

Citation for published version

Clarisó, R., Cabot, J., Guerra, E. & de Lara Jaramillo, J. (2016). Backwards
reasoning for model transformations: method and applications. Journal of
Systems and Software, 116(), 113-132.

DOI
https://doi.org/10.1016/j.jss.2015.08.017

Document Version

This is the Submitted Manuscript version.
The version in the Universitat Oberta de Catalunya institutional repository,
O2 may differ from the final published version.

Copyright and Reuse

This manuscript version is made available under the terms
of the Creative Commons Attribution Non Commercial No Derivatives
licence (CC-BY-NC-ND)
http://creativecommons.org/licenses/by-nc-nd/3.0/es/, which permits
others to download it and share it with others as long as they credit you,
but they can’t change it in any way or use them commercially.

Enquiries

If you believe this document infringes copyright, please contact the
Research Team at: repositori@uoc.edu

Universitat Oberta de Catalunya Research archive

https://doi.org/10.1016/j.jss.2015.08.017
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Backwards reasoning for model transformations:

method and applications

Robert Clarisó∗,a, Jordi Cabota,b, Esther Guerrac, Juan de Larac

aUniversitat Oberta de Catalunya, Barcelona (Spain)
bICREA (Spain)

cUniversidad Autónoma de Madrid (Spain)

Abstract

Model transformations are key elements of Model Driven Engineering. Cur-
rent challenges for transformation languages include improving usability (i.e.,
succinct means to express the transformation intent) and devising powerful
analysis methods.

In this paper, we show how backwards reasoning helps in both respects.
The reasoning is based on a method that, given an OCL expression and a
transformation rule, calculates a constraint that is satisfiable before the rule
application if and only if the original OCL expression is satisfiable afterwards.

With this method we can improve the usability of the rule execution
process by automatically deriving suitable application conditions for a rule
(or rule sequence) to guarantee that applying that rule does not break any
integrity constraint (e.g. meta-model constraints). When combined with
model finders, this method facilitates the validation, verification, testing and
diagnosis of transformations, and we show several applications for both in-
place and exogenous transformations.

Key words: Model Transformation, Backwards reasoning, OCL, Weakest
Pre-condition, Graph Transformation, Validation and Verification

∗Corresponding author: Robert Clarisó, Estudis d’Informàtica, Multimèdia i Teleco-
municació, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona,
Spain. phone: (+34)933263410 fax:(+34)933568822 e-mail: rclariso@uoc.edu

Email addresses: rclariso@uoc.edu (Robert Clarisó), jordi.cabot@icrea.cat
(Jordi Cabot), Esther.Guerra@uam.es (Esther Guerra), Juan.deLara@uam.es (Juan de
Lara)

Preprint submitted to Journal of Systems and Software August 7, 2015

1. Introduction

1.1. Overview

The advent of Model Driven Engineering (MDE) has prompted the need
to manipulate models in an automated way. Common manipulations include
model-to-model transformations (or exogenous, where typically input and
target models in the transformation conform to different meta-models), as
well as in-place transformations like refactorings, animations and optimisa-
tions. Many transformation languages and approaches have been proposed
for both kinds of transformations, where research is mostly directed towards
usable languages providing good integration with MDE standards (e.g. UML,
MOF, OCL) and supporting some kind of analysis [1].

We propose to use backwards reasoning to achieve both goals. Backwards
reasoning methods have been applied in different domains, for example to
analyse logic programs [2], Petri nets [3] or timed automata [4]. The uni-
fying idea is that, instead of starting with an initial system configuration
and exploring possible reachable states, backwards reasoning assumes some
(un)desirable target state and computes the corresponding source state(s). In
this paper, we present a method that enables backwards reasoning for model
transformations, and show its applications both to achieve a better usability
of transformation languages and to provide increased analysis capabilities.

Many model transformation languages are based on rules [5, 6, 7] whose
applicability is given by an object pattern complemented with a guard, typ-
ically given as an OCL expression. Our backwards reasoning is based on
the automated calculation of such guards, given an OCL expression that the
model is expected to fulfill after the rule application. Hence, given a con-
straint C that a model M must satisfy after the application of a rule r, the
method generates the weakest constraint C ′

r such that if the model satisfies
it before applying r, then the resulting model is guaranteed to satisfy C.

The method is agnostic with respect to the particular model transfor-
mation language employed, and therefore applicable to many of them – like
graph transformation (GT) [6], ATL [5] or ETL [7] – because it only requires
the list of atomic actions performed by the rule. Moreover, it can be applied
both to in-place and exogenous transformations.

1.2. Running example

As a running example, let us consider an in-place transformation to an-
imate a Domain Specific Visual Language (DSVL) for production systems.

2

The meta-model for the language is shown to the left of Figure 1. It defines
machines with input and output conveyors that can be interconnected. Con-
veyors may contain pieces, and an OCL constraint ensures that the number
of pieces the conveyors actually hold does not exceed their capacity. The
right of the same figure shows a model with one machine and two conveyors,
in abstract (top) and concrete syntax (bottom). The left conveyor has two
raw pieces, while the right one has two processed ones.

Machine
Conveyor

Piece

Raw Processed

1

*

*

om ic

*
+ capacity: int

context Conveyor inv:
self.piece->size()
<= self.capacity

im

*

oc

*

piece

*

*next

prev

co1:Conveyor

capacity=6

co2:Conveyor

capacity=2

r1:Raw r2:Raw p1:Processed

m:Machine
ic oc

r1

co1 co2

m

capacity=6 capacity=2

p1 p2

p2:Processed

r2

Figure 1: Meta-model (left). A model (right).

In this example, the semantics of the DSVL is defined using GT. In this
approach, rules are made of two graphs, the left and the right hand sides
(LHS/RHS), which encode the pre- and post-conditions for rule application.
Intuitively, a rule can be applied to a model whenever an occurrence of its
LHS is found in it. Then, applying the rule consists in deleting the elements
of LHS−RHS, and creating those of RHS−LHS. In this way, the graphical
part of the GT rule process on the left of Figure 2 describes how machines
behave, consuming and producing pieces: the Raw piece is deleted and a
Processed one is created in the output conveyor. Rule move in the same
figure moves pieces of any kind (we use an “abstract object” labelled r of
type Piece, which can get instantiated for both types Raw and Processed)
between two conveyors.

1.3. Benefits of our backwards reasoning method

To improve the usability of transformation languages, each transforma-
tion rule should be consistent with the integrity constraints of the meta-
model. Otherwise, users would be forced to use some kind of integrity check-
ing mechanism that verifies that the output model is correct after every rule
execution. Hence, the guard of each rule needs to ensure that, for every

3

Figure 2: Two simulation rules.

possible model where the rule is applicable, the result after applying the rule
satisfies all meta-model invariants (a property called strong executability in
[8]). For instance, in the running example of Figure 1 the OCL integrity con-
straint in the meta-model forbids creating pieces in output conveyors that
are already full. Below each rule, we provide an application condition that
restricts the applicability of the rule to the cases where the output conveyor
has enough capacity for the newly created piece.

Unfortunately, in current practice, the engineer has to encode a constraint
for the same purpose twice: once in the meta-model, and another as the guard
of each rule in the transformation to ensure that rule applications do not yield
inconsistent models. Even worse, the designer has the burden of calculating
an application condition that, given the rule’s actions, forbids applying the
rule if the execution has any chance to break some meta-model constraint.
Then, this work has to be repeated for every rule in the grammar, as done
for example in rule move of Figure 2.

Instead, our method would derive the application condition for a rule
starting from the OCL constraints of the meta-model. This presents several
advantages from the point of view of the transformation developer: (i) it no-
tably reduces his work, (ii) it facilitates grammar and meta-model evolution,
as a change in the constraints of the latter has less impact on the rules, as
many application conditions can be automatically derived, (iii) it eliminates
the risk of not adding appropriate conditions that would cause rule applica-
tions to violate the meta-model constraints, and (iv) it eliminates the risk of
adding too restrictive conditions that would forbid applying the rule, even
when its application would not break any constraint (i.e. a condition that
is not the weakest). In fact, the OCL condition of the rules in Figure 2 are
not the weakest, as we will show in Section 4. Moreover, this has also a
clear advantage at run-time, as tools do not need to implement a roll-back
mechanism if some rule application leads to an inconsistent state, and do not

4

even need to check the meta-model constraints at each intermediate state.
Furthermore, combined with techniques for model finding (e.g. [9]), our

method enables the analysis of a plethora of correctness properties for the
specified transformations. As we will see, several verification and testing
procedures are easier to apply once the post-conditions have been advanced
which facilitates a more homogeneous analysis and a better tool integration of
those procedures with current modeling editors. Besides, we propose the new
notion of transformation diagnosis, defined as the process of: (i) finding a
problem in a transformation, (ii) explaining to the engineer what the problem
is, and (iii) proposing some solution. Hence, for example, we are not only
able to detect if a rule is not strongly executable, but can explain why (giving
a model that makes the rule fail) and propose a solution (giving the weakest
pre-condition that makes the rule strongly executable).

1.4. Contributions and structure of this paper

This paper continues the work in [10], where the method was devel-
oped and applied to generate rule pre-conditions given some meta-model
constraints. In this paper, we make a systematic analysis on the applicabil-
ity of the method, and show techniques for its application to both in-place
and exogenous transformations. Our methods are agnostic with respect to
the transformation language, and may use off-the-shelf model finders (like
e.g., EMFtoCSP [9], UML2Alloy [11], or the USE Validator [12]) to conduct
the analysis. While advancing post-conditions into pre-conditions is a well-
known technique in graph transformation [13], it has not been generalized to
handling OCL expressions. Moreover, the systematic analysis of backwards
reasoning techniques, and the proposal of concrete methods to perform them
in model transformation is also novel. Moreover, we provide correctness
proofs of the different analysis methods proposed, and most notably we in-
clude a correctness proof of the post-condition advancement method.

The rest of the paper is organized as follows. Section 2 summarizes the
method for advancing post-conditions into rule pre-conditions. Section 3
overviews some applications of the method for enhanced usability, and val-
idation, verification and diagnosis. Next, Section 4 presents in more detail
those applications for in-place and exogenous transformations. Section 5
briefly describes a generic implementation of the advancement procedure.
Section 6 compares with related research and Section 7 concludes. An ap-
pendix includes the details of the correctness proof for the pre-condition
synthesis.

5

2. Computing OCL Pre-Conditions for Transformation Rules

This section describes how to advance OCL post-conditions into pre-
conditions. The method was originally described in [10], but for the sake
self-containment, we include a description here as well.

2.1. Overview

Many model transformation systems are defined in terms of rules, which
specify a collection of model updates (actions) that should be applied when-
ever the triggering condition for the rule (enabling condition) is met. This
enabling condition depends on the formalism and may be very complex, e.g.
a pattern that needs to be matched in the source model, an explicit invo-
cation that needs to be made from another rule or a combination of several
conditions. On the other hand, the actions performed by a rule can be de-
scribed in an abstract way, independently of the underlying transformation
language as a sequence of creation-deletion-update operations on basic model
elements (attributes, objects and links). In our approach, we consider the
following catalog of atomic actions: (1) deletion/creation of a link between
two existing objects; (2) deletion of an object (and all its adjacent links);
(3) update of an attribute value; and (4) creation of a new object (plus its
adjacent links and attribute initialization).

Figure 3 illustrates the overall procedure for advancing OCL post-conditions.
The procedure receives two inputs: a list of atomic actions (e.g., derived from
a transformation rule) and an OCL constraint. The latter is a boolean ex-
pression restricting the model after applying the actions. We will refer to this
expression as the post-condition, even though it may not attempt to describe
the effects of rule application (e.g. it could be an integrity constraint that
should be preserved).

The output is an OCL boolean expression which constrains the model
before applying the actions. We refer to this new expression as the pre-
condition, and we compute it performing several replacements on the post-
condition, which depend on the list of actions performed by the rule. Intu-
itively, we aim to compute a pre-condition which, evaluated before applying
the rule, produces the same result as the post-condition after applying the
rule. This is similar to Dijkstra’s notion of weakest pre-condition1 [14].

1Given an imperative statement S and a post-condition Post, compute the weakest
pre-condition that guarantees that Post holds after the execution of S.

6

RHS:LHS:

c: Xa: X c: X

b: Y b: Y

List of
atomic actions

- Link deletion / creation

- Attribute update

- Object deletion

- Object creation

Syntax-driven
replacement
patterns

context Conveyor inv:
self.piece->size() self.capacity

OCL Postcondition

OCL Pre-condition

Rule, e.g. GT rule

Figure 3: Overall flow for the advancement of OCL pre-conditions.

Hence, given a sequence of actions s = ⟨a1, ..., an⟩ and a constraint Post,
our method (called adv) can be formulated as follows:

adv(s = ⟨a1, ..., an⟩, Post) = Pre

where Pre is a constraint s.t. ∀M,M ′, withM
s⇒ M ′: Pre(M) ↔ Post(M ′).

We use the notation M
s⇒ M ′ to denote that model M is transformed into

M ′ after applying the set of actions in s.

2.2. Advancing OCL Post-conditions

The advantage of abstracting transformation rules as a list of atomic
actions is genericity : in this way, it is possible to define a procedure to
advance preconditions which is independent of the formalism used to define
the rule. The only requirement is a formalism-specific pre-processing step
that analyzes rules to derive the list of actions.

For instance, in the case of GT, this step would compare the graphs
patterns in the LHS and RHS of a rule to identify the changes. For example,
rule process in Figure 2 performs two atomic graph updates: the deletion of
object r and its link co1-r; and the creation of object p and its link co2-p. Rule
move removes a link co1-r and creates a link co2-r. A similar approach can
be followed for other transformation languages (e.g. see for the declarative
part of ATL [15]).

The following section introduces the concept of replacement pattern that
is the core of the procedure for advancing post-conditions.

7

2.2.1. Replacement patterns

The computation of the pre-condition from the post-condition [10] applies
a set of textual replacement patterns on the OCL post-condition. These pat-
terns capture the effect of an atomic graph update and modify the constraint
accordingly, synthesizing the equivalent constraint before applying that up-
date. Applying the replacement patterns for all the graph updates the rule
performs yields the corresponding pre-condition.

Patterns are defined in terms of the abstract syntax tree (AST) of the
OCL post-condition. In this tree, leaves are constants (e.g. 1, 2, “hello”),
variable names or type names. Internal nodes of the tree are operators (logic,
arithmetic or relational) or an OCL construct (quantifier, operation call,
etc). A pattern is characterized by two elements: (1) a matching criterion to
find relevant OCL subexpressions in the AST and (2) the replacement OCL
expression used to substitute the match.

The matching criterion of each pattern considers two elements: the op-
erator involved in the OCL expression and the type of its operands. For
example, updates that assign a new value to an attribute named attr will
only affect expressions that read the value of attr. Regarding types, we will
use the following notation: T = T ′ if type T is equal to T ′, T @ T ′ if T is a
subtype of T ′, and T ⊑ T ′ if T is a subtype or is equal to T ′.

In order to transform the post-condition for a single atomic update, we
perform a bottom-up traversal of the AST: starting from the leaves and
looking for matches of the replacement patterns defined for that update.
Whenever a match is located in the AST, it is replaced according to the
pattern and the traversal continues upwards, until the root of the AST is
reached.

Given a list of atomic updates corresponding to a rule, advancing a post-
condition consists on applying the replacement patterns for each update in
sequence. The order of application of the replacements is irrelevant for two
reasons. First, each intermediate replacement produces a valid OCL ex-
pression. Second and most important, there is no overlap between updates:
link creation/deletion updates are applied only when no object is being cre-
ated/deleted, otherwise we use the object creation/deletion patterns.

The following subsections 2.2.2 to 2.2.6 describe the specific list of replace-
ment patterns for each type of atomic update and subsection 2.2.7 concludes
by discussing the limitations of this procedure.

8

Ref Pattern Conditions Replacement

OD1 A.allInstances() T ⊑ A or A @ T A.allInstances() −>excluding(x)

OD2 exp.role
“role” is an association end

of type A, with T ⊑ A or A @ T exp.role −>excluding(x)

Table 1: Replacement patterns for object deletion.

2.2.2. Object deletion

Let us consider the deletion of an object x of type T . In order to ad-
vance the post-condition, the constraint should be modified to ensure that
its evaluation does not take x into account, i.e., as if x did not exist. This
goal can be achieved by excluding object x from any collection where it may
belong, i.e. appending “excluding(x)” to any “allInstances()” expression or
navigation expression of an appropriate type. Table 1 depicts the complete
set of replacement patterns.

Example 1. In a rule deleting an object x of type T, the post-condition:
T.allInstances()−>exists(t | t.isGreen)

is advanced to a pre-condition demanding some object other than x to be
green thus ensuring that the rule is only applied when x is not the only green
object (avoiding this way the violation of the post-condition):

T.allInstances()−>excluding(x)−>exists(t | t.isGreen)

2.2.3. Attribute updates

Let us consider the update of attribute attr (defined in class T) in an
object x, such that the new value is given by an OCL expression new val exp.
In OCL, the value of an attribute can only be accessed through an expression
of type AttributeCallExp, e.g. “object.attribute”. Intuitively, to advance any
post-condition, it is necessary that every time we refer to the attribute attr of
an object of type T , we use new val exp instead, but only if we are referring
to x. In Table 2, we present the replacement patterns that implement this
concept.

Example 2. Let us consider a rule that updates the value of attribute n of
object x according to the attribute computation x.n′ = x.n + 1. Then, the
following post-condition:

T.allInstances()−>isUnique(t | t.n)
stating that no pair of T objects can share the same value in attribute n would
be advanced as the following pre-condition:

9

Ref Pattern Conditions Replacement

At1 x.attr None new val exp

At2 exp.attr Type(exp) ⊑ T if exp = x then new val exp else exp.attr endif

Table 2: Replacement patterns for an update of an attribute.

Ref Pat. Conditions Replacement

LD1a exp.rb Type(exp) ⊑ TA if exp = a then exp.rb−>excluding(b) else exp.rb endif

LD2a exp.rb Type(exp) = Set(T′), (exp−>excluding(a)).rb−>union(a.rb−>excluding(b))

with T′ ⊑ TA

Table 3: Replacement patterns for link deletion, for navigations TA → TB (the symmetric
patterns LD1b and LD2b for navigations TB → TA are omitted for brevity).

T.allInstances()−>isUnique(t | if t = x then x.n + 1 else t.n endif)

2.2.4. Link deletion

Let us consider the deletion of the link between objects a and b in an
association As (defined between classes TA and TB). In OCL, links can only
affect navigation expressions. Hence, we only need to modify navigation
expressions traversing association As, so that they do not take the link a− b
into account. This can be implemented by appending “excluding(a)” to
navigations going from TB to TA and “excluding(b)” to navigations going
from TA to TB, as described in Table 3.

Example 3. In a rule deleting a link a-b, the post-condition:
TA.allInstances()−>exists(x | x.rb−>notEmpty())

states that at least one TA object is connected to a TB object. Advancing the
invariant considers a a special case, as it may be connected to b in the LHS:

TA.allInstances()−>exists(x |
(if x = a then x.rb−>excluding(b)
else x.rb endif)−>notEmpty())

2.2.5. Link creation

Next, we consider the creation of a link between existing objects a and b
in an association As (defined between classes TA and TB) . Here we have to
simulate the existence of an edge a−b in navigation expressions that traverse
association As. This is done by appending “including(b)” to navigations
going from TA to TB, or “including(a)” to expressions going from TB to TA.

10

Ref Pattern Conditions Replacement

LC1a exp.rb Type(exp) ⊑ TA if exp = a then exp.rb−>including(b) else exp.rb endif

LC2a exp.rb Type(exp) = Set(T′), if exp−>includes(a) then exp.rb−>including(b)

with T′ ⊑ TA else exp.rb endif

Table 4: Replacement patterns for link creation, for navigations TA → TB (the symmetric
patterns LC1b and LC2b for navigations TB → TA are omitted for brevity).

Example 4. In a rule adding a link a-b, the following post-condition:
TA.allInstances()−>forAll(x | x.rb−>size() ̸= 5)

states that no object of type TA can be connected to exactly 5 TB objects. It
would be advanced as follows, by treating object a in a distinct way:

TA.allInstances()−>forAll(x |
(if x = a then x.rb−>including(b)
else x.rb endif)−>size() ̸= 5)

2.2.6. Object creation

New objects constitute a challenge, because there is no placeholder to
designate them in the LHS. For example, a constraint like the following:

Conveyor.allInstances()−>forAll(x | x.capacity ≥ 0)

restricts all objects of type Conveyor. If a new Conveyor c is created by
the rule, it should also satisfy this constraint. However, as new objects do
not exist in the LHS, we cannot refer to them using an identifier. Thus, the
expression:

Conveyor.allInstances()−>including(c)−>forAll(x | x.capacity ≥ 0)

is an invalid pre-condition, as identifier c is meaningless before rule applica-
tion.

As a result, the transformation for advancing post-conditions becomes
more complex in rules that create objects. Hence, we have split it in two
steps:

• In the first step, “allInstances()” and navigation expressions are mod-
ified to introduce an explicit reference to the newly created object.
This reference will then be removed in the next step based on the
type of expression it appears in. For navigation expressions, the new
object reference is introduced using the same patterns seen in Ta-
ble 4, e.g. for “T.allInstances()” the following pattern is applied:

T.allInstances()−>including(b)

11

• The second step removes direct references to the new object by a set
of replacements that either (i) move the reference upwards in the AST
of the OCL expression, (ii) particularize OCL quantifiers that affect
the new object, or (iii) rewrite the expression to avoid the reference.
The iterative application of those replacements yields an equivalent
expression without direct references.

The following example illustrates the replacement patterns for collection
and object expressions.

Example 5. Continuing with the previous scenario, the expression with ref-
erences to “including(c)” can be transformed into the following (pattern C6,
forAll):

Conveyor.allInstances()−>forAll(x | x.capacity ≥ 0) and (c.capacity ≥ 0)

Note how this pattern has particularised the quantifier “forAll” for ob-
ject c by moving the reference to c outside the iterator (since the “forAll”
states that all instances of Conveyor must satisfy the condition, this is the
same as saying that all instances and c must satisfy it, which simplifies the
expression). Now pattern O1 replaces “c.capacity” by the value given to this
attribute in the RHS, removing the last reference to the object. For example,
if the RHS includes an attribute computation for the capacity attribute like:
c.x’ = 10 the final pre-condition would be:

Conveyor.allInstances()−>forAll(x | x.capacity ≥ 0) and (10 ≥ 0)

which basically says that creation of c is always safe since it does not really
add new preconditions once advancing it. Obviously this won’t be always
the case, e.g. the capacity value could depend on the value of other existing
objects which would then need to be taken into account in the analysis of the
precondition.

The following tables 5 and 6 describe the list of replacements for object
and collection expressions, respectively, participating in the advancement
procedure for object creations. In addition to these patterns, the patterns
for link creation should be used as well if the object being created participates
in any new links.

Collection expressions can be classified into three categories:

• Simple queries (C1-4): these expressions consider the number of ele-
ments in a collection (C1) and whether the collection is empty (C2) or
not (C3).

12

Ref Pattern Replacement

O1 b.attrib attribute condition(attrib)

O2 b.role
Set{a1, . . . aN}, where a1, . . . aN are the identifiers of

the objects linked to x through “role” in the RHS

O3 b.oclIsTypeOf(A) true if T = A; false otherwise

O4 b.oclIsKindOf(A) true if T ⊑ A; false otherwise

O5 b.allInstances() T.allInstances()−>including(b)

O6 b.isOclUndefined() false

O7 exp−>count(b) 1 (if exp = col−>including(b)); 0 (otherwise)

O8 exp−>includes(b) true (if exp = col−>including(b)); false (otherwise)

O9 exp−>excludes(b) false (if exp = col−>including(b)); true (otherwise)

O10 exp−>excluding(b) col (if exp = col−>including(b)); exp (otherwise)

O11 b = exp or exp = b true if b = exp; false otherwise

O12 b ̸= exp or exp ̸= b false if b = exp; true otherwise

O13 if exp1 then b else exp2 endif Expand conditional.

O14 if exp1 then exp2 else b endif Expand conditional.

O15 Set{exp1, . . . , b, . . . , exp2} Set{exp1, . . . , exp2}−>including(b)

O16 b.oclAsType(A)
b (if T ⊑ A)
OclUndefined (otherwise)

Table 5: Replacement patterns for object expressions, where b is the identifier of the new
object and exp, exp1 and exp2 are arbitrary expressions.

• Iterators (C5-13): these expressions deal with quantifiers over a col-
lection. OCL quantifiers may compute a truth value, such as “exists”
(C5), “forAll” (C6), “one” (C8), or “isUnique” (C9); an element of the
collection, such as “any” (C10); a subset of the collection, such as “se-
lect” (C11) or “reject” (C12); or a new collection, as in “collect” (C7)
or “collectNested” (C13).

• Set operations involving objects or other collections (C14-30): these
operations deal mainly with testing the inclusion (C15, C19, C21) or
exclusion (C16, C20, C22) of an element in the collection, adding (C17)
or (C18) removing elements from the collection, performing set opera-
tions like intersection or union (C23-C27) and checking equality (C28,
C29).

For example, C2 indicates that the query “isEmpty()” can be replaced
by “false” when it is applied to a collection containing the new object.

The transformation of iterators combines the evaluation of the expression
on the new object and on the remaining elements of the collection. To this
end, we denote by Inst[var, exp] the replacement of all references to variable
var with the identifier of the new object. Then, a pattern like C5 for the
existential quantifier establishes that either the old elements of the collection

13

or the new object satisfy the condition. Applying Inst introduces references
to the new object, which are, again, further simplified using the patterns
from Tables 5 and 6.

Object expressions, described in Table 5, are defined similarly. For exam-
ple, pattern O1 describes an attribute access, simply replaced by the attribute
computation expression in the RHS.

2.2.7. Limitations

The method described in this paper supports most of the OCL but the
following features from the OCL 2.4 specification are unsupported:

• Calls to recursive query operations.

• OCL collections other than Set (Bag, Sequence, OrderedSet) and their
operations (first, last, append, prepend, insertAt, sortedBy, at, in-
dexOf, subSequence, subOrderedSet, asBag/Sequence/OrderedSet)

• The type Tuple and operations involving tuples, e.g. the cartesian
product.

3. Overview of the Method Applicability

This section describes how post-condition advancement can be used to
solve common problems in model transformations. This method can be used
either to ease the definition of a transformation (by automatically generating
pre-conditions from meta-model constraints) or for analysis (by validating or
verifying properties of interest).

Figure 4 provides a high-level view of the use of post-condition advance-
ment in combination with model finding techniques. The method can be seen
as a black box with two inputs (a model transformation and a post-condition)
and one output (a pre-condition). This black box can be used in combination
with an OCL model finder [16], a tool able to compute models satisfying a
set of input OCL expressions [9, 17, 11, 18, 12]. Using a model finder, it is
possible to generate the initial model (the input of the transformation). The
corresponding final model (the output of the transformation) can be later
computed by executing the transformation.

This approach differs from previous works on the analysis of transforma-
tion systems [19, 20, 21, 22], which have explored the notions of backwards
reachability (is a target model reachable?) and backwards coverability (is a

14

Ref Pattern Replacement

C1 colb−>size() col−>size() + 1

C2 colb−>isEmpty() false

C3 colb−>notEmpty() true

C4 colb.isOclUndefined() col.isOclUndefined()

C5 colb−>exists(x | exp) col−>exists(x | exp) or Inst[x, exp]

C6 colb−>forAll(x | exp) col−>forAll(x | exp) and Inst[x, exp]

C7 colb−>collect(x | exp) col−>collect(x | exp)−>including(Inst[x, exp])

C8 colb−>one(x | exp) (col−>one(x | exp) and not Inst[x, exp]) or
(not col−>exists(x | exp) and Inst[x, exp])

C9 colb−>isUnique(x | exp) col−>isUnique(x | exp) and

col−>select(x | exp = Inst[x, exp])−>isEmpty()

C10 colb−>any(x | exp) if col−>exists(x | exp) then col−>any(x | exp)
else b endif

C11 colb−>select(x | exp) if Inst[x, exp] then col−>select(x | exp) −>including(b)
else col−>select(x | exp) endif

C12 colb−>reject(x | exp) if Inst[x, exp] then col−>reject(x | exp)
else col−>reject(x | exp)−>including(b) endif

C13 colb−>collectNested(x | exp) col−>collectNested(x | exp) −>including(Inst[x, exp])

C14 colb−>count(exp)
1 (if exp = b)
col−>count(exp) (otherwise)

C15 colb−>includes(exp)
true (if exp = b)

col−>includes(exp) (otherwise)

C16 colb−>excludes(exp)
false (if exp = b)
col−>excludes(exp) (otherwise)

C17 colb−>including(exp)
col −>including(b) (if exp = b)
col−>including(exp)−>including(b) (otherwise)

C18 colb−>excluding(exp)
col (if exp = b)

col−>excluding(exp) −>including(b) (otherwise)

C19 colb−>includesAll(exp)
col−>includesAll(col’) (if exp = col’b)
col−>includesAll(exp) (otherwise)

C20 colb−>excludesAll(exp)
false (if exp = col’b)

col−>excludesAll(exp) (otherwise)

C21 exp−>includesAll(colb)
false (if exp ̸= col’b)
col’−>includesAll(col) (otherwise)

C22 exp−>excludesAll(colb)
false (if exp = col’b)
exp−>excludesAll(col) (otherwise)

C23 colb – exp
col – col’ (if exp = col’b)

(col – exp)−>including(b) (otherwise)

C24 exp – colb
col’ – col (if exp = col’b)
exp – col (otherwise)

C25
colb−>symDiff(exp) or
exp−>symDiff(colb)

col−>symDiff(col’) (if exp = col’b)
col−>symDiff(exp) −>including(b) (otherwise)

C26
colb−>union(exp) or
exp−>union(colb)

col−>union (col’)−>including(b) (if exp = col’b)
col−>union (exp)−>including(b) (otherwise)

C27
colb−>intersection(exp) or
exp−>intersection(colb)

col−>intersection(col’)−>including(b) (if exp = col’b)
col−>intersection(exp) (otherwise)

C28
colb= exp or

exp = colb

col = col’ (if exp = col’b)

false (otherwise)

C29
colb ̸= exp or
exp ̸= colb

col ̸= col’(if exp = col’b)
true (otherwise)

Table 6: Replacement patterns for collection expressions, where b is the identifier of the
new object, col and col’ are collection expressions, exp is an arbitrary expression, and
colb is a shorthand for col−> including(b).

15

Figure 4: Combining post-condition advancement with model finding.

model including a target submodel reachable?). Some key differences are the
following:

• First, our post-condition advancement strategy supports complex OCL
post-conditions and application conditions, while previous works im-
pose limitations on the target model/submodel or the (positive and
negative) application conditions, e.g. only graph patterns can be used
to describe them. In this sense, our approach is both more expressive
and more flexible in terms of defining the target post-condition.

• Second, our approach does not require a specialized solver and can
take advantage of existing OCL model finders. For instance, in this
approach model finders do not need to be aware of the semantics of
the transformation language: it is implicitly encoded in the OCL ex-
pressions they receive as input. Furthermore, the model finder only
considers one model at a time, i.e. the analysis of the initial model or
the final model is addressed separately.

• Third, our approach does not focus exclusively on backwards reacha-
bility or coverability, problems which have decidability issues [19]. In-
stead, backwards reachability is only one of the potential applications
of this method. However, due to the expressiveness supported by our
approach, we are not able to employ optimizations and symbolic tech-
niques which make specialized approaches for backwards reachability
more efficient.

16

• Finally, another advantage is that this architecture provides a uniform
framework to address a wide variety of quality issues in model transfor-
mation. That is, the basic toolkit depicted in Figure 4 can be applied
to a variety of problems depending on the choice of inputs and the
usage of the model finder output.

Post-condition advancement can contribute to several types of analysis:
verification (proving that the transformation is correct), validation (exer-
cising the transformation in specific models to assess its correct operation),
testing (generating test data to automate validation) or diagnosis (a combi-
nation of the previous goals, where a potential fix for each defect is derived
automatically). These application scenarios can be further classified accord-
ing to several criteria:

1. The input transformation being considered, i.e. whether it is a single
rule or a rule sequence2 and whether it is an in-place or exogenous
transformation.

2. The input post-condition, i.e. whether it is a meta-model constraint,
a constraint derived from another rule, it is hand-made or it is specific
pattern that can be used to check recurring properties.

3. The specific conditions provided to the model finder in addition to the
pre-condition or post-condition.

4. How the model finder output is used, i.e. whether a model (or lack
of thereof) constitutes an example of a correct scenario, a proof of
correctness or a counterexample.

Table 7 summarizes several application scenarios according to these cri-
teria. e.g. executability, deadlocks, rule independence, rule sequences and
backward reachability. These scenarios are described in more detail in Sec-
tion 4.

4. Applications of the Method

This section describes several scenarios where our approach can be ap-
plied, both for in-place and exogenous transformations. Without loss of
generality, the sample transformations will be described using GT.

2Besides rule sequences, this approach may also be applied to study chained transfor-
mations.

17

in-place exogenous

Constraints
from MM

(V) Check weak executability of a rule

(V) Check strong executability of a rule

(D) Derive weakest pre-condition to en-
sure rule strong executability

(D) Check possible violations of tar-
get MM constraints by a rule
and strengthen rule applicability

to ensure meeting target MM con-
straints.

Constraints

from other rules
(T) White-box testing: Test sequence

execution

(V) Detect and analyze deadlocks

(V) Rule independence

(T) White box testing: sequence exe-
cutability

Hand-made
constraints

(T) Backwards reachability: finding an

initial graph (satisfying Cpre lead-
ing to a graph fulfilling Cpost)

(D) Add pre-condition to a rule so that

a state with some properties is not
reached

(T) Black-box testing: generation of

source models to produce certain
configuration of elements in the tar-
get models

Table 7: Applications of the method. V=Verification, D=Diagnosis, T=Testing.

Before detailing the scenarios of Table 7, we need to introduce some
notation. We normally write MM for a meta-model, and CONST (MM) for
its set of OCL integrity constraints. A modelM typed byMM and satisfying
CONST (MM) is written M |= MM . Similarly, given a constraint C, we
write M |= C if M satisfies C.

To describe in-place transformations, we assume GT rules of the form
p = ⟨r : L → R,ATTCOND⟩, where L and R are graphs, and ATTCOND is
a set of OCL constraints expressing attribute conditions. Given a rule p, it
is straightforward to derive the set of atomic actions it performs, which can
then be serialized to a sequence by placing the actions in any arbitrary order.
We call such a sequence actions(p).

We say that a rule p is enabled in a model M , written M |= p, if there
is an occurrence o of L in M (formally, a graph morphism [6]), where the
constraints in ATTCOND hold given the identification of objects induced by
the occurrence. We sometimes write M |=o p to denote the particular oc-
currence o where p is enabled in M . We write OCC(p,M) for the set of

all valid occurrences of p in M , and M
p,o⇒ M ′ for the transformation of

18

model M into M ′ via the application of rule p at occurrence o. Finally,
enabling(p) denotes the constraint ensuring the enabledness of p. This con-
straint is made of the conjunction of a number of nested existential quan-
tifiers requiring the existence of every element in L connected as specified
by L, and the satisfaction of the ATTCOND attribute condition (see [8] and
the example in Section 4.2). We sometimes write enablingL(p) for the OCL
constraint derived from the rule’s LHS, but not including the attribute con-
dition ATTCOND. We define the strengthening operator ∧̃, so that A ∧̃ B is
a conjunction of B and the inner-most existential quantifier of A. This way,
enabling(p) = enablingL(p) ∧̃ ATTCOND.

Definition 1 (Strengthening operator ∧̃). Let A be an OCL constraint
defining a condition inside a set of nested existential quantifiers:
Type1.allInstances()−>exists(v1 |
Type2.allInstances()−>exists(v2 |
. . .
TypeN.allInstances()−>exists(vN | condition) . . .))

and let B be another OCL constraint. Then, A ∧̃ B is defined as follows:
Type1.allInstances()−>exists(v1 |
Type2.allInstances()−>exists(v2 |
. . .
TypeN.allInstances()−>exists(vN | condition ∧ B) . . .))

The applications of our method rely on the correctness of the post-
condition advancement procedure (adv). The following lemma defines this
correctness notion. A more detailed formalization of this lemma together
with a complete proof is included in Appendix A.

Lemma 1 (Correctness of weakest precondition). Let MM be a meta-
model, p a graph transformation rule and C an OCL constraint over MM .
Let M1 and M2 be any pair of models such that M1,M2 |= MM , M1 |=
enabling(p) and M1

p⇒ M2. Let C ′ be the weakest precondition computed by
our method from rule p and post-condition C, i.e. C ′ = adv(actions(p), C).
Then, M1 |= C ′ if and only if M2 |= C.

In the following subsections, we characterize each application of the method
in Table 7 and show how they can be solved using our method and model
finders, presenting some examples as well.

19

4.1. Strong executability of rules

A rule p is called strongly executable (SE) if ∀M |= MM, ∀o ∈ OCC(p,M):

M
p,o⇒ M ′ implies M ′ |= MM . In the simplest scenario, the rule has no at-

tribute conditions, and the goal is to make it SE by adding conditions that
ensure that any application of the rule yields a model that fulfils the cardi-
nality and integrity constraints of the meta-model. In a more general setting,
given a rule p with non-empty application conditions, we might want to check
whether p is SE, and if not, strengthen its application conditions to make it
SE. Definition 2 states the problem in the general case.

Definition 2 (Strengthening to strong executability (SSE)). Given a
rule p = ⟨r : L → R,ATTCOND⟩, and a meta-model MM , find a rule p′ =
⟨r : L → R,ATT ′

COND⟩ s.t. ∀M |= MM, ∀o ∈ OCC(p′,M): o ∈ OCC(p,M)

and (M
p′,o⇒ M ′ implies M ′ |= MM).

The condition ∀o ∈ OCC(p′,M): o ∈ OCC(p,M) ensures that the appli-
cability conditions of p′ (enabled(p′)) are stronger than those for p. This is
always true if the original ATTCOND is empty (because both p and p′ have
the same LHS).

Method 1 describes how to solve the scenario using our advancement pro-
cedure adv, for which we need a model finder. As previously mentioned, a
model finder takes a meta-model and a set of OCL constraints, and generates
a model conformant to the meta-model and satisfying the constraint, if it ex-
ists within a given bound. In the following examples, we use the Alloy model
finder [23], but any other finder could be used as well. While the previous
definition does not constrain the structure of the condition ATTCOND added
to the rule, our advancement procedure constructs the weakest one.

Method 1 (Method for SSE). Given a rule p = ⟨r : L → R,ATTCOND⟩,
and a meta-model MM :

1. Compute ATT ′
COND = adv(actions(p), CONST (MM)).

2. Check if ∃M s.t. M |= MM and M |= enabling(p)∧̃¬ATT ′
COND (with

a model finder)

3. If such M exists, then p′ = ⟨r : L → R,ATTCOND ∧ ATT ′
COND⟩

4. else p′ = ⟨r : L → R,ATTCOND⟩

20

The main idea of the method is to compute a constraint ATT ′
COND for

the rule p without considering p’s attribute conditions, and check whether a
model exists that satisfies the original condition of the rule (ATTCOND), but
not the derived one. Such model is not guaranteed to satisfy MM after the
rule application. Therefore, the rule’s conditions are strengthened to disallow
applying the rule on those models.

Next, we show that using this method, we obtain a rule satisfying Defi-
nition 2.

Theorem 1 (Correctness of SSE method). Given a rule p = ⟨r : L →
R,ATTCOND⟩, and a rule p′ = ⟨r : L → R,ATT ′

COND⟩ calculated with Method 1,

we have that ∀M |= MM, ∀o ∈ OCC(p′,M): o ∈ OCC(p,M) and (M
p′,o⇒ M ′

implies M ′ |= MM)

Proof 1. Case 1) Let us assume p′ has the form p′ = ⟨r : L → R,ATTCOND∧
ATT ′

COND⟩. Then, it is clear that ∀o ∈ OCC(p′,M): o ∈ OCC(p,M). This
is so as enabled(p′) =⇒ enabled(p). It remains to check that p′ is SE.
Rule p′′ = ⟨r : L → R,ATT ′

COND⟩ is SE by correctness of our advancement
procedure (Lemma 1). Because enabled(p′) =⇒ enabled(p′′), we have that
p′ is applicable in a subset of the models where p′′ is applicable. As p′′ is SE,
then p′ is SE as well.
Case 2) In this case, p = p′. By the 2nd step in the method, @M s.t.
M |= MM and M |= enabling(p)∧̃¬ATT ′

COND. This means that @M s.t.
M |= enablingL(p)∧̃(ATTCOND ∧ ¬ATT ′

COND), and hence we have that ei-
ther ATTCOND =⇒ ATT ′

COND or enablingL(p) is unsatifiable. In the latter
case, p is SE vacuosly (there cannot be a model where p is applicable). Lets
consider the first case. Rule p′′ = ⟨r : L → R,ATT ′

COND⟩ is SE by Lemma 1.
Because ATTCOND =⇒ ATT ′

COND, we have that p is applicable in a subset
of the models where p′′ is applicable. As p′′ is SE, then p is SE as well.

Example 6. Assume we would like to enforce SE for rule process of Fig-
ure 2. For this purpose:

1. First we pre-process the OCL invariants, rewriting them to a global
scope:
Conveyor.allInstances()−>forAll(v |
v.piece−>size() ≤ v.capacity) and

Piece.allInstances()−>forAll(z |
z.conveyor−>size() = 1)

21

where the second clause, constraining pieces, is derived from the cardi-
nality constraints on the association between conveyors and pieces.

2. Now we extract the atomic actions the rule performs. In our case, the
rule deletes object r (together with link co1-r) and it creates object p
(with link co2-p).

3. Next, we apply the replacement patterns. After applying patterns OD2,
LC1a, C18 and C1 to the first part of the expression, we obtain:
Conveyor.allInstances()−>forAll(v |
if v = co2 then

v.piece−>excluding(r)−>size() + 1 ≤ v.capacity
else v.piece−>excluding(r)−>size() ≤ v.capacity
endif)

This result is more complex than the condition stated in rule process,
because it considers the possibility of a non-injective matching, i.e. co1
= co2. In such a case, there is no size problem as the rule creates and
deletes the piece on the same conveyor. This is achieved implicitly
by the conditional and the call to “excluding(r)”: if co1 = co2, then
“v.piece” contains piece r and it is removed by the call “excluding(r)”;
otherwise, “v.piece” remains unaltered. This case was not considered
by the designer of the rule in Figure 2 as it is not obvious from the
invariant and the LHS. As a result, condition in Figure 2 was too
restrictive and forbade the execution of the rule in a correct scenario.
This example illustrates the benefits of automating the approach.

4. Finally, we apply the replacements (patterns OD1, C18, C6, and O2)
for the second part of the post-condition. The final result is therefore:
Conveyor.allInstances()−>forAll(v |
if v = co2 then
v.piece −>excluding(r)−>size() + 1 ≤ v.capacity

else
v.piece −>excluding(r)−>size() ≤ v.capacity

endif) and
Piece.allInstances()−>excluding(r)−>forAll(z |
z.conveyor−>size() = 1)

Altogether, this example shows that adding by hand OCL pre-conditions
to ensure SE is error-prone and time-consuming. For instance, Figure 5
shows two sample models, computed using the model finder Alloy, which
are incorrectly forbidden by the handwritten attribute conditions of rules

22

Figure 5: Valid initial models forbidden by the attribute conditions of rule process (left)
and rule move (right). Top: output of the model finder Alloy. Bottom: same output shown
in our concrete visual syntax.

process and move. Our method solves this problem as such pre-conditions
are automatically derived from the meta-model integrity constraints.

4.2. White-box testing and sequences

A typical validation scenario concerns the testing of rule application se-
quences, in order to answer questions like: is it possible to apply the rule
sequence s = ⟨p1; p2; . . . ; pn⟩ to some starting model, and obtain a model in
which Cpost holds (e.g., there are less than 3 objects of a certain type)? In
the more general case, one may also like to describe the starting model: is it
possible to apply the sequence s to a model in which Cpre holds (e.g., there
are exactly 5 objects of a certain type) yielding a model in which Cpost holds
(e.g., there are no more than n objects of a certain type)? These validation
tasks are useful for white-box testing of transformations, where one wants to
execute a set of predefined rule sequences. We next formulate the problem
statement.

Definition 3 (Rule sequence testing (RST)). Given a rule sequence s =
⟨p1 = ⟨r1 : L1 → R1, ATT

1
COND⟩; ...; pn = ⟨rn : Ln → Rn, ATT

n
COND⟩⟩, a

meta-model MM , and two constraints Cpre and Cpost, find a model M s.t.

M |= MM , M |= Cpre and M
s⇒ M ′, with M ′ |= MM , and M ′ |= Cpost.

23

The method to solve this scenario advances Cpost to rule pn, then to rule
pn−1, and so on, until the first rule in the sequence is reached. In the process,
the applicability conditions enabling(pi) of each rule are taken into account.
As stated before, this predicate is made of nested existential quantifiers, and
hence it is concatenated with the advanced condition using the strengthening
operation ∧̃.

Method 2 (Method for RST). Given a rule sequence s = ⟨p1 = ⟨r1 : L1 →
R1, ATT

1
COND⟩; ...; pn = ⟨rn : Ln → Rn, ATT

n
COND⟩⟩, a meta-model MM ,

and two constraints Cpre and Cpost, find M as follows:

1. CC := Cpost

2. for i = n to 1

CC := enabling(pi) ∧̃ adv(actions(pi), CC)

3. Find a model M s.t. M |= MM and M |= Cpre ∧ CC (using a model
finder).

Next theorem shows that the method actually achieves RST, as expressed
in Definition 3.

Theorem 2 (Correctness of RST method). Given a rule sequence s =
⟨p1 = ⟨r1 : L1 → R1, ATT

1
COND⟩; ...; pn = ⟨rn : Ln → Rn, ATT

n
COND⟩⟩, a

meta-model MM , two constraints Cpre and Cpost, and a model M found using

Method 2, then M |= MM , M |= Cpre, and M
s⇒ M ′, with M ′ |= MM , and

M ′ |= Cpost.

Proof 2. We proceed by induction on the rule sequence length, as follows.

Base case) n = 1. In this case CC1 := enabling(p1) ∧̃ adv(actions(p1), Cpost),
and let M be a model s.t. M |= MM ∧ Cpre ∧ CC1 found in step 3 of
Method 2. By Lemma 1, we have that M ′ |= Cpost and M ′ |= MM

with M
p1⇒ M ′. Please note that, at this stage, the model finder may

not find such model M , either if the constraints MM ∧Cpre ∧CC1 are
unsatisfiable (and hence M does not exist), or if the search bounds of
the finder are too narrow. We assume now and in following proofs that
the search bounds are as wide as necessary.

Induction step) Assume Method 2 yields a correct result for sequences s of
length up to n. This means that CCn := enabling(pn) ∧̃ adv(actions(pn),

24

CCn−1), and for a model M s.t. M |= MM ∧Cpre∧CCn, we have that

M ′ |= MM ∧ Cpost with M
s⇒ M ′.

Let CCn+1 := enabling(pn+1) ∧̃ adv(actions(pn+1), CCn), and let be a

model M with M |= MM ∧ Cpre ∧ CCn+1. Then, M
pn+1⇒ M ′′ implies

M ′′ |= MM ∧ CCn by Lemma 1. But this implies that M ′′′ |= MM ∧
Cpost for M

′′ s⇒ M ′′′. Hence, this implies that M ′′′ |= MM ∧Cpost with

M
⟨pn+1⟩·s
=⇒ M ′′′, and ⟨pn+1⟩ · s being the concatenation of rule pn+1 to

sequence s.

Example 7. Assume we want to test the sequence ⟨process; move⟩ starting
and finishing in a model with one piece and two conveyors. Our method
would first express the requirement on the final model as an OCL constraint,
which we denote as Cpost. The constraint is the following:

Piece.allInstances()−>size() = 1 and Conveyor.allInstances()−>size() = 2

Then, constraint Cpost is advanced using this method as a pre-condition
for rule move, producing a new constraint Cmove

pre . Before it can be advanced
further within the sequence of rules, two issues need to be resolved:

• This constraint may contain references to objects named in the LHS of
the rule.

• We need to make sure that rule move was applicable at this point of
the sequence.

In order to solve both issues, we need to translate the enabling condition
of the LHS of rule move as an OCL expression enablingL(move) (using the
algorithm given in [8]). In short, the algorithm defines nested existential
quantifiers, one for each object in the LHS. The type of each object in the
LHS defines the context type that will be quantified and the name of the
object in the LHS is used as the name of the quantified variable. The body of
the innermost quantifier describes the graph pattern: each edge a−b becomes
a constraint of the form a.rb−> includes(b), where rb is the association end
of the association that contains link a−b. For instance, the LHS of rule move
is encoded as:

Conveyor.allInstances()−>exists(co1, co2 |
Raw.allInstances()−>exists (r |
co1.next−>includes(co2) and co1.piece−>includes(r)))

Further application conditions (e.g. OCL guards) can be added within
the innermost existential quantifier (strengthening the constraint of the graph

25

pattern, i.e. using and, which we have written using mathematical notation
as ∧̃ in previous methods and theorems). In this case, we want to ensure
that our advanced constraint also holds, so the following constraint would be
used:

Conveyor.allInstances()−>exists(co1, co2 |
Raw.allInstances()−>exists (r |
co1.next−>includes(co2) and co1.piece−>includes(r) and
(co2.piece−>size() + 1 ≤ co2.capacity) and Cmove

pre))

This new constraint, which we can call intermediate, can now be ad-
vanced as a pre-condition of rule process, producing a constraint intermediateprocesspre .
Again, the result should be enclosed within the OCL condition for the LHS
of process, to make sure that this rule is enabled at the beginning of the
sequence and that any references to elements in the LHS of rule process are
given a proper meaning. This property would have the following structure:

Conveyor.allInstances()−>exists(co1, co2 |
Raw.allInstances()−>exists (r |
Machine.allInstances()−>exists (m |
co1.piece−>includes(r) and
m.ic−>includes(co1) and m.oc−>includes(co2) and
(co2.piece−>size() + 1 ≤ co2.capacity) and intermediate

process
pre)))

This constraint, put in conjunction with an OCL condition expressing
the requirements expected from the initial model (Cpre, a model with one
piece and two conveyors in this example), can be used by a model finder to
compute an initial model where: (i) the starting model requirements hold,
(ii) the first rule is enabled, (iii) each rule in the sequence is enabled after
firing the previous rules, and (iv) constraint Cpost holds after firing the final
rule.

If we pass the resulting constraint to a model finder like Alloy this will
return a model satisfying the constraint, if such a model exists. The resulting
model ensures that the rule sequence is applicable, and can then be used
for testing, to check whether the application of the sequence behaves as
expected. The top right of Figure 6 shows one model found by Alloy that
satisfies the derived OCL constraint. This model satisfies the condition of
having one piece and two conveyors (a requirement for the input model).
The application of the sequence yields the model to the bottom right of
Figure 6, which contains one piece and two conveyors too (the requirement
for the output model). On the Alloy instance in the left, the mappings used
in the rule firings are identified, e.g. co1{process} means that this object

26

is matched as Conveyor co1 in the LHS of rule process. Notice that there
is no correspondence for piece r in the LHS of rule move as that object does
not exist yet in the initial model (it is created when rule process is fired).

Figure 6: Left: initial model for the sequence ⟨process; move⟩ that preserves one piece
and two conveyors, as generated by Alloy. Top right: same model using our concrete visual
syntax. Bottom right: final model after firing ⟨process; move⟩.

Example 8. As a second example, we show the application of the method
for white-box testing of exogenous transformations, in particular with Triple
Graph Grammar (TGG) operational rules [24]. Their behaviour is similar
to that of GT rules but, in this case, rules are made of LHS/RHS triple
graphs made of the source and target graphs of the transformation, together
with a correspondence graph that contains traces between the other two
graphs. Typically, the transformation only creates elements in the target
and correspondence graphs, whereas the source graph is just inspected.

The example is a very simplified version of the classical transformation
from UML to RDBMS. The triple meta-model for the example, made of the
source, target and trace meta-models, is shown to the left of Fig. 7. Thus,
the correspondence meta-model in the middle declares two types of traces:
PS maps packages and schemas, and CT maps classes and tables. The dotted
arrows specify the allowed references (technically graph morphisms) from
the correspondence to the source and target models, and we treat them as
normal associations with cardinality 1 on the side of the source/target class,
and 0..1 on the side of the trace.

The transformation from UML to RDBMS is shown to the right of Fig. 7.
We make the same assumptions as for GT rules regarding the creation of

27

Class

name : String

Package

name : String

0..* classes

Table

name : String

Schema

name : String

0..* tables

PS

CT
0..1

0..1 0..1

0..1

p: Package s: Schema :PS

RHS:

p: Package

LHS:

PackageToSchema

RHS: LHS:

ClassToTable

Attribute computation: s.name:=p.name

p: Package s: Schema ps:PS

c: Class t:Table :CT

Attribute computation: t.name:=c.name

p: Package s: Schema ps:PS

c: Class

Figure 7: A meta-model triple (left). Operational TGG rules (right).

edges, but do not consider the ones for deletion of objects and edges since ex-
ogenous transformations are non-deleting (i.e. rules can only create). Thus,
when advancing OCL constraints for exogenous rules, we will not need to con-
sider replacements for deleting operations. In particular, our TGG is made
of two operational rules: the first one creates a schema for each package, and
the second one creates a table for each class.

Now, we want to obtain a valid UML model that permits firing sequence
⟨PackageToSchema; ClassToTable⟩, requiring as the post-condition that
there is one schema with no tables:

Schema.allInstances()−>exists(s | s.tables−>isEmpty())

Using the same procedure as in the previous example, the post-condition
can be advanced into a pre-condition that ensures the desired outcome for the
sequence. Then, a model finder can use this pre-condition to compute sample
models. Figure 8 depicts a sample initial and final model, as generated by
Alloy. In this scenario, the pre-condition implicitly states that the initial
model needs to contain at least two packages, one with a corresponding
schema and another without it. Deriving this pre-condition by hand would
not be trivial as the target post-condition is not defined in terms of packages
but in terms of schemas.

4.3. Backwards reachability

Next, we generalize the previous method with the possibility to perform
backwards search. This scenario starts with a final model satisfying Cpost,
and performs a backward exploration applying the available rules backwards,
until a model satisfying Cpre is found. While in the previous scenario the
sequence of rules is fixed a priori, in backwards reachability, all possible
sequences of rules are evaluated until reaching a model with the given re-
quirements.

28

Figure 8: Left: initial model for the sequence ⟨PackageToSchema; ClassToTable⟩ that
produces a schema with no tables, as generated by Alloy. Top right: same model using
our concrete visual syntax. Bottom right: final model after firing the sequence.

Definition 4 (Backwards exploration (BE)). Given a set of rules S =
{⟨pi = ⟨ri : Li → Ri, ATT

i
COND⟩}i∈I , a meta-model MM , and two constraints

Cpre and Cpost, find a model M s.t. M |= MM and M |= Cpre, and find a

rule sequence s = ⟨pr; ...; pk⟩ s.t. M
s⇒ M ′, with M ′ |= MM and M ′ |= Cpost.

This scenario goes one step further than RST, because it seeks a rule
sequence in addition to an initial model. In order to solve it, we perform
a backwards search starting from Cpost and ending whenever a model that
satisfies Cpre is found (see Figure 9). To avoid infinite exploration, we bound
the search length to a maximum number of steps. Thus, the method builds
iteratively a constraint Cji by advancing Ci through the actions of rule pj,
and then adding its enabling condition enabling(pj). If there is a model M
satisfying Cpre ∧ Cji (found using a model finder), then the method returns
both the found model M and the sequence ⟨pj; pi⟩.

Cpost

p1

pn

C1

Cn

Ci=enabling(pi)Ùadv(actions(pi),Cpost)

…

p1

pn

C11

Cn1

…

Cji=enabling(pj)Ùadv(actions(pj),Ci)

…

$M : M C1ÙCpre ?

~

~

Figure 9: Method for backwards exploration.

29

Method 3 (Method for BE). Given a set of rules S = {⟨pi = ⟨ri : Li →
Ri, ATT

i
COND⟩}i∈I , a meta-model MM , a constant MAX bounding the max-

imum search depth, and two constraints Cpre and Cpost, find a model M and
a sequence s as follows:

(M, s) := BEX(S,Cpre, Cpost, ⟨⟩, 1,MAX)

where function BEX is defined as follows:

function BEX(S,Cend, Ccurr, scurr, clevel,max) : Model × Sequence

1. if ∃M : M |= MM ∧ Ccurr ∧ Cend return (M, scurr)

2. if clevel > max return nil

3. for i = 1 to n (with n=—I—, the size of the rule set)

(a) (M, s) := BEX(S,Cend, enabling(pi)∧̃adv(actions(pi), Ccurr), ⟨pi⟩·
scurr, clevel + 1,max)

(b) if M ̸= nil return (M, s)

4. return nil

where ∧̃ is the strengthening operator, and ⟨p⟩ · s is the concatenation of rule
p to sequence s.

Theorem 3 states that if the BEX function of Method 3 returns a model
M and a sequence s, then such pair fulfills the requirements for BE given in
Definition 4. Alternatively, if BEX returns nil, then a source M satisfying
the conditions cannot be reached within the search bounds of MAX.

Theorem 3 (Correctness of BE method). Let S = {⟨pi = ⟨ri : Li →
Ri, ATT

i
COND⟩}i∈I be a set of rules, MM a meta-model, MAX ∈ N0 a con-

stant, and Cpre and Cpost two constraints.
Assume (M, s) := BEX(S,Cpre, Cpost, ⟨⟩, 1, MAX) is the model and se-

quence returned by the BEX function defined in Method 3. Then, M |=
MM ∧ Cpre, |s| ≤ MAX, and M ′ |= MM ∧ Cpost, with M

s⇒ M ′ and where
|s| is the length of sequence s.

Alternatively, if BEX(S,Cpre, Cpost, ⟨⟩, 1,MAX) returns nil, then there
is no model M and sequence s with |s| ≤ MAX s.t. M |= MM ∧ Cpre and

M
s⇒ M ′ and M ′ |= MM ∧ Cpost.

30

Proof 3. (Sketch) Let us assume that the algorithm returns a non-nil result.
If the algorithm returns a non-nil result (M, s) in step 1, it means that M |=
MM ∧ Ccurr ∧ Cend, Ccurr = Cpost, Cend = Cpre and s = ⟨⟩. Therefore

the theorem holds, because M
⟨⟩⇒ M ′ = M , and hence M |= MM ∧ Cpre

M ′ |= MM ∧ Cpost, and |⟨⟩| = 0 ≤ MAX (for any MAX ∈ N0).
Else, in step 3, a depth first exploration of rule sequences is performed.

In each step, Cend = Cpre, and Ccurr (initially equal to Cpost) is the result of
advancing Ccurr via the chosen rule pi, and strengthening p′is enabling con-
dition: C ′

curr := enabling(pi)∧̃adv(actions(pi), Ccurr). Therefore, by Lemma

1, if a model M is found s.t. M |= C ′
curr, then M ′ |= Ccurr with M

⟨pi⟩⇒ M ′.
Therefore, for sequences of length 1, the theorem holds as well, and by it-
erating these two arguments, the theorem holds for sequences of arbitrary
length.

Lets assume that the algorithm returns a nil result. If this happens at
step 2, it means that the search bounds are overstepped. A nil value can also
be returned at step 4, which means that at a certain stage in the recursion,
every rule was explored, and no model M was found satisfying the conditions.
Because at each step in the recursion the algorithm tries all available rules
(and we assume that the model finder is customized with sufficent search
bounds), then the nil result is returned because there is no model satisfying
the conditions within a scope of MAX for the rule sequence.

Please note that Method 3 performs an exhaustive search of sequence of
length MAX. Therefore, if a sequence of length MAX and a model M exist
fulfilling Definition 4, then Method 3 will find it. Hence, we can enunciate
the following completeness result.

Theorem 4 (Completeness of BE method). Let S = {⟨pi = ⟨ri : Li →
Ri, ATT

i
COND⟩}i∈I be a set of rules, MM a meta-model, MAX a constant,

Cpre and Cpost two constraints. Assume there exist two models M and M ′,

and s a sequence of rules in S of length n s.t. M
s⇒ M ′, with M ′ |= MM ∧

Cpost and M |= MM ∧ Cpre, then BEX(S,Cpre, Cpost, ⟨⟩, 1, n + 1) returns
a model M ′′ and a sequence s′ with |s′| ≤ n satisfying the conditions in
Definition 4.

Proof 4. (Sketch) Assume a sequence s (with |s| ≤ MAX) and a model M
exist fulfilling the conditions. BEX performs an exhaustive bounded search
of sequences of length up to MAX. Therefore, the algorithm will find such

31

sequence and model, or a shorter sequence and model. In every case, the
found sequence and model are correct according to Theorem 3. Please note
that we assume that the model finder has suitable bounds for finding a model
of the size of M .

4.4. Detecting and analysing deadlocks

Backwards reachability is a flexible method, as it can be customized with
the Cpre and Cpost constraints. For example, we can use backward reachablity
to perform a backward exploration from an unwanted deadlock situation (i.e.,
Cpost is a constraint encoding that no rule is applicable), into some initial
model of interest (satisfying Cpre).

Definition 5 (Deadlock exploration (DE)). Given a set of rules S =
⟨pi = ⟨ri : Li → Ri, ATT

i
COND⟩i∈I , a meta-model MM , and a constraint Cpre,

find a model M s.t. M |= MM and M |= Cpre, and find a sequence s =

⟨pr; ...; pk⟩ s.t. M
s⇒ M ′, with M ′ |= MM and no rule in S enabled in M ′.

Method 4 (Method for DE). Given a set of rules S = {⟨pi = ⟨ri : Li →
Ri, ATT

i
COND⟩}i∈I , a meta-model MM , a constant MAX bounding the max-

imum search depth, and a constraint Cpre, find a model M and a sequence s
as follows:

(M, s) := BEX(S,Cpre,¬enabling(p1) ∧ ... ∧ ¬enabling(pn), ⟨⟩, 1,MAX)

Because Method 4 is a special case of Method 3, with Cpost = ¬enabling(p1)∧
...∧¬enabling(pn), we have the correctness and completeness results of The-
orems 3 and 4.

4.5. Rule independence

Next, we show that our backwards analysis method can be used to test
rule independence for pairs of rules having arbitrary attribute OCL condi-
tions. Rules r1 and r2 are independent if executing r1 does not disable r2
(and vice versa) [6], or formally:

Definition 6 (Rule independence (RI)). Given two rules pi = ⟨ri : Li →
Ri, ATT

i
COND⟩(i = 1, 2), and a meta-model MM , p1 and p2 are not inde-

pendent if ∃M s.t. M |= MM ∧ enabled(r1) ∧ enabled(r2) and ⟨r1; r2⟩ is
executable, but ⟨r2; r1⟩ is not.

32

To solve this scenario, we can use a model finder to search for a model
where both r1 and r2 are enabled, ⟨r1; r2⟩ is executable on M , but ⟨r2; r1⟩ is
not. For the latter two conditions we use our adv advancement method.

Method 5 (Method for RI). Given two rules pi = ⟨ri : Li → Ri, ATT
i
COND⟩

(i=1, 2), and meta-model MM , find a model M (with a model finder) s.t.:

M |= MM ∧ (enabling(r1)∧̃adv(actions(r1), enabling(r2))) ∧
(enabling(r2)∧̃adv(actions(r2),¬enabling(r1)))

Next theorem states the correctness of the method for RI.

Theorem 5 (Correctness of RI method). Given two rules pi = ⟨ri : Li →
Ri, ATT

i
COND⟩ (i=1, 2), a meta-model MM , and a model M s.t.

M |= MM ∧ (enabling(r1)∧̃adv(actions(r1), enabling(r2))) ∧
(enabling(r2)∧̃adv(actions(r2),¬enabling(r1)))

then r1 and r2 are not independent.

Proof 5. We have the following implications:

(enabling(r1)∧̃adv(actions(r1), enabling(r2))) =⇒ enabling(r1)

(enabling(r2)∧̃adv(actions(r2),¬enabling(r1))) =⇒ enabling(r2)

which means that M |= MM ∧ enabling(r1) ∧ enabling(r2), and therefore
both r1 and r2 are applicable on M .

In addition, M |= enabling(r1)∧̃adv(actions(r1), enabling(r2)), which
means that r2 is applicable on M ′, with M

r1⇒ M ′.
Finally, M |= enabling(r2)∧̃adv(actions(r2),¬enabling(r1)), and so r1 is

not enabled in M ′′ with M
r2⇒ M ′′.

Please note that, while GT theory has characterized rule independence
using categorical reasoning [6], our method has the advantage to consider
arbitrary OCL attribute conditions, which is novel to the best of our knowl-
edge.

33

5. Implementation

As described in Figure 4, the different application scenarios for our method
rely on a combination of the advancement procedure with model finders
where both can be seen as a black-box from one another. Since several model
finders for OCL are already available, to enable our method we only need to
provide an implementation of the advancement procedure itself. The OCL
advancement procedure has been implemented in Java and distributed as an
open source Eclipse plugin with the source code freely available in GitHub3.

Internally, the tool offers a facade class OCLBackwardReasoning provid-
ing a set of methods to generate a pre-condition out of a given OCL post-
condition. Separate methods are in charge of modifying the OCL expression
for each atomic action in the (GT) rule. Each method takes as parameters the
OCL expression, the model and the variable/s identifying the element to be
modified and then delegates the actual advancement task to the appropriate
class (e.g., CreateLink, DeleteLink, CreateObject,...).

To detect a particular replacement pattern in a constraint, we rely on
the OCL Visitor API provided by the default OCL Eclipse plugin4. In our
tool we extend the AbstractVisitor class to modify the abstract syntax tree
of the input OCL expression following the replacement patterns discussed in
the paper.

The tool comes also with two examples showing how to use the plugin.
The first one implements the running example we are using in this paper while
the second one represents a bank management system helpful to illustrate
the effect of each individual atomic action separately.

In all cases, the weakest pre-condition was computed automatically in a
few seconds. For example, the weakest pre-condition used in Example 6 to
enforce SE in rule process is computed from the post-condition in 0.03s. In
the bank management example, we consider the computation of the weakest
pre-condition for four post-conditions stating simple integrity constraints,
e.g. all accounts should have a non-negative balance. Given four types
of atomic actions (link creation, link deletion, attribute update and object
creation), the corresponding weakest pre-conditions are generated in 0.05s.
These results have been measured on an Intel Core i5 760 2.8Ghz with 4Gb
RAM.

3https://github.com/SOM-Research/ocl-backwardreasoning
4http://www.eclipse.org/modeling/mdt/?project=ocl

34

6. Related Work

In this section we analyse related works with respect to (1) the advance-
ment method and (2) the use of backwards analysis in model transformations.

6.1. Advancing post-conditions

There are previous works on moving constraints from the RHS to the
LHS of GT rules. The idea was first proposed in [13], where post-conditions
for rules were derived from global invariants of the form ∀P∃Q, where P and
Q are graphs. In [25] the approach was generalized to adhesive high-level
replacement systems. These works were extended in [26] to deal with nested
conditions of arbitrary depth. This family of conditions has the same expres-
sive power as first-order graph formulas [27]. The work of [28] translates a
limited subset of OCL to graph constraints, which could be used by these
other works to synthesize local pre-conditions for rules. In [29] an advance-
ment procedure for attributed graph constraints into rule pre-conditions is
presented. However, no OCL conditions are considered.

These approaches have two main limitations w.r.t. our new technique:
(1) lack of expressivity in the post-condition expressions (e.g. OCL expres-
sions such as numerical constraints on attributes or cardinalities of collec-
tions are not supported) and (2) complexity of the advancement procedure
(the procedure is described by categorical operations and needs an addi-
tional method to simplify redundant graph patterns as otherwise the graph
constraints may become too large) that makes difficult their application in
practice. In contrast, our technique is especially tailored to consider OCL
expressions, and hence is very appropriate for its use in meta-modeling en-
vironments. Furthermore, the use of OCL enables the application of tools
initially targeting the simulation, analysis and verification on UML/OCL
models (e.g. [8, 9, 17, 11, 18, 12]).

For transformations not defined as GT, the computation of the weakest
pre-condition has also been studied, e.g. to analyse the composition of refac-
torings [30]. The notion of “backward descriptions” defined in [30] captures
our replacement patterns of OCL expressions.

Hoare-style assertions have been extensively used for program verifica-
tion [31, 32]. In [31] the authors use OCL-light (a simplified version of OCL)
assertions to verify Java-light (a simplified version of Java) programs. In par-
ticular, the authors present rule for advancing OCL-light expressions upon
attribute modification and object creation. In [32] the authors present a

35

proof system for object-oriented programs based on an assertion language
comparable to JML [33].

Regarding information systems, in [34] the authors study the generation
of weakest pre-conditions for basic operations that perform a single change
on the system state, e.g. instance creation or attribute update. Rather than
studying the generation of weakest pre-conditions for arbitrary operations
and constraints (as it is done in this paper), a fixed catalog of typical integrity
constraints as well as patterns for determining the weakest pre-condition with
respect to each kind of basic operation are defined. The same problem, ad-
vancing integrity constraints as pre-conditions, is studied in [35] for set-based
invariants described in B. This family of constraints (constraints involving
intersections, unions, differences and tests for membership) is a subset of
those considered in this paper, e.g. cardinalities of sets are not supported.

6.2. Backwards analysis

Some works consider the analysis of rewriting systems by the reverse
execution of rules from undesired or bad states [21, 22, 20]. In [20] the
authors model ad-hoc protocols using hyperedge replacement, where rules
may contain NACs. Then, bad states are described through hypergraph
patterns. The analysis consists in a fix-point iteration, in which rules are ap-
plied backwards with the aim to reach a pattern describing the set of initial
configurations that would yield to the bad state. The algorithm uses over-
approximation, because the patterns describe only the minimal requirement
that need to be present. In a similar way [22] applies backward analysis to
a network protocol described as a hyperedge replacement system. In that
work, the authors use the quasi-well order given by the graph minor theorem
to view a graph transition system as a well-structured system, which ensures
a finite termination of the search. The work in [21] applies a similar back-
wards traversal for analysing dynamic memory heaps. Heaps are encoded as
graphs, in which a preorder is given to ensure termination of the backwards
analysis. As a summary, our work is more general than these approaches in
the sense that it is formulated independent of the transformation language,
and the structures and properties we can handle are richer. Moreover, we
have provided several useful analysis properties for model transformations
based on backwards analysis.

In [36] the authors compare three different verification mechanisms for
model transformations. One of the analysis compared involved using the B
method, for which generation of weakest pre-conditions were needed. In [37]

36

a Hoare-style calculus is developed to analyse transformations expressed in
(a subset of) QVT Operational.

Rule independence has been widely studied in GT [6], and implemented
in tools like Henshin [38]. However, as already mentioned, the GT theory
does not handle attribute conditions or attribute computations, but at most
negative application conditions. We believe that GT tools specially oriented
to MDE would greatly benefit from the integration of our rule independence
analysis, since it considers OCL.

7. Conclusions and Future Work

We have presented a technique to automatically synthesize application
conditions for model transformation rules. Application conditions are de-
rived from the rule post-conditions such that any occurrence satisfying the
applicability conditions will surely be consistent with all post-conditions at
the end of any possible rule execution. Rule post-conditions may come from
the well-formedness constraints defined in the meta-model, from other rules
(e.g., when considering rule sequences) or be user specified.

This backwards reasoning process, combined with model finders and ex-
ploration mechanisms, facilitates a number of validation, testing and diagno-
sis tasks on the transformation system, both at the individual rule level and
with respect to the interactions between several rules (or sequences of rules).
Our method improves GT approaches, which do not consider OCL, leading to
a more homogeneous treatment of all these analysis properties and permiting
leveraging from standard off-the-shelf model finders. This fact simplifies the
practical treatment of the analysis methods, and their integration in existing
modeling environments, which could increase the adoption of formal methods
in the MDE and GT communities.
Acknowledgements. Work partially funded by the Spanish Ministry of
Economy and Competitivity (projects TIN2008-00444, TIN2011-24139 and
TIN2014-52129-R), the Community of Madrid with project SICOMORO
(S2013/ICE-3006), the EU commission with project MONDO (FP7-ICT-
2013-10, #611125) and a research grant from UOC-IN3 (Internet Interdisci-
plinary Institute). We would like to thank Hamza Ed-Douibi for his work on
the tool implementation part, and the reviewers for their useful comments.

37

References

[1] L. A. Rahim, J. Whittle, A survey of approaches for verifying model
transformations, Software and System Modeling 14 (2) (2015) 1003–
1028. doi:10.1007/s10270-013-0358-0.
URL http://dx.doi.org/10.1007/s10270-013-0358-0

[2] J. M. Howe, A. King, L. Lu, Analysing logic programs by reasoning back-
wards, in: Program Development in Computational Logic: A Decade of
Research Advances in Logic-Based Program Development, Vol. 3049 of
LNCS, Springer, 2004, pp. 152–188.

[3] R. Yang, P.-A. Heng, K.-S. Leung, Backward reasoning on rule-based
systems modeled by fuzzy Petri Nets through backward tree, in: Com-
putational Intelligence for Modelling and Prediction, Vol. 2 of Studies
in Computational Intelligence, Springer, 2005, pp. 61–71.

[4] M. Z. Kwiatkowska, G. Norman, J. Sproston, F. Wang, Symbolic model
checking for probabilistic timed automata, Inf. Comput. 205 (7) (2007)
1027–1077.

[5] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model trans-
formation tool, Sci. Comput. Program. 72 (1-2) (2008) 31–39, See also
www.eclipse.org/m2m/atl/.

[6] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic
Graph Transformation, Springer, 2006.

[7] D. S. Kolovos, R. F. Paige, F. Polack, The Epsilon Transformation
Language, in: ICMT, Vol. 5063 of LNCS, Springer, 2008, pp. 46–60.

[8] J. Cabot, R. Clarisó, E. Guerra, J. de Lara, A UML/OCL framework for
the analysis of graph transformation rules, SoSyM 9 (3) (2010) 335–357.

[9] J. Cabot, R. Clarisó, D. Riera, On the verification of UML/OCL class
diagrams using constraint programming, J. Syst. Soft. 93 (2014) 1–23.

[10] J. Cabot, R. Clarisó, E. Guerra, J. de Lara, Synthesis of ocl pre-
conditions for graph transformation rules, in: ICMT, Vol. 6142 of LNCS,
Springer, 2010, pp. 45–60.

38

[11] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, On challenges of model
transformation from UML to Alloy, SoSyM 9 (1) (2010) 69–86.

[12] M. Kuhlmann, L. Hamann, M. Gogolla, Extensive validation of OCL
models by integrating SAT solving into USE, in: TOOLS, Vol. 6705 of
LNCS, Springer, 2011, pp. 290–306.

[13] R. Heckel, A. Wagner, Ensuring consistency of conditional graph rewrit-
ing - a constructive approach, Electr. Notes Theor. Comput. Sci. 2 (1995)
118–126.

[14] E. W. Dijkstra, Guarded commands, nondeterminacy and formal deriva-
tion of programs, Comm. of the ACM 18 (8) (1975) 453–457.

[15] E. Planas, J. Cabot, C. Gómez, Two basic correctness properties for
ATL transformations: Executability and coverage, in: MtATL, Vol. 742,
CEUR, 2011, pp. 1–9.

[16] C. A. González, J. Cabot, Formal verification of static software models
in MDE: A systematic review, Inf. Soft. Technol. 56 (8) (2014) 821–838.

[17] A. Queralt, E. Teniente, Verification and validation of UML conceptual
schemas with OCL constraints, ACM TOSEM 21 (2) (2012) 13:1–13:41.

[18] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, R. Drechsler, Verifying
UML/OCL models using boolean satisfiability, in: DATE, IEEE, 2010,
pp. 1341–1344.

[19] N. Bertrand, G. Delzanno, B. König, A. Sangnier, J. Stückrath, On the
Decidability Status of Reachability and Coverability in Graph Transfor-
mation Systems, in: RTA, Vol. 15 of LIPIcs, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2012, pp. 101–116.

[20] M. Saksena, O. Wibling, B. Jonsson, Graph grammar modeling and
verification of ad hoc routing protocols, in: TACAS, Vol. 4963 of LNCS,
Springer, 2008, pp. 18–32.

[21] P. A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, A. Rezine, Mono-
tonic abstraction for programs with dynamic memory heaps, in: CAV,
Vol. 5123 of LNCS, Springer, 2008, pp. 341–354.

39

[22] S. Joshi, B. König, Applying the graph minor theorem to the verification
of graph transformation systems, in: CAV, Vol. 5123 of LNCS, Springer,
2008, pp. 214–226.

[23] D. Jackson, Software Abstractions: Logic, Language, and Analysis, The
MIT Press, 2006.

[24] A. Schürr, Specification of graph translators with triple graph grammars,
in: WG, Vol. 903 of LNCS, Springer, 1994, pp. 151–163.

[25] H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann, Theory of constraints
and application conditions: From graphs to high-level structures, Fun-
damenta Informaticae 74 (1) (2006) 135–166.

[26] A. Habel, K.-H. Pennemann, Nested constraints and application condi-
tions for high-level structures, in: Formal Methods in Soft. and Syst.
Mod., Vol. 3393 of LNCS, 2005, pp. 293–308.

[27] A. Habel, K.-H. Pennemann, Correctness of high-level transformation
systems relative to nested conditions, Math. Struct. Comp. Sci. 19 (2)
(2009) 245–296.

[28] J. Winkelmann, G. Taentzer, K. Ehrig, J. M. Kuster, Translation of
restricted OCL constraints into graph constraints for generating meta
model instances by graph grammars, ENTCS 211 (2008) 159 – 170.

[29] F. Deckwerth, G. Varró, Attribute handling for generating preconditions
from graph constraints, in: ICGT, Vol. 8571 of LNCS, Springer, 2014,
pp. 81–96.

[30] G. Kniesel, H. Koch, Static composition of refactorings, Sci. Comput.
Program. 52 (1-3) (2004) 9–51.

[31] B. Reus, M. Wirsing, R. Hennicker, A hoare calculus for verifying java
realizations of ocl-constrained design models, in: FASE, Vol. 2029 of
LNCS, Springer, 2001, pp. 300–317.

[32] K. R. Apt, F. S. de Boer, E. Olderog, S. de Gouw, Verification of object-
oriented programs: A transformational approach, J. Comput. Syst. Sci.
78 (3) (2012) 823–852.

40

[33] G. T. Leavens, A. L. Baker, C. Ruby, JML: A notation for detailed
design, in: Behavioral Specifications of Businesses and Systems, Vol.
523 of The Kluwer International Series in Engineering and Computer
Science, Springer, 1999, pp. 175–188.

[34] D. Costal, C. Gómez, A. Queralt, E. Teniente, Drawing preconditions
of operation contracts from conceptual schemas, in: CAiSE, Vol. 5074
of LNCS, Springer, 2008, pp. 266–280.

[35] A. Mammar, F. Gervais, R. Laleau, Systematic identification of precon-
ditions from set-based integrity constraints, in: INFORSID, 2006, pp.
595–610.

[36] K. Lano, S. Kolahdouz-Rahimi, T. Clark, Comparing verification tech-
niques for model transformations, in: Proceedings of the Workshop on
Model-Driven Engineering, Verification and Validation, MoDeVVa ’12,
ACM, New York, NY, USA, 2012, pp. 23–28.

[37] K. Stenzel, N. Moebius, W. Reif, Formal verification of QVT transfor-
mations for code generation, in: MODELS, Vol. 6981 of LNCS, Springer,
2011, pp. 533–547.

[38] K. Born, T. Arendt, F. Heß, G. Taentzer, Analyzing conflicts and depen-
dencies of rule-based transformations in henshin, in: FASE, Vol. 9033
of LNCS, Springer, 2015, pp. 165–168.

[39] M. Gogolla, M. Richters, Expressing UML class diagrams properties
with OCL, in: OCL, Vol. 2263 of LNCS, Springer, 2002, pp. 85–114.

[40] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, A. Lindow,
Model transformations? Transformation models!, in: MODELS, Vol.
4199 of LNCS, Springer, 2006, pp. 440–453.

[41] H.-J. Kreowski, R. Klempien-Hinrichs, S. Kuske, Some essentials of
graph transformation, in: Recent Advances in Formal Languages and
Applications, Vol. 25 of Studies in Computational Intelligence, Springer,
2006, pp. 229–254.

41

A. Appendix: Formal proof

A.1. Outline of the proof

The goal of this appendix is establishing the correctness of the procedure
for advancing postconditions, i.e. that the OCL constraint provided as a
result is indeed the weakest precondition.

In the context of rule-based model transformation, being the weakest
precondition means that evaluating the precondition before applying the rule
yields the same result as evaluating the postcondition after applying the
rule. The proof will focus on establishing this equivalence for each type of
atomic action in a model transformation rule, considering all the replacement
patterns defined in the paper.

For each type of atomic action a, the proof uses structural induction over
the syntax tree of the OCL expression being advanced (Post):

Step 1 (base case): Prove that subexpressions of Post which do not match
any replacement pattern for a are unaffected by the action and, hence,
evaluate to the same result in the precondition.

Step 2 (inductive step): Consider the innermost subexpression e of Post
matching a replacement pattern for action a. By structural induction,
the advanced subexpressions of e evaluate to the same result in the
precondition. Then, we prove that the replacement of e also evaluates
to the same result in the precondition.

Section A.2 will provide definitions used throughout the proof. Section
A.3 will establish the correctness for the patterns for link creation and dele-
tion. Section A.4 considers the replacement patterns for attribute updates.
Section A.5 discusses the patterns for object deletion. Then, Section A.6
studies the patterns creation of objects. This proof is more involved, as the
process for applying matches is iterative and it is necessary to discuss, for
instance, the termination of the procedure. Finally, Section A.7 concludes
by considering the correctness of the overall procedure, i.e. the composition
of different atomic actions.

A.2. Definitions

A meta-modelMM is a tupleMM = ⟨CLASS,ATT,ASSOC,≺⟩ where:

• CLASS is a finite set of class names.

42

• ATT is a set of attributes for each class. Each attribute is a triple
⟨at, c, t⟩ where at is an attribute name, c ∈ CLASS and t is the type
of the attribute (either Integer, Real, Boolean or String).

• ASSOC is a set of binary associations. Each association is a triple
⟨as, c1, c2, r1, r2,m1,m2⟩ where as is a unique association name and
c1, c2 ∈ CLASS, r1 and r2 are distinct role names and m1 and m2 are
sets of natural numbers defining multiplicities.

• ≺: CLASS → CLASS is the generalization hierarchy, a partial func-
tion mapping each class to its superclass.

This definition is a simplification of the formal semantics proposed in the
OCL specification as the models under consideration do not include multiple
inheritance, n-ary associations or associative classes. Note that features such
as associative classes, non-recursive queries and n-ary associations can be
simplified into an equivalent model with additional OCL constraints [39].

A model M conforming to a meta-model MM (M |= MM) is an instance
of the meta-model defined as ⟨Oid,Obj, Att, Links⟩ where

• Oid is the set of unique object identifiers participating in the model.

• Obj : oid → CLASS is a mapping defining the base type of each object.

• Att : oid× ⟨at, c, t⟩ → domain(t) is a mapping assigning a value of the
suitable type to each attribute.

• Link is the set of links, a set of pairs (oid1, oid2) such that classes
Obj(oid1) and Obj(oid2) belong to a binary association in MM and
the set of links respect the multiplicities for each role.

A model transformation, denoted as M ⇒ M ′, converts a source model
M into a target model M ′. Source and target may conform to the same
meta-model (in-place transformation) or to different meta-models (exoge-
nous transformation). For exogenous transformations, it is possible to define
a transformation model [40] which includes both the source and target meta-
models. Hence, without loss of generality, we can consider that there is a
common meta-model for source and target models (which will be the trans-
formation model in the case of exogenous transformations).

Model transformations consist of a set of rules. A rule defines an enabling
condition, a set of patterns and/or constraints that need to be satisfied for

43

the rule to be applicable. We denote with M |= enabling(r) the fact that
rule r is enabled in a model M . A rule can be enabled in different submodels
of a model M : o denotes the particular occurrence where the rule is enabled
and M

r,o⇒ M ′ denotes the application of rule r in occurrence o of model M ,
producing a model M ′. The rule transforms the source model by performing
a sequence ⟨a1, . . . , an⟩ of atomic actions. Actions can be of four types:
deletion of an object (and adjacent links); deletion of a link among two
objects; creation of a link among two objects; update of an attribute value;
or creation of an object (and adjacent links).

An OCL constraint is a boolean expression defined over the elements of
the meta-model MM , which can be evaluated in concrete models yielding
true or false. The structure of an OCL constraint is defined according
to the following grammar, which is a subset of the full OCL 2.4 grammar
considering the limitations of our approach described in Section 2.2.7:

44

OclConstraint ::= Exp

Exp ::= VariableExp | IsOfExp | IfExp |
LoopExp | LiteralExp | NavigationCallExp |
AttributeCallExp | OperationCallExp | TypeExp

BaseType ::= Integer | Real | Boolean | String | identifier
TypeExp ::= BaseType | Set (BaseType)

VariableExp ::= identifier

IsOfExp ::= Exp −> IsOfOp (TypeExp)

IsOfOp ::= oclIsKindOf | oclIsTypeOf
IfExp ::= if Exp then Exp else Exp endif

LoopExp ::= Exp −> IteratorName (VariableExp | Exp)

IteratorName ::= exists | forAll | isUnique | select | reject |
any | collectNested

LiteralExp ::= true | false | string− literal | int− literal |
float− literal | SetLiteral

SetLiteral ::= Set{ ExpList }
ExpList ::= EmptyExpList | NonEmptyExpList

EmptyExpList ::=

NonEmptyExpList ::= Exp | Exp , NonEmptyExpList

NavigationCallExp ::= Exp . identifier

AttributeCallExp ::= Exp . identifier

OperationCallExp ::= Exp . identifier (ExpList)

An OCL constraint can be seen as an abstract syntax tree (AST) adher-
ing to this grammar. In this AST, each subtree is an OCL subexpression,
internal nodes represent operations or quantifiers and leaves are literal values
or references to model elements. Given an OCL expression exp, eval(exp,M)
denotes the result of evaluating expression exp in a model M .

A.3. Proof for link creations and deletions

Notation: In this section, we consider a meta-model MM , which in-
cludes two classes A and B and an association Assoc among them, with role
names ra and rb respectively. Then, we consider two models M1 and M2

45

such that M1,M2 |= MM , and M2 is obtained from M1 by adding a link in
association Assoc, connecting two objects a (of type A) and b of type B.

Lemma 2. Let C be an OCL constraint over MM . If C contains no navi-
gations through association Assoc, then eval(C,M1) = eval(C,M2).

Proof 6. (By cases) In the subset of the OCL language under consideration,
there are several types of expressions. The value of navigation expressions
(type AssociationEndCallExp) is a collection which will include the objects
in the created link. However, any other OCL expressions are unaffected by
the change: expressions with a constant value (LiteralExp and its subtypes);
attribute accesses (AttributeCallExp); variables (VariableExp), as there are
no associative classes; composite expressions such as if-then-else (IfExp) or
iterators/quantifiers (LoopExp); and operations (OperationCallExp), which
include arithmetic, boolean and relational operators. Some other features,
like non-recursive queries (also OperationCallExp) and “let” expressions (Le-
tExp) can be expanded and removed. Finally, other features like messages
(OclMessageExp) and association classes (AssociationClassCallExp) are not
included in our OCL subset. Thus, if an expression has no navigation ex-
pressions, its value will be unmodified by the creation of links. 2

Lemma 3. Let exp be an OCL expression over MM , whose result data type
is A or Set(A), and such that eval(exp,M1) = eval(exp,M2). Then:

1. eval(a.rb,M2) = eval(exp′,M1)
where exp′ is (a.rb−>including(b)).

2. eval(exp.rb,M2) = eval(exp′,M1)
where exp′ is
(if exp−>includes(a) then exp.rb−>including(b)
else exp.rb endif).

Proof 7. (Direct proof)
(1) Evaluating a.rb in M2 yields a set of objects which includes b. The

same result can be computed in M1 by explicitly adding b to the result of a.rb.
2

(2) The evaluation of expression exp in M1 may include a or not. If it
does, then b should be added to the result of the navigation. Otherwise, the
result should be the same as in M2. 2

46

The proof for navigations in the opposite direction, from B to A using
role name ra, uses the same argument.

Lemma 4. Let C be an OCL expression over model MM . Then, the appli-
cation of the replacement rules for link creation (from Table 4) in a bottom-up
progression in the abstract syntax tree of C produces a constraint C ′ such that
eval(C ′,M1) = eval(C,M2)

Proof 8. (By structural induction) If C does not contain any navigation
expression, then it will not be modified by the replacement patterns (C ′ = C).
Also, by Lemma 2, we have that eval(C,M1) = eval(C,M2). Therefore, this
Lemma holds for the base case where there are no navigation expressions.

If there are navigation expressions, let exp.role be the innermost naviga-
tion expression in C. Being the innermost one, its subexpression exp will
have no navigations and due to Lemma 2, eval(exp,M1) = eval(exp,M2).
The expression exp.role will be replaced by the replacement pattern exp′ =
(if exp−>includes(a) then exp.rb−>including(b) endif). Due to Lemma 3,
this expression exp′ ensures that eval(exp′,M1) = eval(exp,M2). By induc-
tion, the same reasoning can be applied to the closest navigation expression
enclosing this one, as its subexpression will satisfy the condition of Lemma 3,
that the subexpression has the same value before and after creating the link.

2

A similar reasoning can be used to prove the replacement patterns for the
deletion of links. It should be noted that it is not sufficient to change the
pattern from “including(b)” to “excluding(b)”. This is sufficient for the case
when the subexpression is a single object: if it is a, the removal of the link
is simulated by the “excluding(b)” clause. However, if the source is a set of
objects of type A, it may happen that another object in the set other than a is
connected to b both in M1 and M2. Adding “excluding(b)” to this expression
would have the unintended side-effect of removing that link as well. Thus,
the replacement pattern becomes more complex: it is necessary to distinguish
among objects navigated from a (where the clause “excluding(b)” should be
appended) and the navigations of the remaining objects, whose navigation
should be unchanged. This is the motivation behind the replacement pattern
used for sets:

(exp−> excluding(a)).rb−> union(a.rb−> excluding(b))

47

A.4. Proof for attribute updates

Notation: In this section, we consider a meta-model MM , which in-
cludes a class A with an attribute at. Then, we consider two models M1 and
M2 with M1,M2 |= MM , such that M2 is obtained from M1 by changing the
value of an attribute at of an object a of type A to a new constant value val.

Lemma 5. Let C be an OCL constraint over MM . If C contains no accesses
to the value of attribute at, then eval(C,M1) = eval(C,M2).

Proof 9. (By cases) Only expressions of type AttributeCallExp access the
value of an attribute. If there are no attribute access expressions involving
attribute at of type A (or attribute at in a superclass of A), the expression
will evaluate to the same result in M1 as in M2. 2

Lemma 6. Let exp be an OCL expression defined over model M , with result
type A and such that eval(exp,M1) = eval(exp,M2). Then:

1. eval(a.at,M2) = eval(val,M1).

2. eval(exp.at,M2) = eval(exp′,M1)
where exp′ is
(if exp = a then val else exp.at endif).

Proof 10. (Direct proof)
(1) Evaluating a.at in M2 yields the value val (by the definition of M2).

This is equivalent to evaluating the constant value val in M1. 2

(2) The evaluation of expression exp in M1 may be equal to a or not. If
it is equal, the result should be val and otherwise, it should provide the same
result as in M2 (exp.at). This is simulated with the if-then-else expression,
which therefore produces the same result as evaluating exp.at in M2. 2

Lemma 7. Let C be an OCL expression over model M . Then, the appli-
cation of the replacement rules for attribute updates (from Table 2) in a
bottom-up progression in the abstract syntax tree of C produces a constraint
C ′ such that eval(C ′,M1) = eval(C,M2).

Proof 11. (By structural induction) If C does not contain any attribute ac-
cess, then it will not be modified by the replacement patterns (C ′ = C).
Also, by Lemma 5, we have that eval(C,M1) = eval(C,M2). Therefore, this
Lemma holds for the base case where there are no attribute accesses.

48

If there are attribute access expressions, let exp.at be the innermost at-
tribute access in C. Being the innermost one, its subexpression exp will have
no attribute accesses and due to Lemma 5, eval(exp,M1) = eval(exp,M2).
This expression will be replaced by the replacement pattern exp′ ≡ (if exp =
a then val else exp.at endif). Due to Lemma 6, this expression exp′ ensures
that eval(exp′,M1) = eval(exp,M2). By induction, the same reasoning can
be applied to the closest attribute access enclosing this one, as its subexpres-
sion will satisfy the condition of Lemma 6, that the subexpression has the
same value before and after updating the attribute. 2

A.5. Proof for object deletions

Notation: In this section, we consider a meta-model MM , which in-
cludes a class T , and an object x of type T . Then, we consider two models
M1 and M2 with M1,M2 |= MM , such that M2 is obtained from M1 by
removing object x and all links where x participates.

Lemma 8. Let C be an OCL expression. If there are no navigation ex-
pressions to type T (or its subclasses), and the method “allInstances()” is
not invoked on class T (or its sub and superclasses), then eval(C,M1) =
eval(C,M2).

Proof 12. (By cases) A difference in eval(C,M1) and eval(C,M2) would
mean that the evaluation of C takes into account the object x or one of its
links. This may happen in one of the following ways:

• The links between x and other objects can be accessed only through
navigation expressions, as discussed in Lemma 2.

• x can also be accessed through the set of instances of T , its subtypes or
supertypes. Therefore, any call to “allInstances()” (OperationCallExp)
in one of those types will produce a collection that includes x in M1

and not in M2.

• C may refer directly to an object using an identifier (VariableExp) from
the RHS of the rule. Only the RHS is available because C is the post-
condition being advanced, thus, it can only use identifiers of objects
which exist after applying the rule. Then, as x is deleted by the rule,
its identifier does not appear in the RHS so it is not possible to use its
identifier in C.

49

• Local variables introduced by iterators (also of type VariableExp) may
only refer to x if the collection over which they are defined contains
x. Thus, their value will not depend on the existence of x unless x is
already present in the subexpression computing the collection.

• Other expressions are either constants (LiteralExp) or composite ex-
pressions like if-the-else (IfExp), iterators (LoopExp) and all operators
(OperationCallExp), whose value may depend on x only if one of its
subexpressions depends on x.

Therefore, only the operation “allInstances()” and navigation expressions
may be affected by the deletion of x. Any expression which has none of
these elements will evaluate to the same value with or without x. 2

Lemma 9. Let C be an OCL navigation expression of the form exp.roleT ,
with roleT being an association end of class T , and exp such that eval(exp,M1) =
eval(exp,M2). Then eval(C,M2) = eval(C−> excluding(x),M1).

Proof 13. (Direct proof) The value of exp.roleT in M1 and M2 can only
differ in the presence (or not) of x in M1. Adding “excluding(x)” to the
expression will make the result equal whether x appears in M1 (“excluding”
will remove it, making it equal to the result in M2) or not (“excluding” will
not modify the result, which was already equal to the result in M1). 2

Lemma 10. Let C be an OCL expression over MM of the form A.allInstances(),
with A being either type T or one of its subtypes or supertypes. Then eval(C,M2) =
eval(C−> excluding(x),M1).

Proof 14. (Direct proof) The result of C does not include x in M2 (as x is
deleted). On the other hand, if A is type T or a supertype, then the result of
C will include x in M1. Similarly, if A is a subtype of T , then the result of C
may include x in M1. Other than the presence of x, the collection resulting
from M1 and M2 is equal. Therefore, appending “excluding(x)” in M1 yields
the same result in M1 and M2. 2

Lemma 11. Let C be an OCL expression over the meta-model MM . Then,
the application of the replacement rules for object deletion (from Table 1) in
a bottom-up progression in the abstract syntax tree of C produces a constraint
C ′ such that eval(C ′,M1) = eval(C,M2).

50

Proof 15. (By structural induction) The proof follows the argument of the
previous Lemmas 4 and 7. The base case where there are no matches for the
replacement pattern satisfies this Lemma, as proved by Lemma 8. Expressions
with matches for the replacement rules are analyzed recursively using the
results of Lemmas 9 and 10. As a result, the property is proved inductively.

2

A.6. Proof for object creation

Notation: In this section, we consider a meta-model M , which includes
a class B and an object b of type B. Then, we consider two models M1 and
M2 with M1,M2 |= MM , such that M2 is obtained from M1 by creating the
object b and some links among b and other preexisting objects. Let Assoc
be the set of associations where one of these links is created.

Lemma 12. Let C be an OCL constraint that does not contain any call
T .allInstances (where T is B or a supertype of B) nor any navigation to an
object of type B (or a subtype) through any association in Assoc, nor any
direct reference to identifier b. Then eval(C,M1) = eval(C,M2).

Proof 16. (By cases) In order for C to have a different value, it is necessary
to consider the new object b in some way. A first potential way of accessing b
is through a variable (VariableExp). In these expressions, it is only necessary
to consider variable references that directly use the identifier b: as b is created
by the rule, other objects in the LHS cannot be matched with b, even if its types
are compatible [41]. Therefore, it is only necessary to watch for occurrences
of the identifier b while other identifiers or variables cannot be referring to b.

Aside from direct references through the identifier b, it is still possible to
access it in two ways:

• A call to allInstances on type B or a supertype will include b. It is not
necessary to consider subtypes of type B, as the creation of an object in
a GT rule needs to specify the base type of the object (thus, if the object
is created in type B it cannot be an instance of any of its subtypes).

• A navigation that includes b in the result: in this case, the navigation
should occur in one of the associations in Assoc.

Therefore, any constraint that does not include these expressions will remain
unaffected by the creation of a new object. 2

51

Lemma 13 (Completeness). Replacement rules from Tables 5 and 6 con-
sider any possible expression where a reference to b may appear.

Proof 17. (By cases) A reference to b may appear in expressions whose type
is either T (Table 5) or Set(T) (6), with T being B or one of its subclasses
or superclasses. 2

Lemma 14 (Termination). The iterative application of the rules from Ta-
bles 5 and 6 terminates after a finite number of iterations, producing an OCL
constraint with no references to b.

Proof 18. (By cases) The application of the replacement patterns from Ta-
bles 6 and 5 requires finding a matching expression referencing the identifier
b. We will show that the iterative application of these replacement patterns
eventually reduces the number of occurrences of the identifier b in the OCL
expression.

These replacement patterns can be classified into three categories:

1. Patterns that delete a reference to b, e.g. by replacing the expression by
another one without b such as a constant [C1-3,C11-13,C15-19,O1,O3-
4,O6-O11].

2. Patterns that move a reference to b upward inside the syntax tree, either
by simplifying the expression or changing the order of the operations
[C14, O2, O5, O12].

3. Patterns that expand a quantifier, replicating its body expression and
replacing the quantified variable by b [C4-C10].

Replacement patterns of type 3 are the only ones that can introduce new
references to b. The number of times they can be applied is bounded by the
number of quantifiers in the expression, so the number of references to b that
can be introduced in the OCL expression is bounded a priori. Furthermore,
other replacement rules cannot introduce new quantifiers in the OCL expres-
sion.

Regarding patterns of type 2, they can only be applied a finite number of
times, as their application moves the reference to b one level higher in the
abstract syntax tree and the height of the abstract syntax tree of the expression
is finite. Due to Lemma 13, these patterns cover every possible expression
where may b appear. Therefore, as patterns of type 2 can only be applied a
finite number of times, eventually, they will lead to an expression where a
replacement pattern of type 1 or 3 can be applied.

52

Finally, replacement patterns of type 1 can only be applied as long as there
are occurrences of b in the OCL expression: each time one of them is applied,
the reference to b disappears. Hence, a pattern of type 1 may not enable any
other replacement pattern.

To sum up, all patterns can be applied a finite number of times: type 3
patterns are bounded by the number of quantifiers in the expression, type 2
patterns by the height of the abstract syntax tree and type 1 patterns by the
number of references to the object b. 2

Due to space concerns, a complete proof of the correctness for each indi-
vidual replacement pattern in Tables 5 and 6 is out of the scope of this proof.
Intuitively, by examining each pattern it is possible to determine that the
replacement expression is equivalent to the original expression: they both
produce an expression of the same type and evaluating to the same value.
Let us consider the proof of three patterns to illustrate the process.

• Pattern C2:
“col−>including(b)−>isEmpty()” becomes “false”.

The original expression and the replacement are of type boolean. Given
that we assume that the collection “col” will include at least object b,
then the result of the query isEmpty() will always be false. Thus, the
original expression is equivalent to the replacement “false”.

• Pattern C4:
“col−>including(b)−>exists(x | exp)” becomes “col−>exists(x |
exp) or Inst[x, exp]”.

The original expression and the replacement are both of type boolean.
In order to preserve the semantics of the original expression, the result-
ing expression should evaluate to true if and only if (a) either the new
object satisfies the quantified subexpression exp or (b) the collection
contains an object other than b which satisfies the expression. The
proposed translation formalizes this intended semantics.

• Pattern O10:
“b = exp” becomes “true” if exp = b and “false” otherwise.

The original expression and the replacement are both of type boolean.
Using the proposed order of application for replacement patterns (Sub-
section 2.2.6), exp should either be the identifier b or an expression

53

whose subexpressions do not include any reference to b (as all matches
in subexpressions have been applied) nor any quantified variable that
could be assigned to b (as any quantifier enclosing “b = exp” has been
processed before). Given these assurances and given that b is a new
object, the only way that exp could evaluate to b is if it is b itself,
otherwise it will necessarily be different.

A.7. Composition of atomic actions

Notation: In this section, let MM be a meta-model, C be an OCL
constraint over MM and a1 and a2 two atomic actions. Moreover, let M1

and M2 be two models of MM , such that (i) the atomic actions a1 and
a2 can be applied to M1 (e.g. objects to be deleted exists) and (ii) M2 is
computed from M1 by applying the atomic actions a1 and a2 in sequence.
Furthermore, let us denote as adv(a, C) the OCL constraint computed by
advancing post-condition C considering the atomic action a.

Definition 7 (Non-overlapping actions). A set of atomic actions are non-
overlapping if and only if:

• If one action is the creation/deletion of a link, no other event may
create/delete the same link or create/delete the objects participating in
the link.

• If one action is the modification of an attribute value, no other event
may modify the same attribute or create/delete the object where it be-
longs.

• If one action is the deletion of an object, no other event may cre-
ate/delete the same object, modify its attributes or create/delete a link
to that object.

• If one event is the creation of an object, no other event may cre-
ate/delete the same object, modify its attributes or delete a link to that
object. However, other object creation actions may create new links to
this object.

As an example, the set of atomic actions computed from a graph trans-
formation rule is non-overlapping. This is due to the semantics and well-
formedness rules of GT rules [6]: it is not possible to define a rule which

54

creates and destroys the same object. The rationale behind each condition
in the definition lies in the formalisation of the atomic actions: object cre-
ation includes the initialization of all attributes and the creation of links
where the object participates and object deletion includes the deletion of all
links where it participates. The last condition of this definition allows GT
rules that create, for example, two new objects and a link among them: the
first action will create the first object while the second one will introduce the
object and the link.

Lemma 15 (Concurrent application). IfM2 is computed by applying non-
overlapping actions a1 and a2 to M1, the result of applying a2 and a1 to M1

is also M2.

Proof 19. (By contradiction) Let us assume that a2(a1(M1)) and a1(a2(M2))
differ. This difference can be located in:

• The value of an attribute at in an object x: this can only happen if a1
and a2 are both attribute updates for x.at or if a1 destroys x while a2 cre-
ates it. In both scenarios, a1 and a2 would be overlapping according to
Definition 7, contradicting our premise that they were non-overlapping.

• The existence of an object x: this can only happen if a1 deletes the
object while a2 creates it or vice versa (otherwise, x would be present
or missing in both instances). This contradicts our premise that a1 and
a2 are non-overlapping.

• The existence of a link x− y: similarly, this can only happen if either
of the actions deletes the link while the other creates it, or if one event
destroys x or y and the other re-creates the destroyed object. In either
case, a1 and a2 would need to be overlapping.

2

The conclusion of this Lemma is that the order of application of atomic
actions (as they are defined in this paper) is irrelevant as long as they are
non-overlapping.

Lemma 16 (Composition of non-overlapping atomic actions). For any
OCL constraint C defined over a metamodel MM , models M1 and M2 such

55

that M1,M2 |= MM and non-overlapping actions a1 and a2 over model M1

such that a1(a2(M1)) = M2, the following holds:

eval(adv(a2, adv(a1, C)),M1) =
eval(adv(a1, adv(a2, C)),M1) =

eval(C,M2)

Proof 20. Let us consider that the actions a1 and a2 are applied in this
order: M1

a1⇒ M ′ a2⇒ M2, where M ′ is the intermediate model. Lemma 15
and a similar argument can be used for the reverse ordering of actions.

Previous lemmas of the proof ensure that the weakest precondition adv(ai, C)
is correct for individual atomic actions ai of each type, i.e. attribute updates
(Lemma 7), link creations and deletions (Lemma 4), object deletions (Lemma
11) and object creations (Section A.6). Thus, we know that the weakest pre-
condition for action a2 is correct: eval(adv(a2, C),M ′) = eval(C,M2).

For the same reason, we know that for any constraint C ′, the following
holds: eval(adv(a1, C

′),M1) = eval(C ′,M ′). In particular, this will hold for
C ′ = adv(a2, C). Replacing C ′ with this constraint in the previous equality
yields: eval(adv(a1, adv(a2, C)),M1) = eval(adv(a2, C),M ′).

According to our first argument, eval(adv(a2, C),M ′) = eval(C,M2), so
we have proved that eval(adv(a1, adv(a2, C)),M1) = eval(C,M2). 2

The previous results can be combined to prove the overall correctness of
the procedure for weakest precondition synthesis.

Theorem 6 (Correctness of weakest precondition). LetMM be a meta-
model, p a model transformation rule causing atomic actions ⟨a1, a2, . . . , an⟩,
and an OCL constraint C over MM . Let M1 and M2 be two models with
M1,M2 |= MM , such that M1 |= enabling(p) and M1

p⇒ M2. Then, C ′ =
adv(a1, adv(a2, . . . adv(an, C))) satisfies that eval(C ′,M1) = eval(C,M2).

Proof 21. This theorem is the generalization of Lemma 16 to sequences of
n atomic actions. The same argument used in the proof of Lemma 16 for
pairs of actions can be extended to this more general case. 2

56

	Caratula_Article_Preprint_CC_BY-NC-ND_en(2)
	ClarisoEtAl_JSS_PrePrint

