(Type)
5 e1 and e2 b: b,b (e.v = min(e1.v, e2.v)) ∧

e1.c ∧ e2.c

operations on these data types; for the rest of data types, e.v
represents the result of evaluating e.

Each table entry describes the translation of a specific
type of OCL expressions. A special notation is used to refer
to concepts in the CSP: domain(v) is the set of potential
values of variable v, domain size(v) is the number of
values in a domain, num obj(T) is the CSP variable storing
the number of objects of type T and num links(A) is the
CSP variable storing the number of links in association A.

The CSP size constraint resulting from the abstrac-
tion of a given OCL invariant depends on the OCL
constructs present in that invariant. The construction of
the size constraint proceeds inductively over the struc-
ture of the OCL invariant: each subexpression of the in-
variant is matched with the appropriate table entry and

produces a size constraint, whose value may depend on
the size constraints of its subexpressions. The size con-
straint for the entire invariant is the one that corre-
sponds to the root expression, which will be of the form
Type.allInstances()→ forAll(condition) (or the root
subexpression of the invariant, if the keyword self does
not appear within the invariant).

In what follows, we describe the size constraint e.c for
the second entry in Table 2. Therefore, and following the no-
tation described before, we will denote the OCL expression
there (c1 → exists(e1)) as e.

Since e returns a boolean value (exists is a boolean
expression), the auxiliary variable e.v representing the value
of evaluating e must be false or true. This is expressed in the
first condition of e.c as (0 ≤ e.v ≤ 1). The second condition

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 7

in e.c indicates that if the collection is empty (c1.v = 0)
or the condition within the quantifier is false (e1.v = 0),
then the result of the existential quantifier will always be
false (e.v = 0). The third condition in e.c indicates that if
the condition within the quantifier is true (e1.v = 1), then
the OCL expression will hold (e.v = (c1.v ≥ 1)) if the
source collection contains at least one element. Finally, c1.c
and e1.c correspond to the size constraints resulting from
the abstraction of the source collection expression, and the
condition serving as argument for the exists quantifier.

Example 6. Going back to the UML/OCL model from Ex-
ample 1 and the variables defined in Example 5, let us
consider the derivation of CSP constraints from the OCL
invariants. This process is illustrated in Figure 4. For
each invariant, we consider its abstract syntax tree and
identify all its subexpressions (10 in this case). For each
OCL subexpression i, a CSP variable ei.v will be defined,
together with a CSP constraint ei.c on the value of ei.v.
This constraint ei.c is constructed by matching each
subexpression against the patterns defined in Table 2.
In our example, expressions e5, e7 and e10 correspond to
pattern 1; e2 and e3 to pattern 2; e8 to pattern 3; e4, e6
and e9 correspond to pattern 4; and e1 to pattern 5.
The CSP constraint for the whole invariant corresponds
to the constraint of the root subexpression, in this case
e1 and e8. Depending on the correctness property being
checked, additional constraints need to be added to the
CSP. A typical requirement is the satisfiability of the
UML/OCL model, i.e., requiring the invariant to hold.
This is enforced by adding a constraint (ei.v = 1),
where ei.v is the boolean variable for the root node. In
our running example, this means adding the constraints
(e1.v = 1) and (e8.v = 1).
The CSP constraints that are generated automatically
may be very verbose, but it is possible to simplify them
for readability using information such as the correctness
property. For example, Figure 5 depicts how the CSP
constraints in the running example can be simplified.
The following CSP constraints would be derived from
the OCL invariants:

Part ≤ domain size(serial) (5)
Cutter ≥ 1 (6)
Grinder ≥ 1 (7)

where (5) is generated from invariant “UniqueSerials”
and (6-7) from “MachineAvailability”. Notice that this
last simplification step is not required by the bound
tightening procedure and it is simply used to present
the resulting CSP constraints in a more readable way.

3.4 Tightening bounds

Once a CSP for the UML/OCL model has been constructed,
its constraints are used to remove unproductive values from
the domains of variables. This process, known as integer
bound propagation, is based on the notion of propaga-
tors [28]. For each constraint, its propagator is a procedure
that can tighten the bounds of participating variables. For
instance, for an equality x = y, the domains of x and y
can be tightened to domain(x) ∩ domain(y) as only the

values that can make x and y equal should be considered.
Propagators are applied to the set of domains until a fixpoint
is reached. This computation is already built-in in all integer
interval constraint solvers, which provide optimizations to
speed up convergence and threshold parameters to control
the amount of effort spent in the process.

Computing an optimal solution to this fixpoint is, in
general, an NP-complete problem [15]: there are algorithms
that exhibit a pseudo-polynomial behavior but may have
exponential runtimes in some inputs. However, slow con-
vergence is typically caused by domains with many values,
e.g., intervals holding 232 values to encode all values of a
32-bit integer. This is an unlikely scenario because bounded
verifiers would be unable to deal with bounds of this size.
Again, our work does not target the optimal solution and
Section 4 illustrates that in practice bound tightening does
not impose a significant overhead in the overall verification.

4 EXPERIMENTAL RESULTS

In this section, we evaluate our method to answer the
following questions:

• Q1: Does the bound tightening procedure reduce the
execution time of UML/OCL bounded verification
significantly?

• Q2: Is the execution time of the bound tightening
procedure negligible with respect to the execution
time of UML/OCL bounded verification?

To answer these questions, we have implemented our
translation procedure for UML/OCL models into a CSP
for propagation as an extension of the EMFtoCSP tool
[12]. Our proposed bound tightening procedure has been
implemented using the interval solver IC from the ECLiPSe

Constraint Programming System [24].
To run the experiments we have selected a third-party

tool: the USE model validator plug-in [13]. This tool veri-
fies UML/OCL models by translating them into relational
logic formula to be checked using the KodKod relational
solver [29], which relies on SAT-solvers like MiniSat [30].
The choice of this particular toolkit has been motivated by
its public availability and its competitive execution time
results. We also believed it was important to use an ex-
ternal tool to showcase the fact that our bound tightening
procedure can be useful to any bounded verification tool
for UML/OCL. Therefore our experimental settings consist
in the combination of these two tools, the extension of
EMFtoCSP for the tightening part and USE for the actual
verification tasks.

Using these two tools, we have designed three experi-
ments involving manually created UML/OCL models (Sec.
4.1), a set of randomly generated models (Sec. 4.2) and a
fragment of the OCL meta-model (Sec. 4.3). Random models
allow us to study the efficiency of bound tightening (Q2),
while the other experiments focus on measuring the perfor-
mance gains in verification when using tightened bounds
(Q1).

4.1 Characteristic models
Experimental design. We have considered two UML/OCL
models where we attempt to validate whether the model

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 8

context AbstractMachine inv MachineAvailability :
Cutter.allInstances()→ exists(c | c.ready) and
Grinder.allInstances()→ exists(g | g.ready)

and

exists

allInstances

Cutter

.

c ready

exists

allInstances

Grinder

.

g ready

e4 e5

e2

e6 e7

e3

e1

e1.c: (e1.v = min(e2.v, e3.v)) ∧ e2.c ∧ e3.c
e2.c: (0 ≤ e2.v ≤ 1) ∧ ((e4.v = 0 ∨ e5.v = 0)→ (e2.v = 0)) ∧ ((e5.v = 1)→ (e2.v = (e4.v ≥ 1))) ∧ e4.c ∧ e5.c
e3.c: (0 ≤ e3.v ≤ 1) ∧ ((e6.v = 0 ∨ e7.v = 0)→ (e3.v = 0)) ∧ ((e7.v = 1)→ (e3.v = (e6.v ≥ 1))) ∧ e6.c ∧ e7.c
e4.c: e4.v = Cutter
e5.c: domain(e5.v) ⊆ domain(ready)
e6.c: e6.v = Grinder
e7.c: domain(e7.v) ⊆ domain(ready)

(a)

context Part inv UniqueSerials :
Part.allInstances()→ isUnique(p | p.serial)

isUnique

allInstances

Part

.

p serial

e9 e10

e8

e8.c: (0 ≤ e8.v ≤ 1) ∧ ((e8.v = 0)→ (e9.v ≥ 2))
∧ ((e8.v = 1)→ (domain size(e10.v) ≥ e9.v)) ∧ e9.c ∧ e10.c

e9.c: e9.v = Part
e10.c: domain(e10.v) ⊆ domain(serial)

(b)

Fig. 4. Abstraction of the OCL invariants MachineAvailability (a) and UniqueSerials (b). For each invariant, we show the textual OCL
constraint, its abstract syntax tree and the corresponding CSP constraints.

e2.v = 1 e4.v ≥ 1 Cutter ≥ 1

e1.v = 1

e3.v = 1 e6.v ≥ 1 Grinder ≥ 1

e4.v=0→e2.v=0 e4.v=Cutter

e1.v=min(e2.v,e3.v)

e6.v=0→e3.v=0 e6.v=Grinder

e8.v = 1
(e8.v=1)→(domain size(e10.v)≥e9.v)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ domain size(e10.v) ≥ e9.v e9.v=Part−−−−−−−−−−→

domain size(e10.v) ≥ Part
domain(e10.v)⊆domain(serial)−−−−−−−−−−−−−−−−−−−−−−−−→ domain size(serial) ≥ Part

Fig. 5. Simplifying the CSP constraints in Figure 4 for readability, assuming the goal is checking satisfiability.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 9

TABLE 3
Input UML/OCL models.

Name Classes Assocs Attrs Inv
Teams 5 4 9(2) 3

Company 6 8 19(2) 16

is strongly satisfiable, i.e., whether it is possible to create an
instance of each non-abstract class in the model. Table 3
summarizes some features of the models under analysis: the
number of classes, associations, attributes (in parenthesis,
boolean attributes) and invariants.

The models include a wide variety of UML/OCL
features and illustrate two levels of constraint density:
“Teams”1 with few constraints and “Company”2 with many
constraints, so a priori the second one should be harder
to verify. Minor changes (e.g., rewriting association classes)
were required to adapt the models to the particular syntax
requirements of the verification tools. For each UML/OCL
model, different sets of input bounds have been considered
in order to illustrate the performance of our approach in
different scenarios. Three types of bounds are defined: the
number of objects in each class, the number of links in each
association and the potential values for integer attributes
([0,1] is trivially used for boolean attributes).

For the sake of representativity, we are interested in mea-
suring the performance of verification for both satisfiable
and unsatisfiable models. As both examples are satisfiable,
we have devised an unsatisfiable version of each one by
adding one invariant that cannot be satisfied due to its
interaction with the rest of constraints.

We then evaluate the tightened bounds for our
UML/OCL models, measuring both the computation time
for the bounds and the verification time in USE with (and
without) the tightened bounds.

Results. Table 4 summarizes the results obtained in these
experiments. Each entry contains the model being analyzed,
the initial verification bounds and the execution time (in
seconds) of USE with the original bounds (USE-orig), of the
bound tightening procedure (Tight) and of USE with the
tightened bounds (USE-tight). Regarding the execution time
for USE, we further identify the time required by the tool to
translate the UML/OCL model into a formula (Trans) and
the time needed by the solver to check the formula (Solv).
Finally, we measure the ratio of improvement in the exe-
cution time (Speedup) as USE-orig divided by Tight+USE-
tight (1 if there is no change, higher is better).

As expected, the verification of the “Teams” model is
faster than the verification of “Company”. Model size (less
associations and attributes) and the number of invariants
(6 vs 16) are the reasons for this difference.

Therefore, with respect to Q1 (does bound tightening
reduce verification time?) the effect of bound tightening
is most noticeable in models where verification is most
complex. For those examples, significant reductions can

1. http://st.inf.tu-dresden.de/files/general/
OCLByExampleLecture.pdf

2. http://cs.ulb.ac.be/public/ media/teaching/infoh302/oclnotes.
pdf

be achieved with some examples running 6 times faster.
Moreover, bound tightening requires about two seconds
in every example. Thus, the overhead generated by bound
tightening will only be noticed in those examples where the
solver verifies the model in a couple of seconds.

Again, for “easy” models that can be verified quickly,
bound tightening may fail to cause any reduction at all or
it may be insufficient to compensate the bound tightening
overhead. In any case, the performance gains in “hard”
instances compensate this small penalty in “easy” instances.

To illustrate what the tightened bounds look like with
respect the original ones, we discuss the tightening of the
initial bounds [1,5] for classes and [1,10] for associations.
For the sake of brevity, we do not discuss attribute bounds:

• Teams – 2 of the 5 classes have improved bounds:
Person to [2,5] and Team to [1,2]. With respect
to associations, 2 of the 3 associations have im-
proved bounds: TeamMember and MembersInTeam
have bounds [2,5] and MeetingParticipants has
bounds [2,10].

• Company – 5 of the 6 classes have improved
bounds: three classes (Department, Project
and the association class Manages) have bounds
[1,1] while two classes (Employee and the
association class WorksOn) have bounds [4,5].
Regarding associations, there are improvements
in 5 out of 8 associations: three of them
(EmployeeManages, DepartmentManages and
DepartmentProject) have bounds [1,1] and two
of them (EmployeeWorksOn and ProjectWorkOn)
have bounds [4,5].

It should be noted that in these experiments the time
required for bound tightening is almost the same for all
models, regardless of the initial bounds. That is, the amount
of reduction in the verification bounds does not have an
impact in the performance of the bound tightening proce-
dure. Nevertheless, the performance of bound tightening is
analyzed in more detail in the next section with experiments
using random UML/OCL models.

4.2 Random models

Experimental design. With respect to Q2 (is the execution
time of bound tightening negligible?), we performed a series
of experiments in order to measure the efficiency of our
bound tightening procedure. In particular, we were inter-
ested in assessing the impact of three parameters: (1) the
size of the model, e.g., the number of classes; (2) the number
of constraints in the model, e.g., the number of association
end multiplicity constraints; and (3) the size of the domains
used as inputs.

For these experiments, we generated a set of random
models using a different number of classes (10, 25, 50, 100
and 200). These models included a UML class diagram with
binary associations and its corresponding cardinality con-
straints (no additional, OCL-based, constraints were added
at this point). In these models, any pair of classes has a cer-
tain probability of being connected by a binary association
(3 %, 6 % and 10 %). The multiplicities of each association
end were selected randomly (0..1, 1..1, 0..*, 1..*, 0..N , N ..*

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 10

TABLE 4
Experimental results on the impact of bound tightening in verification time

Verification Bounds USE-orig USE-tight
Name Class Assoc Attrib Trans Solv Tight Trans Solv Speedup

Teams
(sat)

[1, 5] [1, 10] [0, 300] 0.7 s 0.8 s 1.9 s 0.7 s 0.4 s x0.50
[1, 10] [1, 20] [0, 300] 1.5 s 5.5 s 1.9 s 1.5 s 6.7 s x0.70
[1, 15] [1, 30] [0, 300] 2.4 s 31.2 s 1.9 s 2.3 s 30.4 s x0.97

Teams
(unsat)

[1, 5] [1, 10] [0, 300] 0.7 s 0.6 s 1.9 s 0.7 s 0.6 s x0.41
[1, 10] [1, 20] [0, 300] 1.5 s 3.6 s 1.9 s 1.5 s 6.5 s x0.50
[1, 15] [1, 30] [0, 300] 2.3 s 39.5 s 1.9 s 2.3 s 31.0 s x1.18

Company
(sat)

[1, 5] [1, 10] [0, 300] 2.9 s 5.1 s 2.0 s 1.9 s 1.5 s x1.46
[1, 10] [1, 20] [0, 300] 6.2 s 10.5 s 2.1 s 4.9 s 26.1 s x0.51
[1, 15] [1, 30] [0, 300] 14.2 s 275.8 s 2.0 s 14.9 s 311.7 s x0.88

Company
(unsat)

[1, 5] [1, 10] [0, 300] 1.8 s 0.5 s 2.1 s 1.5 s 2.7 s x0.36
[1, 10] [1, 20] [0, 300] 5.7 s 30.8 s 2.1 s 1.4 s 2.1 s x6.41
[1, 15] [1, 30] [0, 300] 14.1 s 80.4 s 2.1 s 4.8 s 9.3 s x5.82

Settings Computer Intel i5-760 2.8 GHz 4 GB RAM
OS & Java Windows 10 64 bits, JDK 8u121
USE v4.2, Solver MiniSat with bitwidth=32
ECLiPSe v6.1 64 bits

TABLE 5
Experimental results on the scalability of bound tightening

(a) Execution time of bound tightening (seconds)

Bounds
%A N [1,10] [1,100] [1,250] [1,1000] [1,5000]
3 % 10 1.7 s 1.7 s 1.8 s 1.5 s 1.8 s

25 1.7 s 1.8 s 2.0 s 1.6 s 1.7 s
50 1.9 s 2.1 s 2.2 s 1.9 s 1.9 s

100 2.6 s 3.1 s 3.7 s 2.8 s 5.1 s
200 5.9 s 7.9 s 8.9 s 47.9 s 65.1 s

6 % 10 1.5 s 1.7 s 2.4 s 1.7 s 2.4 s
25 1.7 s 1.9 s 2.6 s 1.8 s 2.3 s
50 2.0 s 2.8 s 3.6 s 22.4 s 871.6 s

100 3.4 s 3.6 s 4.0 s 7.8 s 14.3 s
200 10.0 s 11.7 s 11.7 s 25.9 s 26.5 s

10 % 10 1.6 s 2.1 s 1.9 s 1.6 s 1.6 s
25 1.7 s 4.7 s 4.8 s 1.7 s 1.9 s
50 2.1 s 3.1 s 3.9 s 113.0 s 335.4 s

100 4.2 s 5.5 s 5.3 s 5.2 s 9.3 s
200 15.6 s 18.2 s 16.3 s 16.8 s 17.8 s

(b) Success rate (% of experiments with improved bounds)

Bounds
%A N [0,10] [1,100] [1,250] [1,1000] [1,5000]
3% 10 100 % 100 % 100 % 100 % 100 %

25 40 % 80 % 100 % 100 % 100 %
50 0 % 60 % 80 % 80 % 100 %

100 0 % 0 % 0 % 0 % 20 %
200 0 % 0 % 0 % 0 % 0 %

6% 10 80 % 100 % 100 % 100 % 100 %
25 0 % 80 % 80 % 100 % 100 %
50 0 % 0 % 20 % 20 % 40 %

100 0 % 0 % 0 % 0 % 0 %
200 0 % 0 % 0 % 0 % 0 %

10% 10 20 % 100 % 100 % 100 % 100 %
25 0 % 0 % 0 % 60 % 80 %
50 0 % 0 % 0 % 0 % 0 %

100 0 % 0 % 0 % 0 % 0 %
200 0 % 0 % 0 % 0 % 0 %

Settings See Table 4
Parameters N Number of classes in the UML model

%A Percentage of pairs of classes connected by an association
Bounds Input bounds to the bound tightening procedure

or N ..M) with N and M between 2 and 10. Finally, five
different input bounds for the population of classes and the
number of links in associations were used: [1,10], [1,100],
[1,250], [1,1000] and [1,5000]. The largest bounds were used
to illustrate the limits of this approach, but they are not
representative of SAT-based tools for model verification,
which typically suggest (or use by default) much smaller
bounds, e.g., 3, 5 or 10 values in [31].

For each of these parameters, we measure the execution
time of bound propagation. For each combination of model
size and probability of associations, 5 random models were

created (i.e., 75 models in total). Bound propagation was
applied in each model using the five different input bounds
(i.e., 375 executions). Then, each execution was performed
5 times, averaging the results, in order to avoid potential
interference from other processes (i.e., 1, 875 runs).

Results. The results of the experiments with random models
are displayed in Table 5. For each experiment, we mea-
sured the execution time of bound tightening in seconds
(Subtable 5(a)) and we tracked whether bound tightening
managed to reduce the input bounds (Subtable 5(b)).

Subtable 5(a) reports the execution time for models with

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 11

ModelElement
name: String

OclExpressionClassifier

DataType

PrimitiveTupleType CollectionType

TuplePart

name: String

SequenceTypeSetType BagType

VariableExpLiteralExp PropertyCallExp

IteratorExp

IterateExp

VariableDeclaration
name: String

AssociationEnd

Operation

Attribute AttributeCallExp

name: String

NavigationCallExp

OperationCallExp

ModelPropertyCallExp

* 1 1 *

1..*

1

*1

*1

*1

1
*

*

1

*

1

0..1
1

0..1
1

0..1

1

Fig. 6. A fragment of the OCL meta-model (several associations involving OclExpression are not depicted to improve readability)

a given size (N) and connectivity (%A), considering a set
of input bounds. As we have created five models for each
size and connectivity, each entry contains the average exe-
cution time (in seconds) for these five models. Results show
execution times of around 1–2 seconds for small models
(10–25 classes) and 2–5 seconds for medium-sized models
(50–100 classes). Furthermore, all the parameters under
consideration have an impact on performance: as a general
rule, adding more classes, more constraints or wider bounds
increases the time required to tighten bounds. However,
specific worst-case instances require more resources than
larger instances (e.g., the model with 50 classes and 6%
connectivity).

In any case, this worst-case behavior can only be ob-
served by selecting input bounds that are beyond the capa-
bilities of state-of-the-art SAT-based tools for model verifi-
cation. For instance, computing an instance of the running
example in Figure 1 (with 4 classes and 1 association) using
a SAT-based solver requires less than a second with bounds
[1,10], 2.8 seconds with bounds [1,25] and more than one
hour with bounds [1,100]. Hence, bound tightening is fast
and its worst cases are still orders of magnitude faster
than UML/OCL bounded verification in the corresponding
instances.

On the other hand, Subtable 5(b) specifies in which
experiments bound propagation managed to infer tighter
bounds with respect to the input ones. It is unclear how
representative random models are of models written by
practitioners. However, some interesting observations can
be reported. First, propagation is more successful when
input bounds are large with respect to multiplicities of
associations, e.g., a multiplicity of 1..2 in an association end
is more helpful than a multiplicity 1..10 if the input bounds

are [0,10]. And second, propagation is more successful when
constraints are local, i.e., there are several constraints involv-
ing the same model elements, rather than many constraints
involving different model elements.

4.3 OCL meta-model case study

Experimental design. To consider a more realistic case
study, we have studied a fragment of the OCL meta-model
(depicted in Figure 6) which describes features of the OCL
language such as classifiers or expressions and model ele-
ments like attributes or association ends. This meta-model
is provided as one of the examples within the distribution
of the tool USE (examples\MetaModels\OCL2MM). It in-
cludes 24 classes (including several abstract classes) and 15
associations (including some compositions), but is does not
include relevant OCL invariants. As our experiment, we
will check whether this meta-model is satisfiable and can
be instantiated.

Results. This check has been performed using the USE
model validator plug-in (configured to use the SAT solver
MiniSat with a bit-width of 8) using our hardware set-up
(Intel i5-760 2.8 GHz processor with 4 GB RAM). Using
bounds [1,5] for classes and associations, the SAT solver
states that the model is unsatisfiable. It is necessary to
increase the bounds up to [1,10] before the SAT solver can
find a solution. However, the solver requires more than half
an hour (1,938 seconds) to perform this computation.

With the use of bound tightening, we will explore a more
efficient way to find a solution. We will focus on the central
class of this meta-model, the abstract class ModelElement
which is at the root of the inheritance hierarchy. In this

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 12

class, we will explore potential bounds for the number of
instances of all of its subclasses.

First of all, let us consider what information can be di-
rectly inferred from the class diagram. Running bound tight-
ening with initial bounds of [1,∞] in all non abstract classes,
we find out in less than 0.1 seconds that our solution re-
quires at least 14 instances of subclasses of ModelElement.
This is pretty straightforward as the inheritance hierarchy of
ModelElement includes 14 non-abstract subclasses.

With this information, a designer can request a solution
with at most 15 ModelElement in total and at most 10
objects in each non-abstract class. Providing these initial
bounds to bound tightening, a more precise set of bounds
can be obtained. These tightened bounds make the verifica-
tion of this model finish in only 67 seconds, 28.9 times faster
than using a brute-force strategy for setting bounds. This is
a significant result as we are saving more than 30 minutes
of verification time on a realistic model.

5 DISCUSSION

In this Section, three issues are discussed: how bound tight-
ening should be used, i.e., in which ways it can interact with
UML/OCL verification tools (Sec. 5.1); when it should be
used, i.e., in which types of UML/OCL models it will be
more successful (Sec. 5.2); and where it should be used, i.e.,
what software engineering problems are well-suited for the
use of this method (Sec. 5.3).

5.1 Primary usage scenarios

We consider three potential usage scenarios of bound tight-
ening in the verification of software models: inference, opti-
mization and interactive selection.

Inference. The first usage scenario is to automatically infer
finite bounds for a given input model, without designer
intervention. This scenario is the most desirable one, as
the output of the bounded verification tool would be valid
for any potential bound, i.e., the lack of an example (resp.
counterexample) within the finite bounds would constitute
a refutation (resp. proof) of the property being verified.
However, this theoretical scenario is unlikely to occur in
practice as the models would need to be highly constrained
in order to bound all domains.

Optimization. Instead, the most promising scenario is using
bound tightening to automatically refine the finite bounds
provided by the user. In this way, bound tightening acts as
an “optimization” step executed before the bounded verifi-
cation tool. This optimization is performed transparently to
both the designer and the bounded verification tool.

Interactive selection. Finally, bound tightening can be used
interactively to aid the user in the selection of proper verifi-
cation bounds. The bound selection process is divided into
a sequence of decisions, each consisting of choosing finite
bounds for one of the remaining parameters of the verifica-
tion problem (e.g., population size for a given class). Bound
tightening can help designers by tightening bounds after
each decision, possibly assigning values to some parameters
automatically.

For this purpose, bound tightening should be comple-
mented by an heuristic procedure that selects the order in
which decisions must be taken, in order to maximize the
amount of information that can be automatically inferred
by bound tightening. That is, the designer should start
assigning those parameters that have a larger impact on
the values of other parameters. Even though an in-depth
discussion of those heuristics is out of the scope of this
paper, these heuristics are closely related to ones used by
constraint solvers in order to decide the order in which
variables of a CSP are given a value [32].

5.2 Target models
The performance gains offered by the bound tightening
procedure on UML/OCL model verification will depend on
a variety of factors. In the following, we discuss under what
conditions bound tightening will be most effective:

Original domain bounds. If the initial domains are very
small, the verification is typically fast and the speedup
provided by this technique might not be noticeable. For
larger domains, the speedup can become significant.

Hardness of verification. In order to find a witness (or
conclude that there is none), the solver will evaluate partial
solutions in order to decide whether they can be extended
until a complete solution is reached. For some models and
properties, the solver may be able to reach its conclusion by
evaluating few partial solutions. In contrast, in other models
the solver will need to explore many candidates. Given
that bound tightening aims to prune the space of candidate
solutions, the speedup it offers can be greater in models
where many candidate solutions need to be explored.

Number (and strictness) of constraints in the model. If
the model has few or weak constraints (e.g., multiplicities
“0..*”), this approach may fail to reduce bounds in a no-
ticeable way. Conversely, tightening can be most effective in
highly constrained models.

That is, the benefits of our approach may be most notice-
able in the models that take longer to verify and thus those
where the user can benefit most from a speedup. Moreover,
in models where bound tightening does not produce any
speedup, the overhead it incurs is negligible. For these
reasons, bound tightening can be a valuable addition to any
bounded verification framework for UML/OCL.

5.3 Other Software Engineering activities
Beyond the main usage scenarios described above, bound
tightening can also be effective in situations where a partial
instance that needs to be extended is available. One scenario
is incremental verification [33], where the correctness property
has already been checked in a submodel or a similar model
where some changes have been applied. Another suitable
scenario is integrity repair [34], where an instance that vio-
lates some integrity constraints needs to be repaired with
the least amount of modifications.

Furthermore, if our goal is testing or verifying model trans-
formations [35], transformation rules can provide hints about
the necessary model sizes for some fragments of the model.
For instance, in graph transformation rules, the left-hand

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 13

side and right-hand side of a rule indicate the minimum
number of objects required to apply a rule and the number
of objects that are created, modified or deleted as a result.

All these scenarios share a common trait: they can be
restated as the search of suitable target instances of a model,
e.g. faults, test cases, . . . A bounded verification tool can be
used as a model finder to compute these target instances.
Fortunately, the nature of the problem provides some clues
about the size of the target instances. For instance, if we
want to restore integrity to an instance by only deleting
elements, we already know an upper bound for the target
instance. Conversely, if we are testing a rule in a model
transformation, test cases should include at least the neces-
sary objects required to apply the rule, so we have a lower
bound. This partial information about the target instance
can be leveraged to speed up the model finder: tightening
can propagate these initial bounds to further reduce the
search space.

6 RELATED WORK

The verification of UML class diagrams is an EXPTIME-hard
problem, which becomes undecidable with the inclusion of
general OCL constraints [4]. This implies that UML/OCL
verification tools need to decide whether they will support
OCL, and if so, up to what extent [5].

Some approaches focus on decidable verification prob-
lems either by excluding OCL [6], [26], [36] or by restricting
OCL to a decidable subset [37], [38]. Among the methods
supporting general OCL constraints, e.g., [20], [39], bounded
verification is a popular strategy [9], [10], [11], [13], [14].
Efficiency, lack of user intervention and expressiveness are
its advantages, while the need to define search boundaries
and inconclusive answers outside these bounds are its draw-
backs.

Given that UML/OCL verification is undecidable, it is
not possible to establish verification bounds a priori. How-
ever, it becomes feasible if we exclude OCL entirely [36]
or we restrict its expressivity, as in OCL-Lite [38]. Similarly,
even though first-order logic is undecidable in general, some
fragments of first-order logic are known to be decidable,
such as “effectively propositional logic”. This fragment can
also be defined in the context of the many-sorted first-order
logic used in Alloy [40]. In specifications within these re-
stricted notations, verification is decidable and it is possible
to compute exact verification bounds. Nevertheless, these
notations do not support OCL features such as constraints
over integers (e.g., x > y), the size of collections (operations
size, count or sum) or arbitrary multiplicities in associations
(any upper bound in the case of OCL-Lite or any bound
outside 0, 1 and * for effectively propositional logic), among
others. Thus, none of the example models described in this
paper (not even the running example) falls within the scope
of these methods.

Several mechanisms can be used to accelerate bounded
verification: parallelization (use of several solvers running
in parallel over different parts of the formula or the do-
mains), slicing (partition the problem into independent com-
ponents that can be analyzed separately) and bound tight-
ening/reduction (reduce the size of the verification bounds).
In the context of UML/OCL verification, [41], [42] describe

slicing techniques to partition class diagrams, while Par-
Alloy [43] and Ranger [44] study the parallel verification
of Alloy models. Considering UML class diagrams without
OCL, [45], [46] study the potential interactions among asso-
ciation multiplicities to detect situations where multiplicities
can be strengthened or are unsatisfiable. In [47], preliminary
ideas on the automatic determination of verification bounds
in a UML model are presented, with the analysis of OCL
constraints left as future work. However, to the best of our
knowledge, this paper is the first work addressing bound
reduction for the verification of UML/OCL models.

In contrast, bound reduction is a well-studied problem
in another field: static program analysis. Techniques such as
interval analysis or shape analysis can infer bound information
about the program variables which can later be used when
verifying the dynamic behavior of programs. For variables
of type string, it is also typical to perform size analysis to
determine valid string lengths before searching for feasible
values [48].

In the context of static analysis, the most related tool in
terms of bound reduction is TACO [49], a tool for the ver-
ification of JML-annotated Java programs. TACO attempts
to eliminate individual values from domains by calling
the solver with a specially tailored formula for each value
before analyzing the entire program. This allows a more fine-
grained bound refinement than using intervals but, on the
other hand, a time threshold must be set to avoid wasting
too much time on each call.

Other types of optimizations have been proposed for
the model checking of hybrid systems. Domain reduction
abstraction [50] partitions the input domains into equiva-
lence classes with the same behavior. Then, only one rep-
resentative value from each equivalence class needs to be
considered during the analysis. Nevertheless, the number
of equivalence classes is exponential with respect of the
number of atomic properties appearing in the system be-
ing analyzed: if there are n properties, each combination
of properties (and their negations) defines an equivalence
class, i.e., 2n classes. Another approach is CounterExample-
Guided Abstraction Refinement (CEGAR) [51], which studies
an abstracted version of the system under analysis. Lack
of failures in the abstraction proves the correctness of the
original system. However, failures in the abstraction may be
an artifact of the abstraction process and need to be double-
checked. Spurious failures are removed by refining the ab-
straction and the analysis resumes on the new abstraction. In
any case, even though CEGAR shares the goal of improving
the efficiency of verification, it does not deal with bound
reduction.

7 CONCLUSIONS

We have introduced a novel technique to aid in the bounded
verification of UML/OCL models. This approach aims to
assist users in the selection of verification bounds, a task
which currently lacks adequate support. The proposed
method operates by translating the UML/OCL model into
a constraint satisfaction problem, focusing only on the in-
formation relevant to infer domain bounds. Then, interval
constraint propagation techniques are used to tighten the

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 14

domain bounds. Smaller bounds produced can reduce the
verification time significantly.

This approach can be used in different ways: as a prepro-
cessing stage before verification or as part of an interactive
process to guide the choice of bounds. As future work,
we plan to investigate heuristics regarding the best order
for selecting bounds, i.e., one that reduces the number of
choices and maximizes the amount of information that can
be inferred automatically by bound propagation. We also
intend to investigate how to reverse this approach, e.g., by
broadening (instead of tightening) user provided bounds
which are too strict to find a counterexample.

ACKNOWLEDGMENTS

This work is partially funded by the Spanish Ministry of
Economy and Competitivity through the project “Open
Data for All: an API-based infrastructure for exploiting
online data sources” (TIN2016-75944-R) and a research grant
from the Internet Interdisciplinary Institute (IN3) at UOC.
The authors would like to thank the anonymous reviewers
and Dr. Tim Nelson for their valuable comments.

REFERENCES

[1] M. Petre, “UML in practice,” in ICSE ’13, 2013, pp. 722–731.
[2] E. Torlak, M. Taghdiri, G. Dennis, and J. Near, “Applications

and extensions of Alloy: Past, present, and future,” Mathematical
Structures in Computer Science, vol. 23, pp. 915–933, 2013.

[3] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of prac-
tice in Model-Driven Engineering,” IEEE Software, vol. 31, no. 3,
pp. 79–85, 2014.

[4] D. Berardi, D. Calvanese, and G. D. Giacomo, “Reasoning on UML
class diagrams,” Artificial Intelligence, vol. 168, no. 1-2, pp. 70–118,
2005.

[5] C. A. González and J. Cabot, “Formal verification of static software
models in MDE: A systematic review,” Information and Software
Tech., vol. 56, no. 8, pp. 821–838, 2014.

[6] M. Cadoli, D. Calvanese, G. D. Giacomo, and T. Mancini, “Finite
satisfiability of UML class diagrams by Constraint Programming.”
in DL’2004, ser. CEUR Workshop Proc., vol. 104, 2004.

[7] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, “Generating
test data from OCL constraints with search techniques,” IEEE
Transactions on Software Engineering, vol. 39, no. 10, pp. 1376–1402,
2013.

[8] A. D. Brucker and B. Wolff, “The HOL-OCL book,” ETH Zurich,
Tech. Rep. 525, 2006.

[9] J. Cabot, R. Clarisó, and D. Riera, “On the verification of
UML/OCL class diagrams using Constraint Programming,” Jour-
nal of Systems and Software, vol. 93, pp. 1–23, 2014.

[10] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “On challenges
of model transformation from UML to Alloy,” Software and Systems
Modeling, vol. 9, no. 1, pp. 69–86, 2010.

[11] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using boolean satisfiability,” in
DATE’2010. IEEE, 2010, pp. 1341–1344.

[12] C. A. González, F. Büttner, R. Clarisó, and J. Cabot, “EMFtoCSP: A
tool for the lightweight verification of EMF models,” in FormSERA
2012, 2012, pp. 44–50.

[13] M. Kuhlmann and M. Gogolla, “From UML and OCL to relational
logic and back,” in MODELS’2012, ser. LNCS, vol. 7590. Springer,
2012, pp. 415–431.

[14] S. Maoz, J. O. Ringert, and B. Rumpe, “CD2Alloy: Class diagrams
analysis using Alloy revisited,” in MODELS’2011, 2011, pp. 592–
607.

[15] L. Bordeaux, G. Katsirelos, N. Narodytska, and M. Y. Vardi, “The
complexity of integer bound propagation,” Journal of Artificial
Intelligence Research (JAIR), vol. 40, pp. 657–676, 2011.

[16] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov, “Evaluating
the “small scope hypothesis”,” MIT CSAIL, Tech. Rep., 2003.

[17] J. Oetsch, M. Prischink, J. Pührer, M. Schwengerer, and H. Tompits,
“On the small-scope hypothesis for testing answer-set programs,”
in KR’12. AAAI Press, 2012, pp. 43–53.

[18] F. Yu, T. Bultan, and E. Peterson, “Automated size analysis for
OCL,” in FSE’2007. ACM, 2007, pp. 331–340.

[19] R. Clarisó, C. A. González, and J. Cabot, “Towards domain refine-
ment for UML/OCL bounded verification,” in SEFM’ 2015, ser.
LNCS, vol. 9276. Springer, 2015, pp. 108–114.

[20] A. Queralt and E. Teniente, “Verification and validation of UML
conceptual schemas with OCL constraints,” ACM Transactions on
Software Engineering Methodology, vol. 21, no. 2, pp. 13:1–13:41,
2012.

[21] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, in-
dependence and consequences in UML and OCL models,” in
TAP’2009. Springer, 2009, pp. 90–104.

[22] M. Gogolla, L. Hamann, and M. Kuhlmann, “Proving and visu-
alizing OCL invariant independence by automatically generated
test cases,” in TAP’2010. Springer, 2010, pp. 38–54.

[23] N. Przigoda, R. Wille, and R. Drechsler, “Leveraging the anal-
ysis for invariant independence in formal system models,” in
DSD’2015, 2015, pp. 359–366.

[24] K. R. Apt and M. Wallace, Constraint Logic Programming using
ECLiPSe. Cambridge University Press, 2007.

[25] P. V. Hentenryck, Y. Deville, and C.-M. Teng, “A generic arc-
consistency algorithm and its specializations,” Artificial Intelli-
gence, vol. 57, no. 2, pp. 291–321, 1992.

[26] M. Balaban and A. Maraee, “Finite satisfiability of UML class
diagrams with constrained class hierarchy,” ACM Transactions on
Software Engineering Methodology, vol. 22, no. 3, p. 24, 2013.

[27] M. Gogolla and M. Richters, “Expressing UML class diagrams
properties with OCL,” in Object Modeling with the OCL, The Ra-
tionale behind the Object Constraint Language, ser. LNCS, vol. 2263.
Springer, 2002, pp. 85–114.

[28] C. Choi, W. Harvey, J. H. M. Lee, and P. Stuckey, “Finite domain
bounds consistency revisited,” in AI’2006. Springer, 2006, pp.
49–58.

[29] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
TACAS’2007, ser. LNCS, vol. 4424. Springer, 2007, pp. 632–647.

[30] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT’2003.
Springer, 2003, pp. 502–518.

[31] D. Jackson, Software Abstractions: Logic, Language, and Analysis.
The MIT Press, 2006.

[32] K. Apt, Principles of Constraint Programming. Cambridge Univer-
sity Press, 2003.

[33] H. Bagheri and S. Malek, “Titanium: Efficient analysis of evolving
Alloy specifications,” in FSE’2016. ACM, 2016, pp. 27–38.

[34] N. Macedo, T. Jorge, and A. Cunha, “A Feature-based
Classification of Model Repair Approaches,” IEEE Transactions on
Software Engineering, 2016. [Online]. Available: http://ieeexplore.
ieee.org/document/7605502/

[35] B. Baudry, S. Ghosh, F. Fleurey, R. B. France, Y. L. Traon, and J.-
M. Mottu, “Barriers to systematic model transformation testing,”
Communications of the ACM, vol. 53, no. 6, pp. 139–143, 2010.

[36] M. Cadoli, D. Calvanese, G. D. Giacomo, and T. Mancini, “Finite
model reasoning on UML class diagrams via Constraint Program-
ming,” in AI*IA 2007. Springer Berlin Heidelberg, 2007, pp. 36–47.

[37] M. Clavel, M. Egea, and M. A. G. de Dios, “Checking unsatisfia-
bility for OCL constraints,” ECEASST, vol. 24, 2009.

[38] A. Queralt, A. Artale, D. Calvanese, and E. Teniente, “OCL-
Lite: Finite reasoning on UML/OCL conceptual schemas,” Data
& Knowledge Engineering, vol. 73, pp. 1–22, 2012.

[39] A. D. Brucker and B. Wolff, “HOL-OCL: A formal proof envi-
ronment for UML/OCL,” in FASE 2008, ser. LNCS, vol. 4961.
Springer, 2008, pp. 97–100.

[40] T. Nelson, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “To-
ward a more complete Alloy,” in ABZ’2012, 2012, pp. 136–149.

[41] A. Shaikh, R. Clarisó, U. K. Wiil, and N. Memon, “Verification-
driven slicing of UML/OCL models,” in ASE’2010. ACM, 2010,
pp. 185–194.

[42] J. Seiter, R. Wille, M. Soeken, and R. Drechsler, “Determining
relevant model elements for the verification of UML/OCL specifi-
cations,” in DATE’2013. EDA Consortium, 2013, pp. 1189–1192.

[43] N. Rosner, J. P. Galeotti, C. L. Pombo, and M. F. Frias, “ParAl-
loy: Towards a framework for efficient parallel analysis of Alloy
models,” in ABZ’2010, ser. LNCS, vol. 5977. Springer, 2010, pp.
396–397.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2777830, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MMMM YYYY 15

[44] N. Rosner, J. H. Siddiqui, N. Aguirre, S. Khurshid, and M. F. Frias,
“Ranger: Parallel analysis of Alloy models by range partitioning,”
in ASE’2013. IEEE, 2013, pp. 147–157.

[45] I. Feinerer, G. Salzer, and T. Sisel, “Reducing multiplicities in class
diagrams,” in MODELS 2011,, ser. LNCS, vol. 6981. Springer,
2011, pp. 379–393.

[46] M. Balaban and A. Maraee, “Simplification and correctness of
UML class diagrams - focusing on multiplicity and aggrega-
tion/composition constraints,” in MODELS’2013, ser. LNCS, vol.
8107. Springer, 2013, pp. 454–470.

[47] M. Soeken, R. Wille, and R. Drechsler, “Towards automatic de-
termination of problem bounds for object instantiation in static
model verification,” in MoDeVVa’2011. ACM, 2011.

[48] N. Bjørner, N. Tillmann, and A. Voronkov, “Path feasibility analy-
sis for string-manipulating programs,” in TACAS’2009. Springer,
2009, pp. 307–321.

[49] J. P. Galeotti, N. Rosner, C. G. L. Pombo, and M. F. Frias, “Taco:
Efficient SAT-based bounded verification using symmetry break-
ing and tight bounds,” IEEE Transactions on Software Engineering,
vol. 39, no. 9, pp. 1283–1307, 2013.

[50] Y. Choi and M. Heimdahl, “Model checking software requirement
specifications using domain reduction abstraction,” in ASE’2003.
IEEE, 2003, pp. 314–317.

[51] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Sturs-
berg, and M. Theobald, “Abstraction and counterexample-guided
refinement in model checking of hybrid systems,” Int. Journal on
Foundations of Computer Science, vol. 14, no. 04, pp. 583–604, 2003.

Robert Clarisó received his BSc (2000) and
PhD (2005) in Computer Science from UPC-
Barcelona Tech. Since 2005, he is a lecturer
at the IT, Multimedia and Telecommunications
Department of Universitat Oberta de Catalunya
(UOC). He is also a member of the SOM Re-
search Lab within the Internet Interdisciplinary
Institute (IN3-UOC). His research interests in-
clude formal methods, model-driven engineering
and tools for e-learning.

Carlos A. González received his PhD degree
from the École des Mines de Nantes (EMN)
in 2014. Before steering his career toward re-
search related positions, Carlos worked in the
software industry for almost 10 years. Since Oc-
tober 2016, he works as a research associate in
the Software Verification and Validation Lab, at
the SnT Centre for Security, Reliability and Trust
of the University of Luxembourg. His research
interests include, but are not limited to, model-
driven engineering and software verification and

validation.

Jordi Cabot received his PhD degree in Com-
puter Science from Universitat Politècnica de
Catalunya (UPC) in 2006 and his Habilita-
tion (French HdR) from the École Doctorale in
Nantes in 2012. He has been a visiting re-
searcher in Milan (Politecnico di Milano) and
Toronto (University of Toronto) and an Associate
Professor and Inria International Chair at École
des Mines de Nantes where he led an Inria
Research team in Software Engineering. Since
May 2015, he is an ICREA Research Professor

at Internet Interdisciplinary Institute (IN3), a research center of the Uni-
versitat Oberta de Catalunya (UOC), where he leads the SOM Research
Lab. Beyond his core research activities, he tries to book some time for
blogging and other dissemination and technology transfer actions.

	Caratula_Article_Preprint_CC_BY-NC-ND_en(48)
	Cabot_Smart_Bound(2)
	Caratula_Article_Preprint_CC_BY-NC-ND_en(20)
	Cabot_Smart_Bound(1)

