

LabRat - A Machine Learning Platform for
Collaborative Optimized Predictions

Julio M. Fernández Jiménez
Bioinformatics and Statistics
Software Development

Elisabeth Ortega Carrasco
Jose Antonio Morán Moreno

06/2018

!  
Esta obra está sujeta a una licencia de
R e c o n o c i m i e n t o - N o C o m e r c i a l -
SinObraDerivada 3.0 España de
Creative Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Licencias alternativas (elegir alguna de las siguientes y sustituir la
de la página anterior)

A) Creative Commons:

!  
Esta obra está sujeta a una licencia de
R e c o n o c i m i e n t o - N o C o m e r c i a l -
SinObraDerivada 3.0 España de
Creative Commons

!  
Esta obra está sujeta a una licencia de
R e c o n o c i m i e n t o - N o C o m e r c i a l -
CompartirIgual 3.0 España de Creative
Commons

!  
Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial 3.0
España de Creative Commons

!  
Esta obra está sujeta a una licencia de
Reconocimiento-SinObraDerivada 3.0
España de Creative Commons

!  
Esta obra está sujeta a una licencia de
Reconocimiento-CompartirIgual 3.0
España de Creative Commons

!  
Esta obra está sujeta a una licencia de
Reconocimiento 3.0 España de Creative
Commons

B) GNU Free Documentation License
(GNU FDL)

Copyright © 2018 Julio Manuel Fernández
Jiménez

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-sa/3.0/es/
http://creativecommons.org/licenses/by-nc-sa/3.0/es/
http://creativecommons.org/licenses/by-nc/3.0/es/
http://creativecommons.org/licenses/by-nc/3.0/es/
http://creativecommons.org/licenses/by-nd/3.0/es/
http://creativecommons.org/licenses/by-nd/3.0/es/
http://creativecommons.org/licenses/by-sa/3.0/es/
http://creativecommons.org/licenses/by-sa/3.0/es/
http://creativecommons.org/licenses/by/3.0/es/
http://creativecommons.org/licenses/by/3.0/es/

 
Permission is granted to copy, distribute and/or
modify this document under the terms of the
GNU Free Documentation License, Version 1.3
or any later version published by the Free
Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-
Cover Texts.
A copy of the license is included in the section
entitled "GNU Free Documentation License".

C) Copyright

© (Julio Manuel Fernández jiménez)
Reservados todos los derechos. Está prohibido
la reproducción total o parcial de esta obra por
c u a l q u i e r m e d i o o p r o c e d i m i e n t o ,
comprendidos la impresión, la reprografía, el
microfilme, el tratamiento informático o
cualquier otro sistema, así como la distribución
de ejemplares mediante alquiler y préstamo,
sin la autorización escrita del autor o de los
límites que autorice la Ley de Propiedad
Intelectual.

Project Technical Card

Project Title:
LabRat - A Machine Learning
Platform for Collaborative
Optimized Predictions

Author name Julio M. Fernández Jiménez
Consultant name: Elisabeth Ortega Carrasco
Professor name: Jose Antonio Morán Moreno

Submission date (mm/yyyy) 06/2018

Title: Bioinformatics and Statistics
Master’s Degree

Project area: Software Development
Project language: English

Keyworkds
Machine learning, R, privacy,
optimization, data modeling,
prediction, SaaS, API, Rest

Project summary (250 words max.): Should include goal, aplicaron
contexts, methodology, results and work conclusions.

LabRat is a SaaS designed for machine learning analysis capable of
selecting the best algorithm with the right parameters for a given data
set. The system is capable of automatic and manual model training and
prediction. It intents to automatize the machine learning training and
prediction process by providing an easy to use web based UI
application.

LabRat is built under the PHP Laravel framework, which provides a UI
web based application and a secure API Rest infrastructure. The R data
analysis engine is built under a Node.js API Rest server that
communicates with the Laravel component as a micro-service. Data is
sent to the R engine via SFTP.

The software development process leads to an inexpensive open-
source and private alternative to other commercial machine learning
tools in the market. The software can be downloaded and installed into
any local machine or server providing privacy and as much computer
power as desired. The system micro-service infrastructure allows the
user to scale each of its service component as needed.

This platform is able to automatized the bioinformatician work when it
comes to machine learning data training and prediction analysis. It
provides a single solution to a large variety of unsolved AI problems with
the possibility of scaling to a more robust product that can adapt to a
larger and wider set of machine learning problems.
 Abstract (250 words or less):

!i

Motivation
To provide the scientific community with an open-source, inexpensive,
scalable and automated machine learning platform alternative similar to
other commercial services in the market and mostly designed for small
to medium size research teams.

Objective
To develop LabRat, a micro-service oriented machine learning web and
API Rest platform for data modeling and prediction based on R.

Methodology
The system was developed in Laravel, a Symfony based framework for
PHP, Node.js and R. The Laravel main back-office platform is a web
based UI that allows the user to interact with the R engine. Data is sent
to the R server for modeling or prediction via SFTP, where the R server
uses it to train models and generate predictions on demand. The R
server is manipulated via API Rest through the web based back office.

Results
Although LabRat can be considered to be an ongoing work in progress,
a web based back office and an R engine server were developed and
offered as an open-source solution to machine learning analysis at Git-
Hub. The final product offers the necessary set of tools for machine
learning model training and prediction and serves as a starting point for
a more robust software development.

!ii

Table of Content

Project Technical Card i ..
Table of Content iii ..
Figure List 4 ..
1. Introduction 1 ..

1.1 Context and project justification 1 ..
1.2 Project goals 3 ...
1.3 Project procedure and description 3 ..
1.4 Project planning 6 ..
1.5 Deliverable brief description and summary 10 ..
1.6 Remaining chapters and content brief description 10

2. Technical Design 11 ..
Project structure 11 ..
Development process 11 ...
Functional requirements 12 ...
Non-functional requirements 12 ..
UML model design 14 ..
Software installation requirements 19 ...

3. Risk Analysis and Development Strategies 20 ...
Initial development risk analysis 20 ...
Development strategies and troubleshooting 20 ...

4. User Manual 24 ..
Demo datasets 24 ...
Project security 24 ...
System Workflow 26 ..
Model training 27 ...
Data prediction 29 ...
User graphical interface 29 ...
Economical Evaluation 30 ...
Production costs 30 ...
Annual fixed costs 30 ..
Product Viability 30 ...

5. Conclusions 32 ...
Goals Analysis 33 ..
Methodology and Planning Challenges 34 ..
Improvements and future software development guidelines 34

6. Glossary 37 ..
7. Bibliography 40...

!iii

Figure List

TABLE 1: PROJECT TASK LIST
IMAGE 1: PROJECT GANTT DIAGRAM.
IMAGE 2: UML MODEL DESIGN
IMAGE 3: MICRO-SERVICE INFRASTRUCTURE
IMAGE 4: COLLABORATOR FORM
IMAGE 5: APPLICATION DATA WORKFLOW
IMAGE 6: MODEL TRAINING FORM
IMAGE 7: MODEL STATE LIST
IMAGE 8: MODEL TRAINING FORM
IMAGE 9: DATA PREDICTION FORM
IMAGE 10: PROJECT LIST
TABLE 2: PRODUCTION COSTS
TABLE 3: ANNUAL FIXED COSTS

iv

1. Introduction

1.1 Context and project justification

The motivation behind LabRat is to democratize machine learning
techniques among scientific community members by providing a code-
free and easy-to-use machine learning platform. It allows scientists to
create models from raw data without the use of any scripting language
such as R or Python.

According to my personal experience throughout the Bioinformatic’s
Master’s Degree studies, the use of machine learning as a tool for
diagnosis and data exploration is limited to the programatic design of
custom made algorithms and its implementation to a specific science
problem.

This procedure requires of great knowledge in the use of third-party
libraries for either Python or R, not to mention the data pre-processing
and algorithm adjustment process needed to come up with the best
predictive model for a specific problem. As a matter of fact, many
bioinformatic research papers solely focus on the intent to identify the
best machine learning algorithm and the optimum parameters to improve
a certain problem prediction outcome.

Another important backdraft when working with machine learning
analysis is the computer processing power and its capacity to analyze
data. This is more noticeable when working with multilayer neural
networks.

Although services such as AWS Machine Learning servers provide an
efficient and comfortable solution for the hardware and machine power
problem, their services are expensive and never completely private: “An
in-the-cloud service will always be someone else’s computer.” 1

Data and model managing can also be a hazard when working with tools
such as R programing languages. If the data scope changes, the
algorithm implementation may change as well. This requires for the
bioinformatician to review and modify the R script in order to adapt to the
new data requirements. There is a generalize lack of automatization and
management tools when it comes to R scripts.

LabRat intends to be the missing gap between research data analysis
and optimized modeling results by providing the researcher with a high
level of privacy and customizable machine power.

 As cited by Elisabeth Ortega Carrasco1

!1

As the use of machine learning processes becomes widely used in
bioinformatics, the need for smarter, automated and customizable tools is
becoming a necessity rather than a luxury or a software commodity.

LabRat is a SaaS for machine learning model training and evaluation on
demand. It is the answer to a private, cheap open source alternative to
machine learning analysis.

The software developed within the scope of this project is a machine
learning platform for predictive strategy with optimized multi-analysis. In
other words, it is a SaaS designed for machine learning analysis capable
of selecting the best machine learning algorithm with the right parameters
for the given data set. In addition, all predictive models generated by
LabRat are adjusted when new data is fed by either switching to a new
algorithm or by modifying the current algorithm parameters.

Although automatization is the key element of LabRat, the system also
allows for custom defined processes, all of this from a usable and user
oriented UI. This smart predictive strategy of LabRat is indeed a solution
to the tedious algorithm analysis alternative offered by other third-party
libraries such as R and Python.

LabRat also offers an inexpensive and more private alternative to other
commercial machine learning tools out in the market. The software can
be downloaded and installed into any local machine or server providing
privacy and as much computer power as desired. Since LabRat will work
under a micro-service infrastructure, it will be possible to assign the
available machine resources according to each service CPU
requirements.

LabRat uses R for data analysis, more specifically its Caret package. The
use of external, widely used and tested libraries for its machine learning
analysis provides the system with a high level of trust and scalability.

As any other SaaS, LabRat comes with a multiuser UI platform for
managing projects, models and users. This platform is mobile-first and
come with an additional isolated API REST engine.

The concept behind the branding of LabRat relates to the use of live
animals through the history of science. The LabRat branding is a tribute
to the millions of animal that are sacrificed in the name of science and
progress. It represents the hope and the desire of a more ethical world
where the discriminated use of animal lives will no longer be linked to
science and progress. A future where animals are entirely replaced by
machines in the name of science is possible.

!2

1.2 Project goals

There is only one main goal for this project that encloses the whole
development process:

(1) To provide the scientific community with a collaborative open source
application to generate machine learning trained models and predictions
from unclassified data.

This main goal can be broken apart into a series of subtasks as
described below:

(1.1) To minimized custom made scripting tasks for machine learning
analysis.
(1.2) To provide a machine learning trained model environment where the
scientific community can share and use multidisciplinary trained models
on demand.
(1.3) To provide a private and encapsulated environment for machine
learning based data analysis and storage.

1.3 Project procedure and description

It was clear from the very beginning that LabRat ought to be designed as
a three layer infrastructure software, these being:

Front-end UI layer: this is the front-end user-interface layer built
mostly in HTML/CSS/Javascript. It is built under a non-intrusive and
mobile-first technology such as Bootstrap framework and Vue.
Back-Office API Rest layer: this is where the business logic resides.
This is what we will call the back-office application. It comes in two
modalities. The first one is an MVC platform that interacts with a well
decoupled but embedded front-end layer. The other is an API Rest
entry point designed for secure third party implementations. Both
presentation layers work under the same service layer.
R-Caret machine learning scripting layer: this is the core of the
application. It contains all the machine learning scripts that will
process the raw data for model training and prediction.

During the work planning brainstorm process, several approaches were
evaluated before a solution came up for a definitive software architecture.
Some of the proposed architectures are described below:

Node.js + AngularJS + Python

This was the initial and most exciting approach for the application
software infrastructure. Whilst node and Angular are both javascript

!3

based languages, Node (as a back-end technology) offers great
framework options for API Rest approaches such as Meteor and
LoopBack.

Out of these two, LoopBack was by far the most interesting approach.
Unfortunately this option was discarded due to the lack of maturity of the
LoopBack framework, which is currently being updated into a brand new
and exciting 4.0 version.

Out of the two remaining tech choices involved in this option, AngularJS
was the most solid alternative so far. It was clear from the very beginning
that LabRat had to be totally decoupled when it comes to back/front end
design options. On the other hand, Python was shortly discarded as a
machine learning scripting language. We found the R-Caret package a
very completed and widely used solution for machine learning analysis.

Sprint Boot JavaEE + AngularJS + R-Caret

This is the enterprise software architecture choice for LabRat. Although
JavaEE and Spring Boot will provide the platform with a robust and
scalable professional architecture, certain parts of the Spring Boot
framework, such as Hibernate for ORM and DAO, lack of malleability and
practicity when it comes to designing complex data models. In addition,
hosting a JavaEE application could increase hosting costs dramatically.

The R-Caret package is still the best choices for machine learning
scripting.

Laravel + Blade/Vue + R-Caret

Laravel is a PHP web oriented developing framework based on Symfony.
It comes with very useful features already integrated such as ORM,
event-driven programming complements and unit testing among others.
Because it is built on PHP, Laravel is easy and inexpensive when
deploying in a production environment. It is also easy to maintain and
scale.

Blade is the custom front-end scripting framework or Laravel, it integrates
great with the back-end code and needs no preambulars. Laravel comes
with Vue or React as default JavaScript engine. Out of the two Vue was
found to be more straight forward and simpler to use. Nevertheless, and
in order to maintain a mobile-first non-intrusive technology approach, this
implementation would come with an alternative API Rest back-end that
will allow for the system to be used as a third party tool.

The R-Caret package is still the best choices for machine learning
scripting and front-end.

!4

Out of the three evaluated options, the Laravel+Blade+R-Caret package
was considered to be the best option for development.

Continuous development and integration (CD/CI)

In order to provide a smooth development process and to ensure the
quality of the work, an effective CD/CI process was designed to optimize
the project development process. The design process is composed by
the following tools:

GitHub: this is the code repository chosen for the application
development code control. GitHub was chosen over BitBucket
because of its great integration into other CD/CI systems such as
CircleCI and Heroku for the most.
CircleCI: web based continuous integration platform used for code
unit and integration testing. It integrates with GitHub through web
hooks to block the code merging process if tests fail.
Heroku: Heroku is a continuous development platform that integrates
with GitHub version control repositories and perform automatic
deployments in different stages of a given pipeline. Each pipeline is
composed of a branch, development, staging and production serve
container:

Branch server app (also called “review apps”): is connected to
Github and creates a new server instance for each active
branch in the repository. When a new commit is detected for
each branch, Heroku pulls the branch code and deploys the
application for live review.
Development server app: this is where the develop branch is
deployed for review. It auto-deploys when a new merge or
commit is detected in the branch and allows the developer to
preview the changes from the merged branch into the main
code under controlled conditions.
Staging app: this is a pre-production stage and only deploys
when the master branch is modified. It helps to review the
master code in a production-like environment.
Production app: unlike the previous pipeline stages described
above, the production app must be deployed manually from
the staging app. This branch does not goes through the
regular deployment process since it always receives a fully
functional and deployed code directly from the staging app.
This special deployment procedure prevents downtimes in the
production server as the code migration process is performed
in a matter of milliseconds and it is unappreciable by the end
user.

Each of different parts that compose the project has its own Git
repository, CircleCI instance (when available) and Heroku pipeline.

!5

In order to maintain a quality control standard, a TDD oriented
programming methodology was followed throughout the developing
process.

Although Heroku comes with all the necessary infrastructure to get the
application up and ready, Digital Ocean was chosen as a production
environment for the following reasons:

Data persistency: Heroku is great but it does lack of data persistency
when it comes to storing files. Raw data files and model files could
not be stored in Heroku and needed of a third party service, such as
AWS buckets, to store data.
Micro-service communication: The R engine server needs of two
entry points or ports in order to function; one for the embed SFTP
server and another for the R scripting remote execution. Heroku only
allows for one single port to be exposed to the internet and it lacks of
the necessary tools to build an intranet infrastructure.

Since one of the goals of LabRat was to build a system that could be
used by any team in any computer, it made sense to use a hosted virtual
machine to host the application. It was also a closer approach to reality,
since research teams will use private or remote virtual machines to run
the code. Digital Ocean offered low-cost virtual machines and ready for
production deployment.

1.4 Project planning

The project planning and execution was carried out in Jira under the
Agile methodology using the Scrum system. Each sprint was composed
of two full weeks, where each day was expected to have at least four
hours of work.

According to the planning described in the table below, there were a total
of seven estimated sprints to complete the project. The following table
describes the tasks scheduled to complete the project and their
estimated completion time. Tasks are divided in groups and subgroups
(yellow) and labeled in white. All the milestones are marked in green.

!6

TABLE 1: PROJECT TASK LIST

Name / Title Goal Type Start
Date

End
Date

Days Hrs

1 Back Office API group 20/2 13/4 54 216

1.1 Software Design subgroup 20/2 28/2 9 36

1.1.1 Development environment
and CD/CI setup

task 20/2 22/2 3 12

1.1.2 UML design process task 23/2 28/2 6 24

Software development
setup completed

1.3 milestone 28/2 28/2 1 4

1.2 Authentication and Security 1.3 subgroup 6/3 21/3 16 64

1.2.1 JWT auth module 1.3 task 6/3 14/3 9 36

1.2.2 Roles module 1.3 task 15/3 17/3 3 12

1.2.3 Team module 1.3 task 18/3 21/3 4 16

System security completed 1.3 milestone 21/3 21/3 1 4

1.3 Model Process Worflow 1.3 subgroup 22/3 13/4 22 88

1.3.1 Project module 1.3 task 22/3 24/3 3 12

1.3.2 Machine learning model
module

1.3 task 25/3 26/3 2 8

1.3.3 Machine learning state
module

1.3 task 27/3 10/4 14 56

1.3.4 Machine learning prediction
module

1.3 task 11/4 12/4 2 8

Model workflow completed 1,3 milestone 12/4 12/4 1 4

1.3.5 R task scheduler 1.3 task 13/4 13/4 1 4

BO admin system
completed

1.3 milestone 13/4 13/4 1 4

2 Machine Learning R Scripts 1.1 group 14/4 5/5 22 88

2.1 Input R-scripts 1.1 task 14/4 22/4 9 36

2.2 kNN simple scripts 1.1 task 23/4 25/4 3 12

2.3 Output R-Scripts 1.1 task 26/4 28/4 3 12

2.4 R-Script process template
completed

1.1 milestone 28/4 28/4 1 4

2.5 Naive Bayes single scripts 1.1 task 29/4 30/4 2 8

2.6 ANN single scripts 1.1 task 1/5 1/5 1 4

2.7 SVM single scripts 1.1 task 2/5 2/5 1 4

2.8 Decision tree single scripts 1.1 task 3/5 3/5 1 4

!7

2.9 Random forest single
scripts

1.1 task 4/5 4/5 1 4

2.10 R-Scripts completed 1.1 milestone 5/5 5/5 1 4

3 Blade Front-End 1.2 group 5/5 28/5 24 96

3.1 Blade Framework Setup 1.2 subgroup 5/5 28/5 24 96

3.1.1 Choose Bootstrap template 1.2 task 5/5 5/5 1 4

3.1.2 Base framework setup
completed

1.2 task 6/5 6/5 1 4

Integrate design to views 1.2 milestone 23/5 28/5 6 24

3.2 User Flow and Security 1.2 subgroup 7/5 11/5 5 20

3.2.1 Auth process 1.2 task 7/5 7/5 1 4

3.2.2 User profile UI 1.2 task 8/5 8/5 1 4

3.2.3 User management CRUD 1.2 task 9/5 9/5 1 4

3.2.4 Team CRUD 1.2 task 10/5 10/5 1 4

User and security
completed

1.2 milestone 11/5 11/5 1 4

3.3 Model Module 1.2 subgroup 12/5 19/5 8 32

3.3.1 Project CRUD 1.2 task 12/5 12/5 1 4

3.3.2 Model CRUD 1.2 task 13/5 13/5 1 4

3.3.3 Model State CRUD 1.2 task 14/5 15/5 2 8

3.3.4 Prediction CRUD 1.2 task 16/5 19/5 4 16

Model module completed milestone 19/5 19/5 1 4

TOTAL 100 400

!8

IMAGE 1: PROJECT GANTT DIAGRAM. 

!9

1.5 Deliverable brief description and summary

There are two main deliverable products as the result of the work done.
These are the LabRat-Back-Office-API repository and the LabRat-R-
Server:

LabRat-Back-Office-API: it contains the necessary code for the
back-office, the front-end and the API Rest implementation.
LabRat-R-Server: This is the R server that allows for the SFTP data
file transfers and the remote R scripting manipulation.

Both repositories can be found at https://github.com/LabRatGroup.

1.6 Remaining chapters and content brief description

The following chapters will discuss some of the most relevant technical
details of the software infrastructure presented here. This will include the
project general structure, the development process conventions used, a
brief description of functional and non-functional requirements, a series
of design UML and micro-service interaction diagrams, software
requirements and essential installation requirements.

Also, a short risk analysis of the development process as well as a
discussion of some the main challenges encountered along the
development process will be discussed as part of the project memory.

Finally, a brief user manual on how to use the application.

!10

https://github.com/LabRatGroup

2. Technical Design
Project structure

The following items describe the application development main steps and
their description according to the planning groups and subgroups:

Back Office API: involves the development of the back-office and API
Rest tool.

Software design: this is the initial software design process
necessary for every software development process. This
section involves the elaboration of UML diagrams and the
setup of the CD/CI and deployment environments.
Authentication and security: global setup for application
security and user control necessary for API and machine
learning model access.
Model process workflow: probably the most important
section of the back office. This is where all the related services
regarding machine model generation, editing and history
control are developed. It also involves the unclassified data
predictions services and manipulation. Services related to R
scripts scheduling and performance are also developed in this
section.

Machine learning R Scripts: During this section all R scripts were
developed for the selected machine learning algorithm. This is also
where the data I/O mechanism from the back office into the R
module, and vice-versa, are defined.
Blade/Vue Framework Setup: This is where a design for the UI
admin tool is defined and adapted to the Blade environment.

Design integration: The UI graphic design is integrated into
the HTML code of the Blade front-end.
User flow and security: The security and route services are
integrated into the front-end layout.
Model Modules: Development of the UI templates, services
and API calls related to the project, model and prediction
managers. This section also involves standard CRUD sections
for each of the modules.

Development process

The development process was executed following modern software
development standards. An Agile/Scrum methodology was followed using
Jira to keep track of user stories in a two weeks length sprint periods. All
project planning tasks previous to the Agile sprint planning was done at
TeamGantt.

For the development coding activity PHPStorm was used as primary IDE
tool. All the code was kept at GitHub, which integrated with CircleCI for

!11

en effective testing process and CD/CI cycle with Heroku. An effective
TDD programming technique, with end-to-end and unitary tests, was
implemented to effectively implement the CD/CI process guaranteeing
and effective and save deployment into de master and develop branches.

The production phase was carried out manually in a virtual server hosted
by Digital Ocean and only after all the CD/CI cycle was successfully
completed.

Functional requirements

There are two major areas to consider when defining LabRat
functionality. The first and main area to discuss is the machine learning
modeling and prediction capabilities of the system. LabRat allows the
creation of machine learning trained models from raw data. When
creating a model, the user can specify the machine learning algorithm to
use and the desired parameters or range of parameters.

Furthermore, LabRat can also decide for the user when choosing the
best algorithm for the trained model. The system can estimate the best
possible model for data prediction.

Generated models can be improved by adding new additional training
data to it and/or by modifying the training algorithm or its parameters to
create a better and more accurate prediction model.

In addition, LabRat has a model state history which allows the user to
rollback to previous models in case something goes wrong.

All the models are stored under a project-like structure, which can hold
together several models from different datasets and algorithms. These
trained models can later be used to make real predictions from
unclassified data. All predictions are also stored under each model for
further review.

The second area of interest in LabRat is the collaboration capabilities of
the system. A user can create team structures and designate permissions
to the team members that allow them to work on a specific project and,
therefore, the models it may contain. Each team member, or individual
user, can have specific permission upon a specific project models. It is
also possible to add stand-alone users to a project without any previous
team association.

Non-functional requirements

The system needs to be easy and cheap to maintain and also well
decoupled. For such a purpose it is necessary to choose a reliable
technology in terms of programming language and data storage methods
as well as deployment costs and required hardware infrastructure.

!12

In order to fulfill the decoupling characteristics of the system, the back-
end and front-end must be develop as separated components. Updating
any of these parts should not affect the other.

For the system to be able to adapt to any hardware infrastructure, the R-
Caret scripting functionality should not be part of the API Rest or back-
end. The main goal of this requirement is to be able to provide to the
most CPU intense processes of the application of a separate server
environment to run in if necessary. This will allow for an extra boost in
performance in organizations where providing a extra machine for
computer power is not subject to budget constraints. The system will be
able to scale according to the organization machine power.

All R scripts should be able to be updated and improved regardless of
the system input and output requirements. A modular or OOP paradigm
should be implemented in R in order to promote the scalability of the
scripts. Also, the connection between the back-end and the machine
model scripting module should be independent of the technology use for
machine learning analysis, allowing for a comfortable and painless switch
from R to Python scripting if necessary.

!13

UML model design

IMAGE 2: UML MODEL DESIGN

The system model map is divided in four different areas.

Structure
These models help contain the remaining models in the system. They are
divided in two main models:

Team: The team model groups users together to provide a
security framework that defines who can access and manage
the information stored in the system. When a team is created,
it is assigned with a specific amount of users, this team is later
relate to a project which can only be accessed by the users
enclosed within the team. Every team has an owner user that
can not be removed from the team.
Project This project model contains the machine learning
models and predictions. It is the main unit of work in the
system.

Security
There are two major models within this category:

User: The user defines a person identity and has restricted
and monitored access to all the remaining areas within the
system.

!14

Role: A role defines the function of a specific user and limit
her/his actions within the application. The available roles are:

Staff member
Super administrator
Senior staff member
Junior staff member

Registered user
Regular registered user

Project Roles
Project administrator

Project manager
Project user

Users can be assigned to teams and/or projects. This means that a
project access can be restricted to either users or team members. When
a project is created by a user, she/he becomes the project owner and has
full control over the project and its parts.

Machine Learning
The machine learning section contains two main models:

Algorithm: The mlAlgorithm model holds all the information related to
the algorithms available for machine learning model training. These
algorithms are given by default when the database is created and can
only be modified via database query.
Algorithm parameters: The mlAlgorithmParam model holds
information about all the different parameters used to tune up the
specific algorithm used when training a model. Each algorithm can
have one or more parameters. Each one of these mlAlgorithmParam
models hold information about the kind of values allowed (numeric,
boolean or type) as well as the numeric range or possible values
permitted. It also holds information regarding the default values used
when automatically tuning up the algorithm for model training.

Machine Learning Model
These sets of models are used to hold information about the trained
models and predictions. They are the core of the system when it comes
to functionality. The main components are:

Model: The model mlModel defines a machine learning model to
train. It encloses a specific study with predefined classes that will
persist throughout the study.
Model state: A model state (mlState) is a trained model. It is called
state because it holds information related to a specific set of
parameters and data at a given time. There can be many states per
model but only one is current or dominant. The dominant or current
state can be switched as desired. Nevertheless, this is not
recommended since the system always sets the current state to the
one with the better performance score.

!15

Model state score: The mlStateScore model holds information about
the performance of each of the states or trained model within a
model. The mlStateScore model holds statistical information about
the model performance such as kappa, accuracy, sensitivity and
recall among others. This score defines which of states is current or
dominant from the rest.
Prediction: The prediction or mlPrediction model holds the necessary
information to complete a prediction from a given dataset file. Each
prediction uses the current or dominant state of the model that
contains it to predict the class for each of the provided samples
within. All the predictions within a model are recalculated whenever a
new state proclaims itself current or dominant. This guarantees that
the predicted data is always up to date with any trained model
updates.
Prediction Score: The mlPredictionScore model contains the results
for a given prediction in terms of sample number or ID and resulting
class.

Micro-service infrastructure

IMAGE 3: MICRO-SERVICE INFRASTRUCTURE

LabRat works as a micro-service infrastructure composed of two main
elements.

Back-Office

!16

This is the main application and consists of a admin or back-office tool
manages the model training process and predictions. It is composed of:

Back-end: This is the main set of controllers that interacts
with the UI or front-end. It is the core of the MVC
infrastructure.
Front-end: It is the actual UI of the application built on top of
the MVC layer.
Service layer: This is where the business logic resides. It is
compose by ORM models, repository and service classes. It is
common to the back-end and API-Rest layers.
API-Rest: This is the secure API-Rest layer that operates just
as the back-end does. It is available through the port 80 via
JWT. It shares the same service layer than the back-office
MVC controllers.

R Server Engine
The R Server Engine is where all the statistical processes occur. It is built
with the following components:

R Engine: The R engine is built within a Node.js API server
available at port 3030. It has two different entry points: one for
model training and a second one for performing predictions.
SFTP Server: The SFTP server is used to transfer training
and prediction files from the back-office to the R serve engine.
It seats over a Node.js server at port 3333. It stores the files
within the same file system where the R engine is hosted,
allowing direct access of these files by the R engine.

The back-end component uses a MySQL database to store states,
predictions and scores among other relevant information related to
teams, users and projects. It basically uses MySQL to store business
logic related data that is structured and well defined.

Some of these models use JSON to store unstructured and robust data
within MySQL. These involve mostly algorithm training parameters and
default values as well as information regarding how these algorithm
parameters are restraint.

All prediction score data is stored in MongoDB. Since a prediction can be
compose by thousands of samples, a NoSQL database was chosen in
order to improve performance when reading/writing large amount of data.

When a model is trained, the user uploads a CSV file composed of an
usually large amount or columns, or predictors, and rows or samples. A
training file can contain thousands of known samples used for model
training. This files are very large in size and need to be easy to access.
The files are uploaded (usually via intranet) to the SFTP server and
stored within the same file system as the R engine. Having the SFTP
server within the same code repository as the R engine ensures an easy
access of those files by the R engine.

!17

A similar process can be described for data prediction. The file with the
data to be predicted is also uploaded via SFTP form the back-office to
the the R server engine where it is stored at common grounds with the R
engine.

It is important to mention that the R engine server can be hosted at a
different server machine than the back-office server. This allows the
system admin to use a high performance (and more expensive) machine
to host the R server engine in order to provide more data process power
to the machine learning processes. This why a micro-service
infrastructure was chosen for this project.

Once the training or the prediction data has been uploaded, the back-
office queue a training or a prediction job. This job executes an API call
to the R engine server with a specific token that indicates R where in the
MySQL database is the information needed to perform the requested
task.

When a model training is requested, R queries information about what
algorithms should use for building the models and where to find the
training data file. Once the training process is completed, R writes the
score information back to MySQL and informs the back-office queue job
of the result. The process finalizes when the back-office service updates
the job status.

When a prediction is requested, R queries MySQL for information about
what model should be used to perform the prediction as well as the
location of the prediction data file or samples. After the prediction is
completed, the results are written into MongoDB. The back-office queue
job is then notified and the job status updated.

If an error occurs during the training or the prediction process, R will not
write back to the MySQL nor MongoDB database with score nor
precision data; the back-office will then report the process as failed. It is
therefore the back-office service who notifies the user about the job
status according to the data found in both database servers. 

!18

Software installation requirements

For production purposes, the software is recommended to run under
Linux OS systems (Ubuntu 18 recommended). The following list
summarizes the minimal hardware and software requirements needed for
production deployment.

Ubuntu 18 Server under a 1 CPU/1 GB virtual machine with static IP
v4 address and 25GB SSD.
Apache 2
PHP 7.1+.
PHP mbstring extensión
PHP mongoldb 1.4.2+ extensión
Pear-PHP
PHP Composer
MySQL 5.6+
MongoDB 3.5+
Node.js 8.1+
NPM 5.5+
R-Base linux package
Git linux package.
Supervisor
Forever

!19

3. Risk Analysis and Development Strategies
Initial development risk analysis

There are several risk factors involved in the development of the project,
most of them are time or technology related issues in some critical
stages of the developing process. The following points were considered
as risk factors at the beginning of the developing process:

Development delays due to R scripts I/O processes: this item
involves the development and planning of a specific strategy when it
comes to preparing and reading the data from a CSV file into an R
script and to a data base table. Extracting and storing model
performance data and the model itself can be challenging if we wish
to perfectly synchronize the back office tool with the R-Caret scripting
service.
Complex ORM relations: managing model states history and
predictions can be difficult and could lead to developing issues and
delays.
Learning curve: some of the parts of the projects ought to be
developed using new or uncommon technology in terms of my actual
professional expertise. Therefore, it will be necessary to spend extra
time learning and becoming familiar with those technologies. This
may lead to delays in the actual project planning.
Front-end user experience: when developing a front-end interface,
there are many layers of “satisfaction” to be achieved in order to
provide the user with a decent experience. Since the front-end
development will be done at the end of the planning, chances are that
some of the desired features, such as charts and configuration of
model generation options; could be affected in terms of quality or
removed in order to be able to close the project and provide the
evaluation committee with a functional application.

Development strategies and troubleshooting

The following points described some of the major difficulties found along
the development process and how they were resolved.

The file storage paradigm
The main challenge encountered in the development process was how to
store the data files loaded into the back-office as well as the R model
and prediction files resulting after each analysis. In order to resolve this
challenge, the following requirements were considered:

All stored files must be kept in a private server. Solutions such as an
Amazon Bucket was discarded immediately.
The storage ought to be persistent. This data is crucial for the system
to be functional.

!20

File access must be fast. Since these files ought to be loaded for R
analysis and back-office analysis result display, the file access latency
should be kept low. It is important to keep in mind that these files
could weight as much as 10Gb each.
Files need to easily be transferred from the PHP back-office engine
server to the R- Scripting server and vice-versa.

The first approach was to make use of MongoDB to store the files.
MongoDB offers the possibility to store large amount of data per page
and has available drivers for PHP and R.

Nonetheless, this approach led to a series of problems. The first
challenge involved CircleCI not having native docker container support
for Laravel+MongoDB. An average of four days were invested trying to
figure out how to overcome this issues. The problem was resolved by
forcing CircleCI to compile the Pecl driver for MongoDB on each test
instance.

Compiling the Pecl extension in every test can be tedious, this problem
led to the initiative of building a custom docker container for the project.
Unless this initiative is not in the score of the project, it is indeed an
improvement to be included in the future. At the current time, CircleCI is
still compiling the driver every time the code is tested.

Although the MongoDB did solve the file exchange problem between the
back-office and the R-Scripting engine, a second derived issue came
along. The R driver for MongoDB did a lousy job when reading array data
from MongoBD. While PHP was storing CSV data into an array of lines (a
huge array as a matter of fact), R was reading those arrays as a single
endless strings that needed to be parsed and cleaned. This was not
acceptable at all.

The solution was, as usual, to keep it simple. By using the already
embedded file storage feature in Laravel, files are now automatically
stored via SFTP in an open-source Node.js based SFTP server included
into the R-Scripting engine as a repo submodule. This solution allows
Laravel to send the files to the R-Scripting engine server (regardless of
its location) and for R to place the files in a common ground easily
accessible for the back-office API tool. By hosting both platforms in the
same server we can minimize the transfer lately mentioned before.

Laravel file storage method is code independent and ca be switched by
simple modifying an environment variable.

Nevertheless, there is still a new challenge to be resolved and this is how
the prediction results will be delivered back to the back-office API tool.
This can be achieved in two ways:

!21

Using SFTP transfer. This will be the natural solution to the problem.
Laravel can download the files upon request with a low or no latency if
operating under the same LAN.
Using MongoDB. If we store the prediction results in MongoDB, Laravel
can make use of the noSQL engine advantages such as indexation and
pagination. This option will also allow the R-Scripting engine to be hosted
in a different LAN or remote server. Still, at this point of the development
process I still do not know how will R store large amount of comma
separated data into MongoDB. The final implementation procedure is still
to be decided.

Nevertheless, I am confident that this decision will not impact the project
planning since all the research needed to make a final decision has
already be done.

This storage and CircleCI problems were mostly reflected in the model
state and prediction related Jira tickets.

Front-end Alternative Plan
Although not mentioned in previous sections, originally, the front-end was
meant to be developed in Angular.js. This became a risk factor after the
file storage issue was resolved.

In order to prevent future inconvenience that could have placed the
project completion deadline in danger, a quick switch to Blade/Vue was
made. Since the API Rest was already developed, it was extremely easy
to create new front-end controllers for Blade while keeping a fully
functional API for third party applications to use.
One of the positive outcomes of the used of Blade as an integrated
frontend solution is that the back-end server now comes in two flavors:
one set of controllers for the Blade frontend and a mobile ready API set
of controllers both working under the same service layer with almost no
extra effort.

This API layer can be used via JWT for mobile integration or OAuth for
third applications to make use of it.

DevOps deployment deviations
One of the major challenges faced during the development process was
the deployment of the R server engine.

Originally, Heroku was chosen as the primary deployment server for
development and production due to its simplicity and commodity when it
comes to CD/CI processes.

Nevertheless, the R server engine required of two public ports in order
for the back-office server to interacts with it. These are the port 3000 for
the SFTP file server file upload and the port 3333 for the execution of
specific model training and prediction tasks.

!22

Heroku only allows for a single port to be exposed to the public (port 80)
and it does not provide support for a multi-container intranet
infrastructure. The PHP backend/frontend server could perfectly be
stored in Heroku but not the R server and engine.

Several solutions were studied in order to overcome this limitation. The
first approach was to use Node.js for subdomain/port redirection within
the same container. This would allow the use of a single public port (port
80) and two different subdomains, one per each of the R server engine
functionality (or internal port). This option was discarded since the SFTP
server could not be easily manipulated as it is embedded within the
application as an NPM dependency.

Another approach was to detach the R engine from the SFTP server.
This solution implied the incorporation of a new TCP communication
channel between both services in order to share data files. This solution
would have had a huge performance impact in the data analysis and was
therefore discarded.

The final, and definite solution, was to migrate the production code to the
Digital Ocean hosting services. This solution has many attractive options
to explore, these are:

The use of a docker oriented predefined virtual server. This feature
will indeed boost the idea of using a docker container for software
deployment.
The opportunity to scale the hardware in order to obtain a better
performance server for R analysis.
Money saving. Digital Ocean offers more memory and disk space for
less compared with Heroku.
Digital Ocean allows for a better server setup and management as
they are non-volatile virtual machines.
Although Digital Ocean does not offer an out-of-the-box CD/CI
process, it can eventually be implemented using Kubernetes (not in
the scope of this project at the current moment though.)

!23

4. User Manual
Demo datasets

There are two test or demo datasets included in the project and
accessible through the back-office UI. Theses datasets are available
from the “Download Demo Data” link in the main menu. The data is
normalized and prepare for machine learning monitored classification
processing.

The two available datasets are:

State of the art prediction of HIV-1 protease cleavage sites.
Rögnvaldsson et al. Bioinformatics, 2015, 1-7. doi: 10.1093/
bioinformatics/btu810
D Ayres de Campos et al. (2000) SisPorto 2.0 A Program for
Automated Analysis of Cardiotocograms. J Matern Fetal Med
5:311-318

The first dataset comes with DNA orthogonal encoding and works really
well with the kNN classification algorithm, although it can be used with
any other available machine learning algorithm but at a higher
performance cost.

The second dataset has two different data modalities. The first set
contains raw numerical data while the second factorized data, which
makes it more suitable for classification porpuses.

Both datasets come with a research summary, a link to the complete
research paper and a downloadable document with a manual machine
learning analysis performed by the author of this research, that being
Julio M. Fernández Jiménez.

A training and a prediction file can be found with each dataset group.
They can all be used to test and compare the application results with the
manual analysis provided with each study.

These dataset files can and should be used as template data files for
other studies. Common column names such as “sample” and “result”
should not be renamed in order for the R scripts to recognized then
properly.

Project security

Despite the obvious user level security of the system, where a username
and password is necessary to access the application, LabRart makes
use of a permission system that restricts who can access a project and
all the content stored under it.

!24

By default, all created projects are private, and can only be accessed by
the creator or project owner. The project owner can edit, delete, create
and train models as well as to generate predictions within the project.

In order for the project owner to allow someone else to collaborate with a
specific project, it is necessary to either directly add the user as a
collaborator or as a member of a collaborator team.

To add a new user as a direct collaborator, it is necessary to access the
project form (either when it is created or by editing the project). Once
inside the project form, a new collaborator can be added through the
collaborators section located at the right hand side of the form.

IMAGEN 4: COLLABORATOR FORM

To add a new collaborator, it is only necessary to provide the user email
address and press the “Add new collaborator” button. If the a user with
the provided email address exists, a new user block will appear in the
collaborators section; a warning message will be display otherwise. To
remove an individual collaborator from the project, just click the
“Remove” button that corresponds the user you wish to remove.

Teams allow a product owner to assign access to projects to groups of
users with just a single click. The project form has a multi-select HTML
controller that allows the owner to select which teams will have full
access to the project content.

The team creation process is similar to the individual collaborator form
discussed above. Users are added by email to the team through the
team form. Users can be added at anytime inheriting full access to all the
related projects upon saving the team element.

!25

System Workflow

Working with LabRat is all about workflow and
hierarchy. It is important to understand how the
data is structured before working with the system.

The main unit of work is the project. This is where
we apply the access permissions and what
sustains all the remaining and non security related
data structures. A project can be compared to a
study or research project.

A project is composed by models. A model is
comparable to a dataset with a determinate
number of predictors, classes and positive class.

A model can be trained as many times as we wish.
Each model training intent is called a state. All
states generated under a specific model are
always stored and available within the system, but
only the one with the highest score is used for the
data prediction process. When a new state with a
highest score is generated, a prediction event is
triggered and all the predictions previously
performed are recalculated again under the new
and improved model.

IMAGE 5: APPLICATION DATA WORKFLOW

When a model is retrained, it is always done by adding extra training data
rather than providing a similar dataset with a different (although better)
structure. If we train a dataset with a file containing an extra predictor,
classification parameter or data processed in a different, the predictions
already available could fail on re-run if this model turned out to have a
better performance than the others.

If you, as a researcher, has a more suitable dataset for a specific model
in your research, it is highly recommended that you create and train a
completely new model with this special characteristics rather than trying
to improve or overwrite an existing one with non compatible prediction
data.

Each model can have as many predictions as you wish, this predictions
are always executed with the higher scored state found under its model.
It is necessary to have at least one trained model or state to run a
prediction.

!26

Model training

When training a model, it is
first necessary to create a
model object. The model
creation process is simple.
Only the t i t le and the
positive class is needed.

IMAGE 6: MODEL FORM

Once a model has been created, it has to be trained in order to run
prediction jobs against it. The training process consist in completing a
form that defines which algorithm will be used and what parameters to
use with it.

The algorithm can be chosen by selecting from the select HTML
component. When an algorithm is selected, a new set of parameters are
described underneath. These parameters are autofilled with standard
predefined values that can be modified as needed.

Besides the algorithm natural parameters, the system allows for the
selection of a data preprocessing option, a resampling method and its
iterations and what performance option to use for scoring the algorithm.

If you have enough CPU power in your R engine server, you can opt for
the system to “Use the best cited method for you”. This will iterate
through all the available algorithms and options and select the one with
the best score.

After all the analysis options have been defined, a CSV file with the
training data must be attached for model training. If a model is run for a
second time with the same data but different options, the data file can be
omitted since LabRat will aways use the last supplied data file for model
training.

All model states are always available for the user to review. The can be
accessed under the model detail section.

!27

IMAGE 7: MODEL STATE LIST

IMAGE 8: MODEL TRAINING FORM
 

!28

Data prediction

A data prediction can only
be requested under an
already trained model. To
predict data, it is only
necessary to provide the
job title and the data file
with the sample names or
description as well as the
predictor fields.

IMAGE 9: DATA PREDICTION FORM

User graphical interface

The user graphical interface can be navigated using the application
workflow defined above. This means that the models can be found under
the project details sheet and the predictions under each model detail
section. Also, and in order to create or modified any component (such as
a model or a prediction) we must go first to the detail sheet of the
element that contains it. That is, if we wish to create a new prediction, we
must first find the model used for such a prediction that can be found
under that project that contains it.

In order to ease the navigation process, it is also possible to access all
available models and prediction outside of the scope of their
corresponding projects. Still, every action performed under any of this
elements (such as editing or training) will lead us back to the hierarchical
user interface model oriented structure.

The user interface follows a CRUD like convention. The following image
illustrate the basic project list.

IMAGE 10: PROJECT LIST

On the top of he image we have the section title and breadcrumbs than
can be use to navigate backwards and to have a point of reference that
indicate us where we are now.

!29

Each list element has a title, that leads to the detail view (where we can
usually find other child elements such as models and predictions), and a
toolbar with actions that can be performed over the listed element.

Economical Evaluation

Although this an open source project, it can be valued in terms of cost s
involved in the production process and annual maintenance. The
following tables summarized such expenses. Each of the cost/hr
specified is related to the task category described within the table. All the
cost/hr values used below are an approximation to the current European
professional market according to my own personal experience as a
project manager for the professional freelance market.

Production costs

TABLE 2: PRODUCTION COSTS

Annual fixed costs

TABLE 3: ANNUAL FIXED COSTS

Product Viability

LabRat is totally viable for commercialization or the open market since it
covers a necessity already demanded by the scientific community.
Nevertheless, it is realistic, as well as necessary, to mention that the
application needs some minor improvements in the following areas
before it can be released as a fully functional and commercial project:

Description Hours Cost/hr Total

Back-office API Back-end Engineer 216 40,00 € 8640,00 €

Machine Learning R Scripts Biotechnitian 88 75,00 € 6600,00 €

Blade Front-end Front-end Engineer 96 60,00 € 5760,00 €

Project management Project manager 35 30,00 € 1050,00 €

22050,00 €

Description Cost/month Total

Back-end hosting 20,00 € 240,00 €

R engine server costing 80,00 € 960,00 €

Domain name registration 2,00 € 24,00 €

1224,00 €

!30

Usability: The usability of the system has not be tested yet. It is
important to test and contrast the product usability with at least two
different sources before it can be released as a function solution.
Deployment: As it will be mentioned in the conclusion’s section, the
production deployment process must to be automatized using Docker
containers.
Maintenance: As explained in the conclusions, a code maintenance
and distribution plan needs to be implemented to guarantee its
quality.

!31

5. Conclusions
There are many practical and academic conclusions that can be
extracted from the development and project managing experience
processes involved during the making of this application.

From a project management point of view, the use of the Agile/Scrum
methodology for the development of a project with a single and unique
workforce unit was proven to be effective.

It is a fact that I had my doubts about being the project manager and the
only developer involved in this project. Even though some licenses were
taking at the end of the project when it comes to project management
(the use of shorter user stories, longer sprints or the disposal of several
non-crucial Jira tickets) a strong and solid Scrum methodology was
followed without hesitation.

The Agile discipline imposed from the very beginning, was indeed a pillar
of confidence when time and due work seemed not to be getting along.
The fact that there was a complete project planning in Jira, and as a
Gantt diagram, became a powerful planning prediction tool.

As a developer, one of the main achievements has been learning how to
implement a micro-service system design pattern with asynchronic calls
using a synchronic programming language.

In order to get PHP and R to work together without loosing the scaling
capabilities of the system statistical analysis component, a micro-
services system had to be implemented. This was accomplished thanks
to the effectiveness of the Laravel framework, which allows the
implementation of asynchronic queued jobs, Node.js and the Express
module for HTTP server creation. These three technical elements, along
with some of the Laravel embedded libraries for HTTP calls, helped in
the construction of the micro-services environment.

On the downside, Laravel turned out to be inefficient in the elaboration of
the basic CRUD calls for the API Rest and service layers. This could
have been easily resolved with Loopback, which was not involved in the
project as explained in previous sections. Nevertheless, Loopback will be
seriously taking into consideration in future projects.

Every development tool was designed for a specific use and need. An
efficient piece of software should implement what best suits its needs
without any technological limitations.

!32

Goals Analysis

All proposed goals were effectively accomplished at project completion.
The following reflexion summarizes the facts that lead us to confirm the
completion of the proposed sub-goals.

(1.1) To minimized custom made scripting tasks for machine
learning analysis.

This goal was accomplished by the completion of the R scripts that
processes the submitted data in order to provide a trained model, which
is later on use to make predictions over unknown or unclassified data.

The scripts were coded considering the generic nature of the data and
the different, but predictable, deviation of its nature. Facts such as the
number of classes, predictors, or even the possibility of predictions errors
due to corrupted algorithm parameters were considered in order to bullet
prove the training and prediction phases.

In order to accomplish this goal, several datasets from different sources
and nature were fed into the system, which was programmatically
adapted in terms of the different patterns and behavioral characteristics
from each dataset.

(1.2) To provide a machine learning trained model environment
where the scientific community can share and use multidisciplinary
trained models on demand.

This goal was accomplished by the implementation of the back-end
server and all of its components which involved the front-end design and
implementation, the API Rest interface and the service layer.

This back-office tool provides several environments (MVC and API Rest)
where the scientific community can create and share trained models
through the internet or private intranet.

(1.3) To provide a private and encapsulated environment for
machine learning based data analysis and storage.

Since LabRat was develop to be used as a private environment, the
nature of the application infrastructure itself complies with the
requirement specified in this goal.

The open-source nature of the project and the capability to be installed
as a private application within a controlled environment accomplishes the
private and encapsulated working environment required by this sub-goal.

The effective accomplishment of all of the propose goals lead to
effectively state that the delivered project has indeed provided the
scientific community with a collaborative open source application

!33

to generate machine learning trained models and predictions from
unclassified data.

Methodology and Planning Challenges

The planning method adopted for this project was indeed the right one to
complete the proposed goals. The Agile process methodology has fulfill
the development method expectations as it allowed to modified the
proposed paining as needed.

Although the planning was very well defined from the very beginning,
changes had to be made to adapt to the new challenges that the project
requirements imposed along the development process.

Some of this challenges, such as the implementation of the dual port for
the R engine server and data storage problem, added extra time to the
development process. On the other hand, the R scripts regarding the
implementation of each individual algorithms, were completed before
schedule, which helped keeping a balance between the extra time added
to the project and planning and the time saved as the result of over
scoped tasks.

One of the major planning decisions that were taking, in despite of the
correct adjustment of the project management task, was to switch front-
end technologies. When the initial planning was presented, Angular.js
was chosen as primary and unique front-end technology along with the
back-end API Rest presented in the discussion of this project.
Nevertheless, my professional experience as a developer made me
decided to switch technologies in order to prevent unnecessary delays as
a consequence of facing a step and unnecessary learning curve that this
technology could have brought along during the last stages of the
development process.

This decision had two negative side effects. The first one was the
implementation of a new design pattern, the MVC pattern, which was not
initially scoped and could have brought delays in the project planning; the
second was a lesser in the usability of the user interface due to the
constraints the new implemented technology (Blade/Vue) had.

Nevertheless, none of these risks turned out to have a negative impact in
the project planning as it was completed a week ahead of schedule.

Improvements and future software development guidelines

Software development is an ongoing process of perfection always
oriented to provided the client with the best experience. The following
items describe some possible, and sometimes necessary, features to be
implemented for the next released version:

!34

Dockerized deployment: The production deployment process can
be problematic and complex, specially when deploying at a fresh
environment. This is why it is imperative to include a Docker box
within each of the application repositories. This will simplify the
deployment process. The goal is to reduce the deployment process to
the execution of a simple bash command that will create, run and
expose the all the needed docker images as it synchronizes the code
from the repository master branch.
CD/CI: Since a dockerized deployment is scheduled for the next
software release, a continues development and integration strategy
must be implemented. This will improve the application in the
following areas:

Client satisfaction: The CD/CI process will be implemented
into the repository Docker container, allowing the software to
update when a new merge is detected in the master branch.
This can be extremely convenient for clients who decides to
clone and install the software into their private machines for
local use. Every client hosting an instance of the application
will automatically have the system updated with no extra work.
Nevertheless, this will be an optional feature for the end user
and only available whenever a manual update is not required.
Smooth development: The use of Docker as a way to
implementing a CD/CI process will lead to a better
development process by creating a new virtual machine for
software testing of individual branches before merging into
develop or master. This will replace the Heroku hosting
completely as the development process migrates into a more
enterprise-like environment. So far, Kubernetes seems like the
obvious choice for in-the-house CD/CI development.

Data preprocessing: At the current moment, all the data used for
model training and prediction must be somehow pre-processed and
modified before it can be used. This requires for the user to have a
notion of R or still require of a bioinformatician to complete this
process. In order to better automatized the process, a new section will
be implemented into the model training process and prediction where
the user can decide how to treat the data columns before proceeding.
Charting: Since the system allows for the use of different parameters
when training a model, it is possible to display performance charts of
each of the models handled by R before choosing the one with the
best performance. The model detail sheet will therefore include a
chart section where the user can compare and observe the evolution
of each model for each of the provided parameters.
Notification processes: This new feature includes improvements in
the UI and data flow. The user will be notified via email and web the
moment a model has been trained or a prediction is completed
without refreshing the browser. This will improve the user experience
and the usability of the system.
Automatic prediction tuneup: When choosing the right algorithm for
the training data, the system uses a set of predefined parameters per

!35

algorithm tested by the system. These parameters can not be
modified by the end user through the web interface. A new feature will
allow the user to manipulate these parameters according to her/his
needs and hardware power available.
internationalization: Although the project text has been optimized for
internationalization purposes, it has not been yet translated into other
languages besides English. This is indeed a improvement to be
completed in future updates.

!36

6. Glossary
Angular.js A JavaScript framework for front-end

programming.

API Defined as an application programming
interface, it is a set of commands that allows
the interaction with a piece of software in order
to execute code.

AWS Amazon Web Service. It is the Amazon
commercial server infrastructure.

CD/CI Continuous development and integration. It can
be defined as a set of steps or software
development procedure that allows the code to
be developed, tested and integrated into the
main production code automatically.

Component diagram A software engineer diagram that shows the
relations and interactions between the different
parts of a piece of software and how they
communicate with each other.

Digital Ocean A virtual machine service for software
deployment

Framework A software development tool that allows for the
development of code within a set of predefined
tools and conventions while simplifying the
development process and allowing the
developer to focus on the actual code. It takes
care of the common code that interacts with
database transactions, string manipulation,
model creation and other general development
tasks.

Git A software version control service for keeping
track of software development and integration.

Git-Hub A comercial Git service for code hosting.

Heroku A hosting and CD/CI platform for software
development.

Laravel Framework for software development.

!37

Micro-service A structural design pattern for software
development consisting in the development of
small and independent pieces of software that
work together as a single unit. 

MongoDB NoSQL database engine for storing
unstructured data. 

MVC A structural design pattern that separates the
code intro a three later structure: the database
model, the controller logic and the user
interface view.

MySQL Relational database engine for storing
structural related data.

Node.js Server side programming engine based on
JavaScript and usually used for server
communication programming purposes. 

PHP A multipurpose programing language for the
web based on C and C++.

PhpMyAdmin A web based MySQL admin tools. 

R Statistical and mathematical programming
language. 

Repository A section in Git where the code is stored.

REST A software communication design paradigm
that allows a piece of software to communicate
to another through regular web-like URL
addresses in order to execute a specific
software functionality.

SaaS Software as a service. It is a software
distribution model that is remotely hosted at a
server or cloud service. The end-user can
access it via internet. It does not require any
maintenance nor installation process for the
user to make use of it. It can be described as a
service specific web application with licensing
and specific use restrictions. [25]

Spring Boot A java based development framework for
enterprise software development.

!38

Symfony A PHP based framework for enterprise
software development.

UML Unified model language, used for software
model and database design.

Vue A JavaScript framework for complex UI design
and user interaction.

Web application It is a more generic and general concept that
englobe any service hosted remotely and used
by a client via browser. A SaaS can be
considered to be a web application but with
licensing and other legal restriction that may
involve maintenance and use restrictions.

!39

7. Bibliography
[1] CircleCI: https://circleci.com/gh/LabRatGroup

[2] Sentry: https://sentry.io/

[3] Bugsnag: https://bugsnag.com

[4] Laravel Mongo Driver: https://github.com/jenssegers/laravel-
mongodb

[5] How to install PHP (7 or 7.2) on Ubuntu: https://thishosting.rocks/
install-php-on-ubuntu/

[6] Uninstall mongodb php driver and install a different version:
https://stackoverflow.com/questions/24116235/uninstall-mongodb-php-
driver-and-install-a-different-version

[8] Run rJava with RStudio under OSX 10.10, 10.11 (El Capitan) or
10.12 (Sierra): https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-
RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)

[8] Install MongoDB Community Edition on macOS: https://
docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/

[9] Using MongoDB with R | DataScience: https://
datascienceplus.com/using-mongodb-with-r/

[10] Shell.js cheatsheet: https://devhints.io/shelljs

[11] shelljs/shelljs - Portable Unix shell commands for Node.js:
https://github.com/shelljs/shelljs

[12] tkambler/sftp-server: A Node.js-based SFTP server with an
integrated REST API for querying users / files.: https://github.com/
tkambler/sftp-server

[13] Tuning Machine Learning Models Using the Caret R Package:
https://machinelearningmastery.com/tuning-machine-learning-models-
using-the-caret-r-package/

[14] How To Estimate Model Accuracy in R Using The Caret
Package: https://machinelearningmastery.com/how-to-estimate-model-
accuracy-in-r-using-the-caret-package/

[15] mongodb - PHP, mongo.so failed to write: Stack Overflow -
https://stackoverflow.com/questions/33640553/php-mongo-so-failed-to-
write

!40

https://circleci.com/gh/LabRatGroup
https://sentry.io/
https://bugsnag.com
https://github.com/jenssegers/laravel-mongodb
https://github.com/jenssegers/laravel-mongodb
https://thishosting.rocks/install-php-on-ubuntu/
https://thishosting.rocks/install-php-on-ubuntu/
https://stackoverflow.com/questions/24116235/uninstall-mongodb-php-driver-and-install-a-different-version
https://stackoverflow.com/questions/24116235/uninstall-mongodb-php-driver-and-install-a-different-version
https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)
https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)
https://github.com/MTFA/CohortEx/wiki/Run-rJava-with-RStudio-under-OSX-10.10,-10.11-(El-Capitan)-or-10.12-(Sierra)
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://datascienceplus.com/using-mongodb-with-r/
https://datascienceplus.com/using-mongodb-with-r/
https://devhints.io/shelljs
https://github.com/shelljs/shelljs
https://github.com/tkambler/sftp-server
https://github.com/tkambler/sftp-server
https://machinelearningmastery.com/tuning-machine-learning-models-using-the-caret-r-package/
https://machinelearningmastery.com/tuning-machine-learning-models-using-the-caret-r-package/
https://machinelearningmastery.com/how-to-estimate-model-accuracy-in-r-using-the-caret-package/
https://machinelearningmastery.com/how-to-estimate-model-accuracy-in-r-using-the-caret-package/
https://machinelearningmastery.com/how-to-estimate-model-accuracy-in-r-using-the-caret-package/
https://stackoverflow.com/questions/33640553/php-mongo-so-failed-to-write
https://stackoverflow.com/questions/33640553/php-mongo-so-failed-to-write

[16] preProcess function | R Documentation: https://
www.rdocumentation.org/packages/caret/versions/6.0-79/topics/
preProcess

[17] Laravel-AdminLTE: https://github.com/jeroennoten/Laravel-
AdminLTE

[18] Sisporto 2.0: A program for automated analysis of
cardiotocograms: https://onlinelibrary.wiley.com/doi/abs/
10.1002/1520-6661%28200009/10%299%3A5%3C311%3A%3AAID-
MFM12%3E3.0.CO%3B2-9

[19] State of the art prediction of HIV-1 protease cleavage sites:
https://academic.oup.com/bioinformatics/article/31/8/1204/212810

[20] ¿Cómo instalar MongoDB en Ubuntu 16.04?: https://
www.digitalocean.com/community/tutorials/como-instalar-mongodb-en-
ubuntu-16-04-es

[21] How To Install Linux, Apache, MySQL, PHP (LAMP) stack on
Ubuntu 18.04: https://www.digitalocean.com/community/tutorials/how-to-
install-linux-apache-mysql-php-lamp-stack-ubuntu-18-04

[22] How To Set Up a Remote Database to Optimize Site
Performance with MySQL on Ubuntu 16.04: https://
www.digitalocean.com/community/tutorials/how-to-set-up-a-remote-
database-to-optimize-site-performance-with-mysql-on-ubuntu-16-04

[23] Laravel 5.1 404 not found on apache server: https://
stackoverflow.com/questions/39178272/laravel-5-1-404-not-found-on-
apache-server

[24] ¿Cómo Instalar y Proteger phpMyAdmin en Ubuntu 16.04?:
https://www.digitalocean.com/community/tutorials/como-instalar-y-
proteger-phpmyadmin-en-ubuntu-16-04-es

[25] Software como servicio: https://es.wikipedia.org/wiki/
Software_como_servicio

[26] How To Install and Manage Supervisor on Ubuntu and Debian
VPS: https://www.digitalocean.com/community/tutorials/how-to-install-
and-manage-supervisor-on-ubuntu-and-debian-vps

[27] PHPStorm: https://www.jetbrains.com/phpstorm/

[28] Lipsum Pro: http://lipsum.pro/

[29] JSONLint - The JSON Validator: https://jsonlint.com/

!41

https://www.rdocumentation.org/packages/caret/versions/6.0-79/topics/preProcess
https://www.rdocumentation.org/packages/caret/versions/6.0-79/topics/preProcess
https://www.rdocumentation.org/packages/caret/versions/6.0-79/topics/preProcess
https://github.com/jeroennoten/Laravel-AdminLTE
https://github.com/jeroennoten/Laravel-AdminLTE
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6661%28200009/10%299%3A5%3C311%3A%3AAID-MFM12%3E3.0.CO%3B2-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6661%28200009/10%299%3A5%3C311%3A%3AAID-MFM12%3E3.0.CO%3B2-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6661%28200009/10%299%3A5%3C311%3A%3AAID-MFM12%3E3.0.CO%3B2-9
https://academic.oup.com/bioinformatics/article/31/8/1204/212810
https://www.digitalocean.com/community/tutorials/como-instalar-mongodb-en-ubuntu-16-04-es
https://www.digitalocean.com/community/tutorials/como-instalar-mongodb-en-ubuntu-16-04-es
https://www.digitalocean.com/community/tutorials/como-instalar-mongodb-en-ubuntu-16-04-es
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-remote-database-to-optimize-site-performance-with-mysql-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-remote-database-to-optimize-site-performance-with-mysql-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-remote-database-to-optimize-site-performance-with-mysql-on-ubuntu-16-04
https://stackoverflow.com/questions/39178272/laravel-5-1-404-not-found-on-apache-server
https://stackoverflow.com/questions/39178272/laravel-5-1-404-not-found-on-apache-server
https://stackoverflow.com/questions/39178272/laravel-5-1-404-not-found-on-apache-server
https://www.digitalocean.com/community/tutorials/como-instalar-y-proteger-phpmyadmin-en-ubuntu-16-04-es
https://www.digitalocean.com/community/tutorials/como-instalar-y-proteger-phpmyadmin-en-ubuntu-16-04-es
https://es.wikipedia.org/wiki/Software_como_servicio
https://es.wikipedia.org/wiki/Software_como_servicio
https://www.digitalocean.com/community/tutorials/how-to-install-and-manage-supervisor-on-ubuntu-and-debian-vps
https://www.digitalocean.com/community/tutorials/how-to-install-and-manage-supervisor-on-ubuntu-and-debian-vps
https://www.digitalocean.com/community/tutorials/how-to-install-and-manage-supervisor-on-ubuntu-and-debian-vps
https://www.jetbrains.com/phpstorm/
http://lipsum.pro/
https://jsonlint.com/

[30] foreverjs/forever: https://github.com/foreverjs/forever

[31] How to Install and Secure MongoDB on Ubuntu 16.04: https://
www.digitalocean.com/community/tutorials/how-to-install-and-secure-
mongodb-on-ubuntu-16-04

[32] How to Install R Packages using devtools on Ubuntu 16.04: https://
www.digitalocean.com/community/tutorials/how-to-install-r-packages-
using-devtools-on-ubuntu-16-04

!42

https://github.com/foreverjs/forever
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-mongodb-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-mongodb-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-mongodb-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-r-packages-using-devtools-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-r-packages-using-devtools-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-r-packages-using-devtools-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-r-packages-using-devtools-on-ubuntu-16-04

	Project Technical Card
	Table of Content
	Figure List
	1. Introduction
	1.1 Context and project justification
	1.2 Project goals
	1.3 Project procedure and description
	1.4 Project planning
	1.5 Deliverable brief description and summary
	1.6 Remaining chapters and content brief description
	2. Technical Design
	Project structure
	Development process
	Functional requirements
	Non-functional requirements
	UML model design
	Software installation requirements
	3. Risk Analysis and Development Strategies
	Initial development risk analysis
	Development strategies and troubleshooting
	4. User Manual
	Demo datasets
	Project security
	System Workflow
	Model training
	Data prediction
	User graphical interface
	Economical Evaluation
	Production costs
	Annual fixed costs
	Product Viability
	5. Conclusions
	Goals Analysis
	Methodology and Planning Challenges
	Improvements and future software development guidelines
	6. Glossary
	7. Bibliography

