

Citation for published version

Ed-douibi, H., Cánovas Izquierdo, J.L. & Cabot, J. (2017). Example-driven
web API specification discovery. Lecture Notes in Computer Science,
10376(), 267-284.

DOI
https://doi.org/10.1007/978-3-319-61482-3_16

Document Version

This is the Submitted Manuscript version.
The version in the Universitat Oberta de Catalunya institutional repository,
O2 may differ from the final published version.

Copyright and Reuse

This manuscript version is made available under the terms
of the Creative Commons Attribution Non Commercial No Derivatives
licence (CC-BY-NC-ND)
http://creativecommons.org/licenses/by-nc-nd/3.0/es/​, which permits
others to download it and share it with others as long as they credit you,
but they can’t change it in any way or use them commercially.

Enquiries

If you believe this document infringes copyright, please contact the
Research Team at: repositori@uoc.edu

Universitat Oberta de Catalunya Research archive

https://doi.org/10.1007/978-3-319-61482-3_16
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Example-driven Web API Specification Discovery

Hamza Ed-douibi1(0000-0003-4342-4818), Javier Luis Cánovas
Izquierdo1(0000-0002-2326-1700), Jordi Cabot1,2(0000-0003-2418-2489)

1 UOC. Barcelona, Spain
{hed-douibi,jcanovasi}@uoc.edu

2 ICREA. Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. REpresentational State Transfer (REST) has become the dominant
approach to design Web APIs nowadays, resulting in thousands of public REST
Web APIs offering access to a variety of data sources (e.g., open-data initiatives)
or advanced functionalities (e.g., geolocation services). Unfortunately, most of
these APIs do not come with any specification that developers (and machines)
can rely on to automatically understand and integrate them. Instead, most of the
time we have to rely on reading its ad-hoc documentation web pages, despite the
existence of languages like Swagger or, more recently, OpenAPI that developers
could use to formally describe their APIs. In this paper we present an example-
driven discovery process that generates model-based OpenAPI specifications for
REST Web APIs by using API call examples. A tool implementing our approach
and a community-driven repository for the discovered APIs are also presented.

Keywords: REST Web APIs, Discovery process, OpenAPI, Repository

1 Introduction

Web APIs are becoming the backbone of Web, cloud, mobile applications and even
many open data initiatives. For example, as of February 2017, ProgrammableWeb
lists more than 16,997 public APIs. REST is the predominant architectural style for
building such Web APIs, which proposes to manipulate Web resources using a uniform
set of stateless operations and relying only on simple URIs and HTTP verbs.

Despite their popularity, REST Web APIs do not typically come with any precise
specification of the functionality or data they offer. Instead, REST “specifications” are
typically simple informal textual descriptions [11] (i.e., documentation pages), which
hampers their integration in third-party tools and services. Indeed, developers need
to read documentation pages, manually write code to assemble the resource URIs
and encode/decode the exchanged resource representations. This manual process is
time-consuming and error-prone and affects not only the adoption of APIs but also
its discovery so many web applications are missing good opportunities to extend their
functionality with already available APIs.

Actually, languages to formalize APIs exist, but they are barely used in practice.
Web Application Description Language (WADL) [6], a specification language for REST
Web APIs was the first one to be proposed. However, it was deemed too tedious to use

and alternatives like Swagger3, API Blueprint4 or RAML5 quickly surfaced. Aiming
at standardizing the way to specify REST Web APIs, several vendors (e.g., Google,
IBM, SmartBear, or 3Scale) have recently announced the OpenAPI Initiative6, a vendor
neutral, portable and open specification for providing metadata (in JSON and YAML)
for REST Web APIs.

This paper aims to improve this situation by helping both API builders and API users
to interact with (and discover) each other by proposing an approach to automatically
infer OpenAPI-compliant specifications for REST Web APIs, and, optionally, store
them in a community-oriented directory. From the user’s point of view, this facilitates
the discovery and integration of existing APIs, favouring software reuse. For instance,
API specifications can be used to generate SDKs for different frameworks (e.g., using
APIMATIC7). From the API builder’s point of view, this helps increase the exposure
of the APIs without the need to learn and fully write the API specifications or alter the
API code, thus allowing fast-prototyping of API specifications and leveraging on several
existing toolsets featuring API documentation generation (e.g., using Swagger UI8) or
API monitoring and testing (e.g., using Runscope9).

Our approach is an example-driven approach, meaning that the OpenAPI specifi-
cation is derived from a set of examples showing its usage. The use of examples is a
well-known technique in several areas such as Software Engineering [8, 10] and Auto-
matic Programming [5]. In our context, the examples are RESTWebAPI calls expressed
in terms of API requests and responses.

We follow a metamodeling approach [1] and create an intermediate model-based
representation of the OpenAPI specifications before generating the final OpenAPI JSON
Schema definition10 for two main reasons: i) to leverage the plethora of modeling tools
to generate, transform, analyze and validate our discovered specifications (as existing
JSON schema tools are limited and may produce contradictory results [12]); and ii)
to enable the integration of APIs into model-driven development processes (for code-
generation, reverse engineering,..). For instance, we envision designers being able to
include API calls in the definition of web-based applications using the Interaction Flow
Modeling Language (IFML) [2].

The remainder of this paper is structured as follows. Section 2 show the running
example used along the paper. Section 3 presents the overall approach and then Sections
4, 5 and 6 describe the OpenAPI metamodel, the discovery process and the generation
process, respectively. Section 7 describes the validation process and limitations of the
approach. Section 8 presents the related work. Section 9 describes the tool support, and
finally, Section 10 concludes the paper.

3 http://swagger.io/
4 https://apiblueprint.org/
5 http://raml.org/
6 https://openapis.org
7 https://apimatic.io/
8 http://swagger.io/swagger-ui/
9 https://www.runscope.com/
10 https://github.com/OAI/OpenAPI-Specification/blob/master/schemas/v2.0/
schema.json

a) API call

b) Response

{

yswaggery:y2T0yG

yhosty:ypetstoreTswaggerTioyG

ybasePathy:y/v2yG

ypathsy:{

y/pet/{petId}y:{

ygety:{

yparametersy:[{ynamey:ypetIdyGyiny:ypathyGTTT}]G

yresponsesy:{y200y:yschemay:{yCrefy:yj/definitions/Pety}GTTT}G

}GTTT

}GTTT

}G

ydefinitionsy:{

yPety:{

ytypey:yobjectyG

ypropertiesy:{

yidy:{

ytypey:yintegeryGTTT}G

ycategoryy:{yCrefy:yj/definitions/Categoryy}G

ynamey:{

ytypey:ystringyGTTT}G TTT

}GTTT}G TTT}}

Status: 200

Body:
{

yidy: 123G

ycategoryy: {

yidy: 1G

ynamey: ydogsy

}G

ynamey: ydoggieyG

yphotoUrlsy: [

yhttp://exampleTcomy

]G

ytagsy: [

{

yidy: 1G

ynamey: yblacky

}

]G

ystatusy: yavailabley

}

GET http :// petstoreTswaggerTio /v2 /pet/123

c) Open API definitionc) OpenAPI specification

httpMethod Protocol :// host basePath relativePath ? query

Fig. 1. API call example of the Petsore API: (a) the request, (b) the response, and (c) an excerpt
of the corresponding OpenAPI specification.

2 Running Example
This section introduces the running example used along the paper together with the
main elements of a REST Web API. The example is based on the Petstore API, a REST
Web API for a pet store managament system, released by the OpenAPI community as a
reference. This API allows users to manage pets (e.g., add/find/delete pets), orders (e.g.,
place/delete orders), and users (e.g., create/delete users). Figure 1 shows an excerpt of
this API specification, an API access request and a possible response document for that
call request.

Figure 1a shows the request to retrieve the pet with the id 123while Figure 1b shows
the returned response with that pet information. A request includes a method (e.g., GET),
a URL (e.g., http://petstore.swagger.io/v2/pet/123) and optionally amessage
body (empty for this example). The URL in turn includes: (i) the transfer protocol, (ii)
the host, (iii) the base path, (iv) the relative path and (v) the query (indicated by the first
question mark "?", empty for this example). The relative path and the query are optional.
A response includes a status code (e.g., 200) and optionally a JSON response message.
Figure 1c shows an excerpt of the OpenAPI-compliant specification for this example
call in JSON format. This document includes fields to specify properties such as the
host, the base path, the available paths (i.e., the field paths), the supported operations
for each path (e.g., the field get), and the data types produced and consumed by the API
(i.e., the field definitions). The specification indicates that the GET operation of the
path /pet/{petId} allows retrieving a pet by his ID.

3 Approach
We define a two-step process to discover OpenAPI-compliant specifications from a set
of REST Web API call examples. Figure 2 shows an overview of our approach.

OpenAPI metamodel

OpenAPI JSON
filesJSONDiscoverer

Structural discoverer

Behavioral discoverer

Response

Request

API
Resources

infoypathsyops

a b

UML model UML2Schema

a b

API call
examples OpenAPI

generator

www

HAPI

API API API

API API API

OpenAPI model

APIDiscoverer

{2request2:{
2method2:2GET2T
2url2:2http:yypetstore...2T
2body2:{}

}T
2response2:{
2status2:2}}T
2body2:{...}2

}
}

Fig. 2. Overview of the approach.

The process takes as input a set of API call examples. For the sake of simplicity, we
assume examples are provided beforehand and later in Section 9 we describe how we
devised a solution to provide them both manually and relying on other sources. These
examples are used to build an OpenAPI model (see Figure 2a) in the first step of the
process. Each example is analyzed with two discoverers, namely: (1) behavioral and
(2) structural targeting the corresponding elements of the API definition. The output of
these discoverers is merged and added incrementally to an OpenAPI model, conforming
to the OpenAPI metamodel presented in the next section. The second step transforms
these OpenAPI models to valid OpenAPI JSON documents (see Figure 2b).

To represent the API call examples themselves, we rely on a JSON-based representa-
tion of the request/response details. Both, the request sent to the server and the received
response message, are represented as JSON objects (i.e., request and response fields
in left upper box of Figure 2). The request object includes fields to set the method, the
URL and the JSON message body; while the response object includes fields for the
status code and the JSON response message. This JSON format helps to simplify the
complexity of directly using raw HTTP requests and responses (which would require to
perform HTTP traffic analysis) and facilitate the provision of examples by end-users. As
discussed later, we provide also tool support to provide API call examples and even to
(semi)automatically derive them from other sources, like existing documentation.

As a final step, the resulting OpenAPI-compliant specifications may optionally be
added to HAPI, our community-driven hub for REST Web APIs, where developers can
search and query them. In the following sections we describe our OpenAPI metamodel,
the discoverers, and the OpenAPI generator. The example providers, APIs importers,
and HAPI will be explained in Section 9.

4 The OpenAPI Metamodel

This section presents the OpenAPI metamodel to specify RESTWeb APIs. In a nutshell,
ametamodel describes the set of validmodels for a language, specifying how the different
elements of the modeling language can be used and combined [1].

This model-based approach to define and store internally OpenAPIs facilitates the
integration of our approach with model-based development methods and facilitates
the manipulation of such OpenAPI specifications before the final generation of the

Fig. 3. Behavioral elements of the OpenAPI metamodel.

corresponding JSON documents. Such features are not provided by the JSON Schema
definition of OpenAPI11, which is limited to be used to validate documents against the
original specification; or existing implementations (e.g., the Java model for OpenAPI12),
which generally consist of a set of POJOs to serve as parsing facilities.

The metamodel is derived from the concepts and properties described in the Ope-
nAPI specification document. Next we explain themain parts of this metamodel, namely:
(1) behavioral elements, (2) structural elements, and (3) serialization/deserialization el-
ements. The metamodel also includes support for metadata (e.g., description or version)
and security aspects. The complete metamodel, comprised of 29 different metaclasses,
is available in our repository13.

4.1 Behavioral Elements

Figure 3 shows the behavioral elements of the OpenAPI metamodel. A REST Web API
is represented by the API element, which is the root element of our metamodel. This
element includes attributes to specify the version of the API (swagger attribute), the
host serving the API, the base path of the API, the supported transfer protocols of the
API (schemes attribute) and the list of MIME types the API can consume/produce. It
also includes references to the available paths, the data types used by the operations
(definitions reference) and the possible responses of the API calls.

The Path element contains a relative path to an individual endpoint and the op-
erations for the HTTP methods (e.g., get and put references). The description of an
operation (Operation element) includes an identifier operationId, the MIME types
the operation can consume/produce, and the supported transfer protocols for the oper-

11 https://github.com/OAI/OpenAPI-Specification/blob/master/schemas/v2.0/
schema.json

12 https://github.com/swagger-api/swagger-core
13 https://github.com/SOM-Research/APIDiscoverer/tree/master/metamodel

Fig. 4. Structural elements of the OpenAPI metamodel.

ation (schemes attribute). An operation includes also the possible responses returned
from executing the operation (responses reference).
API, Path and Operation elements inherit from ParameterContext, which allow

them to define parameters at API level (applicable for all API operations), path level
(applicable for all the operations under this path) or operation level (applicable only for
this operation).

The Response element defines the possible responses of an operation and includes
the HTTP response code, a description, the list of headers sent with the response, and
optionally an example of the response message. Response and Parameters elements
inherit from SchemaContext thus allowing them to add the definition of the response
structure and the data type (schema reference) used for the parameter, respectively.
Parameter and Schema elements will be explained in Section 4.2.

4.2 Structural Elements

Figure 4 describes the structural elements used in a RESTWebAPI, namely: the Schema
element, which describes the data types; the Parameter element, which defines an
operation parameter; the ItemsDefiniton element, which describes the type of items
in an array; and the Header element, which describes a header sent as part of a response.
These elements use an adapted subset of the JSON Schema Specification defined in the
super class JSONSchemaSubset14.

A parameter includes a name, and two flags to specify whether either the parameter
is required or empty.

14 More information about the schema information can be found at http://json-schema.org/
latest/json-schema-validation.html

Fig. 5. Serialization/deserialization elements

The location of the parameter is defined by the location attribute. The
possible locations are: (i) path, when it is part of the URL (e.g., petId in
/pet/petId); (ii) query, when it is appended to the URL (e.g., status in
/pet/findByStatus?status="sold"); (iii) header, for custom headers; (iv) body,
when it is in the request payload; and (v) formData, for specific payloads15.
Parameter and Header elements inherit from ArrayContext to allow them to

specify the collection format and the items definition for attributes of type array.
Additionally the Parameter element inherits from the SchemaContext to define the
data structure when the attribute location is of type body (Schema reference).

The Schema element defines the data types that can be consumed and produced by
operations. It includes a name, a title, and an example. Inheritance and polymorphism is
specified by using the allOf reference and the discriminator attribute, respectively.
Furthermore, when the schema is of type array, the items reference makes possible
to specify the values of the array.

4.3 Serialization/Deserialization Support

Figure 5 shows the elements of themetamodel to support serialization and deserialization
of OpenAPI models in JSON (or YAML) format. As said before, a parameter can be
defined at the API level, path level, or operation level. To specify this, API, Path, and
Operation elements inherit from the ParameterDeclaringContext element which
is referenced in each parameter (declaringContext reference). A similar strategy is
followed by the Schema element (the schema can be declared in the API level, parameter
level, response level, or inside a schema) and the Response element (a response can
declared at the API level or operation level).

All behavioral elements inherit from the JSONPointer element which defines a
JSON reference for each element. This element includes a derived attribute called
ref which is dynamically calculated depending on its declaring context. This attribute
specifies the path of the element within a JSON document following RCF 690116 which
can be used to reference a JSON object within the JSON document.

15 application/x-www-form-urlencoded or multipart/form-data
16 https://tools.ietf.org/html/rfc6901

Behavioral discovery

Structural discovery
parameters

id: Integer
name: String

id: Integer
name: String
photoUrls: String
[0..*]
status: String

id: Integer
name: String

location: ParameterLocation::path
type: JSONDataType::integer

name:'petId'

type: JSONDataType::object

type: JSONDataType::object

type: JSONDataType::array

type: JSONDataType::object

type: JSONDataType::array

type: JSONDataType::string

type: JSONDataType::integer

type: JSONDataType::string

type: JSONDataType::string

schemes: [SchemeType::http]

Fig. 6. The discovered OpenAPI model from the Petstore API example.

5 The Discovery Process

The discovery process takes as input a set of API call examples and incrementally
generates an OpenAPI model conforming to our OpenAPI metamodel using two types
of discoverers: (1) behavioral and (2) structural. The former generates the behavioral
elements of the model (e.g., paths, operations) while the latter focuses on the data types
elements. In the following we explain the steps followed by these two discoverers.

5.1 Behavioral Discoverer

This discoverer analyzes the different elements of the API example calls (i.e., HTTP
method, URL, request body, response status, response body) to discover the behavioral
elements of the metamodel.

Table 1 shows the applied steps. Target elements column displays the created/updated
elements in the OpenAPI model while Source column shows the elements of an API call
example triggering those changes (see Figures 1a and 1b). The Action column describes
the applied action at each step and the Notes column displays notes for special cases.
These steps are applied in order and repeated for eachAPI call example. A new element is
created only if such element does not exist already in the OpenAPImodel. Otherwise, the
element is retrieved and enriched with the new discovered information. Note that the dis-
covery of the schema structure will be assessed by the structural discoverer (see step 6).

Figure 6a shows the generated OpenAPI model for the API call example shown in
Figure 1. The discovery process is applied as follows. Step 1 creates an API element and
set its attributes (i.e., schemes to SchemeType::http, host to petstore.swagger.io, and
basePath to /v2). Step 2 creates a Path element, sets its only attribute realtivePath
to /pet/{petId} (the string ’123’ was detected as identifier), and adds it to the paths

Table 1. Steps of the behavioral discoverer applied for each REST Web API call example.

Step Source Target elements Action Notes

1
<host>,

<basePath>,
<protocol>

a:API
-a.schemes= protocol
-a.host= host
-a.basePath= basePath

If the path contains many sections
(e.g., /one/two/...) the base path
is set to the first section (e.g., /one)
otherwise it is set to "/".

2 <relativePath> pt:Path
-Add pt to a.paths
-pt.relativePath= relativePath.

If relative path contains an identi-
fier, it is replaced with a variable in
curly braces to use path parameters.
A pattern-based approach is used to
discover identifiers.a.

3

<httpMethod>,
<Request-

Body>,
<Response-

Body>

o:Operation

-pt.{httpMethod}= o
-If requestBody is of type JSON then add
"application/json" to o.consumes
otherwise keep o.consumes empty.
-If responseBody is of type JSON
then add "application/json" to
o.produces o.produces otherwise
keep o.consumes empty.

{httpMethod} is the reference of
pt which corresponds to <http-
Method> (e.g., get or post).

4

<query>,
<rela-

tivePath>,
<request-

Body>

pr:Parameter

-Add pr to o.parameters
-Set pr.type to the inferred typeb

-Set pr.location to:
(i) path if parameter is in relativePath
(ii) query if parameter is in query
(iii) body if parameter is in requestBody

Apply this rule for all the detected
parameters.
The discovery of the schema of the
body parameter is launched in step
6

5 <ResponseCode> r:Response

-Add r to o.responses
-r.code= responseCode
-r.description= correspondent de-
scription of the response.

The discovery of the schema of the
response body is launched in step 6.

6
<RequestBody>,
<Response-

Body>
s:Schema

-Add s to a.definitions.
-Set the s.name= the lastmeaningful sec-
tion of the path.
-If the schema is in <RequestBody>, set
pr.schema to swhere pr is the body pa-
rameter created in step 4.
-If the schema is in<ResponseBody>, set
r.schema to s where r is the response
created in step 5.
-Launch the structural discoverer.

We apply this rule only if request-
Body or responseBody contains a
JSON object.

a We apply an algorithm which detects if a string is a UID (e.g., hexadecimal strings, integer).
b When a conflict is detected (e.g., a parameter was inferred as integer and then as string), the
most generic form is used (e.g., string).

references of the API element. Step 3 creates an Operation element, sets its produces
attribute to application/json, and adds it to the get reference of the previously created
Path element. Step 4 creates a Parameter element, sets its attributes (i.e., name to
petId, location to path, and type to JSONDataType::integer), and adds it to the
parameters reference of the previously created Operation element. Step 5 creates
a Response element, sets its attributes (i.e., code to 200 and description to OK),
and adds it to the response reference of the previously created Operation element.
Finally step 6 creates a Schema element, sets only its name to Pet, and adds it to the
definitions reference of the API element. The rest of the Schema element will be
completed by the structural discoverer.

Table 2. Transformation rules from UML to Schema

Source Target:
create Target: update Attributes initialization

Class c: Schema - Add c to the api.definitions. - c.type = Object
- c.name = The corresponding class name

Attribute
(1)

a: Schema
-Add a to c.properties where c is the cor-
respondent schema of the class containing the
attribute.

- a.type = the JSONDataType correspondent
to the type of the attribute
- a.name = the attribute name

Attribute
(*)

a: Schema,
i: Schema

-Add a to c.properties where c is the cor-
respondent schema of the class containing the
attribute.

- a.type = array
- a.items= i
- i.type= the JSONDataType correspondent
to the type of the attribute
- i.name = the attribute name

Association
(1)

-

-Add tc to c.properties where c is the cor-
respondent schema of the source class of the
association and tc the correspondent schema
of the target class of the association.

-

Association
(*)

a: Schema
-Add a to sc.properties where sc is the
correspondent schema of the source class of
the association

- a.type = array
- a.items= tc where tc is the correspondent
schema of the target class of the association.

5.2 Structural Discoverer

This discoverer instantiates the part of the OpenAPI model related to data types and
schema information. This process is started after the behavioral discovery when the API
call includes a JSON object either in the request body or the response body that will be
used to enrich the definition of the discovered Schema elements.

We devised a two-step process where we first obtain an intermediate UML-based
representation from the JSON objects and then we perform a model-to-model trans-
formation to instantiate the actual schema elements of the OpenAPI metamodel. This
intermediate step allows us to benefit from JSONDiscoverer [4], which is the tool used to
build a UML class diagram, and to use this UML-based representation to bridge easily
to other model-based tools if needed. Then, classes, attributes, and associations of the
UML class model are transformed to Schema elements. Table 2 shows the transforma-
tion rules applied to transform UMLmodels to Schema elements. Source column shows
the source elements in a UML model while Target: create and Target: update columns
display the created/updated elements in the OpenAPI model. The Attribute initialization
column describes the transformation rules.

Note that elements are updated/enriched when they already exist in the OpenAPI
model. This particularly happens when different examples represent the same schema
elements, as JSON schema allows having optional parts in the examples.

Figure 6b shows the UML class model discovered by JSONDiscoverer for the API
response shown in Figure 1b. This class model is transformed to actual schema elements
applying the discovery process as follows. Tag, Pet, and Category classes are trans-
formed to schema elements of type Object. Single-valued attributes (e.g., name, id)
are transformed to Schema elements where type is set to the corresponding primitive
type. The photoUrlsmultivalued attribute and tagsmultivalued association are trans-
formed to Schema elements of type array having as items a Schema element of type
String and Tag element, respectively. Finally, attributes and associations are added to
the properties reference of the corresponding Schema element.

1 { "swagger":"2.0",
2 "info":{ },
3 "host":"petstore.swagger.io","basePath":"/v2",
4 "tags":["pet"],"Schemes":["http"],
5 "paths":{
6 "/pet/{petId}":{
7 "get":{
8 "produces":["application/json"],
9 "parameters":[{"name":"petId","in":"path","type":"integer"}],
10 "responses":{
11 "200":{
12 "description":"OK",
13 "schema":{"$ref":"#/definitions/Pet"
14 }}}}
15 }},
16 "definitions":{
17 "Pet":{
18 "type":"object",
19 "properties":{
20 "id":{"type":"integer"},
21 "category":{"$ref":"#/definitions/Category"},
22 "name":{"type":"string"},
23 "photoUrls":{"type":"array","items":{"type":"string"}},
24 "tags":{"type":"array","items":{"$ref":"#/definitions/Tag"}},
25 "Status":{"type":"string"}},
26 }}}

Fig. 7. The generated OpenAPI specification of the Petstore API example.

6 The Generation Process

The generator creates a OpenAPI-compliant JSON file from an OpenAPI model by
means of a model-to-text transformation. The root object of the JSON file is the API
model element, then each model element is transformed to a pair of name/value items
where the type for the value is (1) a string for primitive attributes, (2) a JSON array for
multivalued element or (3) a JSON object for references. Serialization/deserialization
model elements are used to resolve references. As said in Section 4, elements such as
Schema, Parameter, and Response can be declared in different locations and reused
by other elements. While the declaringContext reference is used to define where
to declare the object, the ref attribute (inherited form JSONPointer class) is used to
reference this object from another element. By default the discovery process sets the
declaring context to the containing class of the element (e.g., parameters in operations).

Figure 7 shows the generated JSON file for the OpenAPI model shown in Figure 6a.
Note that the declaring context of the Pet schema element is set to API, which resulted
in listing the Pet element in the definitions object. Consequently, the attribute ref is
set to #/definitions/Pet and will be used to reference Pet from any another element
(as in the response object).

7 Validation and Limitations

To ensure the quality of the OpenAPIs we generate, we have first enriched the OpenAPI
metamodel with a set of well-formedness constraints written using the Object Constraint
Language (OCL) [3] (e.g., to guarantee the uniqueness of the parameters in a call). These
constraints are checked during the discovery process to validate the generated OpenAPI
specification against the constraints published in the last official OpenAPI specification
document. Note that this is in itself a useful contribution with regard to other syntax
checkers for API documents that offer a limited support in terms of constraint checking.

Additionally, we have validated our approach by manually comparing the results of
our generated OpenAPI with the original specification for a number of APIs providing
already such information. This has been an iterative process but we would like to
highlight the latest test, comprising the following five APIs: (1) Refuge Restrooms17, a
web application that seeks to provide safe restroom access for transgender; (2) OMDb18,
an API to obtain information about movies; (3) Graphhopper19, a route optimization
API to solve vehicle routing problems; (4) Passwordutility20, an API to validate and
generate passwords using open source tools; and finally (5) the Petstore API. Several
factors influenced the choice of these APIs to serve for our testing purposes. Beside
having an OpenAPI specification, these APIs did not involve fees or invoke services
(e.g., SMS APIs), they managed JSON format (to test our structural discoverer) and
were concise (to keep limited the number of examples required).

For the chosen APIs, our approach was able to generate on average 80% of the
required specification elements and did not generate any incorrect result. Mainly, the
missing information was due to the structure of the call examples which cannot cover
advanced details such as: (i) the enumerations used for some parameters, (ii) the option-
ality or not of the parameters, (iii) form parameters, and (iv) the headers used in some
operations. Furthermore, the quality of the results depend on the number and the variety
of the API call examples used to discover the specification. Our experience so far shows
that the number of examples should be higher than the number of operations of an API
covering all the parameters. However, more experiments are required to identify the
ideal balance between the quality of the result and the number of needed experiments.

Note that even if the result is not complete, it can still be useful. Even for APIs that
do provide an OpenAPI as starting point. For instance, for Refuge Restrooms, we were
able to discover both the operations and data model of the API even if the latter was not
part of the original specification. The complete set of examples and generated APIs are
available in our repository.

8 Related Work

Several tools supporting the OpenAPI initiative have recently appeared21, e.g., able to
generate documentation and code (e.g., client SDKs, server skeletons) from OpenAPI-
compliant specifications making OpenAPIs a more valuable artefact. Third party com-
panies like Lucybot22 or ReDoc23, provide similar capabilities while others as Restlet
Studio24 and stoplight25 add also the feature of helping developers manually design
such APIs with visual tools. Our approach can join this tool ecosystem by inferring the
OpenAPIs to be used as input for all these tools out of the box.

17 http://www.refugerestrooms.org/api/docs/
18 http://www.omdbapi.com/
19 https://graphhopper.com/
20 http://passwordutility.net
21 http://swagger.io/tools/
22 https://lucybot.com/
23 http://rebilly.github.io/ReDoc/
24 https://studio.restlet.com
25 http://stoplight.io/platform/design/

JSF/Primefaces

APIDiscoverer UI

Mashape extractor

Selenium

B
ac
k-
en
d

Fr
on

t-e
nd

REST agent

Unirest

APIDiscoverer

OCL Ex2OpenAPI JSON
Discoverer UML2Schema

EMF

..
.

JSONGen

Fig. 8. Tool architecture.

Regarding the discovery process itself, there is a limited number of related efforts and
barely any targeting specifically REST or Web APIs in general. Some research efforts
(i.e., [9, 17]) focus on the analysis of service interaction logs to discoverer message
correlation in business processes. Other works (i.e., [14, 16, 13]) are more proactive
and try to suggest possible compositions based on a WSDL (or similar) description of
the service. Nevertheless, they all focus on the interaction patterns and do not generate
any description of Web APIs specification (or the initial WSDL document for previous
approaches) themselves. SpyREST [18] is a closer work to ours. It proposes a Proxy
server to analyze HTTP traffic involved in API calls to generate API documentation.
Still, the generated documentation is intended to be read by humans and therefore does
not adhere to any formal API specification language.

Other research efforts limit themselves to discover the data model underlying an API,
specially by analysing the JSON documents it returns. For instance, the works in [7] and
[15] analyze JSON documents in order to generate their (implicit) schemas. However,
they are specially bounded to NoSQL databases and are not applicable forWeb APIs. On
the other hand, JSONDiscoverer [4] generates UML class diagrams from the JSON data
returned after calling a Web API. We use this tool in our structural discoverer phase.

9 Tool Support

Figure 8 shows the underlying architecture of our discovery tool. Our tool includes a
front-end, which allows users to collect and run API call examples (see APIDiscoverer
UI) to trigger the launch of the core API discoverer process; and a back-end, which all
the components to parse the calls and responses, generate the intermediate models, etc.
Our tool has been implemented in Java and is available as an Open Source application26.

More specifically, APIDiscoverer is a Java Web application that can be deployed in
any Servlet container (e.g., Apache Tomcat). The application relies on JavaServer Faces
(JSF), a server-side technology for developing Web applications, and Primefaces27, a
UI framework for JSF applications. Figure 9 shows a screenshot of the APIDiscoverer

26 https://github.com/SOM-Research/APIDiscoverer
27 http://www.primefaces.org

Fig. 9. Screenshot of the discoverer UI.

interface. The center panel of APIDiscoverer contains a form to provide API call
examples either by sending requests or using our JSON-based representation format. The
former requires providing the request and obtaining a response from the API. As result,
a JSON-based API call example is shown on the right. The latter only requires providing
the JSON-based API call example. API call examples are then used by APIDiscoverer
to obtain/enrich the corresponding OpenAPI model. The examples history is shown on
the left panel and an intermediate OpenAPI model is shown on the right panel. The
OpenAPI model is updated after each example with the new information discovered by
the last request. Finally, a button in the top panel allows the user to download the final
OpenAPI description file.

The main components of the back-end are (1) a REST agent and (2) the core
APIDiscoverer. The REST agent relies on unirest28, a REST library to send requests to
APIs to build and collect API call examples. The APIDiscoverer relies on a plethora of
web/modeling technologies, namely, (1) the Eclipse Modeling Framework (EMF)29 as
a modeling framework to implement the OpenAPI metamodel, (2) the Eclipse OCL to
validate models and (3) the JSONDiscoverer to discover models from JSON examples.
Additionally, we have implemented the required components (1) to discover OpenAPI
elements from API call examples (see Ex2OpenAPI), (2) to transform UML models to
a list of schema elements using model-to-model transformations (see UML2Schema),
and (3) to generate an OpenAPI description file from an OpenAPI model by using
model-to-text transformations (see JSONGen).

Beyond these key components, we have also developedMashapeDiscoverer, a proof-
of-concept to show how the API call examples can be derived from other sources like
available examples in the API documentation (in this specific case, from APIs in the

28 http://unirest.io
29 http://www.eclipse.org/modeling/emf/

Mashape marketplace30, a documentation portal with over 2,000 APIs) by using Sele-
nium31 to crawl the documentation pages and extract the relevant examples information
(i.e, entrypoints, parameters, response examples).

Additionally, we have created HAPI32, a public REST Web API directory and an
open source community-driven project, which stores the discovered Web APIs. Besides
allowing users to download theWeb API specifications, this directory invites developers
to contribute using the well-known pull-request model of GitHub. In order to enrich
HAPI, we have also created two OpenAPI importers for APIs.guru and APIs.io that
use their dedicated Web APIs33. This allows easily adding to HAPI APIs already with
a predefined specification.

10 Conclusion

We have presented an example-driven approach to generate OpenAPI specifications for
REST Web APIs. These specifications are stored in a shared directory where anybody
can comment and improve them. We believe our process and repository is a significant
step forward towards API reuse, helping developers to find and integrate the APIs they
need to provide their software services. The discovery tool is available online as an open
source application.

As further work, we are interested in extending the OpenAPI metamodel to add
Quality of Service (QoS) and business plan aspects, which play a fundamental role in
the API economy, as well as ontology and vocabulary concepts (e.g., FOAF ontology)
to describe the APIs not only on a syntactical level but also on a semantic level. We
are also interested in discovering security aspects, non-functional properties, and the
semantic definitions of the APIs under scrutiny, and supporting non-JSON data (e.g.
XML). The discovery process per se could also be improved by extending our approach
to support the generation of call examples based on the textual analysis of the API
documentation websites, this way speeding up the process of interacting with the API
to infer its specification. Finally, we plan to systematically apply our process to a large
number of APIs (linked from other directories or repositories) in order to expand HAPI.

Acknowledgment

This work has been supported by the Spanish government (TIN2016-75944-R project).

30 https://market.mashape.com
31 http://docs.seleniumhq.org/projects/webdriver/
32 https://github.com/SOM-Research/hapi
33 https://apis.guru/api-doc/ and http://www.apis.io/apiDoc

References

1. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice.
Morgan & Claypool Publishers (2012)

2. Brambilla, M., Fraternali, P., et al.: The Interaction Flow Modeling Language (IFML). Tech.
rep., Object Management Group (OMG) (2014)

3. Cabot, J., Gogolla, M.: Object Constraint Language (OCL): a Definitive Guide. In: Formal
methods for model-driven engineering, pp. 58–90 (2012)

4. Cánovas Izquierdo, J.L., Cabot, J.: JSONDiscoverer: Visualizing the Schema Lurking Behind
JSON Documents. Knowledge-Based System 103, 52–55 (2016)

5. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-Directed Synthesis: A Type-
Theoretic Interpretation. In: ACM Symp. on Principles of Programming Languages. pp.
802–815 (2016)

6. Hadley, M.J.: Web Application Description Language (WADL). Tech. rep. (2006)
7. Klettke, M., Störl, U., Scherzinger, S., Regensburg, O.: Schema Extraction and Structural

Outlier Detection for JSON-based NoSQL Data Stores. In: Conf. on Database Systems for
Business, Technology, and Web. pp. 425–444 (2015)

8. López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.: Example-Driven Meta-Model
Development. Software & Systems Modeling 14(4), 1323–1347 (2015)

9. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event Correlation for
Process Discovery from Web Service Interaction Logs. Inter. J. on Very Large Data Bases
20(3), 417–444 (2011)

10. Nierstrasz, O., Kobel, M., Girba, T., Lanza, M.: Example-Driven Reconstruction of Software
Models. In: Euro. Conf. on Software Maintenance and Reengineering. pp. 275–286 (2007)

11. Pautasso, C., Zimmermann,O., Leymann, F.: RESTfulWeb Services vs. "Big"’Web Services.
In: Inter. Conf. on World Wide Web. pp. 805–814 (2008)

12. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foundations of JSON Schema. In:
Inter. Conf. on World Wide Web. pp. 263–273 (2016)

13. Quarteroni, S., Brambilla, M., Ceri, S.: A Bottom-up, Knowledge-Aware Approach to In-
tegrating and Querying Web Data Services. ACM Transactions on the Web 7(4), 19–33
(2013)

14. Rodriguez Mier, P., Pedrinaci, C., Lama, M., Mucientes, M.: An Integrated Semantic Web
Service Discovery and Composition Framework. IEEE Transactions on Services Computing
9(4), 537–550 (2015)

15. Ruiz, D.S., Morales, S.F., Molina, J.G.: Inferring Versioned Schemas fromNoSQLDatabases
and its Applications. In: Int. Conf. on Conceptual Modeling. pp. 467–480 (2015)

16. Schmidt, C., Parashar, M.: A Peer-to-Peer Approach to Web Service Discovery. In: Inter.
Conf. on World Wide Web. pp. 211–229 (2004)

17. Serrour, B., Gasparotto, D.P., Kheddouci, H., Benatallah, B.: Message Correlation and Busi-
ness Protocol Discovery in Service Interaction Logs. In: Int. Conf. on Advanced Information
Systems Engineering. pp. 405–419 (2008)

18. Sohan, S., Anslow, C., Maurer, F.: SpyREST: Automated RESTful API Documentation Using
an HTTP Proxy Server (N). In: Int. Conf. on Automated Software Engineering. pp. 271–276
(2015)

	Caratula_Article_Preprint_CC_BY-NC-ND_en(8)
	Ed-douibi_et_al_Example-driven_Web_API_Specification_Discovery_preprint

