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Resum del Treball
El Deep Learning s'està convertint en el darrer lustre en la tècnica més promete-
dora per a aplicacions de visió per computador. En aquest treball s'empren tècniques
d'aprenentatge profund i s'entrena una xarxa neuronal convolucional per a ajudar a
la predicció de malalties en fruites. Com aquest camp és extremadament ample, s'ha
particularitzat en el cas d'una de les famílies de que combina ésser un mercat econòmic
de gran importància, a més de tindre moltíssims problemes de malalties que provoquen
pèrdua de valor del fruit entre d'altres. Després, amb la xarxa entrenada i validada, es
desenvolupa una aplicació per a dispositius mòbils Android per a poder emprar aquella
com a eina d'ajuda a la presa de decisions de professionals del sector �tosanitari.

Per a desenvolupar la xarxa s'empra la llibreria PyTorch, la qual es fa servir amb el
llenguatge de programació Python, que s'està convertint a l'estàndard de facto a la
indústria. Per la seua banda, l'aplicació d'Android es desenvolupa amb Kotlin, i per
a poder emprar la xarxa neuronal desenvolupada a la primera part de la tesi, es fa
servir la llibreria TensorFlow Lite, versió optimitzada del TensorFlow per a dispositius
mòbils.

Abstract
The Deep Learning is becoming the most promising technique for computer vision
applications. In this work, deep learning techniques are used and a convoluted neuronal
network is trained to help to predict fruit diseases. As this �eld is extremely wide, the
work is focused in the case of one of the families that combines both being a very
important economic market, and having many problems of diseases that cause loss of
fruit value among others problems. Then, with the network trained and validated, an
application is developed for Android mobile devices to be able to use it as a tool to
help decision-making of professionals in the phytosanitary sector.

To develop the network, the PyTorch library has been used. This library is programmed
with the Python programming language, which is almost the standard de facto in the
industry. In addition, the Android application is developed with Kotlin, and to be able
to use the neuronal network developed in the �rst part of the thesis in the Android
operative system, TensorFlow Lite library has been also used.
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Chapter 1

Introduction

1.1 Content and justi�cation of the Thesis

This work is about the recognition of citrus fruits diseases using Deep Learning. The citrus sector
is a big economic sector. If we think about the biggest sub-sector, orange production, the world
production in 17/18 season is estimated to be about �fty metric tons millions [31]. We are talking
about a billionaire sector, and around the 10% of that billionaire production will be exchanged
between countries. All these fruits transactions, specially if the involved countries are in di�erent
continents, must meet strict phytosanitary speci�cations by the destination countries.

These speci�cations must be checked in both origin and destination, so any aid to the control
of the quality of the fruit will represent an improvement on the long chain that could start in a
tree in Australia and end in our dish in Europe. This improvement would be in time1, but also
economic, allowing even the producers to reject some productions to exports to some speci�c
countries that would reject the cargo, and reorienting the fruit to other markets that will accept
that shipping.

If we thing speci�cally in our continent, the directive 29/2000 of the European Union Council [5]
has a list of those pests and diseases that cannot enter in any territory inside the EU borders,
and has also a list about some speci�c diseases in citrus that, in case of being present in some
import, will result in a product rejection or its totally destruction.

On the opposite, when we export vegetable products to other countries, we must take care about
following the phytosanitary regulation by the destination countries.

In both cases, imports and exports, not-always well trained phytosanitary inspectors must decide,
in seconds, if a sample of a container should be rejected because of some spots in the fruit skin,
or in the leafs of a plant, because of some root deformation, etc.

Because of that reasons, an application that aids in the inspectors decision making will be helpful.
But this is not the only way an intelligent algorithm could help in this �eld, and also producers
can take pro�t of a software that helps them to realize which problems exists in their lands, not
only for reject them to some markets, but also to have a help for the exact phytosanitary product
that should be use.

1Being orders of magnitude faster than taking a sample, sending to the lab and wait for culture results.
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1.2 Thesis' objectives

The main goal is to get a Convolutional Neural Network that classify with a high con�dence
citrus diseases, and develop and Android application that allow its use on the �eld. These goals
can be splitted in a series of related tasks:

� Neural Network

1. data set preparation;

2. network architecture selection;

3. network training and validation; and

4. hyperparameter modi�cation and network parameters (re-training) improvement.

� Mobile Application

1. project and gradle build �le de�nition;

2. limitation of desirable mobile application features;

3. class diagram and application architecture selection;

4. libraries selection; and

5. implementation and tests.

1.3 Strategy and Methods

1.3.1 Dataset

One of the most important thing in this kind of work is the data we'll use for the neural network
training. As is explained in [48], "In practice, very few people train an entire Convolutional

Network from scratch (with random initialization), because it is relatively rare to have a dataset

of su�cient size. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g.

ImageNet, which contains 1.2 million images with 1000 categories), and then use the ConvNet

either as an initialization or a �xed feature extractor for the task of interest.". This will be our
approach for training the network2. The reason behind this is clear: a Neural Network cannot
be initialized to 0 like other machine learning algorithms like Linear Regression [29], so we must
use non-zero values. The random initialization approach has the disadvantage that our training
will be longer and less accurate because we won't be able to detect some of the features than
images have, features that can be extracted with a very large dataset training.

1.3.2 Technologies

Because of the nature of the products will be released with this thesis, very di�erent technologies
have been used in each of the parts in this thesis.

2Chapter 3 is dedicated to the dataset preparation.

2



Neural Network

Programming Language In the Machine Learning �eld, and in particular in Deep Learning,
Python is almost the standard in the industry. There are other options like Java, C++, Lua or
Matlab/Octave, but these, especially the last two, are almost residual in research and information
available on the web. So Python has been the choice to this thesis. The version used has been
Python 3.6.5, and some other packages has been used to develop all the code, tables and �gures
that are in this document:

� numpy, the standard in numerical computation;

� matplotlib, seaborn, for data visualization;

� pandas, to work with results obtained in an easy way;

� pytorch, deep learning framework; and

� keras, a backend over other frameworks like TensorFlow or CNTK.

Deep Learning Framework There are many frameworks in the market that we can use
for developing a Neural Network. Between them we have TensorFlow, ca�e2, DL4J, CNTK or
PyTorch. Between the last one, PyTorch, is the selected for developing the model. It has many
interesting features that have made it the choosen, among which we can stand out:

� uses python as programming language;

� dynamic computation graph;

� easy to develop models from scratch and to learn, at least easiest thtn other famous frame-
works like TensorFlow3, with an object oriented approach easiest to understand than the
declarative that must be used with this; and

� very focus on GPU computation, making very easy to use graphic cards, adding few extra
lines to the code.

Cellphone Development

Platform On the other side, for mobile development, Android is the platform to go with. It is
the most used, it is the cheaper, and also it is opened in front of iOS. For Android development
we have many options, but �nally the most common way, the use of the native4 framework, has
been elected.

Programming Language Although Java is the most used yet, the application has been de-
velop in Kotlin. There are some advantages for this election, but the main for this choice is

3The use of Keras as a frontend makes easier to use TensorFlow. In fact, it will be used to export the model
to TensorFlow.

4When we are talking about Android, native does not have the meaning of been a compiled language like
in iOS because of the use of ART, and specialized virtual machine that make possible the use of this operative
system in so many di�erent devices.
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the simplicity of the language in comparision with Java, the least verbosity. That's true be-
cause:

� easy use of lambda expression;

� extension functions;

� data classes;

� type inference;

� smart casts; and

� null-safety.

Other advantage is the complete integration of Java way in Kotlin and viceversa. Thus, we can
call Java code from our application without any modi�cation, and that allows we can work with
TensorFlow Lite5 in an easy manner.

1.3.3 Workstation Speci�cations

This thesis and all the code developed for it was done in a laptop with the next main hardware
speci�cations:

� processor: Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz;

� ram: 16 GB (2x8) DDR3 1600 GHz

� CPU: Nvidia GeForce GTX 765M, 2 GB GDDR5

As we'll be explained later in this thesis, the GPU features, because this is an old one, will make
than some of the most famous convolutional network architectures cannot be used.

The operative system was the Ubuntu 16.04.4 with 4.13.0-37-generic kernel. As code editor, both
Sublime Text and Emacs25 where used, also with Jupyter notebooks on the web browser. For
Android development Android Studio was a mandatory requirement.

1.4 Thesis planning

February, 21th 2018 Project starts.

March, 6th 2018 PAC 0

� title, problem to solve and project goals de�nition.

March, 19th 2018 PAC 1

� goals' �ne de�nition;

� work plannig;

� dataset preparation; and

5Its API is developed in Java, even though the library itself is programmed in C++.
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� state of the art in the thesis �eld.

April, 30th 2018 PAC 2

� dataset augmentation [1 week, 19th to March 26th];

� network architecture selection [1 week, 19th to March 26th];

� training and validation [4 weeks, March 26th to April 23th];

� mobile application structure and architecture selection [2 weeks, March 26th to April 6th];
and

May, 28th 2018 PAC 3

� class diagram and use cases de�nition [2 weeks, 6th to April 23th].

� mobile app implementation and application test [3 weeks, 24th April to May 15th]; and

Juny, 6th 2018 PAC 4 memory thesis writing.

Juny, 13th 2018 PAC 5a thesis presentation preparation.

Juny, 25th 2018 PAC 5b thesis public defense.

1.5 Brief summary of the obtained products

After each of the steps that must be made during the development of this thesis, one product
will be delivered to feed the next step. Therefore, we can see the process as an stream that starts
with the original images and �nally ends with the disease prediction in a real scenario.

We can summarize all the products after those steps as follows:

� Original images → Splitted images. Using multi-cropped window, the original dataset will
be increase, splitting the original images in subimages of 500x500 pixels;

� Splitted images → Transformed images. Using torchvision and PIL packages, the splitted
data will be transformed with rotations, �ips and bright modi�cations;

� Transformed images → PyTorch model. The transformed images will be use to train and
validate a CNN, and this network will be de�ned as a PyTorch model;

� PyTorch model → ONNX model. ONNX is an open-source initiative that allows to export
the models from an speci�c machine learning or framework to a common format that can
be imported by a di�erent library;

� ONNX model → TensorFlow model. The previous model will be imported in TensorFlow,
and we will export it to obtaint the *.pb �le that de�nes the result we obtained in previous
steps using PyTorch;
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� TensorFlow model → TensorFlow Lite model. With toco, a command line application,
we can optimize the TensorFlow model, making it smaller so low resources devices like
cellphones can use neural networks without expending too much time; and

� TensorFlow Lite model → Classify image. Finally we'll use the last *.lite model to
classify the image captured by the cellphone camera.

So, at the end, the �nal product will be an android application that will use the optimized
TensorFlow Lite model to classify the images we capture with our hand-held devices.

1.6 Short description of the rest of the Thesis' chapters

In the next chapter, Chapter 2 - State of the Art, a short description of the current situation
in the used of di�erent techniques of computer vision used in fruits and diseases recognition is
presented.

Chapter 3 - Citrus Pests and Diseases presents a brief description an one image per class the
application we are developing will try to classify.

Chapter 4 - Data Preparation is about the process of preparing the dataset. Here we'll explain
which disease we are going to detect, which were the data sources, and also which techniques
have been employed trying to augment the size of the dataset.

Chapter 5 - Convolutional Neural Network has a small theory presentation of Convolutional
Neural Networks, from neurons to kernels. However, it is focused on the options that have been
taken in this project, with some explanations about functions, optimizations, hyperparameter
values, etc, used in this thesis.

Finally, in the Chapter 6 - Android Application, we'll de�ne the basics of how the application
will be developed: application architecture, libraries used, etc.
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Chapter 2

State of the Art

2.1 Introduction

The problem we are going to deal with has been subject of some research in the last lustrum,
thanks to the improvements and generalization of computer vision techniques.

In agricultural research was (and currently is) usual to �nd studies that, instead of RGB im-
ages, worked with hyperspectral images [15]. But the last years the improvement in machine
learning and computer vision techniques and algorithms, also with the higher performance of the
computers, have made that almost every new research works with visible images.

2.2 Fruit Recognition and Classi�cation

Neural networks has been used in the problem of the fruit recognition [52], and even deep neural
networks has been proof their usefulness in more recent papers [37]. But the classical approach
to this problem1 was the use of some unsupervised algorithm for segmentation (usually k-means),
followed by feature extraction, and �nally classi�cation with Supported Vector Machines or some
other variation of SVM [35] using those features2.

2.3 Detection and Recognition of Fruits and Plants Diseases

For pests and diseases detection the techniques usually used are the same than those explained
above, that is, segmentation with k-means, features extraction with some computer vision tech-
niques and classi�cation with SVM [2,6,11,41]. This pipeline is also used in some research about
fruit grading [27], where also neural networks have been used satisfactory [23]. Some variations,
changing the classi�cation algorithm, can be seen in [23] where �k-nearest neighbour� is used,

1And for almost every other problem of object classi�cation.
2This has been during many decades, and even in the seminal paper Gradient-Based Learning Applied to

Document Recognition [24] written in 1998 we can read �Historically, the need for appropriate feature extractors
was due to the fact that the learning techniques used by the classi�ers were limited to low-dimensional spaces
with easily separable classes�.

7



Figure 2.1: Performance of di�erent techniques in fungal diseases recognition.

and in [1,34] we can read summaries about di�erent techniques used in di�erent papers. In fact,
in [34] we can see �gure 2.1 1 about the accuracy of diferent techniques used for fungal disease
recognition, being the accuracy de�ned by 2.1.

accuracy =
total number of images correctly classified

total number of images used for testing
· 100 (2.1)

The classical use of segmentation → feature extraction → classi�cation is a complex pipeline,
and is very sensible to the extraction algorithm, but with it very good results has been achieved,
even with small number of training cases, as we can see in 2.2.

This image is the result of applying the complex pipeline explained in 2.3.

In the next chapter the reasons why we can try with a di�erent approach will be explained, but
now we can explain some of the majors problems of this solution and the rest of solutions found
in research papers that follow a similar scheme. Thus, we can see that the full algorithm is made
with a sequence of other algorithms. And this algorithms need to be adjusted or �ne-tuned for
every speci�c problem, testing with di�erent space colors, di�erent number of clusters3, di�erent
clustering and/or classi�cation techniques... Those inconvenient does not exist, or at least are
minimized, if we use deep learning.

2.4 Use of Convolutional Neural Network instead of classical

approaches

As was explained in 2.2 and in 2.3, a classical approach can be de�ned as an algorithm that �rst
of all extract the features we want to study from the image, and after that uses some classi�cation
algorithm to make the prediction. This pipeline has proven to achieve good results in recognition

3As we'll see, the use of four clusters for melanosis recognition isn't enough, whereas maybe it is too much for
pseudocercosporas or damages produced by insects of orthoptera genre.
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Figure 2.2: Accuracy for SVM classi�er using RGB and HSV images and feature extraction for
some apple diseases, from [11].

9



Read input image

RGB to L*a*b*

Clustering with
K-Means using

Euclidean distance
using four clusters

Mask original images
with segments

Create new im-
ages from masked

Classi�cation with
Multi-class Supported

Vector Machines

Figure 2.3: Pipeline followed in [11].
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tasks, with both accuracy and performance. It has also some other advantages over deep learning
techniques, among which we can highlight better performance and the use of small data-sets.
But both can be avoided:

� the improvement of the hardware have made than more computational-intensive algorithm
like deep neural networks can be trained in personal computers or cloud servers; and

� for some problems, currently there are huge data-sets that can be used to train neural
networks, and for those problems like the one we are dealing with, where data-sets doesn't
have thousand of images, data-augmentation techniques, and the use of pre-trained net-
works for either �ne-tuning or using as feature extractors, allow to use deep neural networks
even with data-sets than previously doesn't �t to this techniques.

So, why do we use CNN instead that pipeline? Those reasons explained above do not clarify
why deep learning has been the choice for the thesis. We can summarize them in the next
points:

� deep learning are very exciting topic, with researches in few di�erent problems, thus there
are many �els, for example the one this study is about, where its usefulness has not be
proven (or not); and

� as a main advantage in front of classical approaches, deep neural networks are more robusts
and automated; there we need to use di�erent algorithms, or use di�erent features, in
di�erent problems, so we can say they are more hand-made algorithms; but here we have
a very powerful techniques that, if they work in a problem like citrus diseases recognition,
we can be pretty sure that it will work in apple or peaches diseases recognition, so it is
easier to generalize and use as it in di�erent but related problems.

As an example of its previous application, we can talk about the study of medical images,
and speci�cally cancer detection from images. And on it convolutional neural networks has
demonstrated to be a very good technique, with comparable results, when not better, than those
from experienced dermatologist [12]4.

In fact, [12] will be use as a main reference for this thesis. Although skin cancer and fruit diseases
are very di�erent topics, for a machine learning algorithm they are very similar, with some spots
and imperfections that should be classify over the regular human or fruit skin.

That paper uses Inception-v3 [44] as network architecture without any modi�cation. The primary
purpose in this thesis was to use it as starting point. But this concrete network is very complex
as we can see at �gure 2.4, and because the big quantity of hidden layers and their complixity,
the number of parameters is huge, so the hardware used for the thesis wasn't enough to use it
because of lack of RAM at the GPU.

2.5 Related Studies

Other papers about deep learning and convolutional neural networks will be used as very im-
portant references for this thesis [7, 10, 16, 43], even some on-line courses where these topics are
explained in depth [18,48].

4It has to be said than other algorithms, like Minimum Spanning Trees, have been object of successful research
[9] in medical images recognition.
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Figure 2.4: Architecture of Inception-v3 network.
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Chapter 3

Citrus Pests and Diseases

In the next chapter an small description of the di�erent diseases and classes the application is
going to classify can be found.

3.1 Alternaria alternata

Fungus disease, typical in tangerine, with
some importance also in tangelo. Symptoms
in fruits are dark spots with yellow halos when
the fruit is young, and from small specks to
large pockmarks when the fruit is mature.

The lesions usually a�ect only the cortex and
don't penetrate the locules. If the infection ap-
pears in young fruits, in can reduce the perfor-
mance of the plots, and if it happens in adult
fruits, the commercial quality dicrease.

Figure 3.1: Tangeringe infected by Alternaria

alternata, from [20].

13



3.2 Citrus leprosis virus

Virosis, caused by di�erent virus transmitted
by an acari of Brevipalpus genre that only
a�ects every kind of citrus, but no other fruit
o plant.

fruit lesions only a�ect the outer rind. Lesions
appear as �at or depressed spots 10-20 mm
wide with a necrotic center. It is common for a
single fruit to exhibit up to 30 lesions covering
a signi�cant portion of the rind. . Over time
the lesion becomes brown or blackish, some-
times depressed. Infected fruit tend to change
color early and become susceptible to various
rots. CiLV also induces premature fruit drop
which greatly reduces yield.

Figure 3.2: Unmature orange fruit with lepro-
sis symptons from [45].

3.3 Diaporthe citri

Figure 3.3: Diaporthe citri over orange, from
[3].

Other fungus disese, its common name is
Melanosi. Apparently, all citrus species are
susceptible to the disease. The disease is
characterized by the appearance of suberous
crusts in fruits and leaves.

The damages of the melanosis in the fruits are
limited to the external part of the crust, reason
why, in general, it is considered an important
problem only when the production goes to the
markets of fresh consumption.
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3.4 Elsinöe spp.

Figure 3.4: Orange infected by Elsinöe aus-

tralis.

Figure 3.5: Orange infected by Elsinöe aus-

tralis.

This class has been splitted in two, because the sympton di�erences between both Elsinöe

australis and Elsinöe fawcettii. Elsinöe spp is an exotic fungal disease, with an speci�c article
in the EU/2000/29 Council directive.

Although there is little a�ect on internal fruit quality, fruit are severely blemished rendering
them unsellable in the fresh produce market
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3.5 Phyllosticta citricarpa

Figure 3.6: A Valencia sweet orange infected
by Phyllosticta citricarpa, from [38].

The citrus black spot disease is one of the most
important exotic pests for world production.
It is a quarantine pest in UE, with also its
own Council Executive Decision (2016/715)
for the control of the importation of citrus
from countries where it is present.

Phyllosticta citricarpa is a fungus disease
that mainly a�ects the fruits of Citrus genre
exclusively, and makes that its value decrease
heavily. The lemon fruit is the preferred
host, but it also attacks oranges, tangelos and
tangerines.

The spot in the most common phase is char-
acteristic, with a depression with usually two
or three pycnidias inside it, but in the rest of
the phases is very hard to con�rm, because
the symptoms are variable and can be con-
fused with other diseases, for example with Al-
ternaria alternata.

3.6 Pseudocercospora angolensis

Like citrus black spot, the cercosporiosis is
an exotic disease re�ected in the 2000/29/UE
Council Directive. It is also like Phyllosticta

a fungus disease.

The fruits have irregular necrotic lesions in the
cortex surrounded by a yellowish halo. These
lesions tend to aggregate and reach consider-
able diameters, which causes cracking of the
bark and subsequent dehydration of the inter-
nal area of the fruit. In general, the damages
of cercosporiosis are very serious, being a lim-
iting factor for the cultivation of citrus fruits
in many areas of the African continent.

Figure 3.7: Orange fruit in Ghana infected by
Pseucocercospora angolensis, from [21].
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3.7 Septoriosis

Figure 3.8: Advanced symptoms of Septoria
spot, from [47].

Fungus disease that can attack all citrus
cultivuar, with Valencia and Navel oranges as
preferreded hosts.

Early fruit lesions are small light tan to reddish
brown pits 1-2 mm in diameter that extend
no deeper than the �avedo. Older lesions are
darker sunken 20-30 mm in diameter. Dark
fruiting bodies, pycnidia, may develop in these
lesions. Lesions may appear in the form of
"tear stains" patterns. Spots are more evident
on ripe fruit [46].

3.8 Xanthomonas citri

Xanthomonas citri is the main causal agent of
bacterial citrus canker. The lesions developed
on the surface of the fruit, either scattered at
isolated points or forming irregular patterns
by the union of several lesions. The exudation
of resinous substances can be observed in
infected young fruits. The lesions never
extend through the fruit shell.

Symptoms of citrus canker in fruits may be
confused with similar symptoms in the form of
scabs or spots caused by other bacteria or fungi
that infect citrus or physiological disorders.

Figure 3.9: An advanced stady of the citrus
canker, from [39].
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3.9 Pests, Healthy Fruits and Physiological Disorders

Because there are other problems that can cause physical damages on the fruits, and because
we must have a control group, there will be other classes that will represent oranges with no
problems, those with physiological disorders (because of cold, phytosanitary treatment, etc),
and also a class that will represent damages produced by pests, like aphids, thrips, lepidoptera,
diaspididae, etc.

Figure 3.10: Fruits with
damages produced by
Thysanoptera

.

Figure 3.11: Orange with
Diaspididae female over it.

Figure 3.12: A hole pro-
duced by Orthoptera.
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Chapter 4

Data Preparation

4.1 Image sources

One of the most important thing when we are dealing with the neural network training is getting
the data we are going to use for training it. Usually there aren't enough amount of data for
training, so instead of using random initialization the most common way of acting is pre-training
the network with a very large dataset 1.3.

In our case, in our study �eld, doesn't exist public databases with thousands of images we can
use for our work. Even the tens of public images with good quality we can �nd on the internet
are usually for a few well-known diseases. So currently we can only try to diagnose diseases we
have some images to train the network with, and then they will be those we are going to carry
out the study.

The images that have been used as a main sources are from web pages belonging to some of
the most important public departments and institutes around the world, and from some famous
image repositories about plants and mycology that exists in the internet. If we don't use these,
we don't be sure about the classi�cation of the source images, so we won't be sure about the
correctness of our network. In the next list we have those that have been used:

� USDA1

� IVIA2;

� Forestry Images; and

� Mycology collections portal.

More complete collections exist, including USDA and universities private data-sets, but those
weren't accessible at the time of this thesis is developed.

1United State Department of Agriculture.
2Institut Valencià d'Investigacions Agràries.
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4.2 Over�tting problem

As was explained at 2.4, when we have few images neural networks haven't been used in a
generalized way. That's because of when we train a neural network model with hundreds of
images, we have to deal with the problem of over�tting. When we have such a small dataset,
it is hard to generalize the model. For these datasets, even when increasing the number of
epochs used to train the network reduces the error, the accuracy, despite seeming that should be
improved, in fact won't do that and it will �uctuate stochasticaly over a value. Then, we said
the network is over�tting [30, Chapter 3].

Figure 4.1: Error dicreasing when number of
epochs become higuer, from [30].

Figure 4.2: Random variation of accuracy in
an over�tted model, from [30].

4.2.1 Transfer Learning

But, as we saw, the network is pre-trained previously to the training. That makes possible the
use of our small datasets and reduces the over-�tting problem. As we explained, the result of
training with small dataset cannot be generalized if they are training from scratch [49]. But
using this over training we can generalize our results. This process, known as Transfer Learning,
has proven, both in research papers [50]3 and in many real projects, its usefulness.

This will also increase our performance, reducing the duration of the pre-training each time
we want to add some pest or disease in the future, or in the case we have new data to add to
the collection.

3As is re�ected in this paper, �[...] initializing with transferred features can improve generalization performance
even after substantial �ne-tuning on a new task, which could be a generally useful technique for improving deep
neural network performance�.

20



4.3 Data Augmenation

We can use other useful technique besides transfer learning. We can multiply the size of the
dataset with data augmentation. We will use it for creating images with di�erent modi�cations.
The new images have an obvious disadvantage: they will be redundant. But this method actually
works, as can be seen in the literature [7,29]. It doesn't work as well as getting new and di�erent
images, but it can be improved our network.

Di�erent modi�cations can be applied to our data set [7]:

� crop: the sizes of the di�erent images we have used is very di�erent. We must use a �xed
size that can be also taken by cellphone cameras. Also, this size must be enough to catch
common marks and spots diseases and pests make on the fruits. A 300x300 size was chosen,
and the �rst step in the image preprocessing was getting sub-images of this size from the
originals;

� rotation: it must be done with a uniform random generation, with values between [0, 360]
degrees.

� �ipping : mirroring images is another common technique used for increasing the size of data
sets, with also a uniform random generated values between [1/1.6, 1.6].

� shearing : also a uniform random generation was use, with values in the range [−20, 20];

� stretching : �nally, the stretching transformation was the only that needs di�erent gener-
ator. In this case we must use a log-uniform generator, with values inside the interval
[1/1.3, 1.3].

� color shifting : that will change the value of some (or all) of the channels (R, B, B) in our
images, with uniform random generation. We can use limit value of 20% trying to not
make too darker o too white the image.

Other techniques like resizing or translation weren't used, because either they cannot create
new distribution of pixels in local places on images, or they creates very bad quality images, far
from those will be taken with cellphones. Also, even when shearing and stretching are useful
techniques, they aren't use very often in deep learning [29], so �nally we will use a combination
of �ipping, roration, cropping and color shifting to increase the size of our image set.

The application of this transformation has been made with a combination of shell scripting,
and some functions we can �nd in torchvision, a complementary package of the framework
pytorch.

4.4 Data Set and Data Loading in PyTorch

PyTorch work with directories to split data between classes. Therefore, we'll have a di�erent
folder for each of the groups explained in the chapter 3. But, as opposite as other libraries like
TensorFlow, we have to split data between test and training data by ourselves:

� with TensorFlow, we have all data in di�erent folders and the library can split it with a
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default or given percentage4;

� with PyTorch we'll have two main folders, training and test, and inside them will have
the same sub-folders, each of them corresponding to the same class, but obviously with
di�erent images.

PyTorch works with Dataloaders. In the next code we can see how we can �nally augmented
the data set and create them:

1 import torchsample

2 from torchvision import transforms , datasets

3
4 regularization_tuple = [0.485 , 0.456, 0.406] , [0.229 , 0.224, 0.225]

5
6 transformations = {

7 'training ':

8 transforms.Compose ([

9 transforms.RandomResizedCrop (224),

10 transforms.RandomHorizontalFlip (),

11 transforms.ToTensor (),

12 torchsample.transforms.RandomRotate (20),

13 torchsample.transforms.RandomRotate (-20),

14 transforms.Normalize(regularization_tuple)

15 ]),

16 'test':

17 transforms.Compose ([

18 transforms.Resize (256) ,

19 transforms.CenterCrop (224),

20 transforms.ToTensor (),

21 transforms.Normalize(regularization_tuple)

22 ]),

23 }

24
25 source_folder = 'diseses_and_pests '

26
27 image_datasets = { x: datasets.ImageFolder(

28 os.path.join(data_dir , x), transformations[x

]

29 ) for x in ['training ', 'test'] }

30 dataloaders = { x: torch.utils.data.DataLoader(

31 image_datasets[x],

32 batch_size =4,

33 shuffle=True ,

34 num_workers =4

35 ) for x in ['train', 'val']}

36 class_names = image_datasets['training ']. classes

37
38 assert class_names == image_datasets['test']. classes

First, we need to de�ne the transformations we're going to apply to the image set. We have
also to make a transformation to Tensor. Tensors are the data structures with which PyTorch
work. Each image will be represented with a tensor of height · width · number of channels.

After de�ning the transformations that will be applied to both training and test test set, we

4We can also split data explicitly.
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have to de�ned the folders where images actually are. After that, �nally a data-loader for each
test and test set will be created.

It is important to explain how PyTorch works. In our dataset there are 5445 images divide
irregularly between 8 classes. The class with the lesser number of images has 16, and the one with
the higher has 74. PyTorch, for each epoch, will create a random training set of 370 images. This
images will mixed original images with some images created applying transformation de�ned in
the transformations dictionary. That means that for a concrete image, in an epoch maybe a
�ip transformation will be applied, whereas in the next epoch that image may be transformed
with a rotation, or again can be �ipped, or even could be use without any change.

5Training set has approximate 70% of total images, with test set having 30% [29].
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Chapter 5

Convolutional Neural Network

In this chapter, we are going to make a brief introduction about Neural Networks, and Convo-
lutional Neural Networks. After that, the architecture and hyperparameter values choices we'll
be explained.

5.1 Neural Network

5.1.1 Neurons

A Neural Network is the union of some layers, where each layer will have a number of neurons.
A neuron is the smaller element of the network, which takes some inputs, and produces one
unique value.

One of the �rst neuron models was the perceptron. This model takes one or more binary
inputs and produces binary outputs (5.1).

Input [0-1] Computation Output [0-1]

Figure 5.1: Perceptron with one input.

The output will be 0 or 1 depending on if the computed value is bigger or smaller that a
threshold (5.1).

output =

{
0
∑

j wj · xj ≤ threshold
1
∑

j wj · xj > threshold
(5.1)

The output is function of the perceptrons weights (wj), so changing either the weights or the
threshold, we'll have a di�erent perceptron model.
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5.1.2 Neuron Layers

We can have as many layers between input and output we want, and these layers will be called
hidden layers. In 5.2 we can see a perceptron network with three layers. The �rst column of
perceptrons will take very simple decisions, by weighing the evidence, that is, the inputs. The
hidden layer will make the same but, instead of using the input external evidence, it will use the
output of the �rst layer.

So it will be able to take more complex decisions that the input layer. Finally, the output
layer, with one single perceptron, because it will use the output of the hidden layer, will take
even more complex decisions. So, the more layers we stack, the more complex decisions the
network will produce.

X1

X2

X3

X4

Output

Figure 5.2: Neural Network with four inputs and three neurons in one single hidden layer.

If we have a bias, who will be equal to the negative value of the threshold, we will have then
a di�erent equations for the perceptron computation (5.2).

output =

{
0
∑

j wj · xj + b ≤ 0

1
∑

j wj · xj + b > 0
(5.2)

We can see the bias as a measure of how easy is to get the perceptron to output 1, or similarly,
one easy is to get the perceptron to �re1.

So, if we �nd an algorithm that allows us to automatically change the weights and biases of
the network in response to an stimuli, we'll theoretically will be able to adopt our network to
more complex task. And, because Neural Networks are universal approximation machines, they
are capable of handling any kind of problem we can think about, so we, in theory, will be able
to use them to solve any problem.

5.1.3 Activation Functions

One problem of perceptron neurons is that, if some of the inputs changes a small value, the
output of the network could sometimes to completely �ip. That makes the use of this kind of
neuron impractical.

1The higher the bias is, the easier the perceptron �ll �re.
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Therefore in practice other kind of neurons are used. Those neurons can produce a value
inside a range, usually bigger than zero, and their inputs are also non-binary values. They
are de�ned by the function that produces the output, and that function is called activation
function. The input is z, de�ned as z = w · x + b2, and the output is the activated value, a.
The most common functions are:

� sigmoid function, the most common used activation function in tutorials, books, etc, also
called logistic function. Actually is very used in output layers, but it is not in hidden.

σ(z) =
1

1 + e−z
(5.3)

� linear function, linear value with unranged values as output.

linear(z) = w · z + b (5.4)

� ReLU function, maybe the most used in papers and production. Very similar to linear, but
it cannot give negative output values.

z = w · z + b; a = max(0, z) (5.5)

� leaky ReLU, theoretically better than ReLU, but it is not widely used. Instead of bounding
the lesser value to 0, this function allows it to be smaller.

z = w · z + b; a = max(c · z, z); c ≈ 0 (5.6)

� tanh function, similar to sigmoid, it gives us values between -1 and 1. It is very used in
hidden layers but not in output: because we want to classify there, it is useful having a
function that gives us values between 0 and 1.

tanh(z) =
ez − e−z

ez + e−z
(5.7)

In this project, both ReLU and tanh have been used, with sigmoid function used in output
layer.

2Actually is z =
∑

wj · xj + b, but we'll use the simple representation.
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Figure 5.3: Output for di�erent models of activation functions.

5.1.4 Backpropagation

As we said, we need an algorithm which let us �nd weights and biases. That search is that
we call learning during the training process of a neural network. The variation of these values
will make that, eventually, the output from out network approximates the value of the training
inputs. The algorithm we'll use to learn is the backpropagation algorithm.

When we train a neural network, what we made is feeding the network with an input. After
that, this input will generate an output applying in the hiding layers the equation we saw in
5.23. The �nal output ŷ will be compared with the expected output y.

The di�erence between those two values will be backprogated from the output layer to the
input layer through all layers in the network. With this di�erence, the weights and biases of each
hidden layer will be updated. With this update, we are trying to get a better network, that is,
have a neural network that, in the next iteration, will make a better prediction4. This process
will be repeated until the value of the error is lesser than a threshold or we have made a number
of iterations equal to limit value we set.

This algorithm has a number of equations about we talk brie�y in the next epigraphs.

Loss and Cost Function

We need to quantify the di�erence between our output (ŷ) and the reality that training values
represents (y). This can be represented with loss functions. Among the di�erent options that

3Needless to say adapted to a neural network that is not made of perceptrons, so instead of binary outputs
we'll have as outputs values inside a range.

4A better prediction means that the di�erence ŷ−y for an step i will be lesser that that di�erence for the step
i− 1.
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exist, in this thesis Cross Entropy Loss has been used (5.8).

L (ŷ, y) = −(y · logŷ + (1− y) · log(1− ŷ)) (5.8)

Then, we will compute the Cost Function (5.9). This cost function is the average of the
loss function above for the entire dataset, and will actually the function we use when we try to
improve our network predictions.

J (w, b) = 1

m

m∑
i=1

L (ŷ(i), y(i)) =
1

m

m∑
i=1

[
− (y · logŷ + (1− y) · log(1− ŷ))

]
(5.9)

Gradient Descent

Our objective will be to make J ≈ 0. To achieve that, Neural Networks use the Gradient Descent
Algorithm. The way it works is to repeatedly compute the gradient ∇J , and then moving in the
opposite direction.

After we have computed the gradient descent, then we can update the values of weights and
biases (5.10), and applying this repeatedly, we will �nd the minimum of the cost functions, so ŷ
will be as near to y as it can, so we will be able to say that our network has learnt.

wk → w′k = wk − α
∂J
∂wk

bl → b′l = bl − α
∂J
∂bl

(5.10)

With this updated values, we will compute again the new predictions with forward prop-
agation. And with their results, we will again using backpropagation to update, for the next
iteration, biases and weights. This process will be follow until:

� the error of the cost functions is lesser than a threshold; or

� the number of iterations we have computed is bigger than a �xed limit we have set.

Derivatives of activation functions

As we saw, we need to compute the partial derivatives of the cost function. This cost is function
of the prediction, and this prediction will be also function of the activation functions. So at the
end, we need to compute the derivative of the chosen activation function. This is critical, because
this value will be computed thousands of times, so choosing a function that has a very simple
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derivative will increase the performance over other functions with more complex derivatives.
Below we can see the derivatives of the activation functions explained in 5.1.3:

� sigmoid function

σ(z) =
1

1 + e−z
→ σ′(z) = a · (1− a) (5.11)

� linear function

linear(z) = w · z + b→ linear′(z) = 1 (5.12)

� ReLU function

z = w · z + b; a = g(z) = max(0, z)→ g′(z) =

{
0 if z < 0

1 if z ≥ 0
(5.13)

� leaky ReLU

z = w · z + b; a = max(c · z, z); c ≈ 0→ g′(z) =

{
c if z < 0

1 if z ≥ 0
(5.14)

� tanh function

tanh(z) =
ez − e−z

ez + e−z
→ tanh′(z) = 1− a2 (5.15)

Backpropagation algorithm in Python using Numpy We'll see next a version of this
algorithm using python with numpy. This code is an adaptation of an original piece code that
we can �nd in [30].

1 class NeuralNetwork(object):

2 def __init__(self , weights , biases , activation_fun=sigmoid):

3 self.weights = weights

4 self.biases = biases

5 self.activation_function = activation_fun

6 # 'derivatives ' is a dictionary with the derivatives values for

each

7 # 'activation_function ' allowed.

8 self.activation_function_derivative = derivatives[activation_fun]

9 ...

10
11 def backprop(self , x, y):

12 # First we have to initialize values

13 delta_weights = [np.zeros(w.shape) for w in self.weights]

14 delta_biases = [np.zeros(b.shape) for b in self.biases]

15
16 ## FEEDFORWARD STEP

17 # a_0 == x

18 activation , activations , zs = x, [x], []

19 # In each step of the iteration , we compute the activation value

20 # for the next hidden layer , until we arrive to the output layer ,

21 # that is, the final values of 'self.biases ' and 'self.weights '

22 for b, w in zip(self.biases , self.weights):

23 z = w @ activation + b

30



24 # We use 'zs' for caching results

25 zs.append(z)

26 activation = self.activation_function(activation)

27 activations.append(activation)

28
29 ## BACKPROPAGATION STEP

30 # We start from the last (activations [-1]) to the firs layer

31 delta = self.cost_derivative(activations [-1], y) * \

32 self.activation_function_derivative(zs[-1])

33 delta_biases [-1] = delta

34 delta_weights [-1] = delta @ activations [-1].T

35 for l in range(self.num_layers -1, 1, -1):

36 z = zs[l]

37 derivative = self.activation_function_derivatives(z)

38 delta = (self.weights[l] @ delta) * derivative

39 delta_biases[l] = delta

40 delta_weights[l] = delta @ activations[l].T

41
42 return delta_weights , delta_biases

PyTorch backpropagation computation

As we saw, the computation of backpropagation algorithm is both a complex and crucial step.
Fortunately, deep learning libraries like PyTorch allow to compute it with few lines of code:

1 import torch

2 import torch.nn as nn

3 import torch.optim as optim

4 ...

5 optimizer = optim.SGD(model.parameters (), lr=0.001 , momentum =0.9)

6 ...

7 output = model(input)

8 _, predictions = torch.max(output , 1)

9 loss = nn.CrossEntropyLoss(output , labels)

10 loss.backward ()

11 optimizer.step()

In the code above we can see that we only need to call the backward function for the loss
model we chose, function that computes the gradient for every parameter we want to apply
gradient descent.

5.1.5 Optimization

Below we are going to describe the most common optimization algorithms we can �nd. Why
is important to optimized our computations? Because if we have thousands or even millions of
images, the backpropagation step will be very slow, because we won't update the weights and
biases until we have computed gradient descent for the whole data set.
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Figure 5.4: Evolution of cost function: batch vs minibatch GD, from Imad Dabbura.

Mini-batch Gradient Descent and Stochastic Gradient Descent

Instead of waiting until all computations have �nished, we can update when a small number of
images has been used to learn. We can split the whole data set in small pieces, which we call
mini-batches. And, instead of computing gradient descent for the full data set, we can compute
it, at each iteration, for a mini-batch, but, the most important, we will update all weights and
biases with the values we get using only one batch at each step (also called epoch). If we use
only, instead of m images for each mini-batch, only one image, we have the Stochastic Gradient
Descent. This is the one that we have been used in this thesis, as can be seen at the previous
line of code optimizer = optim.SGC(...). If m is equal to the size of the full data set, we have
the same version of gradient descent as we didn't use any optimization, call Batch GD.

The SGD has an obvious disadvantage. It doesn't converge to a global minimum. Instead
of that, the cost variation over time has a lot of noise, but the average is also decreasing, and
this joined with the huge performance improvement made that SGD or Mini-batch GD are both
used instead of the regular version of GD.

Other optimization algorithms

There are several optimizations we can use trying to increase the performance without decreasing
a lot the accuracy of our network. Whereas there are a lot of di�erent optimization algorithms
[36], the most common and cited in papers are maybe GD with Momentum, RMSProp and
Adam5.

5.1.6 Hyperparameters

In NN there are parameters that can be learnt, but there are also a lot of parameters that we have
to chose in order to run the model. We have the learning rate α, the number of layers, number
of hidden units, the mini-batch size, etc. We can try randomly with di�erent combinations of

5The optimization algorithm we have used is actually a variation of SGD where we use also momentum to
improve the performance of the computations.
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these, but this could be a huge work. Actually we try with combinations of pairs or triplets of
hyperparameters.

In this thesis, we have some of them �xed. As we will see, we have trained a resnet-50
architecture, so the number of layers, hidden units, size of the image, etc, are in fact �xed by
this model. So among the rest, we have two that are critical: number of epochs and learning
rate.

� number of epochs: we can see at 5.8 that after ten epochs, our accuracy is not improving
a lot. We could have chose 15 epochs, but because of the small size of the data set, 25 was
chosen trying for security; with that value, the model expend approximately 30 minutes to
be trained; and

� learning rate: instead of �xing the value of learning rate, we can create an scheduler that
will change it trying to improve the results. That is a feature of PyTorch, and it is very
easy to con�gure:

1 from torch.optim import lr_scheduler

2 ...

3 optimizer = optim.SGD(model.parameters (), lr=0.001 , momentum =0.9)

4 scheduler = lr_scheduler.StepLR(optimizer , step_size =5, gamma =0.1

where step_size is the period of learning rate decay, the number of iterations after we
apply the gamma value, and the gamma is the multiplicative factor of learning rate decay
that actually decrease its value.

5.2 Convolutional Neural Networks

We have described regular neural networks. But in this thesis, we are going to use a Convolutional
Neural Network (CNN). They are very similar to regular NN, but very focused in Computer
Vision tasks. CNN "[...] make the explicit assumption that the input are images, which allows
us to encode certain properties into the architecture." [48, CNN for Visual Recognition]. Because
of this speci�c characteristics, they have a better throughput thanks to the huge decrease of the
number of parameters of the network.

Instead of connecting all the elements between each layer as an a regular network6, we have
small matrices or kernels, with sizes like of 3x3, 9x9, etc, that, applied over a layer, give us
the next layer. This process is the convolution. This convolution is the responsible of the fewer
parameters.

The way the kernels (or �lters) are applied can be seen at 5.5. We can see how the application
is, at each step that produces a pixel output, over a local region. This is actually the cause of
parameters reductions when we compare CNN over FCN, and it has sense because, if we think
the way we see, we make relations among near pixels or stu�s that are in an image, that usually
will have more relation that pixels at the edges of the image.

6Because of this, we can call regular networks as Fully-Connected Networks (FCN) as opposition with CNN.
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Figure 5.5: Application of a kernel over an image from the Government of India. We can see
how the kernel is applied over neighboring pixels.

5.2.1 Kernels

As we work with RGB images, that actually are tensors with a depth of three, we need �lters
that are tensors too. And their depth must be equal to the depth of the layer they are working
with. But, if we multiplied the kernel over the image, we will get a two-dimensional matrix
as we can see at 5.6, so in only one step we would have been �nished our network. A CNN
actually works stacking the results of applying several kernels over each layer, so the result of a
convolution is another tensor. At 5.7 we can see how, stacking the result of two convolutions,
we have a two-channels7 tensor as result.

Figure 5.6: Convolution of a single kernel over an RGB image.

7Because in CNN we usually work with images, and in images the depth of the tensor, where the tensor is the
image, is the number of channels we have, we can talk about depth or number of channels indistinctly.
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Figure 5.7: Two kernels convolutions.

These kernels play a similar role than the weights matrix in a regular neural network. There-
fore, when we train a CNN, we actually will modi�ed the values inside the �lters trying to
improve the di�erence between predictions and reality, as we made in NN.

One obvious advantage is that, no matter the size of the input, the number of parameters is
a function of the kernel dimensions and the number of �lters as we can see in the next example.

Number of parameters computation As an example we can think in an image of 32x32
pixels in the RGB space color. If the second layer has 28x28x6 neurons, the total number
of parameters will be 32x32x3x28x28x6 ≈ 14e6.

But if we have a Convolutional Layer with 6 �lters of 5x5x3, we'll have only (5·5+1)·6 =
156 parametersa, and will have as an output also a 28x28x6 neuron layer. As we saw, the
number of parameters only depends on the dimensions of the kernels and their number.

aThe 1 added is because of the bias.

5.2.2 Padding and Stridded Convolutions

Padding

Every time we applied a �lter over a tensor, its size is reduced. If we continue applying kernels,
eventually we'll have a very small size tensor. The padding is used to avoid this, creating extra
columns and rows that will make that the output will have same weight and height than the
original input before padding.

If we do not do that, when we apply a kernel with fxf dimensions over an nxn image, we'll
have an output of (n−f+1)x(n−f+1). After applying a padding p, then (n+p)x(n+p)∗(fxf) =
(n+ 2p− f + 1)x(n+ 2p− f + 1).
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Figure 5.8: Accuracy of di�erent pretrained CNN architectures with citrus diseases dataset.

Stridded convolution

We can move the kernel more than one pixel at each step. If we do that, the size reduction will
be bigger. This technique is use also in Pooling Layers that we'll explain in the next epigraph.

5.2.3 Layers used in CNN

In CNN, we don't use only Convolutional Layers. Although this thesis' objectives isn't give a
full explanation about the theory behind CNN, we are going to give a small explanation about
the rest of the layers we'll �nd in CNN and, actually, in the architecture used in this thesis.

� RELU layers: they give as an output a same-size tensor;

� Fully-connected layers: usually at the end of CNN, they give us the �nal classi�cation; and

� POOL layers: used to make reduction of the size of the tensors.

5.3 Architectures

As architecture we are talking about how the network is: its layers, how many neurons has
each of them, which type, etc. In this thesis, some of the most famous architectures has been
used: alexnet [10], resnet [16] and densenet [19]. Some others has been used, like lenet [24] or
inception [43], but because of his simplicity or due to hardware limitations, they haven't been
tested.

Between the three that actually were used, we can see their results in 5.88

8In this picture we can see that two di�erent versions of resnet were used.
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Explained them, even represent how they work, is a complex and long task, that exceeds this
thesis. Nevertheless, we are going to explain brie�y the main features of the architecture used
in the thesis, resnet-50.

Resnet-50

When we work with very deep networks, we could guess that as more layers we use, a better
accuracy we'll achieve. But the reality is di�erent, and there is some number of layers from
which the network, instead of getting improved, becomes worse. As we can see at 5.9, there is
no bene�t stacking more layers.

Figure 5.9: Training error for CIFAR-10 image set using non-residual networks, from [16].

One solution to this problem, the solution that residual networks uses, is to use residual

blocks: we add by-passes that feeds some layers with their own inputs plus the input that comes
from previous layers 5.10.

Figure 5.10: Basic residual block, from [16].

A residual network will be made stacking many of those blocks, and using them will see that
deeper network will have if not a better accuracy, it won't be worst than shallower versions.
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Chapter 6

Android Application

6.1 Android Development and Framework Basics

The Android operating system is a multi-user Linux system. By default, the system assigns each
app a unique Linux user ID1. The system sets permissions for all the �les in an app so that only
the user ID assigned to that app can access them.

Every app runs in its own Linux process, and each of them has its own Virtual Machine,
so an app's code runs in isolation from other apps. This processes are started by the Android
system when any of the app's components need to be executed, and then shuts down the process
when it's no longer needed or when the system must recover memory for other apps.

Android apps can be written using Kotlin, Java, and C++ languages. As we saw in chapter 2,
the application developed in this thesis has been written in Kotlin, a relatively new programming
language with a complete interoperability with Java code.

The Android SDK tools compile the code along with any data and resource �les into an APK
�le2, an Android package which is an archive �le with an .apk su�x. One APK �le contains all
the contents of an Android app and is the �le that Android-powered devices use to install the
app.

And Android application can have di�erent components, but some of them are mandatory
and has been used in this thesis application:

� Android manifest �le: the primary task of the manifest is to inform the system about the
app's components. Before the Android system can start an app component, the system
loads this �le to know which components exist. Here, we'll declare the entry point of the
app, the permissions, the API level we are compile for, etc.

� Activity : they represent a single screen with a user interface. One of this must be the entry
point of the application. Each activity is independent of the others.

� Fragments: components that allow to develop more �exible UI than these that can be

1The ID is used only by the system and is unknown to the app.
2In the last Google I/O was presented the new aab format.
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developed only with activities, they represent a behavior or a portion3 of the UI. A fragment
must always be hosted in an activity and the fragment's life-cycle is directly a�ected by
the host activity's life-cycle.

� Xml �les: the UI is de�ned in xml �les, which will be translated in the onCreate method
in the Activity or Fragment that in�ates them.

� Resources: Android apps can used a very large type of resource �les. In the app developed
with this thesis, drawable �les4 and the neural network models themselves5 are resources.

There could be other components, such as Content Providers, Services, Loaders, etc, which
haven't been used in this application, at least at the release that accompany this thesis.

6.2 Application Architecture

One of the biggest problem we will deal when we are developing an Android application is the
architecture we'll use with the app. The Android framework uses a variation of the MVC, where
xml �les are the views, the activities and/or fragments are the controllers, and the models are
the rest of classes or services6 that we'll use for retrieve and processing the data and the user
actions.

But when we develop a medium or large size application, this approach isn't the most con-
venient. The controllers became huge classes with even thousands of lines of code. This classes
are very hard to test, improve, etc.

Because of that, last years some architectural patterns has been used to develop better apps,
at least apps that make the processes of debug, test or improve easier. These architectures
are Model-View-Presenter (MVP), Model-View-View-Model (MVVW) and Model-View-Intent
(MVI).

The application has been developed with MVP. But the three could be used. The MVVM
is in fact the way Google try the developers code their applications, with some additions to the
Android framework that makes easier to use it. The MVI is maybe the most recent pattern, and
it is yet less used than the others in the industry.

6.2.1 Model View Presenter

The chosen architectural pattern, MVP, is currently the most widely used in Android develop-
ment. It is conceptually the easiest. We use MVP to improve the separation of concerns in
business logic7. With this pattern, we split the application in:

� views: not only the xml �les but also the activities and fragments;

� presenters: there will be classes that will get the user actions and will call the use cases,
and after receiving data from those, they will update the UI; and

3Especially when we are designing for devices with larger screens like tablets.
4Images such as png or jpg.
5Files with lite extension produced by the toco utility.
6Databases, REST services, etc.
7Separation of concerns "[...]is a design principle for separating a computer program into distinct sections"
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Figure 6.1: MVP with interactions between its parts, from Techyourdance.com.

� model : classes (objects) where will store the app state, that will be sent to the presenters
after UI requests.

We'll have also UseCase classes8. With them, we'll make the request to the model from the
presenters. We could have use cases for retrieving data from a database, or from a web service,
to get some knowledge about the system, etc.

6.3 Class Diagrams

Because the size of the class diagram for the full application, we are going to split it in various
parts. First, at 6.2 we can see the classes that represents all the UI, either activities or fragments,
with the interfaces that they implement.

The presenters, model and the use cases (business logic) that take the user inputs, make
computations and retrieve the info to the user updating the screen can be shown at 6.3.

6.4 Libraries

A small set of libraries have been used in this application. Almost all of them are Android itself
libraries that aren't include in the framework from scratch, or Kotlin extensions which make
easier the development. In the next sections we are going to give an explanation about their
features and why they were chosen instead of other options:

8They are also call Interactor in the literature.
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Figure 6.2: Class diagram with classes that show elements on the screen and with which the
users interact.
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Figure 6.3: Class diagram with classes that represent presenters, model and use cases.
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AppCompat-v7 Mostly used in every Android app, it allows to use Fragments9. Also, we are
going to use RecyclerView as a container for the di�erent products we will be able to recognize
with the app in the future. This feature is also added with this dependency.

CardView-v7 The items in the RecyclerView can be designed from scratch. But a very good
alternative is the use of CardView. We must also provided the layout for it, but this look and
behavior �ts nice in an app with a very speci�c and professional market like this one.

Fotoapparat Developing a camera view with the tools that the Android SDK provides is not
actually a trivial job. Fortunately, there are a couple of open-sources options that works really
well. Between them10 the Fotoapparat library has been used. It provides a very easy to use
view, that allows to use both cameras, the �ash, zoom, etc.

We can instantiate in a very simple way:

1 val fotoapparat = Fotoapparat(

2 context = context!!,

3 view = camera_view ,

4 scaleType = ScaleType.CenterCrop

5 )

where camera_view is de�ned in a layout with the widget io.fotoapparat.view.CameraView.

We can also modi�ed the features during the runtime. In the app, we can turn on/o� the
torch with a simple line of code:

1 fotoapparat.updateConfiguration(UpdateConfiguration(flashMode=torch ())

)

And �nally, taking a picture is as simple as writing:

1 val picture: PhotoResult = fotoapparat.takePicture ()

2 picture.toBitmap ()

3 .whenAvailable { bitmapPhoto ->

4 bitmapPhoto ?.let {

5 callback.onTakenPicture(bitmapPhoto.bitmap)

6 }

7 }

In the code above, we can see how the library itself manage the fact that taking a picture
and transforming it is an expensive operation, so it provides the method whenAvailable that
makes an asynchronous call and wait until the photo is made in a di�erent thread than the UI
thread to return it when the result is �nally available11.

Constraint Layout A relatively new layout in the Android framework, the constraint layout
allows a faster and easier way to develop nice and �exible UI's than other layout like FrameLayout
or RelativeLayout, even in a graphical way, with points-and-clicks.

9The Fragment in the main library is currently deprecated and its use is not advisable.
10CameraView or CameraKit were other alternatives, but we can �nd more in android arsenal.
11Because this fact is so important in Android development, we can read more about it and the solutions we

took in the app development in the appendix A.
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Picasso A library that allows image management from di�erent sources: drawables, urls, etc.
Like Fotoapparat, it put the hardest work in background threads. We use it for loading images
in the items of the RecyclerViews:

1 Picasso.get()

2 .load(it.image)

3 .resize (500, 500)

4 .centerCrop ()

5 .into(itemView.product_image)

Kotlin utilities Here we include the Kotlin extensions and the Anko library. The extensions
allow to avoid the use of the findByView method, and all the casting operations related to it.
Hence, we can substitute this:

1 val button = findByView(R.id.button_one) as Button

2 val textView = findByView(R.id.text_view) as TextView

3
4 button.text = "Button"

5 textView.text = "Text"

By:

1 button_one.text = "Button"

2 text_view.text = "Text"

On the other hand, Anko provide very helpful methods for Android development, like co-
routines for asynchronous job.

Realm There are many options to add a database to an Android application. We can work at
a low level and use sqlite directly, even when this is a not recommended practice according to
Google. We can also work with sqlite in an easy manner with Room or some others third-party
libraries that exists in the market.

But there are some other non-sql options, with Realm and ObjectBox being the most used.
In this application Realm has been the chosen one12. The main reasons to do that is the easy
way we can create the database, insert values, modify them, etc.

In 6.6 there is an explanation about how this data base works, how we can create the model,
establish relationships between entities and make queries and updates.

TensorFlow Lite Finally, the main library in this app, https://www.tensor�ow.org/mobile/t�ite/
is a lightweight solution for mobile devices. It only needs to import itself as a dependency13. The
use is also easy: we need to implement the Interpreter class, load the model and labels, and
call the run method passing it the image and the array where the results will be stored in-place:

12We can see here a very good comparison among these options, or even a more complete (without ObjectBox)
can be found also in this Github repository.

13We can compare this with DL4J, where we need to import the library, ND4J, OpenCV, etc, or with Ca�e2,
with also many dependencies for Android development.
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1 val interpreter = Interpreter(model)

2 interpreter.run(byteBuffer , floatArray)

6.5 User Interface

In Android, we have activities and fragments to represent the screen. For the navigation
among di�erent options, we can use a BottomBar Navigation, or a DrawerLayout with a
NavigationView. We have selected the second one because for the navigation in this appli-
cations it seems more natural, but they are almost exchangeable, and very few changes will be
necessary to use the other.

Usually in NavigationView fragments are used to move between di�erent screens associated
with di�erent buttons in the menu. But, because we have some of this with a secondary result,
we have chose a di�erent approach, using activities instead of fragments, and sing only those
when we'll have an screen change as a result of a user interaction with the �rst activity. This
fact, the use of activities, has made that a small change was needed in order to achieve a smooth
navigation view hidden. For this, we have used the next snippet:

1 var handler: Handler?

2 ...

3 handler.postDelayed( {

4 val intent = Intent(ctx , newClass)

5 intent.putExtra(ITEM_ID , itemId)

6 startActivity(intent)

7 finish ()

8 }, Constants.NAVIGATION_VIEW_LAUNCH_DELAY)

With that code, we launch the intent that will change between activities after constant time,
giving the option to the system to �rst hide the NavigationView.

At 6.4 there is a �gure with all the screens we have in the application, and which transitions
among them are allowed.
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6.6 Data Base

First of all, we need to initialize the data base in a class that inherits from the Application

class:

1 class App : Application () {

2 override fun onCreate () {

3 super.onCreate ()

4 Realm.init(this)

5 }

6 }

After that, we can now get an instance in whichever point in the code. The only we have to
do is getting a default instance14 with Realm.getDefaultInstance().

With an instance we can now make two things: start a transaction or make a query. For
transactions, we have to start and commit it, but for reading we do not need to begin-and-commit:

1 val realm = Realm.getDefaultInstance ()

2 realm.beginTransaction ()

3 \\ Creation , update or delete operations

4 realm.commitTransaction ()

5 realm.close()

But kotlin features can simplify this process a lot. Instead of that, we can simply pass a
lambda to and write:

1 Realm.getDefaultInstance ().use { realm ->

2 realm.executeTransaction {

3 for (product in Constants.products) realm.copyToRealm(product)

4 }

5 }

It is very important the thread where we use a realm instance. They cannot be shared
between threads, so if we launch di�erent queries in di�erent threads, then we will need to use
di�erent instances.

Because realm instances implements closable interfaces, after �nishing the use the close()

method is called.

In the previous code we saw that we copied an object to the database with the copyToRealm.
This objects cannot be regular POJO objects, and they must inherit RealmObject class.

In this project we have used three di�erent classes:

1 open class Product(@PrimaryKey var name: String = "",

2 var scientificName: String = "",

3 var formRaw: String = "",

4 var image: Int = 0,

14Custom instances, which di�erent names and features can be created, but in this application that was not
necessary.
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5 var pathModel: String = ""): RealmObject () {

6 var form: Form?

7 get() { return Form.valueOf(formRaw) }

8 set(value) { Form.valueOf(formRaw) }

9
10 override fun toString (): String {

11 return StringBuilder ()

12 .append(name)

13 .append(" - $scientificName")

14 .toString ()

15 }

16 }

17
18 enum class Form { FRUIT , PLANT , ROOTS , WOOD , LEAF }

19
20 open class Damage () : RealmObject () {

21 @PrimaryKey var key: String = ""

22 var name: String = ""

23 var confidence: Float = -1f

24
25 constructor(name: String , confidence: Float): this() {

26 this.name = name

27 this.confidence = confidence

28 this.key = primaryKey ()

29 }

30
31 private fun primaryKey (): String {

32 val df = SimpleDateFormat("dd MM yyyy , HH:mm")

33 val date = df.format(Calendar.getInstance ().time)

34
35 return "$date - $name - ${String.format("(%.1f%%) ", confidence * 

100)}"

36 }

37
38 override fun toString (): String {

39 return StringBuilder ()

40 .append("$name ")

41 .append(String.format("(%.1f%%) ", confidence * 100))

42 .trim { it <= ' ' }

43 .toString ()

44 }

45 }

46
47 open class Prediction () : RealmObject () {

48 var date: String = ""

49 var product: Product? = null

50 var damages: RealmList <Damage > = RealmList ()

51 var image: ByteArray? = null

52
53 constructor(product: Product , image: ByteArray) : this() {

54 val df = SimpleDateFormat("dd MM yyyy , HH:mm")

55 this.date = df.format(Calendar.getInstance ().time)

56 this.product = product

57 this.image = image

58 }

59
60 override fun toString (): String {

49



61 return StringBuilder ()

62 .append("$date - ")

63 .append("$product - ")

64 .append(damages)

65 .toString ()

66 }

67 }

We can see that we don't have getters and setters, only for the Product.form: Form �eld.
It could seem that we are going to access directly to the �elds, a non-recommended technique in
Java. But this is not true, because the Kotlin compiler translates this code to a classical pattern
where for each �eld we'll have a private �eld and both a getter and a setter.

Realm imposes some limitations to the use of kotlin's features. Thus, we cannot use data
classes, and we must make all classes open. Also, we have to declare all variables as mutable,
and we have to provided them with default values.

But, in spite of these limitations, the creation of the Realm entities is very easy. We can see
also how we can create the relationships:

� one-to-one: we only need to have a �led in a class with the same type of the Realm entity15,
as we can see in Prediction, which has a var product: Product? = null �eld.

� one-to-many : in the same Prediction class we can see this relation, in the var damages:

RealmList<Damage> = RealmList() �eld.

Retrieving data from the database is also very easy. The only thing we have to do is �lter
the results of the class that we want. Although in this app very simple queries were needed, we
can make them more complex:

1 val realm = Realm.getDefaultInstance ()

2 val citrusDamagesMoreThanTen = realm.where(Prediction ::class.java)

3 .findAllAsync ()

4 .filter{ prediction -> prediction.product.name = "

Citrus" }

5 .flatMap { prediction -> prediction.damages }

6 .filter { damage -> damage.confidence > 0.1f }

In the previous code, we have got all the predictions stored in the data base in an async way,
and after that we have create a list of all citrus predictions, damages with a con�dence bigger
than ten percent made on citrus.

6.7 Results

Finally, we can see in the next pictures some results using the app, from images taken with the
camera but also using images from the cellphone gallery.

15That is, classes inheriting from RealmObject.
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Figure 6.5: Failed, the
good one is the second
choice, Phyllosticta. Image
from the validation set.

Figure 6.6: Good, pest,
Aonidiella aurantii, image
neither from the validation
nor test set.

Figure 6.7: Good predic-
tion, melanosis disease pro-
duced by Diaporthe citri.

Figure 6.8: Failed, dam-
aged produced by low tem-
peratures.

Figure 6.9: Right predic-
tion.

Figure 6.10: Almost a per-
fect prediction.
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Figure 6.11: Good predic-
tion.

Figure 6.12: Good predic-
tion with an image not in
the dataset.

Figure 6.13: Good predic-
tion as previous result, now
getting the image from the
cellphone storage instead
of taking a picture.
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Appendix A

Asynchronous work in Android

Framework

Because it is a very important part of the Android development, and because it was very consum-
ing time during the application development, we are going to proceed to give some explanations
about the di�erent options that Android provides to do asynchronous work, leaving the UI thread
with the lesser work. Not every of the next options have been used in the application devel-
opment, but some of them where tried until the �nal options provided directly by some of the
libraries or by the Jetbrains Anko library.

A.1 Introduction

During the �rst times in Android ecosystem applications, one of the main problems where the
bad UX experience. One of the main reasons was because of the continuous fails because the
main thread, the one which must show the UI, made too much work.

In the current state of the Android development there are many options that allow too avoid
this problem, some of them provided by Google and some other by third-party libraries. With
this libraries, we'll try to make some of the heaviest work not in the UI thread but in some other
background threads.

A.2 Java Threads

The lower-level solution, we cannot post info in the UI thread with this method, but it is an
easy way to do some job in the background if we don't need to modify the UI directly from other
threads.

1 var value : List <String >?

2 Thread { () ->

3 val ls = DataBase.query(query)

4 value = ls

5 }.start ()
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A.3 HaMeR framework

This framework uses the classes Handler, Message and Runnable to do background job and later
on showing the results in the UI. When we instantiate the a handler, it takes a reference of the
UI thread, and when we post inside a background thread, we put the info from one thread to
another using a message. In this applications has been used to delay the hiding of the navigation
view menu.

1 ...

2 val handler = Handler ()

3 ...

4
5 handler.postDelayed( {

6 val intent = Intent(context , newClass)

7 intent.putExtra(ITEM_ID , itemId)

8 startActivity(intent)

9 finish ()

10 }, Constants.NAVIGATION_VIEW_LAUNCH_DELAY)

A.4 AsyncTask

The �rst solution provided by Google, it can be use for short-term work. It is more complex and
less �exible than the options above, but it provide very clear methods where we should put the
code for the background and for the foreground after that has �nished.

We must implement a unique method that will run in the background thread, doInBackground(),
and we can also overwrite other three methods that will run in the main thread: onPreExecute(),
onPostExecute() y onProgressUpdate().

This solution was used in the �rst version of this application but at the end was substitute
by the simpler handler and async method provided by Kotlin.

A.5 Loaders

These are new classes introduced with the API 11, which came to improve some of the defects
of the AsyncTask. They are usually used for retrieving and storing data in databases.

A.6 Service e IntentService

The Service are used for launching processes for not too longer processes, which we can launch
and stop whenever we want. They don't need to run in a background thread, indeed they run
in the main thread.

If we want longer services, that will run in independent threads, we can use IntentService.
They cannot be launched and stopped at free, in contrast they run until the activity they are
related with ends.
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A.7 Anko extensions

Jetbrains, Kotlin developer company, o�ers some coroutines implementations that we can use to
run code in background. One was speci�ed previously with the async ... construct. We
can use also, instead handler, the UI coroutine to run some code that was asynchronous in the
main thread:

async(UI) { list_of_diseases.text = recognizerResults }.

A.8 Worker Manager

Recently released by Google, it tries to substitute and simpli�ed almost all of the rest Android
frameworks utilities for asynchronous work.

A.9 RxJava

Finally, the RxJava library has been use to make the heavier computation in this app. That's
the prediction with the TensorFlow Lite model. The code is easy. First, we have the UseCase

that de�nes the computation:

1 override fun run(vararg vs: Any): Observable <String > {

2 val model = vs[0] as String

3 val image = vs[1] as Bitmap

4
5 var thumbnail: Bitmap

6
7 val scaledImage = Bitmap.createScaledBitmap(

8 image , Constants.inputSize , Constants.inputSize , false

9 )

10 thumbnail = ThumbnailUtils.extractThumbnail(

11 image , Constants.inputSize , Constants.inputSize

12 )

13
14 val recognizer = Predictor(tfliteContext.retrieveActivity (), model

)

15 result = recognizer.classify(scaledImage)

16
17 recognizer.close ()

18
19 return Observable.just(result)

20 }

It returns an Observable to which we subscribe in the presenter responsible to updating the
screen:

1 val model = sharedPreferencesManager.get(Constants.KEY_MODEL , "")

2
3 useCase !!.run(model , image !!)

4 .subscribeOn(Schedulers.computation ())
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5 .observeOn(AndroidSchedulers.mainThread ())

6 .subscribe( { result -> updateView(result) } )

With the .subscribeOn(...) method we speci�ed where to we want to run the use case.
After that, with .observeOn(...) �nally we set the thread that will be observing if there is any
change, so we can use the results emitted by the background thread in this observed thread.
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