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Abstract

Domain experts typically have detailed knowledge of the concepts that are used
in their domain; however they often lack the technical skills needed to translate
that knowledge into Model-Driven Engineering (MDE) idioms and technolo-
gies. Flexible or bottom-up modelling has been introduced to assist with the
involvement of domain experts by promoting the use of simple drawing tools.
In traditional MDE the engineering process starts with the definition of a meta-
model which is used for the instantiation of models. In bottom-up MDE example
models are defined at the beginning, letting the domain experts and language
engineers focus on expressing the concepts rather than spending time on techni-
cal details of the metamodelling infrastructure. The metamodel is then created
manually or inferred automatically. The flexibility that bottom-up MDE offers
comes with the cost of having nodes in the example models left untyped. As a
result, concepts that might be important for the definition of the domain will
be ignored while the example models cannot be adequately re-used in future
iterations of the language definition process. In this paper, we propose a novel
approach that assists in the inference of the types of untyped model elements
using Constraint Programming. We evaluate the proposed approach in a num-
ber of example models to identify the performance of the prediction mechanism
and the benefits it offers. The reduction in the effort needed to complete the
missing types reaches up to 91.45% compared to the scenario where the language
engineers had to identify and complete the types without guidance.
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1. Introduction

Conventional Domain-Specific Languages (DSL) definition processes start
with the creation of a metamodel which is then used to instantiate models
and guide the development of editors and other artefacts such as model-to-
model and model-to-text transformations. Such a process implies expertise in
metamodelling, and in relevant technologies. While this may be an easy or at
least understandable process for MDE experts, this is not always the case with
domain experts [1] who are more familiar with tools like simple drawing editors
[2]. However, the involvement of domain experts is important in the definition of
high quality and well-defined DSLs that cover all the needed aspects of a domain.
To address the aforementioned issue, flexible modelling approaches have been
proposed in the literature (e.g. [3, 4, 5, 1]). Such approaches are based on
sketching tools and do not require the definition of a metamodel during the
initial phases of language engineering.

More specifically, in flexible (or bottom-up) MDE, the process starts with
the definition of example models [1, 6, 7]. These example models help language
engineers to better understand the concepts of the envisioned DSL and can be
used to infer draft metamodels manually or (semi-)automatically which even-
tually lead in the definition of the final metamodel. In this fashion, a richer
understanding of the domain can be developed incrementally, while concrete
insights (e.g., type information) pertaining to the envisioned metamodel are
discovered. Figure 1 depicts the stages taking place in a typical flexible MDE
process as this is interpreted by studying different flexible MDE approaches in
the literature (e.g. [1, 2, 8]).

Example models
definition

Draft metamodel
inference

Transition to
rigorous MDE

Figure 1: Stages of a typical flexible MDE approach.

The sketching tools used in such processes, allow the quick definition of
exemplar models sacrificing the formality that model editors, which are based
on a rigorously-defined metamodels, offer. In addition, drawing tools do not
require MDE-specific expertise. The elements (nodes and edges) of these flexible
example models can have type annotations assigned to them to describe the
domain concept they represent and can also be amenable to programmatic model
management using MDE suites like Epsilon [9].
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On the other hand, since sketching tools cannot enforce syntactic and se-
mantic correctness rules, flexible models are prone to various types of errors [10]:

1. User input errors: elements that should share the same type, have different
types assigned to them by mistake or as a result of a typo (e.g. Animal
vs. Anmal).

2. Changes due to evolution: elements representing concepts that have evolved
during the domain exploration process, do not have their types updated
(e.g. Animal vs. Herbivores and Carnivores).

3. Inconsistencies due to collaboration: when multiple domain experts col-
laborate in the definition of the models, multiple types representing the
same concept can be used (e.g. Doctor vs. Veterinarian).

4. Omissions: elements can be left untyped especially when models become
large as it is easier to overlook some of the elements.

The trade-off between formality and flexibility can possibly result in a better
domain understanding by language engineers, and eventually to a higher qual-
ity language. Bottom-up metamodelling is an iterative process, since different
versions of metamodels and exemplar models are continuously evolved in an
interleaved manner until the final version of the metamodel is obtained [1].

The contribution of this paper is a tool-supported approach for eliminating
type omission errors (see error labelled “Omissions” above) from flexible models.
Currently such errors are eliminated manually by language engineers by selecting
an appropriate type from a set of possible types. That means, that if in the
draft metamodel there are N different concrete types, the language engineer has
N options for each untyped element. However, this approach does not benefit
from information that exists in the draft metamodel and that could possibly
help in reducing the number of possible types for a specific node. For example,
if in the metamodel it is defined that nodes of type “A” can only be connected
with nodes of type “B” then if an untyped node is connected with a node of
type “B”, it can be inferred that the type of the missing node is type “A”. An
advantage of that second approach is that the search space for the possible types
suggested to the language engineer can be reduced from N to M, where M ∈
[1,N], from which the engineer has to select the correct one. In this work, the
intended meaning of the “correct type” is the type that the engineer envisioned
when drawing the specific element in the example model.

Our proposed approach does not require a metamodel that is refined to fol-
low the best practices or patterns proposed for metamodel development. The
only requirement is that the metamodel must include all the types and the re-
lationships that are present in the example models. The term “draft” which
characterises the metamodels needed as part of this approach implies firstly
the optional need of having metamodelling best practices applied to the meta-
model. Secondly, it can be “draft” in terms of not being a final one that covers
all the concepts of the domain, but an intermediate one that covers a subset of
the concepts, as soon as these are the only concepts appearing in the example
models. This draft metamodel, following the iterative flexible MDE principles,
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should reach a final version that covers all the envisioned concepts and relation-
ships. Related to that, it is necessary to highlight that our proposed approach
focuses only on the inference of the types of the untyped nodes in the example
models created (or evolved) as part of a flexible MDE approach (see ”Example
models definition” phase in Figure 1). The way that the draft metamodel is
inferred (or evolves) is outside the scope of this work and it is an interesting
area of future research; the draft metamodel should fulfil the aforementioned
requirement, though.

In previous work [10, 11], an approach to tackle the error of type omissions
was proposed. The algorithm, that is based on Classification and Regression
Trees (CART), is trained on the elements of the example models only, trying
to identify similarities based on different sets of criteria and predict the types
of untyped nodes without requiring the existence of a metamodel. This work
contributes a novel approach in addressing the challenges associated with type
omissions, but this time taking into account a draft metamodel constructed by
language engineers, using constraint programming principles for suggesting the
possible types. More specifically, the syntax and the constraints defined in the
draft metamodel are automatically transformed to a set of facts and rules that
are then applied to the example models to reduce the number of possible types
of untyped nodes. Beyond the requirement for a metamodel, another important
difference with the previous approach is the fact that in this work, the correct
type for each node is always included in the set of suggested types. In the
previous work, the suggested type is not guaranteed to be the correct one. A
trade-off for that, is the fact that there might be more than one possible types
suggested for each node while in the previous work there was always one type
returned, not always the correct one though.

The rest of this paper is structured as follows. Section 2 includes a brief
review of a specific flexible modelling approach, Muddles [3], which is based
on GraphML and is used as a proof of concept for the proposed approach and
the experimentation. In Section 3 the approach is presented. In Section 4, an
empirical evaluation of the performance of the proposed approach, is conducted.
The results of running the experiments are discussed in Section 5, along with
threats to experimental validity.1 In Section 6, related work in the field of flexi-
ble modelling, type inference and constraint programming in MDE is presented.
In Section 7 we conclude the paper and outline plans for future work.

2. Background

In our work we use the Muddles approach [3] for sketching model examples.
The Muddles approach proposes the use of GraphML compliant tools such as
yEd2 for the definition of model sketches. More particularly, the domain engi-

1The algorithms, the experimentation data and the results along with instructions can be
found at http://www.zolotas.net/type-inference-cp/

2The yEd editor can be downloaded from http://www.yworks.com/en/products_yed_

about.html
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neer can use simple drawing editors to express example models of an envisioned
Domain-Specific Language (DSL). Using simple drawing editors to express the
domain concepts increases the participation of the domain experts as it requires
no (or minimum) training while it allows them working with tools that they
are already familiar with [1, 2]. The drawing produced, called a muddle, can be
consumed by model management suites, like the Epsilon platform [9], to support
MDE activities (e.g. queries, transformations) enabling the language engineer
to experiment with the models, gain better understanding and decide they are
fit for purpose.

Figure 2: An example Zoo diagram

An example of such a muddle is shown in Figure 2. In this example, the
intention of the language engineer is the creation of a simple DSL for defining
Zoos. The process starts with the definition of example models of this envi-
sioned DSL by the domain experts. The language engineer can then annotate
types and typing information (e.g. properties) for each node. This drawing can
be then consumed by model management programs that can be written in par-
allel to check if it fulfils the needs of the engineer and expose more features of
the language, if any. In contrast to related work [1], shapes and other graphical
characteristics of each node are not bound to types. For example, in the drawing
of Figure 2, elements of type “Lion” are expressed using rounded rectangles, the
same shape that is used to define elements of type “Tiger”. Moreover, elements
of the same type can be expressed using different shapes, for instance two dif-
ferent elements of type “Lion” can be expressed using the rounded rectangle for
one of them and a circle for the second. By doing so, the domain expert is not
constrained by a concrete syntax and can use any shape and arrow available
from the tool’s palette to express herself freely.

Types and type-related information for each element are defined using cus-
tom GraphML properties3. This is an extensibility mechanism provided by
GraphML to support attaching arbitrary key-value information to graph ele-
ments. A short description and examples for each custom property is given
below. More details on these properties can be found in [3].

3YEd’s manual on custom properties can be found in http://yed.yworks.com/support/

manual/properties.html/
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Table 1: Element properties (based on Table taken from [3])

Extension For Description Example
Type Node,

Edge
The type of the element Lion, Doctor < Person

(< denotes the extend
relationship)

Properties Node,
Edge

Descriptors and values
for primitive attributes of
nodes/edges

String name = Jenny,
Integer age = 25

Default Node,
Edge

The label of the
node/edge

name, label

Source role Edge Descriptor of the role of
the source end of the edge

source, sourceNode

Target role Edge Descriptor of the role of
the target end of the edge

target, targetNode

Role in source Edge The role of the edge in its
source node

patient 0..5, tamer 1

Role in target Edge The role of the edge in its
target node

carer *, employee *

It is important to mention here that the proposed approach is not bounded
with the Muddles approach, which is only used as proof of concept and for
experimentation purposes, but can be adapted to and used in principle with
any other flexible modelling approach which fulfils the following minimal set of
requirements:

• allows users to assign types to nodes and provides a mechanism to extract
these types

• provides a mechanism to allow the extraction of the source and target
nodes of the edges in the example models

3. Proposed Type Inference Approach

3.1. Overview of the Approach

In this section the proposed approach for type inference in flexible MDE is
presented. An overview is given in Figure 3.

The process starts with the language engineers having example models drawn
using a flexible modelling approach (i.e. muddles in this scenario) to facilitate

the process of defining the DSL they are interested in (step 1 ). This may in-
volve continuous changes to the example models, after which enough knowledge
is acquired for the production of a first draft version of the DSL’s metamodel

(step 2 ). The example models due to the lack of editors that are based on
pre-defined metamodels (see Section 1) may have nodes that are left untyped.
At this stage, the metamodel might be a partial one, that only describes the
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Figure 3: An overview of the proposed approach.

concepts that are defined in the example models. Thus, this approach works
under the Closed World Assumption (CWA) [12]. This means that at each it-
eration the inference algorithm can only suggest types that already exist in the
metamodel and not introduce new types that might be more relevant but do not
exist in the metamodel. The language engineer may want to continue working
on the example models by introducing new or evolved concepts. This is an iter-
ative process: new concepts can be introduced in the example models, and the
metamodel could be updated until a final version is ready. During each itera-
tion, when a stable but incomplete metamodel is defined, the proposed approach
can be used to automatically assess the example models and the metamodel.
As a result, it can provide suggestions for the nodes that were left untyped to
facilitate the engineers having complete models so they can easier proceed to the

next iteration. This is done in step 3 as shown in Figure 3. More specifically, a
custom-made script analyses the example models and the draft metamodel and
produces a set of constraints. This auto-generated file (an example is shown in
Listing 1) can be consumed by a constraint solver (e.g. ECLiPSe [13]) which

suggests the possible types for each node (step 4 ). More details about the
Constraint Satisfaction Problem (CSP) algorithm are given in Section 3.2.

Having the type suggestions generated, the language engineer can pick the
correct type from the suggested (if there is more than one) and assign it to
the node. The best-case scenario is to suggest a single type to the language
engineer. However, this is not always possible, as several candidate types may be
applicable. In that case, having the least number of alternative type suggestions
is desirable.

A number of factors can affect the number of proposed types of an untyped
node. Some of them depend on the metamodel, such as the number of types
(less is better), the multiplicity constraints of association ends (tighter is better)
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or the relationship between inheritance hierarchies and associations (it works
best when the classes participating in associations have few subclasses). Other
factors depend on the specific model, such as the degree of untyped nodes and
their adjacent nodes (more edges is better) or the location of untyped nodes
within the model (it works best when untyped nodes are not adjacent).

As described above, the approach relies on the assumption that the language
engineers have acquired enough knowledge from the example models to come up
with a draft metamodel that describes the envisioned DSL. Thus, it is important
to highlight, that in contrast with our approaches presented in [10] and [11], this
work requires the existence of a tentative version of a metamodel.

3.2. Formalisation of the CSP

In this section we describe how the type assignment problem is formalized
as a Constraint Satisfaction Problem (CSP). A CSP is characterized by three
elements:

1. The set of variables involved in the problem.

2. The domain of each variable, i.e. the set of potential values it can take.

3. The constraints over the variables that define which value assignments are
valid.

A solution to a CSP is an assignment of values to variables such that (a) each
variable is given a value within its domain and (b) all constraints are satisfied by
the assigned values. Depending on the CSP, there may be no solution (unfeasible
problem), a single solution or more than one.

A CSP describes a problem declaratively, without considering how the so-
lution will be computed. Constraint solvers that compute solutions to CSPs
typically operate using backtracking-based search: at each step, one variable is
considered and a legal value from its domain is selected, backtracking to previous
variables if there are no feasible values available. This generic search procedure
can be fine-tuned by defining two heuristics: (a) how the next variable to be
assigned should be assigned next and (b) which value from its domain is selected
next.

Furthermore, search can be made more efficient by using optimizations such
as propagation (i.e. use partial assignments to remove unproductive values
from domains of unassigned variables) or backjumping (i.e. reconsider several
decisions in each backtrack). These features are provided in most state-of-
the-art constraint solvers and, hence, these optimizations do not need to be
implemented manually in the definition of each CSP.

Considering these preliminaries, type assignment in the flexible modelling
approaches described in previous sections can be formalized as the following
CSP, as described in Step 1 of Algorithm 1:

1. Variables: There is one variable per untyped node in the model, repre-
senting the type of that node (line 4).
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2. Domain: Untyped objects may be assigned any non-abstract type in the
metamodel. Thus, the domain of each variable is the set of non-abstract
types (line 6).

3. Constraints: The edges that connect nodes define some restrictions on the
valid type assignments (lines 8-12):

(a) All edges must belong to an association defined in the metamodel
(line 9), i.e. the types of source and target nodes must be compatible
with some association.

Formalization: Let 〈obj1, obj2〉 be an edge between two ob-
jects obj1 and obj2 in the model M . Any object obj is an
instance of class type(obj) in the metamodel MM . Pairs of
classes may be related through associations, e.g. 〈tA, tB〉, or
inheritance hierarchies. Let super(t) denote the set of direct
superclasses of a class t and let ancestors(t) denote the set
defined inductively as follows: t ∪ ancestors(super(t)).
Given an edge e and an association as, the edge is type-
compatible with the association if the following holds:

compatible
(
e = 〈obj1, obj2〉, as = 〈tA, tB〉

)
:=

(t1 = type(obj1)) ∧ (t2 = type(obj2)) ∧
(tA ∈ ancestors(t1)) ∧ (tB ∈ ancestors(t2))

Then, the constraint can be expressed as follows:

∀edge ∈M : ∃assoc ∈MM : compatible(edge, assoc)

(b) Edges must respect the multiplicity constraints of associations de-
fined in the metamodel (line 12), i.e. the number of edges corre-
sponding to a given association must be between the lower and upper
bound.

Formalization: Let ltas (respectively utas) denote the lower
(upper) bound on the multiplicity of role t in association as.
Let from(obj, as) (respectively, to) denote the number of
edges in the model M that have object obj as a source (resp.
target) and are compatible with association as:

from(obj, as) :=
(
#e = 〈obj, obj′〉 ∈M : compatible(e, as)

)
to(obj, as) :=

(
#e = 〈obj′, obj〉 ∈M : compatible(e, as)

)
Then, the constraint can be expressed as follows:

∀obj ∈M : ∀as = 〈tA, tB〉 ∈MM :
(ltAas ≤ from(obj, as) ≤ utAas) ∧ (ltBas ≤ to(obj, as) ≤ utBas )

9



Algorithm 1 Computing feasible types

1: {Step 1: Construct the CSP}
2: N ← set of untyped nodes in Model
3: T ← set of non-abstract types in MetaModel
4: V ars← N {Define variables}
5: for all v ∈ V ars do
6: Domain(v)← T {Define domains}
7: Constraints← ∅ {Define constraints}
8: for all edge ∈Model do
9: Constraints← Constraints∪compatibleAssociation(edge,MetaModel)

10: for all node ∈Model do
11: for all association ∈MetaModel do
12: Constraints = Constraints ∪multiplicityBounds(node, association)
13:

14: {Step 2: Find feasible types by iteratively solving the CSP}
15: for all v ∈ V ars do
16: for all d ∈ T do
17: Feasible[v,d] ← false
18: for all v ∈ V ars do
19: for all d ∈ Domain(v) such that Feasible[v,d] = false do
20: solution← solveCSP (V ars,Domain,Constraints ∪ (v = d))
21: if solution exists then
22: for all v′ ∈ V ars do
23: Feasible[v′, value(v′, solution)] ← true
24: return Feasible

3.3. Solving the CSP

A solution to this CSP is a type assignment that conforms to the metamodel.
However, we are not interested in a single type assignment, but rather the set
of potential types for each object for which there is a valid type assignment.
Therefore, we will need to solve this CSP several times, once per each pair
〈variable, type〉. The existence of a solution to this CSP means that the type is
eligible for that variable. The step 2 of Algorithm 1 describes this procedure.

To avoid redundant computations, if a pair 〈variable, type〉 has already
appeared in the solution to any of the previous CSPs (line 23), then it can be
skipped (line 19) as we already know that this type is eligible for that variable.
Thus, considering a model with n untyped objects and a metamodel with m
non-abstract types, the number of CSPs that need to be solved in the worst-
case can be calculated as follows. The total number of 〈variable, type〉 pairs is
n · m. The solution to the first CSP will yield one potential type assignment
per variable, i.e. n pairs. Hence, Algorithm 1 will require solving at most
(n ·m)−n+ 1 CSPs. The search space of each CSP has nm potential solutions,
even though in practice the majority of CSPs can be solved without exploring
the entire search space.
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This algorithm has been implemented in the ECLiPSe [13] Constraint Logic
Programming System, which uses a prolog-based syntax to define and solve
CSPs. The finite domain (fd) library has been used as the underlying constraint
solver.

1 // Informat ion from the metamodel
2 // Re la t i ons and c a r d i n a l i t i e s between types
3 can have ( zoo , animal , 0 , 5 00 ) .
4 . . .
5 can have ( l i on , tamer , 1 , 1 ) .
6
7 // Every c l a s s ( ab s t r a c t and conc re t e ) i s an ob j e c t in the

problem
8 ob j e c t ( zoo ) .
9 . . .

10 ob j e c t ( l i o n ) .
11
12 // Def ine which c l a s s e s are conc r e t e
13 conc re t e ( zoo ) .
14 . . .
15 conc re t e ( l i o n ) .
16
17 // Inhe r t i an c e r e l a t i o n s h i p s
18 d i r e c t ( tamer , person ) .
19 . . .
20 d i r e c t ( t i g e r , animal ) .
21
22 // Informat ion from the example model
23 // The type o f each node . I f not known then ” ” i s used
24 i s t y p e (1 , zoo ) .
25 . . .
26 i s t y p e (4 , ) .
27
28 // Links between the nodes
29 has a (1 , 2 ) .
30 . . .
31 has a (5 , 6 ) .

Listing 1: An example file containing the prolog-based syntax automatically generated from
the metamodel and example model shown in Figure 2

Listing 1 shows a (partial) example of the generated file for the metamodel
and the muddles presented in Figure 2 containing the prolog-based constraints.
In lines 3-5 the relationships (both references and aggregations are treated the
same way) that appear in the metamodel are listed with the cardinalities. For
technical reasons, the many (*) upper limit is set to the value 500 but this could
change to anything that it is thought to be a large number for each example. In
lines 8-10 all the classes (both abstract and concrete) are instantiated as objects
in the problem while in line 13-15, concrete classes are defined. In lines 17-19
the inheritance relationships between the classes are defined. This is all the
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information needed from the metamodel. In lines 24-26, each node is assigned
with a type using its distinctive identifier. If the type is unknown, meaning that
the node has been left untyped, then an ” ” underscore is used, prompting the
algorithm to assign any valid type to this node. Finally, the links between the
nodes in the muddle are defined in lines 29-31. The links are defined using the
unique ids of the nodes.

4. Experimental Evaluation

This section presents the experiment run to evaluate the proposed approach.
The following are the research questions considered through the experiment:

• RQ1: Is there a reduction in the size of the set of candidate types when
using the proposed approach? How large is that reduction?

• RQ2: Is there a reduction in the size of the set of candidate types when
using the proposed approach if isolated nodes are not taken into account?
How large is that reduction?

As described in Section 1, when the proposed approach is not deployed the set
that includes the candidate types for each untyped node is the number of total
concrete types available in the metamodel. The types included in this set will
be interchangeably called as “possible” or “candidate” types in this work as
they represent the types that a node can take. For instance, in the Zoo example
of Figure 3 the number of candidate types for each untyped node is 5, which
is the number of concrete types that appear in the metamodel. The purpose
of the proposed approach is to prune the size of this set of types by applying
the constraints that the draft metamodel includes. This way the approach helps
language engineers to select the correct type from smaller sets. All the candidate
types are “correct” in terms of not violating the metamodel but we remind the
reader here that in our work the term “correct type” is defined as the one that
the drawn element actually represents (i.e. the type that the engineer had in
mind when drawing the specific node).

Taking all the above into account, the control value for our experiment (i.e.
the value that the results of our approach compare with) is the total number
of concrete types in the metamodel. In order to assess the performance of
the proposed approach and compare it with the control value we introduce the
following metric:

AverageSavingsPercentagePerMuddle =

∑n
i=1(1− TSTi

TCT )

n
× 100 (1)

where n is the number of nodes that are left untyped in the example model, TST
stands for the Total Suggested Types returned by the CSP algorithm for the
i-th node and TCT stands for the Total Concrete Types in the metamodel. In
the Zoo example of Figure 3, this value is 73.3% as the individual savings values
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for nodes 4 and 7 are 0.8 (1 - (1/5)) and for node 6 is 0.6 (1- (2/5)). The highest
the value, the better the performance of the approach as this is interpreted as
the reduction in effort required by the engineer to pick the correct type of each
node. A value of 0 means that the algorithm offered no savings at all, as the
suggested types are equal to all the concrete types in the metamodel (i.e. the
size of the set containing the candidate types remained the same after applying
the proposed approach).

The experiment, an overview of which is shown in Figure 4, aims in answer-
ing the above research questions. The results of running the experiment are
presented in Section 5.

Figure 4: An overview of the experimentation process.

For the purpose of evaluation we applied the proposed approach to a num-
ber of randomly generated models, each of which is instance of one of the ten
metamodels that were selected in this experiment. The metamodels are those
used in the previous work [10], [11]. These metamodels represent the draft/in-
termediate metamodel that the language engineers came up with from sets of
muddle drawings. For each of the metamodels, 10 models were randomly gen-

erated using the Crepe approach proposed in [14] (step 1 in Figure 4). These
100 randomly generated models are of varying size. The values of the attributes
of the different classes of each model were randomly picked from a pool of char-
acters/integers, as they do not affect the performance of the proposed approach.
The fact that there is no muddles corpus available led us to the decision of using
synthetic muddles based on random generated models. Any threats to validity
of that decision are discussed in Section 7.

Step 2 consists of the process of transforming these models into muddles
using a custom build model-to-text transformation. At this point, the con-
structed muddles contain nodes that have their types assigned.

In order to simulate the scenario of having muddles with untyped nodes,
a script parses the GraphML files and randomly deletes types of nodes (step

3a and 3b ). It is of interest to identify whether the proportion of untyped

nodes affects the performance (in terms of the ability to reduce the number of
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proposed types) of the approach. Thus, 7 different sampling rates, from 30%
to 90%, were selected. A 30% sampling rate means that 30% of the nodes had
a type assigned to them, leaving the rest 70% being the set of the nodes that
are left untyped. The selected rates are the same as the ones used in [10] and
[11]. In order to control for sampling bias which can affect the results positively
or negatively (e.g. the type of the nodes picked for a simulated type deletion
are those whose type can be easily predicted), the type deletion was performed
10 times for each sampling rate for each muddle. At the end of this step 7,000
different muddles were created (10 metamodels x 10 models = 100 x 7 sampling
rates = 700 x 10 sampling repetitions = 7,000). In addition, we considered the
scenario where some nodes are not only left untyped but are also left isolated
(i.e. are not connected with any other node). Our approach cannot currently
infer the type of such orphan nodes: there is no type assigned to them and they
have no relationship with any other node on the diagram. In the future we plan
to use other structural features for the inference of orphan nodes such as number

and type of attributes. For the second experiment (step 3b ), these nodes were

removed from the muddle before commencing the prediction mechanism.
As discussed in Section 3, a file that contains the constraints associated

with a model-metamodel pair is used by the ECLiPSe [13] solver to identify

the possible types for each untyped node. In step 4 the ECLiPSe file for
each of the 7,000 muddles (and the 7,000 muddles with no orphan nodes) is
automatically generated. These files are consumed by the ECLiPSe solver (step

5 ) and the results are stored in a text file. A single text file is generated for
each muddle. The text file contains the mapping between the id of each node
and the set of all the suggested types (e.g. 1: A, B, C where 1 is the unique id
of the node and A, B, C are the possible types returned).

The performance of the approach is calculated by comparing the correct type
of each node and the types that are contained in the set of suggested nodes (step

6b ). The correct type of each node is kept in the text file before commencing

the type deletion (step 6a ) to facilitate the comparison. The measures that

are used in this work to assess the performance of the approach are discussed
in the next section (Section 5) along with the results.

5. Results

Table 5 summarises the corpus of metamodels and the generated models
used for the experiment. More specifically, the number of concrete types for
each metamodel is given (column “#Types”). The minimum and maximum
number of instantiated classes for the 10 generated models of each metamodel
are provided in columns “Min” and “Max” respectively, followed by the aver-
age number of elements in these 10 models (column “Average #Elements in
instances”), for both the experiments with and without including the orphan
nodes. As shown in the data, the smallest metamodel is the one used to describe
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a university professor, consisting of 4 concrete types. The largest metamodel,
is that of describing Wordpress CMS websites with 19 different metaclasses.

Table 2: Data summary table

With Orphans No Orphans

Model Name #Types Min Max Average Min Max Average

Professor 4 46 71 56.3 37 54 45.2

Chess 5 41 74 57.8 18 40 28.9

Zoo 5 24 76 35.8 22 63 31.4

Ant Scripts 6 40 79 62.2 38 69 53.9

Use Case 7 41 80 52.7 35 68 45.6

Conference 7 43 80 64.5 36 61 50.7

Bugzilla 7 41 80 59.6 22 55 36.4

Cobol 12 23 30 25.9 22 30 25.2

BibTeX 14 40 79 64.4 31 58 47.2

Wordpress 19 22 45 35.7 19 42 31.9

5.1. Quantitative Findings

Table 3 presents the results of the average total savings for each of the 10
metamodels, for the 7 different sampling rates. The results are averaged as for
each metamodel there were 10 random models generated and for each sampling
rate the type deletion was performed 10 times to avoid the case of a lucky or
an unlucky sampling. The first row for each metamodel (entries that are not
in italics) includes the results for the scenario where the orphan nodes were
taken into account and thus there results give answer to research question RQ1.
For example, the highlighted value of 67.38 means that the average savings
percentage for 100 example models (10 models x 10 type deletion sessions for
each) which have 60% of their types known for the Use Case metamodel is
67.38%, if the orphan nodes are taken into account. As an answer to the research
question RQ2 the results for the “no orphans” scenario are also given in Table 3
typed in italics. Thus, for the “no orphans” scenario the effort saving for the
above example is 77.57% (highlighted in Table 3). Three metamodels are marked
with asterisks. These are the metamodels for which not all the 700 runs were
finished due to large statespace. The reasons behind that and more details are
explained in Section 5.2.

Two conclusions can be extracted from the results shown in Table 3. Firstly,
the savings percentage is not correlated to the size of the metamodel (Orphans:
ρPearson=0.34, P=0.33, No Orphans: ρPearson=0.12, P=0.71). There are large
metamodels (e.g. Wordpress, Cobol) where the scores are high while in others
(e.g. BibTeX) the score is significantly lower. In the same manner, there are
small metamodels (e.g. Professor, Zoo) where the savings are high while in
other small metamodels (e.g. Chess) the results are lower. The same applies
to the mid-sized metamodels (e.g. Ant Scripts, Use Case and Conference vs.
Bugzilla). Secondly, the savings are not affected by the sampling rate. That
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Table 3: Average saving results table

Average Total Savings Percentage for
Different Sampling Rates

Model Types 30% 40% 50% 60% 70% 80% 90%

Professor 4
63.18
66.28

63.08
66.39

62.92
66.49

63.11
66.31

63.35
66.31

63.32
65.88

63.12
67.46

Chess 5
39.95
80.00

39.78
80.00

40.33
80.00

40.03
80.00

40.10
80.00

41.60
80.00

38.48
80.00

Zoo 5
69.05
73.06

68.38
73.18

68.90
73.14

68.54
72.99

69.25
73.67

68.75
73.52

69.59
73.88

Ant* 6
60.57
70.91

62.29
71.32

61.90
71.77

63.08
71.95

62.54
72.35

62.61
72.95

61.97
72.00

Use Case 7
67.34
77.67

67.35
77.57

67.89
77.73

67.38
77.57

67.35
77.48

67.32
77.35

67.64
77.96

Conference 7
67.11
74.03

67.78
73.98

67.27
73.54

67.76
73.69

67.80
73.92

66.87
74.11

67.23
74.26

Bugzilla 7
19.67
31.82

18.98
32.46

19.89
32.67

20.19
31.22

19.67
31.74

19.21
30.19

18.93
31.10

Cobol* 12
75.28
75.67

75.69
76.21

75.72
76.80

76.19
76.71

76.04
77.36

75.80
77.38

78.34
76.75

BibTeX 14
49.28
44.34

49.01
44.23

49.47
44.75

48.85
43.88

49.74
44.54

48.76
43.35

48.70
44.56

Wordpress* 19
79.12
88.05

80.18
89.93

80.76
90.36

82.07
90.85

81.90
91.17

80.23
91.18

81.83
91.45

means that no matter the number of nodes that were left untyped, the perfor-
mance remains the same. This is an expected result as the CSP algorithm used
is not based on machine learning techniques, thus the amount of knowledge that
it is available (i.e. the numbed of known nodes) does not affect its performance.
This behaviour was identified in our previous work ([10], [11]) where there was
a significant improvement in the prediction scores in bigger sampling rates.

As described in Section 3, one of the differences of this work with the previous
is that the algorithm returns a set of suggested types for each node rather than
a prediction for the most probable one. The trade-off is that the correct type
is guaranteed to be in the list of the suggested types. In the “with orphans”
experiment, there were about 155,000 nodes left untyped (about 109,000 for
the “no orphans” scenario). In all these cases, the set of the candidate types
included the correct type verifying the previous argument. Related to that, it
is of interest to assess how many types are returned as suggestions for each of
the untyped nodes. Figure 5 presents a histogram to help explore this. For 38%
of the untyped nodes in the “with orphans” scenario (RQ1) there is exactly
one type returned (for the “no orphans” scenario - RQ2 - this is 47%). This is
very important because for more than the one third of the nodes this approach
automatically predicted correctly the type of the node without the need of
verification or extra help by the language engineer. Although in previous work
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80% of the node types were predicted correctly, there was no guarantee about
the correctness of the prediction meaning that the language engineer had to
verify the prediction manually for each single node.

In addition, in the same histogram one can see that for 24% of the untyped
nodes the language engineer has to select between 2 types reducing the amount
of effort needed to a minimum (for the “no orphans” scenario this value is also
24%).
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Figure 5: Histograms for the number of suggesting types for each node in the experiment that
is left untyped
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5.2. Qualitative Findings

The time needed for the algorithm to predict the possible types for all the
missing nodes in an example model takes from a few milliseconds up to a few
seconds. A few experiments for three of the metamodels were not completed
in reasonable time. Table 4 presents the number of experiments that were not
finished and thus not included in the results. In all the 6 cases, the unfinished
experiments are mostly part of the 30% or 40% sampling rate simulations. Any
threats to validity are discussed in Section 5.3.

Table 4: Number of unfinished experiments.

Metamodel With Orphans No Orphans
Ant Scripts 86 13

Cobol 3 2
Wordpress 44 3

In the following, we discuss the causes of these timeouts. The execution
time of Algorithm 1, depends on the size of the model and the associations
and multiplicity constraints. Regarding model size, considering a model with n
untyped nodes and a metamodel with m concrete types, the number of potential
type assignments grows exponentially, in the order of nm. Thus, the number
of untyped nodes and types has an impact on the efficiency of the solver. This
is why the majority of experiments with a timeout are those with the highest
rate of untyped objects (e.g. scenarios like the 30% or 40%). Furthermore, the
fact that the number of CSPs that needs to be solved in Algorithm 1 grows
with the size of the (untyped elements in the) model and (concrete types in the)
metamodel makes the impact of the problem size even more significant.

Nevertheless, there is another factor which plays a larger role in the effi-
ciency of the solver: the number and restrictiveness of the constraints. This
happens because the solver takes into account the constraints when searching
for a solution, using them to prune the search space. Hence, in CSPs where
constraints are very tight (e.g. tight bounds for multiplicities), the solver will
be able to discard large sections of the search space without needing to explore
them. Conversely, in CSPs with few constraints or where constraints are loose,
most solutions will satisfy the CSP and the solver will again complete the search
quickly.

However, there is a certain threshold between those two extremes where solv-
ing the CSP becomes more complex and requires exponential runtimes. Within
this threshold, constraints discard many solutions, forcing the solver to evaluate
many candidates but at the same time pruning is not effective enough to avoid
exploring most of the state space. This phenomenon is well known and has been
observed empirically in random CSPs, i.e. CSPs with random constraints. For
restricted forms of random CSPs [15, 16, 17], it is possible to characterize this
threshold in order to detect “hard” CSPs a priori. Still, these results have no
generalization to arbitrary CSPs so there is no available method to predict the
execution time of the solver for a specific CSP.

18



5.3. Threats to Validity

As discussed in Section 5.1, the effort saving results are not affected by the
number of missing types. In addition, the number of the missing experiments
are not of a significant amount for 5 out of 6 of cases where the experiments
did not finish within reasonable time (with the exception of the “with orphans”
scenario for the Ant Scripts metamodel). Thus, we do not have reasons to
believe that the experiments that did not complete affect the validity of our
experimental evaluation.

In the cases where a class is extended by one or more other classes we need
to accumulate the existence of this class’ children in the drawing to check if
its upper and lower cardinalities are fulfilled. For instance, in the example of
Figure 3, each element of type “Doctor” must treat no more than 5 elements of
type “Animal”. The constraint programming algorithm aggregates the instances
of “Lion” and “Tiger” that each “Doctor” is connected with to validate if the
constraint for the “Animal” class is fulfilled. However, the way the example
models are represented in our algorithm does not make it feasible to include a
corner case where a class/type is connected with the parent class and in parallel
it is also connected with one of its children with a reference that has fixed
cardinalities.

An example is shown in Figure 6. This corner case is found in two types
in total in our experiments (one type in the Cobol metamodel and one type in
the Wordpress metamodel). For this corner case, the Muddle-to-Text generator
that produces the prolog constraints and commands raises the fixed multiplicity
constraint for the class-to-parent reference to many (*). This works against
the effectiveness of the proposed approach as suggested types that normally
would be rejected due to this multiplicity constraint are included in the list of
suggested types decreasing the savings effort figures presented in the results of
the experiment.

(a) Original cardinality. (b) Changed cardinality.

Figure 6: Example of a corner case scenario.
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6. Related Work

Various researchers advocate the need for bottom-up or example-driven
metamodelling. In [18], the authors argue over the usefulness of bottom-up
metamodelling and they identify a set of challenges in using such an approach.
Their hypothesis is that bottom-up metamodelling can potentially bridge the
symmetry of ignorance gap [19] in DSL development, i.e. the fact that domain
experts do not usually possess language development expertise, and language
engineers do not have domain knowledge. Similarly, in [6] the authors advocate
the use of explicit model examples for improving the communication between
language engineers and domain experts during the DSL development process.

One of the cornerstones of bottom-up metamodelling is metamodel infer-
ence. A number of tool-supported approaches, which provide this functionality,
have been proposed in the MDE literature. In [7, 1], an interactive approach
for defining metamodels is proposed. Its main goal is to enable the collabora-
tion of domain experts with language engineers during the DSML development
process. This approach is supported by a collaborative software tool, which
performs metamodel induction from model fragments. A domain expert can
specify such fragments either in a sketching tool such as Dia4 or in a compact
textual notation. Model fragments are untyped and they consist of nodes and
relations. Once a fragment is defined, the language engineer can annotate it with
additional information in order to enhance its semantics. Finally, the enhanced
fragments can be consumed by the tool in order to infer the metamodel.

Similarly, in [20] the tool-supported process MLCBD is proposed. This
process consists of three phases. In the first phase domain experts capture
domain knowledge by defining concrete model examples. To do so they use
simple shapes and connectors, which are then annotated with domain-specific
information. This information will then guide the metamodel inference, which
takes place in phase three of the process.

While in the previous works predefined shapes are used for expressing model
fragments, in [8] the author proposes a tool-supported process for the definition
of DSLs, which supports the inference of metamodels from examples expressed
in free-form shapes. Aligned with this work is FlexiSketch [21], which is a tool
mimicking a white board. It allows users to draw free-form shapes and connec-
tions between them. Type annotations can be assigned to the various shapes
and then the tool can infer the metamodel. A sketch recognition algorithm
matches new free-form shapes without typing annotations to existing shapes,
and assigns typing information accordingly.

Clafer [22] is a modeling language with first class support for feature mod-
eling. In [23], the authors use Clafer for example-driven modeling. They argue
that model examples can improve domain comprehension among various stake-
holders. In their approach incomplete models are expressed in Clafer and then
an inference engine uses a metamodel and the initial set of examples in order to

4http://projects.gnome.org/dia/
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derive a set of complete model. To achieve this, the approach takes advantage of
Clafer’s support for variability modeling. Compared to this work, our approach
is more generic, since it does not depend on a dedicated modeling environment.

MARS [24] is another system, which supports metamodel inference. How-
ever, the objective of MARS is not to support example-driven metamodelling,
but to enable metamodel inference from a set of models after migrating or losing
their metamodel. The system relies on a transformation tool, which converts
the models from XML to a domain specific language, and on an inference engine,
which uses grammar inference techniques on the new representation.

The approaches presented so far support metamodel inference for graphical
DSLs. On the other hand, [25] proposes an approach for bottom-up development
of textual DSLs. More particularly, their tool can infer a grammar from a set
of textual examples. These examples are snippets of free text entered in a
dedicated text editor. The grammar inference is based on regular expressions
and lexical analysis.

Although the overall goal of the aforementioned works is similar to ours (i.e.
to support collaboration between domain experts and language engineers during
the early stages of language engineering), their focus is quite different. In these
approaches it is assumed that model examples are correct and complete before
the metamodel inference phase. However, in our work we assume that such
model examples can be incomplete, since their completeness is not enforced by
a modeling tool. Moreover, we assume that the definition of concrete examples
and the metamodel inference is interleaved and one action informs the other.
Therefore, in our work we use a version of a derived metamodel in order to
improve the quality of a set of model examples.

The approach presented in this work tries to address the same issue (i.e. the
problem of type inference in flexible modeling) as the approaches proposed in
some of our previous work ([10], [11]). What differentiates our current approach
is that it returns a set of possible types for an untyped node, and this set always
contains the correct type. The approaches proposed in the past always returns
a single type, and the correctness of this type is not guaranteed. This guarantee
does not come for free though. For the proposed approach to be effective, the
existence of a draft metamodel is required. Finally, the approach proposed
in [11] is based on the concrete syntax of the elements appearing in the example
models: following drawing conventions improves the inference results. However,
domain experts and language engineers may not be interested or ready to express
the concrete syntax of the envisioned DSL, especially at the early stages of the
language development. The approach proposed here does not take into account
the concrete syntax of the language, thus allowing engineers to focus on the
abstract syntax.

Bottom-up metamodelling is only one aspect of the collaboration between
domain-experts and language engineers during the development of DSLs. In [26]
the Collaboro approach is proposed. Collaboro is supported by a dedicated DSL,
which can model collaborations among stakeholders. More particularly, it can
model language change proposals, solution proposals, comments, and rational.
Therefore, this approach provides the necessary infrastructure for managing the
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incremental development process of a DSL.
Examples are used in MDE not only for inferring metamodels but also for

other MDE-related activities. In [27], metamodel well-formedness rules are au-
tomatically inferred from sets of valid and invalid models. The rule inference
is based on genetic programming and the derived rules are in the form of OCL
invariants. Moreover, several Model Transformation By-Example (MTBE) ap-
proaches (e.g. [28, 29, 30, 31]) have been proposed for automatically deriving
model transformation rules. These approaches rely on user defined examples of
input and output models and the inference is based on various techniques such
as metaheuristics, model comparison, and induction. A literature survey, which
summarises the research in this area, is [32].

Another line of related work concerns partial modelling. In the literature
there are different definitions of model partiality. In [33], a partial model is a
system model, in which uncertainty about an aspect of the system is captured
explicitly. In this context, “uncertainty” means “multiple possibilities”; for
example a model element may be present. In contrast to [33], in our work
model partiality means that a model fragment does not need to fully conform
to a metamodel. Certain information such as element types can be missing, and
constraints imposed by the metamodel such as multiplicities can be ignored.
Our notion of model partiality is close to the one of [34] and [35].

More particularly, in [34] the authors propose a diagrammatic, declarative
approach to partial model completion based on category theory. In this ap-
proach rewriting of partial models is used to support both addition and dele-
tion of models elements. Similarly, in [35] the authors use Constraint Logic
Programming (CLP) to assign appropriate values for every missing property in
the partial model so that it satisfies the structural requirements imposed by the
meta-model. The goal of these two approaches is to enable model completion of
partial models in the same way that source code is completed automatically in
the editor of an integrated development environment (IDE). On the other hand,
in our work we focus on providing support for the early stages of language
engineering in a bottom-up metamodelling context.

Apart from model completion, CLP is applied in other MDE scenarios. In
[36], the EMFtoCSP tool is proposed, which is used for the verification of
EMF [37] models annotated with OCL constraints. This tool checks for the
following constraints: strong satisfiability, weak satisfiability, lack of constraint
subsumptions and lack of constraint redundancies. Verification is performed by
translating the EMF model and its accompanying constraints into a constraint
satisfaction problem, which is then solved by a constraint solver. In a similar
manner the UMLtoCSP [38] tool uses CLP for the formal verification of UML
class diagrams.

7. Conclusions and Future Work

In this paper a novel approach to tackle the problem of type omissions in the
emerging domain of flexible MDE is proposed. More specifically, in our approach
partial model examples and their accompanying metamodel are translated into
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a set of constraints, and then the missing typing information are derived by solv-
ing the constraint satisfaction problem. The proposed approach was evaluated
by running an experiment on a corpus of 14,000 randomly generated example
models. We defined a metric that measures the space of possible types for each
node, showing significant improvement in the effort needed to fill the types of
the missing nodes.

At this point our approach returns a set of equally probable type sugges-
tions. In the future we would like to reduce even further the size of this set,
by proposing the most probable types. This can be done in a number of ways.
Firstly, by taking into account the names of different elements, such as the name
of the attributes of the nodes in the example model and the metamodel. In the
future, we plan to include this information to help in the direction of sorting the
suggested types by using string distance/similarity metrics to identify possible
matches or synonyms. Secondly, the work carried out in [10] and [11] could
also be combined with this work to improve the type suggestion as the type
returned from those approaches can be placed at the top of the list of the sug-
gested types. In addition, the Flexisketch’s type inference approach proposed
in [5] and is based on the graphical similarity between the nodes can be also
used to further reduce or sort the set of candidate types produced as a result of
our proposed approach. Moreover, the metaBUP tool presented in [1] could be
combined with our proposed approach for the semi-automatic inference of the
draft metamodel.

Finally, a long term goal is the application of the proposed approach on real
example models which are a result of a flexible MDE approach applied on a
complete project. This way we will be able to evaluate the proposed approach
not only on a single increment, but in more than one iterations that normally
take place in flexible MDE approaches.
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the lightweight verification of EMF models, in: Proceedings of the First
International Workshop on Formal Methods in Software Engineering: Rig-
orous and Agile Approaches, IEEE Press, 2012, pp. 44–50.

[37] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: eclipse mod-
eling framework, Pearson Education, 2008.
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