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Contents 

 Introduction ........................................................................................ 2 

1.1. Objectives ......................................................................................................................................... 2 

 Defenses ................................................................................................ 3 

2.1. Speaker .............................................................................................................................................. 3 

2.1.1. Linux Kernel Networking ................................................................................................. 3 

2.1.2. Firewall .................................................................................................................................... 4 

2.2. Session ............................................................................................................................................... 6 

2.2.1. Transport Layer ................................................................................................................... 6 

2.2.2. GTSM ....................................................................................................................................... 13 

2.3. Routing ............................................................................................................................................ 16 

2.3.1. Prefix Filters......................................................................................................................... 16 

2.3.2. BGP Route Flap Dampening .......................................................................................... 22 

2.3.3. Maximum Prefixes on a Peering .................................................................................. 24 

2.3.4. AS Path Filtering................................................................................................................. 27 

2.3.5. Next-Hop Filtering ............................................................................................................. 30 

 Attacks over the whole network ............................................. 34 

3.1. Prefix and Sub-prefix hijacks .................................................................................................. 35 

 Bibliography .................................................................................... 40 

 

  



Securing the BGPv4   José Marıá Foces Vivancos 2 

 Introduction 
This document contains the results of the analyses of the most popular defenses 

implemented currently to protect BGPv4 speakers. Defenses that involve Secure Inter-

Domain Routing are out of the scope of this document. 

The environment used is exactly the environment defined at (Securing The BGPv4: 

Working Environment). 

The structure is shown below: 

 

In particular cases, the configuration changed to adapt to the needs of testing specific 

security mechanisms.  

1.1. Objectives 
The main objective is to illustrate the security improvement provided by protections and 

configurations explained at (RFC7454 - BGP Operations and Security), in front of some 

attacks.  

While doing it, the automated generation of this environment is improved to integrate the 

explained protections. For each security measure a new environment is generated. This 

way the security of the whole network is improved step by step. 
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 Defenses 
Defenses can be divided in three groups: 

 Speaker defenses: that involves security measures implemented at the router to 

protect itself. 

 Session defenses: that group the protections implemented at transport or 

network layers to secure route exchanges. 

 Routing defenses: that is composed by policies that support the decision to 

update the routing table or not  

2.1. Speaker 
In this section we explain security measures implemented to harden the speaker.  The 

level of detail is low. Considering TFM objectives no attacks are performed against Linux 

Kernel or Firewall. 

The main topics are Linux Kernel Networking and Firewalling and main information 

sources to build this section have been (Linux Kernel Documentation) and (Ubuntu - 

Kernel Security Settings). 

2.1.1. Linux Kernel Networking 
This section defines kernel configuration applied to prevent some attacks that would 

cause both router malfunction or network issues. 

ICMP 

net.ipv4.icmp_echo_ignore_broadcasts has been enabled to avoid answering to ICMP 

echo requests when destination address is broadcast. Therefore, that prevents anyone 

from using this device to perform source address-based DDoS attacks. At least for ICMP 

based ones. 

net.ipv4.icmp_ratelimit & net.ipv4.icmp_ratemask respectively, they take values of 20 

and 88090. Both settings combined, limit the rate of ICMP messages that may be sent in 

one second. The effect is that it won’t send more than 5 ICMP messages per second of each 

of the following types: Echo Reply, Destination Unreachable, Source Quench, Time 

Exceeded, Parameter Problem, Timestamp Reply, Information Reply. That sets a 

maximum of 35 ICMP packets per second. 

net.ipv4.icmp_ignore_bogus_error_responses avoid logging bogus ICMP error 

responses. This would lead to fill up the disk with useless log entries. 

net.ipv4.conf.all.secure_redirects it’s enabled by default. But it’s good to ensure 

activation, since it prevents hijacking of routing paths, critical on this context. 

net.ipv4.conf.all.shared_media it’s enabled by default. However, it’s good to ensure 

activation since it disables secure redirects. 
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TCP 

net.ipv4.tcp_synack_retries This is set to 2 (default is 5). The purpose is double, avoid 

sending TCP SYNACK responses during a SYN Flood attack and to limit the time that 

resources supporting this connection establishment remain allocated. 

net.ipv4.tcp_syn_retries has been limited to 2 (instead of default value of 6) despite not 

having an impact directly on security. This way we can assume that we have a network 

issue, if two SYNs have no response.  

net.ipv4.tcp_syncookies is enabled by default. Improves the behavior of the system 

when the TCP SYN Queue is full, by not attempting to introduce another entry but 

discarding and delaying the resource allocation to the reception of the TCP-ACK. After 

that, the system can rebuild the SYN Queue entry from TCP’s sequence numbers. 

net.ipv4.tcp_rfc1337 is disabled by default. It changes the behavior of the system when 

closing TCP connections and prevents from TCP TIME-WAIT state hazards.  

net.ipv4.tcp_max_syn_backlog limits the size of the SYN Queue. Default value is 8192. 

Considering limitations of simulations, this value is set to 1024 that is enough for these 

test cases. 

net.ipv4.tcp_window_scaling enabled by default. However, it’s recommended to disable 

this since it enlarges the TCP Window size, and therefore, it eases TCP-RST attacks. 

Concretely, this is critical on this context, since BGPv4 uses long lived connections. It does 

not provide full protection against this kind of attack but, it may be hard to successfully 

execute it. 

2.1.2. Firewall 
This section defines firewall configuration applied to mitigate or prevent certain types of 

attacks in concrete contexts. 

As explained in (RFC7454 - BGP Operations and Security) and (RFC6192 - Plane, 

Protecting the Router Control), access control lists must be defined to protect the 

management and route exchange (AKA control) networks. Both are usually referred as 

planes. 

In addition, (RFC3704 - Ingress Filtering for Multihomed Networks) and (RFC2827 - 

Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source 

Address Spoofing) have been considered. 

Therefore, the first thing that should be considered to prevent unauthorized access or 

service disruption from forward to management or control planes is to decide what is 

legitimate traffic. Further steps may involve rate limiting and limiting maximum TCP 

connections opened from the router on the control and management planes.  
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For this concrete case study, it’s trivial to filter legitimate traffic, since all routers speak 

BGP through (IANA - IPv4 Address Space) private ranges. Rate limits and maximum 

connections opened have been applied but just for testing purposes. Attacks won’t be 

executed against these defenses. 

To implement these ACLs, we use Nftables, the replacement for Iptables. The 

configuration is comfortable and easy to understand. The project is still on development. 

The version used is 0.8.3 in conjunction with Linux Kernel version 4.16.0. Both allow to 

set up FIB (Forwarding Information Base) queries to implement reverse path on the 

firewall. Performing this task on the firewall improves reverse path filters flexibility. It’s 

possible to configure reverse path filtering directly over kernel’s configuration 

(net.ipv4.conf.<iface>.rp_filter ) but it lacks flexibility. This way more precise filters can 

be applied.  

The firewall configuration is shown below: 

#!/usr/sbin/nft -f 

flush ruleset 

define fwd_p_ports = { 2115, 5001, 80 }; 

define ctr_p_ports = { 179 } 

define mgmt_if = mgmt; 

define trust_ifs = { lo, mgmt }; 

table inet filter { 

    set blackhole { 

        type ipv4_addr; flags interval; 

        elements = { 0.0.0.0/8, 127.0.0.0/8, 169.254.0.0/16, 192.0.2.0/24, 240.0.0.0/5, 

248.0.0.0/5 } 

    } 

    set ctr_cidr { 

        type ipv4_addr; flags interval; 

        elements = { 10.0.0.0/8, 172.16.0.0/16 } 

    } 

    chain input { 

        type filter hook input priority 0;policy drop; 

        ## Early accept mgmt and lo inputs. 

        iifname $trust_ifs accept; 

        ## Early accept already established connections 

        ct state established,related accept; 

        ## Protect lo 

        ip daddr == 127.0.0.0/8 iifname != lo drop; 

        ## allow traceroute 

        ip ttl 1 accept; 

        ## Accept max 10 pings per second.  

        icmp type echo-request limit rate 10/second accept; 

        ## Accept connections to test ports 
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        ct state new tcp dport $fwd_p_ports limit rate 10/second accept;  

        ## Allow only TCP to BGP port from private IPv4 addresses. 

        ip saddr @ctr_cidr ct state new tcp dport $ctr_p_ports limit rate 10/second accept; 

    } 

    chain forward { 

        type filter hook forward priority 0; 

        policy accept; 

        # Avoid to route private ranges. 

        ip daddr @blackhole drop; 

    } 

    chain output { 

        type filter hook output priority 0; 

        policy accept; 

    } 

} 

table ip nat{ 

    chain prerouting { 

        type filter hook prerouting priority 0; 

        # Protect management plane: Forbid traffic that comes to the router when destination 

address does not match interface address where it’s arriving. 

        ip ttl != 1 iifname $trust_ifs fib daddr . iif type != { local, broadcast, multicast } 

drop; 

    } 

} 

 

2.2. Session 
This section is mainly oriented to show protections’ performance against certain attacks, 

applicable to communication channels between peers exchanging routes through BGPv4. 

As stated at (RFC7454 - BGP Operations and Security), the following security measures 

should be applied to protect BGPv4 Sessions: Transport Layer and GTSM. While the latter  

can be considered complementary, in certain cases, with speaker protections explained 

on previous section involving. It provides additional barrier that insert another 

protection layer to the BGPv4 speaker.  

2.2.1. Transport Layer 
BGP works over TCP. Therefore, successful attacks to TCP connections are also applicable 

to BGP Sessions, since the protocol is not oriented to protect sessions by itself.  

There are two TCP extensions to provide origin guarantee of packets exchanged through 

a TCP connection established between two peers at transport layer. They are TCP-MD5 

and TCP-AO, respectively defined at (RFC2385 - Protection of BGP Sessions via the TCP 

MD5 Signature Option) and (RFC5925 - The TCP Authentication Option). While TCP-AO 
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provides stronger protection, the most popular is TCP-MD5 since TCP-AO is not 

supported by the equipment deployed currently. For example, Linux lacks support for 

TCP-AO nowadays. 

Considering that, this section only focuses on TCP-MD5 extension.   

TCP-MD5 Signature 

TCP-MD5 Signature is an extension to the TCP protocol that provides origin guarantee to 

both peers communicating through it. It requires a password to be set and used at both 

connection’s sides.  

Therefore, routers on the environment have been configured to use this TCP extension 

when communicating with other peers. The configuration directive is as follows: 

neighbor 10.2.2.2 password JMFVTFM 

A weak password has been set to speed up tests performed against this security measure, 

since it involves cracking.  

As stated on (RFC2385 - Protection of BGP Sessions via the TCP MD5 Signature Option), 

the input to the hash function (MD5) is (obviously, order means):  

1. the TCP pseudo-header (in the order: source IP address, destination IP address, 

zero-padded protocol number, and segment length) 

2. the TCP header, excluding options, and assuming a checksum of zero 

3. the TCP segment data (if any) 

4. an independently-specified key or password, known to both TCPs and 

presumably connection-specific 

Therefore, an attacker, that have access to the communication media, can sniff traffic and 

after that, perform a brute force attack to discover the 4th part of the input to the MD5 

hash function. 

We analyzed the socket behavior in both cases good and bad passwords. As expected, the 

connection is never established unless the good password is set.  The TCP SYN packets 

are dropped at the server socket side. To show it on the testing environment, TCPMD5 

Signature protection is enabled on BGPv4 daemons as shown before. 

We use the examples to enable TCPMD5Signature extension on a Linux client socket from 

(TCPMD5 Signature - Socket Programing Examples on Linux). 

A client attempting to establish a TCP Connection without the good password: 
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The packets are discarded by the foreign peer and the TCP connection is never 

established. 

With the correct password: 

 

The TCP connection is correctly established: 

 

Attack 1: Brute forcing the password 

The purpose of this attack is to show that is possible to brute force weak passwords and 

create awareness about the use of strong ones for protecting BGPv4 Sessions. 

There are several tools to perform brute force attacks. For this case the most suitable 

seems to be (JohnTheRipper). John is a password cracker and support several formats 

and it has a set of scripts that ease the conversion from almost any format to a valid input 

for itself.  

Concretely, it has a script named pcap2john.py that extracts parts 1,2 and 3 for the MD5 

hash function from a PCAP file plus the hash. The output of this script output is valid as 

input for John.  

Taking a capture at IX_1 and forcing reset of router as1card2 produced some BGPv4 

traffic, embedded on TCP connections that use TCPMD5 Signature. 

Using pcap2john and selecting one packet from the output:  

 

The first three parts of the input(hex-encoded) to the hash function: 

Saddr Daddr Prot Len Sport Dport Seq Ack Flags Wsize CRC 
0a010101 0a010201 0006 0030 00b3 8036 dd279a68 37e80835 c012 7210 00000000 
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And the hash: 

 

Testing it on a python2.7 shell:  

 

As can be appreciated, the brute force attack tests all combinations of the password, 

concatenated at the end of the three first parts of the input.  

In this example, we select an incremental attack, that tests all possible combinations of 

the tail (password used for TCPMD5 Signature) but with only upper-case ASCII 

characters. It would be hard to obtain a stronger key cracking it just with the CPU, but this 

attack can be easily parallelized and executed faster with a GPU. 

 

Attack 2: MITM 

The purpose of this attack is to show the protection offered by TCPMD5 Signature against 

MITM attacks.  

Therefore, for testing this, TCPMD5 Signature has been disabled to show the impact of a 

MITM attack where NEXT-HOP gets replaced and after that, enabled it back to show the 

correct behavior.  

With TCPMD5 Signature enabled the victim router notices the MITM attack and 

invalidates received routes. 
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We reset a router three times, the first to show the normal behavior, the second to show 

the performance of a MITM attack without TCPMD5 Signature and finally the same attack 

is repeated with TCPMD5 signature enabled. 

Normal behavior 

Restarting BGPd on As4card2 will produce several route updates. Observing them 

updates on Kibana, using the filter below: 

nexthop_ip: 10.2.1.2 AND bestpath: true 

We see that without traffic tampering, a total of 11 best paths going through 10.2.1.2 have 

been updated.  

 

 

Without MD5Signature 

The attacker replaces NEXT_HOP path attribute by 10.2.1.2 on any packet reaching or 

leaving as4card2 on IX_2 switch. Therefore, causing traffic convergence on this host. 
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To be able to replace certain patterns on this set of packets we use (Foces Vivancos, 

Rehtse). This software was implemented some time ago, but it fits perfectly for this case. 

It takes packets from Netfilter Queue and applies regex-based replacements on certain 

packages. 

Nftables config file: 

#!/usr/sbin/nft -f 

flush ruleset 

table inet filter { 

 chain forward{ 

  type filter hook forward priority 0; 

  iif IX_2 queue num 0 bypass; 

 } 

 

Rehtse config file:  

{  

 "debuglevel":0, 

 "patterns":[ 

  { 

   "match":{ 

    "bpf":"tcp port 179 and host 10.2.4.2", 

"regex":"\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\xff\\x00

.\\x02.*" 

   }, 

   "replacement":{ 

    "regex":"(\\x03\\x04\\x0a...)", 

    "replacement":"\\x03\\x04\\x0a\\x02\\x01\\x02" 

   } 

  } 

 ] 

} 

To simulate the attack Rehtse runs on the hypervisor.  

With Rehtse running, BGPd on As4card2 is restarted again. This time a total of 13 best 

paths going through 10.2.1.2 are shown: 
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Therefore, the attacker succeeded to increase traffic convergence by just tampering with 

traffic to one router on IX_2. 

With MD5Signature 

We follow the same procedure as shown before, shutdown as4card2 enable the MITM 

attack and start BGPd again. 

As shown below, the attacker was unable to tamper the next hop and only packets that 

had next-hop 10.2.1.2 outgoing from as4card2 were accepted by others in IX_2 and vice 

versa. 
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On this case the routes are learned by as4card2 from other routers but not from the 

tampered session. 

2.2.2. GTSM 
Generalized TTL Security Mechanism, defined at (RFC5082 - The Generalized TTL 

Security Mechanism (GTSM)) is a technique to protect two peers exchanging IP 

datagrams, in general. The protection is based on IP protocol TTL field. As (RFC791 - 

INTERNET PROTOCOL) states at sections 3.1 and 3.2 the TTL field should be decremented 

by one by each processor of the packet. 

This decrement is the base of traceroute utility, where TTL starts with a value of 1 and is 

incremented by one. So, an ICMP time-exceeded is returned to the machine tracing the 

route to a host for each router in the path.  

Therefore, the TTL field can be used to get the hop distance between two peers. GTSM is 

based on that and makes the router to discard packets that do not match the distance filter 

established. It can be configured as: 

neighbor 10.1.2.1 ttl-security hops 1 

When configured this way, it will make the router to only accept packets coming to the 

TCP socket of the BGPv4 daemon with a TTL of 255.  

While remaining simple and cheap in terms of CPU cycles, it provides another defense 

layer for BGPv4 Speakers and Sessions, since it won’t be possible to perform attacks 

against a sessions or peers connected on the same media (no routers in the middle). 

Unless the attacker has previously hijacked a device connected to the same media. In this 

case, the attacker, would make this hijacked device to rewrite TTL value with 255 and 
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therefore be able to tamper with the session established. But given the case, one of the 

least desirable things he would do is to tamper with an established BGPv4 session. 

 

Since the environment created for testing that has both GTSM and TCPMD5 Signature 

protections enabled, the examples to enable TCPMD5Signature extension on a Linux 

client socket from (TCPMD5 Signature - Socket Programing Examples on Linux) are used 

here too. 

For testing the impact of that configuration directive, the routers as1card1 and as2card1 

have been selected.  

Without GTSM enabled, routers speak BGPv4 over TCP and them, over IP with TTL 1.  

 

With GTSM enabled: 

 

When GTSM is disabled on as2card1, the connection is not even established. The TTL used 

was 1, that bypasses the default net.ipv4.ip_default_ttl, 64: 

 

Since attacks against IP protocol are out of the scope of the project, we will test the 

behavior of this implementation with different TTL values. 

I’ve modified the TCPMD5 example program to send a BGPv4 OPEN message. 

Testing BGPv4 OPEN with TTL 254 

Setting TTL to 254 and executing the PoC: 



Securing the BGPv4   José Marıá Foces Vivancos 15 

 

Using Vtysh to see peer statues:  

vtysh -c “show bgp peer-groups” 

The peer endpoint never transitions to Connect state. 

 

Testing BGPv4 OPEN with TTL 255 

Setting TTL to 254 and executing the PoC: 

 

 

vtysh -c “show bgp peer-groups” 

The peer endpoint transitions to Connect state. 
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Both TCP connections are almost exactly equal, the difference is that even while as2card1 

ACKs the reception of BGPv4 messages OPEN and KEEPALIVE as1card1 never accepts 

them.  

Therefore, as manual states, TTLs indicating hop distance far away than configured are 

not allowed to become peers. For small TTLs the connection is not even established but 

with greater ones, the peer configured with GTSM enabled does not accept BGPv4 

messages from the other side unless it sends these messages with TTL 255, in this 

concrete case, with adjacent hosts (hop distance of 1). 

2.3. Routing 
This section is mainly oriented to show protections’ performance against certain attacks, 

applicable to advertised and accepted routes by BGPv4 speakers. This is one of the most 

critical aspects when securing BGPv4 routers. 

2.3.1. Prefix Filters 
As stated on (RFC7454 - BGP Operations and Security), any special purpose or unallocated 

IANA prefixes should be filtered from being advertised or accepted. In addition, Regional 

Internet Registries filters should be considered too. The first group is easy to maintain 

since it’s static, but the latter changes over the time and the management load is high. To 

ease this task there is a tool called (IRRToolSet). That works conformant with (RFC4012 

- Routing Policy Specification Language next generation (RPSLng)), to exchange routing 

policies. With this, the network administrator can keep updated the prefixes lists and who 

is allowed to advertise them, but this is a wider topic and it’s out of this section.  

A prefix filter is composed by a network prefix and an action. Optionally, it may include 

[le|ge] operators. Respectively, they filter lesser or equal and greater or equal prefixes 

belonging to the provided one.  

They are declared as follows: 

ip prefix-list t1-external-adv deny 1.0.0.0/10 

ip prefix-list t1-external-adv deny 1.64.0.0/10 

ip prefix-list t1-external-adv deny 1.128.0.0/10 

ip prefix-list t1-external-adv deny 1.192.0.0/10 

ip prefix-list t1-external-adv permit any 

ip prefix-list allow-all-adv permit any 

After that, they should be used to manage advertisements and accepted routes on a 

peering. This can be done as follows: 

  address-family ipv4 unicast 

    network 1.0.0.0/10 

    network 1.0.0.0/8 

… 

    neighbor extpeers prefix-list t1-external-adv out 
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    neighbor extpeers prefix-list allow-all-adv in 

  exit-address-family  

Regarding AS1 structure, each router provides access to a quarter of the address space 

1.0.0.0/8. As shown below: 

 

Prefix filters prevent that internal structure of AS1 is advertised outside.  

Attack: Route Leak 

When configured rigorously, prefix filters prevent routers from accepting or advertising 

prefixes that should not. Note that this is easy to configure, but hard to maintain 

considering the frequency of network topology updates. 

In a route leak, an AS violates agreed export policies.  

To illustrate that, let’s consider that AS21 should only advertise prefixes on its own, since 

it would never want to transit traffic between its providers, AS1 and AS4, the upstream 

providers. 

In addition, and while this example does not show it, it’s important to emphasize that both 

AS1 and AS4 should also filter them internal structure from leaking to them customer 

AS21. 
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AS21 prefix filters and neighbors: 

address-family ipv4 unicast 

    network 1.96.0.0/11 

    neighbor 10.11.0.2 prefix-list t2-external-adv out 

    neighbor 10.11.0.2 prefix-list allow-all-adv in 

    network 4.96.0.0/11 

    neighbor 10.14.0.2 prefix-list t2-external-adv out 

    neighbor 10.14.0.2 prefix-list allow-all-adv in 

  exit-address-family 

ip prefix-list t2-external-adv permit 1.96.0.0/11 

ip prefix-list t2-external-adv permit 4.96.0.0/11 

ip prefix-list allow-all-adv permit any 

ip prefix-list deny-all-adv deny any 

On this case, neither AS4 and AS1 know the internal structure of each other. They do not 

advertise them internal structure to each other, but they have a configuration mistake,  

they advertise it to AS21. Initially, AS21 is exporting routes as expected and just advertise 

its’ prefixes.  

As4card2 and as1card2 configs: 

Consider that [4|1] means respectively the configuration on each of them, over the 

template below. The critical misconfiguration is shown in red: 

address-family ipv4 unicast 

    network [4|1].64.0.0/10 

    network [4|1].0.0.0/8 

    neighbor 172.16.1[4|1].1 prefix-list ibgp-adv-0 in 
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    neighbor brothers prefix-list ibgp-adv-1 out 

    neighbor brothers next-hop-self 

    neighbor 172.16.1[4|1].3 prefix-list ibgp-adv-2 in 

    neighbor 172.16.1[4|1].4 prefix-list ibgp-adv-3 in 

    neighbor brothers prefix-list allow-all-adv out 

    neighbor brothers prefix-list allow-all-adv in 

    neighbor extpeers prefix-list t1-external-adv out 

    neighbor extpeers prefix-list allow-all-adv in 

    neighbor 10.1[4|1].21.1 

  exit-address-family 

That makes both to accept any route advertised by as21card1. And to advertise the full 

routing table without filters. 

Before we apply any changes, we show the behavior without tampering with AS21 export 

policies. After that, we show the effect that AS21 produces when violating its normal 

export policies. 

Normal case 

Querying BGPv4 route index history on Kibana with the filter: 

machine_hostname:as1card2 AND bestpath: true AND prefix: "4.0.0.0/8" 

 

Tracerouting from somewhere in the network before the attack: 
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AS21 violating export policies 

Let’s make AS21 to violate normal export policies and see the effect. No filters are applied: 

  address-family ipv4 unicast 

    network 1.96.0.0/11 

    neighbor 10.11.0.2 

    network 4.96.0.0/11 

    neighbor 10.14.0.2 

  exit-address-family 

As shown before, AS1 and AS4 routers with cardinal 2 have been configured to accept any 

prefix advertised by them customer. 

When the configuration changes, the whole network topology changes and kernel routing 

tables suffer near 1200 updates: 
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Using the same filter on Kibana, it’s possible to see that as1card2 now knows other paths 

to reach certain sections of 4.0.0.0/8. 

 

To show traffic path changes we use repeat the traceroute performed previously. 
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The impact is obvious, the route from AS4 client to as1card2 has changed and now goes 

intra-AS4, traverses AS21 and reaches the webserver. 

 

2.3.2. BGP Route Flap Dampening 
This configuration directive allows to penalize routes that change frequently. This route 

changes that use to take place waste CPU cycles that may be used for other purposes and 

this, is the reason of its existence. Initial research shown that it would cause more harm 

than benefit and therefore, the RIPE community recommended against using it in 2006. 

Some years after, in 2014, researchers of Internet Initiative Japan, Internet Initiative 

Japan, Sproute Networks and Loughborough University shown how to make efficient use 

of this technique on (RFC7196 - Making Route Flap Damping Usable).  

Attack: Flapping the previously explained route leak 

To simulate the behavior of a flapping route we use as21card1. It will periodically 

advertise the route leak shown before and afterwards get back to its normal export 

policies.  
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For that, we use the following Bash & Vtysh script: 

while true; do ## Violate export policy  

 vtysh <<EOF 

configure terminal 

router bgp 21 

address-family ipv4 unicast 

no neighbor 10.11.0.2 prefix-list t2-external-adv out 

no neighbor 10.14.0.2 prefix-list t2-external-adv out 

neighbor 10.11.0.2 prefix-list allow-all-adv out 

neighbor 10.14.0.2 prefix-list allow-all-adv out  

EOF 

 sleep 2; ## Get back to normal export policy 

 vtysh <<EOF 

… 

no neighbor 10.11.0.2 prefix-list allow-all-adv out 

no neighbor 10.14.0.2 prefix-list allow-all-adv out  

neighbor 10.11.0.2 prefix-list t2-external-adv out 

neighbor 10.14.0.2 prefix-list t2-external-adv out 

EOF 

 sleep 2; 

done 

That makes both as1card2 and as4card2 to make changes to them routing tables each 

period and to advertise these changes to them peers.  

The following timeline shows the effect over kernels routing tables of the whole network 

and for a 4 minutes period: 

 

As it can be appreciated, that affects a lot of routers, producing changes on kernel routing 

tables. 
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To test that, we enabled route flap dampening protection on all routers as stated on 

(RFC7196 - Making Route Flap Damping Usable) for Cisco routers:  

bgp dampening 15 750 2000 60 

And repeated the attack performed on as21card1 for a 4 minutes period again: 

 

With route flap dampening enabled, 36809 kernels routing tables updates on the whole 

network were prevented. Only the first 843 took place. 

This configuration directive, when used correctly, prevents frequent route updates, it 

saves resources and provides improved network topology stability.  

This is just an example, but an attacker would use other ways to cause route flaps. For 

example, by tampering with unsecured BGPv4 sessions, performing DoS or DDoS attacks 

over old routers that may be exhausted easily or just by connecting to a badly configured 

router and performing periodic advertisements. They would be others. 

2.3.3. Maximum Prefixes on a Peering 
This configuration directive limits the maximum routes that can be accepted from a peer.  

The best current practice states that maximum prefixes on a peering should be limited on 

both peers and upstream routers. The main objective is to protect routers memory from 

exhaustion. 

Attack: Advertising routes for each host but for the network 

To test that, we will use as21card1 again. We change the configuration, so it starts 

advertising a route for each host in both domains it owns. It will advertise 2 * 2^16 routes 

if the full iteration process finishes. 

For that purpose, we use the following script Bash & Vtysh script: 

for i in {0..254}; do  

    for y in {0..254}; do  

        vtysh <<EOF &>/dev/null 

configure terminal 

router bgp 21 

address-family ipv4 unicast 

    network 4.96.$i.$y/32 

    network 1.96.$i.$y/32 
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EOF 

    done 

    echo "255 - $i" 

done 

 

When running, as21card1 produced an impact of ~134000 kernel route updates in 10 

minutes on the overall network. 

     

Both as4card2 and as1card2 became unresponsive for a while when they had around 20k 

routes respectively on them tables.  

 

Keeping it running shows that soon they will have memory problems due to the 

limitations of the environment. 

 

Around 35k routes, as1card2 and as4card2 were almost unresponsive. On this point we 

stop the attack. Around (63·255)·2 routes were announced. We restarted BGPd on 

as21card1, so other routers can get back on normal operation.  

It’s commensurate that a router with more resources will keep running without issues 

against this kind of attack. But routing table sizes can be huge on the internet. As shown 

at (BGP Routing Table Analysis Reports) the BGP routing table size is growing faster and 

nearly it will reach 800k entries for a router working with full BGP table. 
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Neither Quagga or Frrouting have documentation about how to configure this. But we’ve 

found that it works almost like Cisco routers.  

To protect from this kind of attacks, a general limit has been applied and no more than 

100 prefixes will be accepted by any router on the network. If anyone advertises more 

than the threshold the BGPv4 session will be restarted after 150 minutes. The 

configuration is done as follows: 

neighbor 10.1[4|1].0.2 maximum-prefix 100 restart 150 

 

The impact of the attack is limited, routers were able to keep themselves stable. 

 

The BGPv4 sessions were restarted from as1card2 and as4card2 when more than 100 

prefixes were advertised from as21card1. In addition, since they will never accept more 

than 100 their sessions with other peers won’t be restarted and the session will be shut 
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down so as21 will get banned by them providers for 150 minutes. Vtysh shows the 

following message for as21card1 peer status: 

 

 

2.3.4. AS Path Filtering 
As path filters allow to filter accepted and advertised routes if the as-path matches a given 

pattern.  

As best practices state, this configuration directive, should be used by network 

administrators: 

 To avoid accepting: 

o Routes containing private AS numbers. Unless they come from allowed 

customers.  

o Routes that do not start with peer’s AS number, unless routes come from 

a route server (out of the scope of this case study). 

o Routes from customers that do not contain AS numbers belonging to the 

given customer or for what this customer is authorized to transit to.  

 Worse, but valid solution is to avoid accepting as-paths longer 

than one. This is valid unless the customer is authorized to provide 

transit to certain destinations.  

o Routes that contain its’ own AS number coming external peers. This 

overrides BGP normal behavior and must be forcefully configured. The 

RFC warns that the impact may be severe. 

 To avoid advertisements: 

o With non-empty as-path. Unless the network provides transit for these 

prefixes. 

o With upstream AS numbers in the as-path to their peering ASes unless 

they are willing to provide transit. 

o With private AS numbers in the as-path. 

The patterns are defined by regular expressions and they can be tested through the show 

interface as follows. The regex language is defined at 11.17 of Frrouting manual. It’s 

exactly the same than Quagga. 

For example, lets show routes that only contain AS21:  

Show ip bgp regexp ^21$ 
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And, any route that contains AS21: 

Show ip bgp regexp _21_ 

 

Preventing the route leak explained before 

To show the performance of this protection, we repeat the route leak explained before. 

Repeating the route leak from as21card1 and with the same filter to show routes as 

before:

 

As seen before, as1card2 selects to transit traffic through as21card1 instead of doing 

through the normal paths.  

To fix that problem, the as-path filter is declared as: 

ip as-path access-list StrictProviderAS21 permit ^21$ 
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ip as-path access-list StrictProviderAS21 deny .* 

ip as-path access-list maxLength1 permit ^[0-9]+$ 

ip as-path access-list maxLength1 deny .* 

And added to the neighbor statement in bgp router configuration for IPv4 unicast: 

address-family ipv4 unicast 

… 

  neighbor 10.11.21.1 filter-list [StrictProviderAS21|maxLength1] in 

… 

exit-address-family 

Consider that this is not the same case than before as as4card2 keeps accepting bogus 

routes coming from AS21.

 

With that in mind, a new environment has been deployed and the route leak is attempted 

again without success from as21card1 (appreciate that BGP table version changes from 

the image that shows the same routes above): 
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2.3.5. Next-Hop Filtering 
The most common way to publish a route is to set the next hop to the router that makes 

the advertisement. This is commensurate, since usually the advertisement receivers 

would not be able to reach the router that truly offers access to the given prefix but 

through the advertiser. To be clearer, we will explain this over the environment:

 

Let’s say that as1card2 advertises a route to 1.192.0.0/10 with next-hop 172.16.11.4 to 

AS21. That makes no sense to do it so, since as21card1 has not a way to reach that host 

on AS1 private’s network. So, as1card2 makes the advertisement to this network 

replacing next-hop by itself on a network range visible by as21card1.  

This is done on the advertiser side with the configuration directive: 

neighbor 10.11.21.1 next-hop-self 

The protocol and implementations of BGPv4 allow to replace and change this behavior to 

support different setups. For example, at IXPs where routers just receive routes from a 

route server. Route servers will never want to set up next-hop-self, but they want to 

instruct routers to use certain next hops to reach certain networks. 

This functionality allows an attacker to redirect traffic through another hop, therefore, it 

should be filtered and overridden with the peer address on the side that receives the 

advertisement. Unless working in a route server setup. 

This is filtered at the route receptor side with the following configuration directives: 

Route maps allow to both filter and apply actions to received routes. Not only for BGP but 

for all routing protocols offered by Frrouting or Quagga suites. 

This sets up a next-hop overwrite with the peer-address when a route is received. 

route-map AntiSpoofNextHop permit 10 

    match ip next-hop peer-address 

route-map ReplaceNextHop permit 10 

    set ip next-hop peer-address 
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After that, the route-map must be applied to the peer, so every next-hop received on route 

advertisements from this peer gets replaced with the peer-address or checked and 

discarded if it does not match the peer-address: 

address-family ipv4 unicast 

… 

    neighbor 10.11.21.1 route-map [AntiSpoofNextHop|ReplaceNextHop] in 

… 

exit-address-family 

 

Attack: Next-Hop Spoof 

When testing TCPMD5 Signature, we performed a MITM attack over an unsecured BGPv4 

– TCP session and next-hop got replaced by another valid next-hop on the given network 

segment. We demonstrated that it possible to make the victim to transit more traffic than 

expected to a given destination. 

The objective is the same, to make the victim to move more traffic than expected.  

The victim on this case is as4card2. The attack takes place at IX_2 and the attacker is 

as1card2 that wants to make as4card2 to transit more traffic than he expects to. 

Regarding environment’s network topology, both victim and attacker are connected at 

IX_2.  

 

To show the normal behavior we will measure bandwidth seen at both victim and attacker 

in a normal case, when all clients are generating traffic to client_21_1_96_2.  
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Using Iperf and making all clients in the network out of AS21 to generate traffic to 

client_21_1_96_2, located inside AS21 networks. 

#!/bin/bash 

generators=( "172.16.1.121" "172.16.1.131" ) 

DATA="100" 

destination=$1 

for generator in ${generators[@]} 

do 

 nohup ssh -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null 

root@"${generator}" "iperf -d -t ${DATA}M -c $destination" &>> /dev/null & 

done 

With that script, running on the hypervisor, we instruct all clients out of AS21 to generate 

bidirectional traffic to and from client_21_1_96_2. The bidirectional data amount to be 

transmitted are 100Mb from each generator and direction. 

Once executed, it can be appreciated that as1card2 is transiting the whole traffic from 

AS23 to AS21, for client_21_1_96_2.  

 

 

Before the attack is performed, the routing table of as3card2 and as2card2 returns that 

client is reached through as1card2. 

 

Now, as1card2 decides that this is not fair and changes its’ advertisement to network 

1.96.0.0/11 to set next-hop through as4card2 as follows: 

route-map LazyRouter permit 5 

set ip next-hop 10.2.4.2 

And modifies the announcement as follows to both as2card2 and as3card2: 

neighbor 10.2.2.2 route-map LazyRouter out 

neighbor 10.2.3.2 route-map LazyRouter out 
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After that, as1card2 sets the route-map to be applied when advertising routes to neighbor 

as3card2. That produces 19 route updates on as3card2 and as2card2 kernel’s routing 

tables: 

 

Now as2card2 and as3card2 reach the client through as4card2, the victim. 

 

The same steps are applied to as2card2. This way all the traffic coming from the other 

side of the network, AS23 is routed through as4card2.  

Now, the traffic transits through as4card2 and therefore, that offloads as1card2 as it 

wanted to. Not the whole traffic, since it’s a bidirectional test and TCP ACKs from the client 

are getting routed through as1card2, back to the clients of this Iperf server. 

 

As shown, as1card2 can make other routers to send more traffic to the victim, as4card2. 

This technique can be used in several ways to attack or just to generate revenue by 

influencing routers out of the control of the victim to drive more traffic through the victim 

and for example, generate revenue. 
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 Attacks over the whole network 
The purpose of this section is to group attacks that are not mitigated through just one of 

the previously explained security measures. They may involve two or more defenses, and, 

in some cases, the attack will only be mitigated but not impossible. 

While defenses explained previously, mitigate or make impossible the exercise of certain 

types of attacks, there are others that are more complicated or nearly impossible to 

defeat. On the current environment the following defenses are implemented: 

 Linux Kernel and Firewall have been set up to avoid routing traffic to private CIDR 

network domains. In addition, kernel’s behavior has been changed to mitigate DoS 

or DDoS attacks over routers. Considering limitations in term of RAM and 

processor, attacks that involve high loads of traffic to reset a router or a BGPv4 

session are not considered. 

 TTL-Security with maximum hop distance of 1. That makes impossible to perform 

attacks from outside of BGPv4 speaker’s network segments. 

 TCP-MD5 Signature. The password is assumed to be strong. Therefore, an attempt 

to crack it would take much longer than in the test performed. It can be assumed 

that MITM attacks are not possible. 

 Prefix Filters have been applied to both avoid leaking internal ASes structure and 

to show the performance of route leak attack performed by a multi-homed 

customer.  

 BGP Route flap dampening. Dampening on flapping routes is enabled as exposed 

on the RFC. 

 Maximum prefixes on a peering have been limited and limited routers memory is 

protected. 

 AS path Filters have been enabled and customers, AS21, AS22, AS23 and AS24 are 

not allowed to advertise routes longer than one and that do not contain exactly 

it’s AS number. 

 Next Hop Filters are enabled, and Next Hop spoofing is prevented. 

Before explaining the attacks it’s mandatory to regard the following basis about IP routing 

and BGPv4. 

There are two algorithms that manage respectively the route selection and the routing 

itself. 

The BGPv4 Route selection algorithm manages what routes go in and out from the 

effective routing table (AKA the kernel routing table). The behavior may vary between 

manufacturers and the behavior can be changed by network administrators through 

management interfaces. The most common case is that it chooses as the best route, to a 

given prefix, the shortest path in terms of autonomous systems.  
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Routers apply the Longest Prefix Algorithm (LPM) for making the decision about the next 

hop and the interface each IP packet should be sent onto. Implemented in the kernel, it 

looks up each IP packet’s destination IP address into one or more forwarding tables and 

computes the best match, the LPM. This algorithm is the basis of IP routing and its 

behavior cannot be modified without tampering the forwarding table implementation. 

Therefore, exhaustive filters should be applied before updating these tables with routes 

received from outside, since they will change the router behavior. 

3.1. Prefix and Sub-prefix hijacks 
The Prefix and Sub-prefix Hijacks are some of the worst attacks that can be exercised 

against a network of BGPv4 routers.  

Both require knowledge about BGPv4 route selection algorithm and LPM.  

Over the case study, the AS21 wants to hijack traffic going to and from the victim 3.96.0.2, 

client_23_3_96_2: 

 

To do it, the attacker may go straight forward and advertise both 3.96.0.0/11 and 

2.96.0.0/11 prefixes as follows: 
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address-family ipv4 unicast 

… 

network 2.96.0.0/11 

network 3.96.0.0/11 

… 

exit-address-family 

ip prefix-list t2-external-adv seq 15 permit 3.96.0.0/11 le 32 

ip prefix-list t2-external-adv seq 20 permit 2.96.0.0/11 le 32 

 

To simulate that, we configured both down_1:1 and down_4:1 virtual interfaces on 

as21card1 to have the following addresses: 

 

 

Therefore, that maid automatic changes on kernel’s routing table of as21card1: 

 

Before the attack is executed, clients from AS22 and AS24 generate traffic to AS23. The 

traffic volume measured on the overall is as follows: 
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The routers forwarding traffic were as3card4, as2card4, as2card2, as24card1, as23card1, 

as22card1 and as3card2.  

From this point the BGPd config explained before is applied. The effect was obviously 

spread over kernel routing tables of several routers: 

 

8 routers got updates on them routing tables with destination [3|4].96.0.0/11. They were 

as4card3, as1card4, as1card2, as4card1, as1card1, as1card3, as4card2, as4card4. But 

none of them were customer ASes so announcing these prefixes will only allow the 
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attacking AS to hook a portion of the whole traffic AS23 would receive. This portion is the 

traffic that travels through this list of routers. In the previous case, none. 

From this point, the attacker, AS21, decides to change the advertised routes to 

[3|4].96.0.0/12. Therefore, changing the attack from a prefix hijack to a sub-prefix hijack. 

address-family ipv4 unicast 

… 

network 2.96.0.0/12 

network 3.96.0.0/12 

… 

exit-address-family 

 

Once done, it produces 133 updates on kernel routing tables on the overall of the network: 

 

After repeating the traffic generation test, the change can be appreciated: 

 

New boys have joined the party: 
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And as follows, AS21 who did not receive traffic before, has started to receive it. The 

following histogram shows the traffic volume measured at AS21 since this test started  

 

Concretely, it started receiving some traffic at 18:28 when the advertisement was made.   

 

In addition, the following histogram shows how the legitimate client stops receiving 

traffic in favor of the attacker: 
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