
Máster Interuniversitario de

Seguridad de las TIC

Advisor: Joan Borrell Viader

Student: José María Foces Vivancos

June 2018

Securing the BGPv4 José Marıá Foces Vivancos 1

Contents

 Introduction .. 2

1.1. Objectives ... 2

 Defenses .. 3

2.1. Speaker .. 3

2.1.1. Linux Kernel Networking ... 3

2.1.2. Firewall .. 4

2.2. Session ... 6

2.2.1. Transport Layer ... 6

2.2.2. GTSM ... 13

2.3. Routing .. 16

2.3.1. Prefix Filters... 16

2.3.2. BGP Route Flap Dampening .. 22

2.3.3. Maximum Prefixes on a Peering .. 24

2.3.4. AS Path Filtering... 27

2.3.5. Next-Hop Filtering ... 30

 Attacks over the whole network ... 34

3.1. Prefix and Sub-prefix hijacks .. 35

 Bibliography .. 40

Securing the BGPv4 José Marıá Foces Vivancos 2

 Introduction
This document contains the results of the analyses of the most popular defenses

implemented currently to protect BGPv4 speakers. Defenses that involve Secure Inter-

Domain Routing are out of the scope of this document.

The environment used is exactly the environment defined at (Securing The BGPv4:

Working Environment).

The structure is shown below:

In particular cases, the configuration changed to adapt to the needs of testing specific

security mechanisms.

1.1. Objectives
The main objective is to illustrate the security improvement provided by protections and

configurations explained at (RFC7454 - BGP Operations and Security), in front of some

attacks.

While doing it, the automated generation of this environment is improved to integrate the

explained protections. For each security measure a new environment is generated. This

way the security of the whole network is improved step by step.

Securing the BGPv4 José Marıá Foces Vivancos 3

 Defenses
Defenses can be divided in three groups:

 Speaker defenses: that involves security measures implemented at the router to

protect itself.

 Session defenses: that group the protections implemented at transport or

network layers to secure route exchanges.

 Routing defenses: that is composed by policies that support the decision to

update the routing table or not

2.1. Speaker
In this section we explain security measures implemented to harden the speaker. The

level of detail is low. Considering TFM objectives no attacks are performed against Linux

Kernel or Firewall.

The main topics are Linux Kernel Networking and Firewalling and main information

sources to build this section have been (Linux Kernel Documentation) and (Ubuntu -

Kernel Security Settings).

2.1.1. Linux Kernel Networking
This section defines kernel configuration applied to prevent some attacks that would

cause both router malfunction or network issues.

ICMP

net.ipv4.icmp_echo_ignore_broadcasts has been enabled to avoid answering to ICMP

echo requests when destination address is broadcast. Therefore, that prevents anyone

from using this device to perform source address-based DDoS attacks. At least for ICMP

based ones.

net.ipv4.icmp_ratelimit & net.ipv4.icmp_ratemask respectively, they take values of 20

and 88090. Both settings combined, limit the rate of ICMP messages that may be sent in

one second. The effect is that it won’t send more than 5 ICMP messages per second of each

of the following types: Echo Reply, Destination Unreachable, Source Quench, Time

Exceeded, Parameter Problem, Timestamp Reply, Information Reply. That sets a

maximum of 35 ICMP packets per second.

net.ipv4.icmp_ignore_bogus_error_responses avoid logging bogus ICMP error

responses. This would lead to fill up the disk with useless log entries.

net.ipv4.conf.all.secure_redirects it’s enabled by default. But it’s good to ensure

activation, since it prevents hijacking of routing paths, critical on this context.

net.ipv4.conf.all.shared_media it’s enabled by default. However, it’s good to ensure

activation since it disables secure redirects.

Securing the BGPv4 José Marıá Foces Vivancos 4

TCP

net.ipv4.tcp_synack_retries This is set to 2 (default is 5). The purpose is double, avoid

sending TCP SYNACK responses during a SYN Flood attack and to limit the time that

resources supporting this connection establishment remain allocated.

net.ipv4.tcp_syn_retries has been limited to 2 (instead of default value of 6) despite not

having an impact directly on security. This way we can assume that we have a network

issue, if two SYNs have no response.

net.ipv4.tcp_syncookies is enabled by default. Improves the behavior of the system

when the TCP SYN Queue is full, by not attempting to introduce another entry but

discarding and delaying the resource allocation to the reception of the TCP-ACK. After

that, the system can rebuild the SYN Queue entry from TCP’s sequence numbers.

net.ipv4.tcp_rfc1337 is disabled by default. It changes the behavior of the system when

closing TCP connections and prevents from TCP TIME-WAIT state hazards.

net.ipv4.tcp_max_syn_backlog limits the size of the SYN Queue. Default value is 8192.

Considering limitations of simulations, this value is set to 1024 that is enough for these

test cases.

net.ipv4.tcp_window_scaling enabled by default. However, it’s recommended to disable

this since it enlarges the TCP Window size, and therefore, it eases TCP-RST attacks.

Concretely, this is critical on this context, since BGPv4 uses long lived connections. It does

not provide full protection against this kind of attack but, it may be hard to successfully

execute it.

2.1.2. Firewall
This section defines firewall configuration applied to mitigate or prevent certain types of

attacks in concrete contexts.

As explained in (RFC7454 - BGP Operations and Security) and (RFC6192 - Plane,

Protecting the Router Control), access control lists must be defined to protect the

management and route exchange (AKA control) networks. Both are usually referred as

planes.

In addition, (RFC3704 - Ingress Filtering for Multihomed Networks) and (RFC2827 -

Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source

Address Spoofing) have been considered.

Therefore, the first thing that should be considered to prevent unauthorized access or

service disruption from forward to management or control planes is to decide what is

legitimate traffic. Further steps may involve rate limiting and limiting maximum TCP

connections opened from the router on the control and management planes.

Securing the BGPv4 José Marıá Foces Vivancos 5

For this concrete case study, it’s trivial to filter legitimate traffic, since all routers speak

BGP through (IANA - IPv4 Address Space) private ranges. Rate limits and maximum

connections opened have been applied but just for testing purposes. Attacks won’t be

executed against these defenses.

To implement these ACLs, we use Nftables, the replacement for Iptables. The

configuration is comfortable and easy to understand. The project is still on development.

The version used is 0.8.3 in conjunction with Linux Kernel version 4.16.0. Both allow to

set up FIB (Forwarding Information Base) queries to implement reverse path on the

firewall. Performing this task on the firewall improves reverse path filters flexibility. It’s

possible to configure reverse path filtering directly over kernel’s configuration

(net.ipv4.conf.<iface>.rp_filter) but it lacks flexibility. This way more precise filters can

be applied.

The firewall configuration is shown below:

#!/usr/sbin/nft -f

flush ruleset

define fwd_p_ports = { 2115, 5001, 80 };

define ctr_p_ports = { 179 }

define mgmt_if = mgmt;

define trust_ifs = { lo, mgmt };

table inet filter {

 set blackhole {

 type ipv4_addr; flags interval;

 elements = { 0.0.0.0/8, 127.0.0.0/8, 169.254.0.0/16, 192.0.2.0/24, 240.0.0.0/5,

248.0.0.0/5 }

 }

 set ctr_cidr {

 type ipv4_addr; flags interval;

 elements = { 10.0.0.0/8, 172.16.0.0/16 }

 }

 chain input {

 type filter hook input priority 0;policy drop;

 ## Early accept mgmt and lo inputs.

 iifname $trust_ifs accept;

 ## Early accept already established connections

 ct state established,related accept;

 ## Protect lo

 ip daddr == 127.0.0.0/8 iifname != lo drop;

 ## allow traceroute

 ip ttl 1 accept;

 ## Accept max 10 pings per second.

 icmp type echo-request limit rate 10/second accept;

 ## Accept connections to test ports

Securing the BGPv4 José Marıá Foces Vivancos 6

 ct state new tcp dport $fwd_p_ports limit rate 10/second accept;

 ## Allow only TCP to BGP port from private IPv4 addresses.

 ip saddr @ctr_cidr ct state new tcp dport $ctr_p_ports limit rate 10/second accept;

 }

 chain forward {

 type filter hook forward priority 0;

 policy accept;

 # Avoid to route private ranges.

 ip daddr @blackhole drop;

 }

 chain output {

 type filter hook output priority 0;

 policy accept;

 }

}

table ip nat{

 chain prerouting {

 type filter hook prerouting priority 0;

 # Protect management plane: Forbid traffic that comes to the router when destination

address does not match interface address where it’s arriving.

 ip ttl != 1 iifname $trust_ifs fib daddr . iif type != { local, broadcast, multicast }

drop;

 }

}

2.2. Session
This section is mainly oriented to show protections’ performance against certain attacks,

applicable to communication channels between peers exchanging routes through BGPv4.

As stated at (RFC7454 - BGP Operations and Security), the following security measures

should be applied to protect BGPv4 Sessions: Transport Layer and GTSM. While the latter

can be considered complementary, in certain cases, with speaker protections explained

on previous section involving. It provides additional barrier that insert another

protection layer to the BGPv4 speaker.

2.2.1. Transport Layer
BGP works over TCP. Therefore, successful attacks to TCP connections are also applicable

to BGP Sessions, since the protocol is not oriented to protect sessions by itself.

There are two TCP extensions to provide origin guarantee of packets exchanged through

a TCP connection established between two peers at transport layer. They are TCP-MD5

and TCP-AO, respectively defined at (RFC2385 - Protection of BGP Sessions via the TCP

MD5 Signature Option) and (RFC5925 - The TCP Authentication Option). While TCP-AO

Securing the BGPv4 José Marıá Foces Vivancos 7

provides stronger protection, the most popular is TCP-MD5 since TCP-AO is not

supported by the equipment deployed currently. For example, Linux lacks support for

TCP-AO nowadays.

Considering that, this section only focuses on TCP-MD5 extension.

TCP-MD5 Signature

TCP-MD5 Signature is an extension to the TCP protocol that provides origin guarantee to

both peers communicating through it. It requires a password to be set and used at both

connection’s sides.

Therefore, routers on the environment have been configured to use this TCP extension

when communicating with other peers. The configuration directive is as follows:

neighbor 10.2.2.2 password JMFVTFM

A weak password has been set to speed up tests performed against this security measure,

since it involves cracking.

As stated on (RFC2385 - Protection of BGP Sessions via the TCP MD5 Signature Option),

the input to the hash function (MD5) is (obviously, order means):

1. the TCP pseudo-header (in the order: source IP address, destination IP address,

zero-padded protocol number, and segment length)

2. the TCP header, excluding options, and assuming a checksum of zero

3. the TCP segment data (if any)

4. an independently-specified key or password, known to both TCPs and

presumably connection-specific

Therefore, an attacker, that have access to the communication media, can sniff traffic and

after that, perform a brute force attack to discover the 4th part of the input to the MD5

hash function.

We analyzed the socket behavior in both cases good and bad passwords. As expected, the

connection is never established unless the good password is set. The TCP SYN packets

are dropped at the server socket side. To show it on the testing environment, TCPMD5

Signature protection is enabled on BGPv4 daemons as shown before.

We use the examples to enable TCPMD5Signature extension on a Linux client socket from

(TCPMD5 Signature - Socket Programing Examples on Linux).

A client attempting to establish a TCP Connection without the good password:

Securing the BGPv4 José Marıá Foces Vivancos 8

The packets are discarded by the foreign peer and the TCP connection is never

established.

With the correct password:

The TCP connection is correctly established:

Attack 1: Brute forcing the password

The purpose of this attack is to show that is possible to brute force weak passwords and

create awareness about the use of strong ones for protecting BGPv4 Sessions.

There are several tools to perform brute force attacks. For this case the most suitable

seems to be (JohnTheRipper). John is a password cracker and support several formats

and it has a set of scripts that ease the conversion from almost any format to a valid input

for itself.

Concretely, it has a script named pcap2john.py that extracts parts 1,2 and 3 for the MD5

hash function from a PCAP file plus the hash. The output of this script output is valid as

input for John.

Taking a capture at IX_1 and forcing reset of router as1card2 produced some BGPv4

traffic, embedded on TCP connections that use TCPMD5 Signature.

Using pcap2john and selecting one packet from the output:

The first three parts of the input(hex-encoded) to the hash function:

Saddr Daddr Prot Len Sport Dport Seq Ack Flags Wsize CRC
0a010101 0a010201 0006 0030 00b3 8036 dd279a68 37e80835 c012 7210 00000000

Securing the BGPv4 José Marıá Foces Vivancos 9

And the hash:

Testing it on a python2.7 shell:

As can be appreciated, the brute force attack tests all combinations of the password,

concatenated at the end of the three first parts of the input.

In this example, we select an incremental attack, that tests all possible combinations of

the tail (password used for TCPMD5 Signature) but with only upper-case ASCII

characters. It would be hard to obtain a stronger key cracking it just with the CPU, but this

attack can be easily parallelized and executed faster with a GPU.

Attack 2: MITM

The purpose of this attack is to show the protection offered by TCPMD5 Signature against

MITM attacks.

Therefore, for testing this, TCPMD5 Signature has been disabled to show the impact of a

MITM attack where NEXT-HOP gets replaced and after that, enabled it back to show the

correct behavior.

With TCPMD5 Signature enabled the victim router notices the MITM attack and

invalidates received routes.

Securing the BGPv4 José Marıá Foces Vivancos 10

We reset a router three times, the first to show the normal behavior, the second to show

the performance of a MITM attack without TCPMD5 Signature and finally the same attack

is repeated with TCPMD5 signature enabled.

Normal behavior

Restarting BGPd on As4card2 will produce several route updates. Observing them

updates on Kibana, using the filter below:

nexthop_ip: 10.2.1.2 AND bestpath: true

We see that without traffic tampering, a total of 11 best paths going through 10.2.1.2 have

been updated.

Without MD5Signature

The attacker replaces NEXT_HOP path attribute by 10.2.1.2 on any packet reaching or

leaving as4card2 on IX_2 switch. Therefore, causing traffic convergence on this host.

Securing the BGPv4 José Marıá Foces Vivancos 11

To be able to replace certain patterns on this set of packets we use (Foces Vivancos,

Rehtse). This software was implemented some time ago, but it fits perfectly for this case.

It takes packets from Netfilter Queue and applies regex-based replacements on certain

packages.

Nftables config file:

#!/usr/sbin/nft -f

flush ruleset

table inet filter {

 chain forward{

 type filter hook forward priority 0;

 iif IX_2 queue num 0 bypass;

 }

Rehtse config file:

{

 "debuglevel":0,

 "patterns":[

 {

 "match":{

 "bpf":"tcp port 179 and host 10.2.4.2",

"regex":"\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\x00

.\\x02.*"

 },

 "replacement":{

 "regex":"(\\x03\\x04\\x0a...)",

 "replacement":"\\x03\\x04\\x0a\\x02\\x01\\x02"

 }

 }

]

}

To simulate the attack Rehtse runs on the hypervisor.

With Rehtse running, BGPd on As4card2 is restarted again. This time a total of 13 best

paths going through 10.2.1.2 are shown:

Securing the BGPv4 José Marıá Foces Vivancos 12

Therefore, the attacker succeeded to increase traffic convergence by just tampering with

traffic to one router on IX_2.

With MD5Signature

We follow the same procedure as shown before, shutdown as4card2 enable the MITM

attack and start BGPd again.

As shown below, the attacker was unable to tamper the next hop and only packets that

had next-hop 10.2.1.2 outgoing from as4card2 were accepted by others in IX_2 and vice

versa.

Securing the BGPv4 José Marıá Foces Vivancos 13

On this case the routes are learned by as4card2 from other routers but not from the

tampered session.

2.2.2. GTSM
Generalized TTL Security Mechanism, defined at (RFC5082 - The Generalized TTL

Security Mechanism (GTSM)) is a technique to protect two peers exchanging IP

datagrams, in general. The protection is based on IP protocol TTL field. As (RFC791 -

INTERNET PROTOCOL) states at sections 3.1 and 3.2 the TTL field should be decremented

by one by each processor of the packet.

This decrement is the base of traceroute utility, where TTL starts with a value of 1 and is

incremented by one. So, an ICMP time-exceeded is returned to the machine tracing the

route to a host for each router in the path.

Therefore, the TTL field can be used to get the hop distance between two peers. GTSM is

based on that and makes the router to discard packets that do not match the distance filter

established. It can be configured as:

neighbor 10.1.2.1 ttl-security hops 1

When configured this way, it will make the router to only accept packets coming to the

TCP socket of the BGPv4 daemon with a TTL of 255.

While remaining simple and cheap in terms of CPU cycles, it provides another defense

layer for BGPv4 Speakers and Sessions, since it won’t be possible to perform attacks

against a sessions or peers connected on the same media (no routers in the middle).

Unless the attacker has previously hijacked a device connected to the same media. In this

case, the attacker, would make this hijacked device to rewrite TTL value with 255 and

Securing the BGPv4 José Marıá Foces Vivancos 14

therefore be able to tamper with the session established. But given the case, one of the

least desirable things he would do is to tamper with an established BGPv4 session.

Since the environment created for testing that has both GTSM and TCPMD5 Signature

protections enabled, the examples to enable TCPMD5Signature extension on a Linux

client socket from (TCPMD5 Signature - Socket Programing Examples on Linux) are used

here too.

For testing the impact of that configuration directive, the routers as1card1 and as2card1

have been selected.

Without GTSM enabled, routers speak BGPv4 over TCP and them, over IP with TTL 1.

With GTSM enabled:

When GTSM is disabled on as2card1, the connection is not even established. The TTL used

was 1, that bypasses the default net.ipv4.ip_default_ttl, 64:

Since attacks against IP protocol are out of the scope of the project, we will test the

behavior of this implementation with different TTL values.

I’ve modified the TCPMD5 example program to send a BGPv4 OPEN message.

Testing BGPv4 OPEN with TTL 254

Setting TTL to 254 and executing the PoC:

Securing the BGPv4 José Marıá Foces Vivancos 15

Using Vtysh to see peer statues:

vtysh -c “show bgp peer-groups”

The peer endpoint never transitions to Connect state.

Testing BGPv4 OPEN with TTL 255

Setting TTL to 254 and executing the PoC:

vtysh -c “show bgp peer-groups”

The peer endpoint transitions to Connect state.

Securing the BGPv4 José Marıá Foces Vivancos 16

Both TCP connections are almost exactly equal, the difference is that even while as2card1

ACKs the reception of BGPv4 messages OPEN and KEEPALIVE as1card1 never accepts

them.

Therefore, as manual states, TTLs indicating hop distance far away than configured are

not allowed to become peers. For small TTLs the connection is not even established but

with greater ones, the peer configured with GTSM enabled does not accept BGPv4

messages from the other side unless it sends these messages with TTL 255, in this

concrete case, with adjacent hosts (hop distance of 1).

2.3. Routing
This section is mainly oriented to show protections’ performance against certain attacks,

applicable to advertised and accepted routes by BGPv4 speakers. This is one of the most

critical aspects when securing BGPv4 routers.

2.3.1. Prefix Filters
As stated on (RFC7454 - BGP Operations and Security), any special purpose or unallocated

IANA prefixes should be filtered from being advertised or accepted. In addition, Regional

Internet Registries filters should be considered too. The first group is easy to maintain

since it’s static, but the latter changes over the time and the management load is high. To

ease this task there is a tool called (IRRToolSet). That works conformant with (RFC4012

- Routing Policy Specification Language next generation (RPSLng)), to exchange routing

policies. With this, the network administrator can keep updated the prefixes lists and who

is allowed to advertise them, but this is a wider topic and it’s out of this section.

A prefix filter is composed by a network prefix and an action. Optionally, it may include

[le|ge] operators. Respectively, they filter lesser or equal and greater or equal prefixes

belonging to the provided one.

They are declared as follows:

ip prefix-list t1-external-adv deny 1.0.0.0/10

ip prefix-list t1-external-adv deny 1.64.0.0/10

ip prefix-list t1-external-adv deny 1.128.0.0/10

ip prefix-list t1-external-adv deny 1.192.0.0/10

ip prefix-list t1-external-adv permit any

ip prefix-list allow-all-adv permit any

After that, they should be used to manage advertisements and accepted routes on a

peering. This can be done as follows:

 address-family ipv4 unicast

 network 1.0.0.0/10

 network 1.0.0.0/8

…

 neighbor extpeers prefix-list t1-external-adv out

Securing the BGPv4 José Marıá Foces Vivancos 17

 neighbor extpeers prefix-list allow-all-adv in

 exit-address-family

Regarding AS1 structure, each router provides access to a quarter of the address space

1.0.0.0/8. As shown below:

Prefix filters prevent that internal structure of AS1 is advertised outside.

Attack: Route Leak

When configured rigorously, prefix filters prevent routers from accepting or advertising

prefixes that should not. Note that this is easy to configure, but hard to maintain

considering the frequency of network topology updates.

In a route leak, an AS violates agreed export policies.

To illustrate that, let’s consider that AS21 should only advertise prefixes on its own, since

it would never want to transit traffic between its providers, AS1 and AS4, the upstream

providers.

In addition, and while this example does not show it, it’s important to emphasize that both

AS1 and AS4 should also filter them internal structure from leaking to them customer

AS21.

Securing the BGPv4 José Marıá Foces Vivancos 18

AS21 prefix filters and neighbors:

address-family ipv4 unicast

 network 1.96.0.0/11

 neighbor 10.11.0.2 prefix-list t2-external-adv out

 neighbor 10.11.0.2 prefix-list allow-all-adv in

 network 4.96.0.0/11

 neighbor 10.14.0.2 prefix-list t2-external-adv out

 neighbor 10.14.0.2 prefix-list allow-all-adv in

 exit-address-family

ip prefix-list t2-external-adv permit 1.96.0.0/11

ip prefix-list t2-external-adv permit 4.96.0.0/11

ip prefix-list allow-all-adv permit any

ip prefix-list deny-all-adv deny any

On this case, neither AS4 and AS1 know the internal structure of each other. They do not

advertise them internal structure to each other, but they have a configuration mistake,

they advertise it to AS21. Initially, AS21 is exporting routes as expected and just advertise

its’ prefixes.

As4card2 and as1card2 configs:

Consider that [4|1] means respectively the configuration on each of them, over the

template below. The critical misconfiguration is shown in red:

address-family ipv4 unicast

 network [4|1].64.0.0/10

 network [4|1].0.0.0/8

 neighbor 172.16.1[4|1].1 prefix-list ibgp-adv-0 in

Securing the BGPv4 José Marıá Foces Vivancos 19

 neighbor brothers prefix-list ibgp-adv-1 out

 neighbor brothers next-hop-self

 neighbor 172.16.1[4|1].3 prefix-list ibgp-adv-2 in

 neighbor 172.16.1[4|1].4 prefix-list ibgp-adv-3 in

 neighbor brothers prefix-list allow-all-adv out

 neighbor brothers prefix-list allow-all-adv in

 neighbor extpeers prefix-list t1-external-adv out

 neighbor extpeers prefix-list allow-all-adv in

 neighbor 10.1[4|1].21.1

 exit-address-family

That makes both to accept any route advertised by as21card1. And to advertise the full

routing table without filters.

Before we apply any changes, we show the behavior without tampering with AS21 export

policies. After that, we show the effect that AS21 produces when violating its normal

export policies.

Normal case

Querying BGPv4 route index history on Kibana with the filter:

machine_hostname:as1card2 AND bestpath: true AND prefix: "4.0.0.0/8"

Tracerouting from somewhere in the network before the attack:

Securing the BGPv4 José Marıá Foces Vivancos 20

AS21 violating export policies

Let’s make AS21 to violate normal export policies and see the effect. No filters are applied:

 address-family ipv4 unicast

 network 1.96.0.0/11

 neighbor 10.11.0.2

 network 4.96.0.0/11

 neighbor 10.14.0.2

 exit-address-family

As shown before, AS1 and AS4 routers with cardinal 2 have been configured to accept any

prefix advertised by them customer.

When the configuration changes, the whole network topology changes and kernel routing

tables suffer near 1200 updates:

Securing the BGPv4 José Marıá Foces Vivancos 21

Using the same filter on Kibana, it’s possible to see that as1card2 now knows other paths

to reach certain sections of 4.0.0.0/8.

To show traffic path changes we use repeat the traceroute performed previously.

Securing the BGPv4 José Marıá Foces Vivancos 22

The impact is obvious, the route from AS4 client to as1card2 has changed and now goes

intra-AS4, traverses AS21 and reaches the webserver.

2.3.2. BGP Route Flap Dampening
This configuration directive allows to penalize routes that change frequently. This route

changes that use to take place waste CPU cycles that may be used for other purposes and

this, is the reason of its existence. Initial research shown that it would cause more harm

than benefit and therefore, the RIPE community recommended against using it in 2006.

Some years after, in 2014, researchers of Internet Initiative Japan, Internet Initiative

Japan, Sproute Networks and Loughborough University shown how to make efficient use

of this technique on (RFC7196 - Making Route Flap Damping Usable).

Attack: Flapping the previously explained route leak

To simulate the behavior of a flapping route we use as21card1. It will periodically

advertise the route leak shown before and afterwards get back to its normal export

policies.

Securing the BGPv4 José Marıá Foces Vivancos 23

For that, we use the following Bash & Vtysh script:

while true; do ## Violate export policy

 vtysh <<EOF

configure terminal

router bgp 21

address-family ipv4 unicast

no neighbor 10.11.0.2 prefix-list t2-external-adv out

no neighbor 10.14.0.2 prefix-list t2-external-adv out

neighbor 10.11.0.2 prefix-list allow-all-adv out

neighbor 10.14.0.2 prefix-list allow-all-adv out

EOF

 sleep 2; ## Get back to normal export policy

 vtysh <<EOF

…

no neighbor 10.11.0.2 prefix-list allow-all-adv out

no neighbor 10.14.0.2 prefix-list allow-all-adv out

neighbor 10.11.0.2 prefix-list t2-external-adv out

neighbor 10.14.0.2 prefix-list t2-external-adv out

EOF

 sleep 2;

done

That makes both as1card2 and as4card2 to make changes to them routing tables each

period and to advertise these changes to them peers.

The following timeline shows the effect over kernels routing tables of the whole network

and for a 4 minutes period:

As it can be appreciated, that affects a lot of routers, producing changes on kernel routing

tables.

Securing the BGPv4 José Marıá Foces Vivancos 24

To test that, we enabled route flap dampening protection on all routers as stated on

(RFC7196 - Making Route Flap Damping Usable) for Cisco routers:

bgp dampening 15 750 2000 60

And repeated the attack performed on as21card1 for a 4 minutes period again:

With route flap dampening enabled, 36809 kernels routing tables updates on the whole

network were prevented. Only the first 843 took place.

This configuration directive, when used correctly, prevents frequent route updates, it

saves resources and provides improved network topology stability.

This is just an example, but an attacker would use other ways to cause route flaps. For

example, by tampering with unsecured BGPv4 sessions, performing DoS or DDoS attacks

over old routers that may be exhausted easily or just by connecting to a badly configured

router and performing periodic advertisements. They would be others.

2.3.3. Maximum Prefixes on a Peering
This configuration directive limits the maximum routes that can be accepted from a peer.

The best current practice states that maximum prefixes on a peering should be limited on

both peers and upstream routers. The main objective is to protect routers memory from

exhaustion.

Attack: Advertising routes for each host but for the network

To test that, we will use as21card1 again. We change the configuration, so it starts

advertising a route for each host in both domains it owns. It will advertise 2 * 2^16 routes

if the full iteration process finishes.

For that purpose, we use the following script Bash & Vtysh script:

for i in {0..254}; do

 for y in {0..254}; do

 vtysh <<EOF &>/dev/null

configure terminal

router bgp 21

address-family ipv4 unicast

 network 4.96.$i.$y/32

 network 1.96.$i.$y/32

Securing the BGPv4 José Marıá Foces Vivancos 25

EOF

 done

 echo "255 - $i"

done

When running, as21card1 produced an impact of ~134000 kernel route updates in 10

minutes on the overall network.

Both as4card2 and as1card2 became unresponsive for a while when they had around 20k

routes respectively on them tables.

Keeping it running shows that soon they will have memory problems due to the

limitations of the environment.

Around 35k routes, as1card2 and as4card2 were almost unresponsive. On this point we

stop the attack. Around (63·255)·2 routes were announced. We restarted BGPd on

as21card1, so other routers can get back on normal operation.

It’s commensurate that a router with more resources will keep running without issues

against this kind of attack. But routing table sizes can be huge on the internet. As shown

at (BGP Routing Table Analysis Reports) the BGP routing table size is growing faster and

nearly it will reach 800k entries for a router working with full BGP table.

Securing the BGPv4 José Marıá Foces Vivancos 26

Neither Quagga or Frrouting have documentation about how to configure this. But we’ve

found that it works almost like Cisco routers.

To protect from this kind of attacks, a general limit has been applied and no more than

100 prefixes will be accepted by any router on the network. If anyone advertises more

than the threshold the BGPv4 session will be restarted after 150 minutes. The

configuration is done as follows:

neighbor 10.1[4|1].0.2 maximum-prefix 100 restart 150

The impact of the attack is limited, routers were able to keep themselves stable.

The BGPv4 sessions were restarted from as1card2 and as4card2 when more than 100

prefixes were advertised from as21card1. In addition, since they will never accept more

than 100 their sessions with other peers won’t be restarted and the session will be shut

Securing the BGPv4 José Marıá Foces Vivancos 27

down so as21 will get banned by them providers for 150 minutes. Vtysh shows the

following message for as21card1 peer status:

2.3.4. AS Path Filtering
As path filters allow to filter accepted and advertised routes if the as-path matches a given

pattern.

As best practices state, this configuration directive, should be used by network

administrators:

 To avoid accepting:

o Routes containing private AS numbers. Unless they come from allowed

customers.

o Routes that do not start with peer’s AS number, unless routes come from

a route server (out of the scope of this case study).

o Routes from customers that do not contain AS numbers belonging to the

given customer or for what this customer is authorized to transit to.

 Worse, but valid solution is to avoid accepting as-paths longer

than one. This is valid unless the customer is authorized to provide

transit to certain destinations.

o Routes that contain its’ own AS number coming external peers. This

overrides BGP normal behavior and must be forcefully configured. The

RFC warns that the impact may be severe.

 To avoid advertisements:

o With non-empty as-path. Unless the network provides transit for these

prefixes.

o With upstream AS numbers in the as-path to their peering ASes unless

they are willing to provide transit.

o With private AS numbers in the as-path.

The patterns are defined by regular expressions and they can be tested through the show

interface as follows. The regex language is defined at 11.17 of Frrouting manual. It’s

exactly the same than Quagga.

For example, lets show routes that only contain AS21:

Show ip bgp regexp ^21$

Securing the BGPv4 José Marıá Foces Vivancos 28

And, any route that contains AS21:

Show ip bgp regexp _21_

Preventing the route leak explained before

To show the performance of this protection, we repeat the route leak explained before.

Repeating the route leak from as21card1 and with the same filter to show routes as

before:

As seen before, as1card2 selects to transit traffic through as21card1 instead of doing

through the normal paths.

To fix that problem, the as-path filter is declared as:

ip as-path access-list StrictProviderAS21 permit ^21$

Securing the BGPv4 José Marıá Foces Vivancos 29

ip as-path access-list StrictProviderAS21 deny .*

ip as-path access-list maxLength1 permit ^[0-9]+$

ip as-path access-list maxLength1 deny .*

And added to the neighbor statement in bgp router configuration for IPv4 unicast:

address-family ipv4 unicast

…

 neighbor 10.11.21.1 filter-list [StrictProviderAS21|maxLength1] in

…

exit-address-family

Consider that this is not the same case than before as as4card2 keeps accepting bogus

routes coming from AS21.

With that in mind, a new environment has been deployed and the route leak is attempted

again without success from as21card1 (appreciate that BGP table version changes from

the image that shows the same routes above):

Securing the BGPv4 José Marıá Foces Vivancos 30

2.3.5. Next-Hop Filtering
The most common way to publish a route is to set the next hop to the router that makes

the advertisement. This is commensurate, since usually the advertisement receivers

would not be able to reach the router that truly offers access to the given prefix but

through the advertiser. To be clearer, we will explain this over the environment:

Let’s say that as1card2 advertises a route to 1.192.0.0/10 with next-hop 172.16.11.4 to

AS21. That makes no sense to do it so, since as21card1 has not a way to reach that host

on AS1 private’s network. So, as1card2 makes the advertisement to this network

replacing next-hop by itself on a network range visible by as21card1.

This is done on the advertiser side with the configuration directive:

neighbor 10.11.21.1 next-hop-self

The protocol and implementations of BGPv4 allow to replace and change this behavior to

support different setups. For example, at IXPs where routers just receive routes from a

route server. Route servers will never want to set up next-hop-self, but they want to

instruct routers to use certain next hops to reach certain networks.

This functionality allows an attacker to redirect traffic through another hop, therefore, it

should be filtered and overridden with the peer address on the side that receives the

advertisement. Unless working in a route server setup.

This is filtered at the route receptor side with the following configuration directives:

Route maps allow to both filter and apply actions to received routes. Not only for BGP but

for all routing protocols offered by Frrouting or Quagga suites.

This sets up a next-hop overwrite with the peer-address when a route is received.

route-map AntiSpoofNextHop permit 10

 match ip next-hop peer-address

route-map ReplaceNextHop permit 10

 set ip next-hop peer-address

Securing the BGPv4 José Marıá Foces Vivancos 31

After that, the route-map must be applied to the peer, so every next-hop received on route

advertisements from this peer gets replaced with the peer-address or checked and

discarded if it does not match the peer-address:

address-family ipv4 unicast

…

 neighbor 10.11.21.1 route-map [AntiSpoofNextHop|ReplaceNextHop] in

…

exit-address-family

Attack: Next-Hop Spoof

When testing TCPMD5 Signature, we performed a MITM attack over an unsecured BGPv4

– TCP session and next-hop got replaced by another valid next-hop on the given network

segment. We demonstrated that it possible to make the victim to transit more traffic than

expected to a given destination.

The objective is the same, to make the victim to move more traffic than expected.

The victim on this case is as4card2. The attack takes place at IX_2 and the attacker is

as1card2 that wants to make as4card2 to transit more traffic than he expects to.

Regarding environment’s network topology, both victim and attacker are connected at

IX_2.

To show the normal behavior we will measure bandwidth seen at both victim and attacker

in a normal case, when all clients are generating traffic to client_21_1_96_2.

Securing the BGPv4 José Marıá Foces Vivancos 32

Using Iperf and making all clients in the network out of AS21 to generate traffic to

client_21_1_96_2, located inside AS21 networks.

#!/bin/bash

generators=("172.16.1.121" "172.16.1.131")

DATA="100"

destination=$1

for generator in ${generators[@]}

do

 nohup ssh -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null

root@"${generator}" "iperf -d -t ${DATA}M -c $destination" &>> /dev/null &

done

With that script, running on the hypervisor, we instruct all clients out of AS21 to generate

bidirectional traffic to and from client_21_1_96_2. The bidirectional data amount to be

transmitted are 100Mb from each generator and direction.

Once executed, it can be appreciated that as1card2 is transiting the whole traffic from

AS23 to AS21, for client_21_1_96_2.

Before the attack is performed, the routing table of as3card2 and as2card2 returns that

client is reached through as1card2.

Now, as1card2 decides that this is not fair and changes its’ advertisement to network

1.96.0.0/11 to set next-hop through as4card2 as follows:

route-map LazyRouter permit 5

set ip next-hop 10.2.4.2

And modifies the announcement as follows to both as2card2 and as3card2:

neighbor 10.2.2.2 route-map LazyRouter out

neighbor 10.2.3.2 route-map LazyRouter out

Securing the BGPv4 José Marıá Foces Vivancos 33

After that, as1card2 sets the route-map to be applied when advertising routes to neighbor

as3card2. That produces 19 route updates on as3card2 and as2card2 kernel’s routing

tables:

Now as2card2 and as3card2 reach the client through as4card2, the victim.

The same steps are applied to as2card2. This way all the traffic coming from the other

side of the network, AS23 is routed through as4card2.

Now, the traffic transits through as4card2 and therefore, that offloads as1card2 as it

wanted to. Not the whole traffic, since it’s a bidirectional test and TCP ACKs from the client

are getting routed through as1card2, back to the clients of this Iperf server.

As shown, as1card2 can make other routers to send more traffic to the victim, as4card2.

This technique can be used in several ways to attack or just to generate revenue by

influencing routers out of the control of the victim to drive more traffic through the victim

and for example, generate revenue.

Securing the BGPv4 José Marıá Foces Vivancos 34

 Attacks over the whole network
The purpose of this section is to group attacks that are not mitigated through just one of

the previously explained security measures. They may involve two or more defenses, and,

in some cases, the attack will only be mitigated but not impossible.

While defenses explained previously, mitigate or make impossible the exercise of certain

types of attacks, there are others that are more complicated or nearly impossible to

defeat. On the current environment the following defenses are implemented:

 Linux Kernel and Firewall have been set up to avoid routing traffic to private CIDR

network domains. In addition, kernel’s behavior has been changed to mitigate DoS

or DDoS attacks over routers. Considering limitations in term of RAM and

processor, attacks that involve high loads of traffic to reset a router or a BGPv4

session are not considered.

 TTL-Security with maximum hop distance of 1. That makes impossible to perform

attacks from outside of BGPv4 speaker’s network segments.

 TCP-MD5 Signature. The password is assumed to be strong. Therefore, an attempt

to crack it would take much longer than in the test performed. It can be assumed

that MITM attacks are not possible.

 Prefix Filters have been applied to both avoid leaking internal ASes structure and

to show the performance of route leak attack performed by a multi-homed

customer.

 BGP Route flap dampening. Dampening on flapping routes is enabled as exposed

on the RFC.

 Maximum prefixes on a peering have been limited and limited routers memory is

protected.

 AS path Filters have been enabled and customers, AS21, AS22, AS23 and AS24 are

not allowed to advertise routes longer than one and that do not contain exactly

it’s AS number.

 Next Hop Filters are enabled, and Next Hop spoofing is prevented.

Before explaining the attacks it’s mandatory to regard the following basis about IP routing

and BGPv4.

There are two algorithms that manage respectively the route selection and the routing

itself.

The BGPv4 Route selection algorithm manages what routes go in and out from the

effective routing table (AKA the kernel routing table). The behavior may vary between

manufacturers and the behavior can be changed by network administrators through

management interfaces. The most common case is that it chooses as the best route, to a

given prefix, the shortest path in terms of autonomous systems.

Securing the BGPv4 José Marıá Foces Vivancos 35

Routers apply the Longest Prefix Algorithm (LPM) for making the decision about the next

hop and the interface each IP packet should be sent onto. Implemented in the kernel, it

looks up each IP packet’s destination IP address into one or more forwarding tables and

computes the best match, the LPM. This algorithm is the basis of IP routing and its

behavior cannot be modified without tampering the forwarding table implementation.

Therefore, exhaustive filters should be applied before updating these tables with routes

received from outside, since they will change the router behavior.

3.1. Prefix and Sub-prefix hijacks
The Prefix and Sub-prefix Hijacks are some of the worst attacks that can be exercised

against a network of BGPv4 routers.

Both require knowledge about BGPv4 route selection algorithm and LPM.

Over the case study, the AS21 wants to hijack traffic going to and from the victim 3.96.0.2,

client_23_3_96_2:

To do it, the attacker may go straight forward and advertise both 3.96.0.0/11 and

2.96.0.0/11 prefixes as follows:

Securing the BGPv4 José Marıá Foces Vivancos 36

address-family ipv4 unicast

…

network 2.96.0.0/11

network 3.96.0.0/11

…

exit-address-family

ip prefix-list t2-external-adv seq 15 permit 3.96.0.0/11 le 32

ip prefix-list t2-external-adv seq 20 permit 2.96.0.0/11 le 32

To simulate that, we configured both down_1:1 and down_4:1 virtual interfaces on

as21card1 to have the following addresses:

Therefore, that maid automatic changes on kernel’s routing table of as21card1:

Before the attack is executed, clients from AS22 and AS24 generate traffic to AS23. The

traffic volume measured on the overall is as follows:

Securing the BGPv4 José Marıá Foces Vivancos 37

The routers forwarding traffic were as3card4, as2card4, as2card2, as24card1, as23card1,

as22card1 and as3card2.

From this point the BGPd config explained before is applied. The effect was obviously

spread over kernel routing tables of several routers:

8 routers got updates on them routing tables with destination [3|4].96.0.0/11. They were

as4card3, as1card4, as1card2, as4card1, as1card1, as1card3, as4card2, as4card4. But

none of them were customer ASes so announcing these prefixes will only allow the

Securing the BGPv4 José Marıá Foces Vivancos 38

attacking AS to hook a portion of the whole traffic AS23 would receive. This portion is the

traffic that travels through this list of routers. In the previous case, none.

From this point, the attacker, AS21, decides to change the advertised routes to

[3|4].96.0.0/12. Therefore, changing the attack from a prefix hijack to a sub-prefix hijack.

address-family ipv4 unicast

…

network 2.96.0.0/12

network 3.96.0.0/12

…

exit-address-family

Once done, it produces 133 updates on kernel routing tables on the overall of the network:

After repeating the traffic generation test, the change can be appreciated:

New boys have joined the party:

Securing the BGPv4 José Marıá Foces Vivancos 39

And as follows, AS21 who did not receive traffic before, has started to receive it. The

following histogram shows the traffic volume measured at AS21 since this test started

Concretely, it started receiving some traffic at 18:28 when the advertisement was made.

In addition, the following histogram shows how the legitimate client stops receiving

traffic in favor of the attacker:

Securing the BGPv4 José Marıá Foces Vivancos 40

 Bibliography
"BGP Routing Table Analysis Reports." 2018. <http://bgp.potaroo.net/>.

Foces Vivancos, José María. "Rehtse." 2016. <https://github.com/JmFoces/Rehtse>.

—. "Securing The BGPv4: Working Environment." 2018.

"IANA - IPv4 Address Space." 1998. <https://www.iana.org/assignments/ipv4-address-

space/ipv4-address-space.xhtml>.

"IRRToolSet." 2002. <https://github.com/irrtoolset/irrtoolset>.

"JohnTheRipper." 1996. <https://github.com/magnumripper/JohnTheRipper>.

"Linux Kernel Documentation." 1991. <https://www.kernel.org/doc/Documentation/>.

Mutually Agreed Norms for Routing Security. 2014. <https://www.manrs.org>.

"RFC1105 - A Border Gateway Protocol (BGP)." 1989.

"RFC1163 - A Border Gateway Protocol (BGP)." 1990.

"RFC1267 - A Border Gateway Protocol 3 (BGP-3)." 1991.

"RFC1337 - TIME-WAIT Assassination Hazards in TCP." 1992.

<https://www.ietf.org/rfc/rfc1337.txt>.

"RFC1654 - A Border Gateway Protocol 4 (BGP-4)." 1994.

"RFC1771 - A Border Gateway Protocol 4 (BGP-4)." 1995.

"RFC2385 - Protection of BGP Sessions via the TCP MD5 Signature Option." 1998.

"RFC2827 - Network Ingress Filtering: Defeating Denial of Service Attacks which employ

IP Source Address Spoofing." 2000.

"RFC3013 - Recommended ISP Security." 2000.

"RFC3704 - Ingress Filtering for Multihomed Networks." 2004.

<https://tools.ietf.org/html/rfc3704>.

"RFC4012 - Routing Policy Specification Language next generation (RPSLng)." 2005.

"RFC4271 - A Border Gateway Protocol 4 (BGP-4)." 2006.

"RFC4272 - BGP Vulnerability Analysis." 2006.

"RFC5082 - The Generalized TTL Security Mechanism (GTSM)." 2007.

"RFC5925 - The TCP Authentication Option." 2010.

Securing the BGPv4 José Marıá Foces Vivancos 41

"RFC5961 - Improving TCP's Robustness to Blind In-Window Attacks." 2010.

<https://tools.ietf.org/html/rfc5961>.

"RFC6192 - Plane, Protecting the Router Control." 2011.

<https://tools.ietf.org/html/rfc6192>.

"RFC6480 - An Infrastructure to Support Secure Internet Routing." 2012.

"RFC6483 - Validation of Route Origination Using the Resource Certificate Public Key

Infrastructure (PKI) and Route Origin Authorizations (ROAs)." 2012.

"RFC6810 - The Resource Public Key Infrastructure (RPKI) to Router Protocol." 2013.

"RFC6811 - BGP Prefix Origin Validation." 2013.

"RFC7196 - Making Route Flap Damping Usable." 2014.

<https://tools.ietf.org/html/rfc7196>.

"RFC7454 - BGP Operations and Security." 2015.

"RFC7715 - Origin Validation Operation Based on the Resource Public Key Infrastructure

(RPKI)." 2016.

"RFC791 - INTERNET PROTOCOL." 1981. <https://tools.ietf.org/html/rfc791>.

"RFC7947 - Internet Exchange BGP Route Server." 2016.

"RFC8205 - BGPsec Protocol Specification." 2017.

Robert Lychev, Michael Schaipira & Sharong Goldberg. "Rethinking Security for Internet

Routing." 2016.

"TCPMD5 Signature - Socket Programing Examples on Linux." 2015.

<https://criticalindirection.com/2015/05/12/tcp_md5sig>.

"Ubuntu - Kernel Security Settings." 2006.

<https://wiki.ubuntu.com/ImprovedNetworking/KernelSecuritySettings>.

